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Abstract
The Steiner Tree problem is one of the most fundamental
NP-complete problems as it models many network design
problems. Recall that an instance of this problem consists
of a graph with edge weights, and a subset of vertices (often
called terminals); the goal is to find a subtree of the graph
of minimum total weight that connects all terminals. A
seminal paper by Erickson et al. [Math. Oper. Res., 1987]
considers instances where the underlying graph is planar and
all terminals can be covered by the boundary of k faces.
Erickson et al. show that the problem can be solved by
an algorithm using nO(k) time and nO(k) space, where n
denotes the number of vertices of the input graph. In the
past 30 years there has been no significant improvement of
this algorithm, despite several efforts.

In this work, we give an algorithm for Planar Steiner

Tree with running time 2O(k)nO(
√
k) using only polynomial

space. Furthermore, we show the running time of our algo-

rithm is almost tight: we prove that there is no f(k)no(
√

k)

algorithm for Planar Steiner Tree for any computable

function f , unless the Exponential Time Hypothesis fails.

1 Introduction

In the Steiner Tree problem, we are given an undi-
rected n-vertex graph G with edge weights1 ω : E(G)→
{0, . . . ,W} and a set of terminals T ⊆ V (G). We are
asked to find an edge set S (called a Steiner tree) mini-
mizing

∑
e∈S ω(e) such that every two vertices u, v ∈ T

are connected in the graph (V, S). The problem is one
of the most important NP-complete problems as it el-
egantly models network design problems. Several text-
books are entirely devoted to Steiner trees [18, 40].

Parameterization by Number of Terminals
A very popular research direction that aims to under-
stand the computational complexity of Steiner Tree
is to consider its parameterization by the number of
terminals of the instance. Dreyfus and Wagner [17]
and independently by Levin [29] initiated this line of
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research and showed that the problem can be solved in
3|T |poly(n) time.2 Thus, in the language of parameter-
ized complexity, Dreyfus and Wagner show the problem
is Fixed Parameter Tractable when parameterized by
|T |. Fuchs et al. [25] improved this result to O∗(c|T |)
for any c > 2. In the case of small weights, Björklund
et al. [6] provide a faster O∗(2|T |W ) time algorithm.
All aforementioned algorithms require almost as much
working memory as time. However, the setting in which
one is given only working memory that is polynomial in
the input size has also been well-studied [20, 21, 30, 36].
The currently fastest polynomial-space algorithms run
in O∗(2|T |W ) time [30] and O∗(7.97|T |) time [21].

Planar Steiner Tree Another very popular di-
rection is to study Steiner Tree restricted to planar
graphs. The study of approximation schemes for Pla-
nar Steiner Tree (and many variations and gener-
alizations of it) has been a well-established subject for
a long time [7, 8, 2, 1]. More recently, our understand-
ing of the exact exponential-time complexity of Pla-
nar Steiner Tree has also progressed significantly.
Some positive results study the decision variant of the
unweighted case of Planar Steiner Tree, and its pa-
rameterization by |S| (the size of the required Steiner
tree). Pilipczuk et al. [39] show that one can prepro-
cess the input instance in polynomial time to remove
all but O(|S|142) edges. Pilipczuk et al. [38] (and later,
Fomin et al. [22]) show the problem can be solved in

O∗(2
√
|S| log2 |S|) time. The square-root in the exponent

is typical for exact algorithms for problems on planar
graphs (intuitively, due to the planar separator theo-
rem), and is often called the ‘square-root phenomenon’.
However, such a running time is not always guaranteed.
Very recently [34], it was shown that when parameter-
ized by the number of terminals |T |, planarity proba-
bly gives little advantage over the algorithm of Dreyfus
and Wagner in the following strong sense: if Planar
Steiner Tree can be solved in O∗(2o(|T |)), then the
Exponential Time Hypothesis fails.

Planar Steiner Tree with Terminals on Few
Faces A broadly studied variant of Planar Steiner

2In this paper we use the O∗(·) which omits factors polynomial
in the input size.
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Tree is obtained by making assumptions on the loca-
tions of the terminals. Such natural assumptions are
also studied extensively in e.g. the classic flow paper by
Ford and Fulkerson [23]. Of particular interest is the
case when all terminals lie on k given faces of the plane-
embedded input graph G. This parameter has a long
history in the study of cuts and (multicommodity) flows
(e.g. [35, 10, 28, 27]) and shortest paths (e.g. [24, 11]).
Krauthgamer et al. [27] (in this SODA) dubbed it the
terminal face cover number γ(G). The case γ(G) = 1
is known as an Okamura-Seymour graph [37]. For Pla-
nar Steiner Tree, the parameterization by k = γ(G)
generalizes the parameterization by |T |, as we can al-
ways ensure that k ≤ |T |. Hence, this parameterization
generalizes both previous research directions.

An important result by Erickson et al. [19] shows
that the problem can be solved in nO(k) time. Their al-
gorithm for k = 1 arises in both the aforementioned
approximation algorithms (i.e. in spanner construc-
tions [7]) and fixed-parameter algorithms (i.e. in prepro-
cessing algorithms [39]). Hence, the algorithm plays a
central role in the literature on Planar Steiner Tree.

