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ABSTRACT
Trust in automated driving systems is crucial for effective driver-
(semi)autonomous vehicles interaction. Drivers that do not trust
the system appropriately are not able to leverage its benefits. This
study presents a mixed design user experiment where participants
conducted a non-driving task while traveling in a simulated semi-
autonomous vehicle with forward collision alarm and emergency
braking functions. Occasionally, the system missed obstacles or
provided false alarms. We varied these system error types as well as
road shapes, and measured the effects of these variations on trust
development. Results reveal that misses are more harmful to trust
development than false alarms, and that these effects are strength-
ened by operation on risky roads. Our findings provide additional
insight into the development of trust in automated driving systems,
and are useful for the design of such technologies.
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1 INTRODUCTION
Trust in automation is a fundamental factor for achieving the ac-
ceptance and use of advanced robotic technologies [7, 9, 14]. In the
context of automated driving systems (ADSs), trust-related issues
can jeopardize driver-vehicle interaction effectiveness and result
in inefficient use of ADSs. For example, when undertrusting the
ADS, a driver might not be able to fully leverage the safety and
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productivity benefits provided by that system. When overtrusting
the ADS, however, drivers might not be attentive enough to the
road hazards that the automation is not able to address or avoid.

This work focuses on understanding and modeling how trust
in the ADS (TiA) develops in the interactions between drivers and
(semi)autonomous vehicles with SAE level 3 ADSs and the exe-
cution of secondary tasks by the driver that demand visual at-
tention. We investigate the effects of distinct ADS error types—
i.e., false alarms and misses—and of risk factors perceived by dri-
vers on TiA. These insights are important for the development of
TiA control techniques, which will, ultimately, be helpful to avoid
trust issues and improve the collaboration between drivers and
(semi)autonomous vehicles.

2 BACKGROUND AND RELATEDWORK
Trust in automation is considered a factor that directly influences
a supervisor’s intervention behavior [16]. Lee and See [8] define
trust as the attitude that an agent will help achieve an individual’s
goals in a situation characterized by uncertainty and vulnerability.

Researchers have investigated the influence of false alarms—
when systems diagnose a risky condition that is in fact non-existent—
andmisses—when systems are not able to diagnose an existent risky
condition to the user—on operators’ trusting behaviorswhen they in-
teract with automated systems. After being exposed to false alarms,
operators were more prone to delay their response to automation
alerts or even ignore them, reducing their compliance [2, 17]. On
the other hand, after being exposed to misses, operators tended to
allocate more attention to monitor the system and take over control
without being asked, reducing their reliance. Compliance, reliance,
and monitoring (i.e., vigilance) [15] are the most relevant behaviors
in the driver-vehicle interaction context. These are the trusting
behaviors that should be perceived and processed by smart ADSs
that aspire to estimate and manipulate TiA.

3 HYPOTHESES DEVELOPMENT
Consider a driver operating a vehicle with the aid of an ADS and
executing a concurrent non-driving related task (NDRT). The ADS
is able to drive the vehicle if the road is free, as well as to eventually
warn the driver about obstacles (i.e., stopped vehicles) on the road.
However, the ADS might not be working perfectly, and there might
be occasions when false alarms and misses occur. A miss-prone
ADS could easily lead to crashes or more serious accidents and
thus misses could be perceived as more harmful than false alarms.
Further, when environmental characteristics are manipulated by
varying the road type (i.e., straight vs. curvy), we expect drivers to
perceive the situational risk differences and have low TiA when
risk is high. In summary, we propose hypotheses H1, and H2:
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H1: Both misses and false alarms have a negative effect on TiA.
Misses have a stronger negative effect on TiA than false alarms, inde-
pendent of the environmental conditions.

H2: In curvy roads, drivers perceive a high situational risk. Also,
this perceived risk is negatively correlated with TiA.

