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ABSTRACT
Strawberries are an important cash crop that are grown worldwide.
They are also a labour-intensive crop, with harvesting a particu-
larly labour-intensive task because the fruit needs careful handling.
This project investigates collaborative human-robot strawberry
harvesting, where interacting with a human potentially increases
the adaptability of a robot to work in more complex environments.
The project mainly concentrates on two aspects of the problem: the
identification of the fruit and the picking of the fruit.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); •Computer systems organization→Robotic con-
trol; • Computing methodologies → Vision for robotics.
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1 INTRODUCTION
Strawberries are planted widely around the world and are an impor-
tant cash crop, but strawberry farming has quite a high labour cost.
For example, the total labour time of working on strawberry plants
in Japan is slightly less than 20,000 hours/hectare, while harvesting
is about 5000 hours/hectare [6], and the harvesting labour cost
could sometimes reach 45% of the entire labour cost [18]. These
costs motivate a strong need for a strawberry harvesting robot.
The environments in which strawberries are grown are usually
very complex: there are many different varieties of strawberry with
different shapes, the farm environment includes a range of very
different illumination and background conditions, and strawberries
grow in such a way that berries are often obscured by leaves and
other fruit. Thus, methods tailored to one specific environment
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may not work in another. As the goal of this research is to design
a robot suitable for these complex environments, a potential way
to improve performance in automated strawberry harvesting is to
develop intelligent human-robot solutions. Two questions therefore
are investigated here: (1) How could humans help to improve the
performance of robots? (2) How could humans and robots interact
with each other more efficiently? To address these questions two
preliminary results are described: a pilot study of human-robot in-
teraction for fruit identification, and research into a robot learning
specialised movements for harvesting from a human.

Related Work Approaches to automated strawberry harvest-
ing encompass research frommultiple communities; work related to
object detection and human-robot interaction are highlighted here.
Fruit harvest robots are investigated in many different research
projects, including but not limited to strawberries [5, 6, 15, 17, 18].
Different methods are introduced to detect the target object, and
the mainstream research on fruit detection can be roughly divided
into two phases: detecting with traditional computer vision meth-
ods based on shape [12, 14] or colour [6, 11], and detecting with
machine learning methods [8, 13]. However, when the robot works
in different complex environments, none of these methods on their
own can be transferred directly without making adjustments to
maintain performance standards. To improve the adaptability of
the robot, a solution is to include a human in the loop. Learning
from Demonstrations (LfD) provides a sensible approach for a robot
to generate a policy from human teachers [1, 9, 10].

Preliminary Work Prior to embarking on human-robot ap-
proaches as outlined here, we studied autonomous fruit detection.
To detect the picking point of a strawberry (the position that a robot
hand should grasp to detach the fruit), we designed and tested an
automated vision-based system [7]. First, a target mature straw-
berry is distinguished from the image background using colour
segmentation. Then to enable choosing a picking point in the im-
age, a specially designed template was used. This approach works
better than previous works in the same area [4, 18] and was tested
on our own dataset containing multiple strawberries images taken
in real farm environments. This detection method is then applied in
our current work together with detectors based on neural networks.

2 CURRENT WORK
When dealing with some high-value crops, the behaviour of a robot
is preferred to be more reliable, thus we explore a human-in-the-
loop strategy Taking strawberries as an example, the basic process
of fruit harvesting could include tasks such as identifying mature
strawberries ready to pick, choosing suitable positions for detach-
ing fruit from the plant, controlling the robotic arm to approach
the target, and removing the fruit from the plant. In such complex
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tasks, we consider an approach where human collaborators cooper-
ate with a robot for target identification, as well as the training a
controller for the robot arm.

Human Involved Detection Pilot Study We apply super-
vised machine learning to the task of detecting ripe strawberries
in images. However, due to limitations of our training dataset, it is
hard for the accuracy of detection to reach 100%, especially when a
detector is applied to a very different environment from that where
it is trained. A possible way to improve the performance is to in-
clude a human in the loop. For example, when the robot is working
with a new variety of strawberry that is not included in the training
dataset, a human user can help the robot by checking the detection
result and providing feedback for further learning. As a collabora-
tion task, it is important for the human collaborator to consider
the robot’s decision to be trustworthy or at least helpful. Thus, the
impact of different ways that robot sharing decision making with a
human when detecting mature strawberries is studied.