The quest to improve, refine, and generalize the re-
sult by Erickson et al. [19] received significant attention.
Bern [3, 31] improved the constant in the exponent of
the running time of [19] to 2, and gave a better running
time if many terminals do not share any face with other
terminals. Bern and Bienstock [4] studied a generaliza-
tion in which the terminals can be removed by removing
k consecutive outerplanar layers. Provan [41, 42] stud-
ied generalizations in which covering by faces is replaced
with covering by ‘path-convex regions’, motivated by
some problems in geometry. For an excellent survey of
previous work on Planar Steiner Tree with termi-
nals on a few faces we refer to [26, Chapter 5], or to [12].

Despite these previous studies going back over 30
years, all previously known algorithms use nΩ(k) time,
and the algorithms matching this time bound use nΩ(k)

space. From a lower bound perspective, the result by
Marx et al. [34] implies that noO∗(2o(k))-time algorithm
exists assuming the Exponential Time Hypothesis (as
we can always ensure that k ≤ |T |). However, this
still leaves a large gap between the lower and the upper
bound. This leads to the natural question what the true
computational complexity is of Planar Steiner Tree
with terminals on k faces.

1.1 Our Results In this work we almost settle the
exact complexity of Planar Steiner Tree parameter-
ized by the number of faces needed to cover the termi-
nals, modulo the Exponential Time Hypothesis. First,
we show that the algorithm of Erickson et al. [19] can
be significantly improved:

Theorem 1.1. Given a plane n-vertex graph G with
terminals T , edge weights ω : E(G)→ {0, . . . ,W} and a
set K ⊆ 2E(G) of k faces of G such that each vertex from
T is on a face in K, a minimum weight Steiner tree can

be found using 2O(k)nO(
√
k) logW time, and polynomial

space.

Observe that our algorithm uses only polynomial
space, in contrast to all previous algorithms with a
running time of the type nO(k).

We remark that we may assume that the planar
embedding and faces are not a priori given, as already
observed in previous work. Explicitly motivated by
our setting, Bienstock and Monma [5] showed that,
given only the graph, one can find k faces covering
all terminals in some embedding in 2O(k)poly(n) time.
Hence, we can simply run their algorithm on the input
graph before applying Theorem 1.1 without affecting
the bound on the running time.

We also remark that Marx et al. [34] recently gave
an algorithm for Planar Steiner Tree with running

time nO(
√
|T |)W . Note that k ≤ |T | and |T | can be

arbitrary large when k = 1, but nevertheless our result
is incomparable to theirs because of the 2O(k) factor in
our running time.

We complement our algorithm with a conditional
lower bound that almost (that is, modulo the 2O(k)

factor) matches the running time of our algorithm:

Theorem 1.2. There is no f(k)no(
√
k) algorithm for

Planar Steiner Tree for any computable function
f , unless the Exponential Time Hypothesis fails.

In terms of parameterized complexity, this theorem
implies that Planar Steiner Tree is W [1]-hard when
parameterized by the number of terminal faces.

1.2 Our Techniques We describe our techniques
along with intuition and relationship to previous works.

Our Algorithm Before we sketch our algorithm,
we sketch the previous work we build upon. A sim-
ple observation behind the known exact algorithms for
Steiner Tree (all the way back to [17, 29]) is that any
edge e of the solution S splits S into two subtrees S1

and S2; if we know e and which terminal is connected
in which subtree, we can simply recursively solve the
associated subproblems (or look up their solutions in a
Dynamic Programming table). The number of candi-
dates for e and the split of the terminal set is |E| · 2|T |,
which is (roughly) the running time of [17, 29] and their
refinements.

The algorithm by [19] builds upon this scheme and
additionally uses the following observation. Suppose
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T ′ = {t1, . . . , tp} ⊆ T are terminals that lie on a
single face numbered in cyclic order along the face, and
i < j < k < l such that ti and tk are connected in S1 and
tj and tl are connected in S2, then S1 and S2 intersect
and thus we can remove an edge and obtain another
solution S′ with ω(S′) ≤ ω(S). Hence, we can restrict
our attention to subproblems in which terminal sets
form an interval on each face. The number of candidates
for e and such terminal sets is |E|·n2k, which is (roughly)
the running time of [19] and their refinements.

Our approach fits into the general scheme of guess-
ing how separators based on a solution map into an
input (see also, for example, [34, 33]). For the aimed

running time 2O(k)nO(
√
k), we cannot afford the above

decomposition as S1 and S2 may interact in k faces from
K. Instead, we use a larger separator on S to decom-
pose S in two forests S1 and S2 such that only a few
faces from K intersect both S1 and S2. To this end,
our crucial idea is to consider a separator in the graph
H = S ∪ K[, where K[ denotes ∪K∈KK. We show that
H has a (balanced) separator X of size O(

√
k), and if we

consider the split of S into S1 and S2 that X induces on
S, we see that any face in K not intersecting X is either
entirely connected in S1 or in S2. Algorithmically, this
observation allows us to guess the set X, and a partition
of the faces from K to be covered in both subproblems
which we solve recursively. Faces from K intersecting
with X can still be connected both via S1 and S2, so
their terminals set still needs to be distributed, but by
the observation of [19] we can restrict attention to slits
induced by intervals.