4 METHODOLOGY
The study employed a 4 × 2 mixed design, given by 4 ADS er-
ror type conditions—control (no ADS error), false alarms (4 false
alarms in 12 events), misses (4 misses in 12 events), and combined
(2 false alarms and 2 misses in 12 events)—as well as 2 road shape
conditions—straight or curvy. We used a driving simulation im-
plemented with the Autonomous Navigation Virtual Environment
Laboratory (ANVEL) simulator [3]. In the driving task, participants
operated a simulated vehicle equipped with an ADS that provided it
self-driving capabilities (i.e., Automatic Lane Keeping, Cruise Con-
trol and Collision Avoidance systems) with the ability to give/take
control to/from the ADS. With the ADS activated, participants
were requested to execute a visual search non-driving related task
(NDRT) implemented with PEBL [10]. A total of 80 participants,
aged 18-51 years (µAGE = 25.0, σAGE = 5.7), were recruited. Each
subject experienced both road conditions and one of the ADS error
type conditions. Measured variables included participants’ subjec-
tive responses including trust [11], risk [13], and workload per-
ceptions through surveys, behavioral responses and NDRT per-
formance, as well as vehicle dynamics data. NDRT performance
consisted of the total number of points obtained by the participants
in each trial minus penalties for each time they did not take control
on time and the emergency brakes were activated. Figure 1 shows
the setup and the tasks performed by the participants.

Driving Task

NDRT Trust change self-report

Please indicate the degree that your trust changed after this encounter.

Decreased
Significantly
-2

Decreased
Slightly

-1
No Change

0

Increased
Slightly

1

Increased 
Significantly

2

Figure 1: Experimental design, driving task, non-driving re-
lated task and trust self-report. The trust change self-report
question popped up after every event within the trials.

5 RESULTS
We ran an ANOVA to verify H1 and found significant differences in
final (i.e., post-trial) TiA between the four trial error type conditions
(F (3, 156) = 23.33; p < 10−3). We also ran a t-test to confirm
that TiA is significantly greater for false alarms than for misses
(t(39) = 3.82, p < 10−3). These results confirm that misses have a
stronger negative impact on TiA than false alarms (H1).

We used a linear mixed-effects model to investigate the impact
of road shapes on post-trial perceived risk. We found that drivers
perceived a higher risk when they operated the simulated vehicle
in curvy roads (p < 10−3). Moreover, we analyzed the correlation of
perceived risk and TiA and confirmed that in more difficult driving
situations, drivers do not trust the ADS to help them to drive and
execute a concurrent NDRT safely (p < 10−3).

6 DISCUSSION
We identified that misses have a stronger negative impact on trust
than false alarms, in support of hypothesis H1. In our study, we
used direct measures of trust, while previous studies have used
different metrics [6] or even found different conclusions [1]. In
support of H2, we have also described the negative influences of
risk perception on TiA, which adds to the effects of false alarms
and misses. These findings align with conclusions from existing
literature on trust models [5, 12], and extend the results through
the manipulation of road shapes.

There are limitations for this study. In general, people tend to
act similarly in real and simulated environments [4]. However, due
to the risks involved in driving, we acknowledge that participants
might not have felt as vulnerable as they would if this study had
been conducted in a real vehicle. Another restriction is that our
NDRT is a very specific visual task. Other types of NDRTs could
demand drivers attention for longer periods of time, and this could
induce a different effect on trust, risk perception, and performance.

This work tries to identify the aspects of TiA development that
could be included in computational models for TiA and that are use-
ful for the development of new ADS functions, such as adapting the
ADS’s behavior to driver’s behaviors. In future efforts, these models
can be utilized for the design of frameworks for trust manipulation
and control. These frameworks should have the goal of optimizing
driver-(semi)autonomous vehicles team performances, mainly by
avoiding trust-related issues. Future contributions may extend our
analysis to characterize TiA short-term dynamics (i.e.: observing
TiA at every event). Moreover, trusting behaviors (such as gaze
movements) could be integrated in the analyses and correlated with
subjects’ self-reports of trust.

7 CONCLUSION
We present a user study where participants operated a simulated
self-driving car while conducting a NDRT and reporting their level
of trust in the system. Our results reveal that when drivers interact
with ADSs and use these systems to execute a non-driving related
task concurrently, misses are more harmful to trust development
than false alarms. Moreover, the inclusion of risk from the oper-
ational environment also undermines trust development. While
more accurate trust models are still required, our findings are use-
ful for the design of driver-(semi)autonomous vehicles interactive
systems.
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