For this study, an indoor simulated strawberry farm was created:
52 high-resolution strawberry images taken on real farms were
printed out in full-colour and hung on the walls of the corridor out-
side our robotics lab. An Asus Xtion camera on a mobile Turtlebot2
was then used to take 30 pictures at 5 pre-defined locations of the
simulated strawberry farm to conduct a controlled experiment. Two
different robot behaviours (algorithms) for detecting strawberries
were compared: one detects targets with pre-trained classifier and
displays the result in a binary mode (mature strawberry or not), and
the other detects mature strawberries with the same classifier but
provides a confidence value for its detection. When the detection
result is displayed in a graphical user interface, the user who collab-
orates with the robot is able to check the robot’s detection result,
remove the label of false positive results and label false negative
results. The basic setup is shown in Figure 1(a).

As a pilot study, 13 volunteers took part in an experiment, each
of them completed the detection task two times with the robot
using the different two algorithms mentioned above in a random
order. Questionnaires are used for collecting subjective data on
human perception of working with each robot. A pre-survey and a
post-survey were given to the users before and after the experiment
respectively. Meanwhile, objective data on robot performance and
human working time was also collected and analysed. The results of
this pilot study showed that the users preferred the algorithm with
confidence value provided, which is more informative compared
with the binary algorithm. This result follows an overall trend in
human-AI interaction systems: a system that explains its reasoning
tends to help increase user satisfaction [3].

Robot ArmMotion Learning fromHuman We apply Learn-
ing from Demonstration (LfD) to the task of moving the robot arm
to an appropriate location for picking strawberries. The idea is that
learning from human teachers will increase the flexibility of arm
motion. Compared with traditional manipulation, learning from
human teachers enables a robot to be controlled by non-technical-
professional users. And different to the linear movement adopted by
existing fruit pickers, the trajectory can be more flexible, increasing
the possibility of deploying a robot in complex environments.

For the robot to learn from human teacher(s), the whole process
is divided into two parts. First, a library is constructed based on
demonstrations provided by a human. Thus, a series of movements

Figure 1: Setup for current work. Image (a) shows the setup
for human involved detection pilot study. Image (b) shows
the setup for LfD experiments.

was executed, and then the coordinate (X ,Y ,Z ) of the center of the
end platform, the rotation angle of the servo joint relative to the
coordinate frame, and the 4 joint angle between links of the arm
were recorded altogether with time as a whole dataset. The second
step is deriving a policy from the library. Since the demonstrations
in the dataset are Markovian, the Hierarchical Dirichlet Process
Hidden Markov Model (HDP-HMM) [2] is applied to the dataset to
cluster the demonstrations into different subsequences. For each
group of subsequences, the Dynamic movement primitives (DMPs)
method [16] is then used for parameterizing the subsequences. The
parameterized trajectories provide a policy as the starting point,
with parameters to be explored later using reinforcement learning.

Figure 1(b) shows an experimental setup to control the Dobot
Magician arm to reach a target. A webcam is attached to the end
effector to take a picture of the environment at a certain frequency.
The arm will move around, and when a mature strawberry is de-
tected in the centre of the image and occupies of the image, it is
considered to have been reached. This result can be applied to the
reward function when using reinforcement learning. To measure
the performance of the learned method, the accuracy of robot arm
reaching the target is calculated.

3 NEXT STEPS
For human-in-the-loop detection, the first thing to do is to extend
our preliminary user study with more volunteers to obtain a larger
sample, which will produce more reliable results. In addition, more
robot behaviours could be studied, for example, the impact of the
rate of false positives and false negatives could be an interesting
topic. Finally, the labelling information feedback from users could
be applied to reinforcement learning, to help with improving the
accuracy of the detectors.

For the robot arm motion learning from human teachers, one
possible next step is to improve the performance of humans first, by
increasing the dataset with more demonstrations from strawberry
harvest professions. In addition, learning based on observations
to choose a suitable angle for robots to avoid obstacles when ap-
proaching the targets should also be studied.

It is believed that with humans collaborating with robots, the
results for fruit harvesting tasks will be better than either work-
ing on their own. The robots reduce the repetitive workload of
human, and the human helps the robot to adapt in a more complex
environment.
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