Our Lower Bound Our lower bound builds on
ideas of the recent 2Ω(|T |)poly(n) lower bound by Marx
et al. [34], but instead of reducing from 3-SAT, we
reduce from the Grid Tiling problem. An instance
of Grid Tiling consists of two integers n and k, and
k2 sets or cells Ma,b ⊆ [n] × [n] for a, b ∈ [k], and
we are tasked to decide whether there exist integers
xa ∈ [n] and ya ∈ [n] for a ∈ [k] such that (xa, yb) ∈
Ma,b for all a, b ∈ [k]. The standard way to do a
reduction from Grid Tiling in geometric problems
(see e.g. [32]) is to have a gadget for each cell that is
capable of representing the choice (xa, yb) in that cell,
and designing some communication gadget, which when
applied to horizontally (or vertically) neighboring cells,
ensures that the first (resp. second) index of the choices
in these cells are equal. One of the main challenges
is to design these communication gadgets, capable of
transmitting log n bits of information between any pair
of neighboring cells in the grid of k × k cells.

Our main innovation in the lower bound is the
design of a novel communication gadget, the so-called
flower gadget, that is capable of communicating multiple

bits, but uses only a single terminal face. Essentially, we
need a gadget with 2n portal vertices with the property
that in any optimal solution, the Steiner tree will have
exactly two components induced by the gadget, rooted
at portal vertex i and n + i respectively for some
i ∈ {1, . . . , n}. This already prescribes a rotational
symmetry to the gadget, but it is challenging to find
a gadget that can support this for several reasons.
In particular, a pair of canonical trees within the
gadget must contain an equal number of terminals, and
together they must contain all terminals of the terminal
face. The easiest way to ensure that the root of one tree
uniquely determines the root of the other is to ensure
that the root of the tree uniquely determines an interval
of terminals from the face that need to be contained in
the tree. In practice, this is enforced by making sure
that the root of the tree has degree two, and a canonical
tree has a (subdivided) binary tree structure. Such a
branching structure can be enforced in a continuous
setting if one places the roots in the hyperbolic plane on
a circle of radius r, and the terminals on a concentric
circle of radius 2r. This was the inspiration for the
construction. In some weak sense, our gadget models
such a metric space with a rolled up Euclidean grid and
a special weighting scheme. Note that the construction
itself does not use any tools from hyperbolic geometry, it
is completely elementary. An important feature of the
weighting is that it can be de-weighted: by replacing
every edge by a path whose length is the weight of that
edge, we obtain an unweighted graph of polynomial size.

Organization In Section 2 we define some neces-
sary notation and folklore results we will use. Section 3
is devoted to the proof of Theorem 1.1, while Section 4
is devoted to the proof of Theorem 1.2. In Section 5 we
briefly summarize our paper and point out opportuni-
ties for further research.

2 Preliminaries

For a set X, we let Π(X) denote the set of all partitions
of X. If π ∈ Π(X), we write π is a partition of X. We
call a partition π finer than partition π′, and denote
this relation by π � π′, if for every u, v ∈ X, u and v
are in the same block in π implies that u and v are in
the same block in π′. Given two partitions π, π′ we use
the notation π t π′ for the join in the partition lattice,
that is, the finest partition that coarsens both π and
π′. If π ∈ Π(X) and π ∈ Π(Y ), we also define the join
π t π′ ∈ Π(X ∪ Y ) obtained by adding singletons to π
and π′ to make them elements of Π(X∪Y ). If u, v ∈ X,
we write {{u, v}} for the partition in which all elements
except u and v are in singleton blocks. If W ⊂ X, and
π ∈ Π(X) we let π|W be the projection of π on W , that
is two elements are in the same block of π|W if and only
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if there are in the same block in π.
If G = (V,E) is a graph, we write V (G) := V

and E(G) := E. If S ⊆ E(G), we denote V (S) :=⋃
{u,v}∈S{u, v} for the set of vertices incident to edges

of S. For a vertex subset S ⊂ V , let N [S] be the
closed neighborhood of S, that is, the set S together
with all vertices adjacent to a vertex in S. If X ⊆ E,
we denote NX [v] to be all vertices sharing an edge in
X with v. A vertex subset X ⊆ V (G) is called a
dominating set if N [X] = V (G). If G is connected,
a vertex v ∈ V (G) is called an articulation vertex if
G[V \{v}] is not connected. A graph is 2-connected if it
does not contain any articulation vertex. We say that a
path P in G is a maximal 2-path if all internal vertices of
P have degree 2 and its ends have degree not equal to 2.
Note that all maximal 2-paths in G are edge disjoint.

If F ⊆ 2U , we use the notation F [ :=
⋃

F∈F F for
its flattening.

Treewidth and Balanced Separators We will
use the fact that the treewidth of a plane graph and its
dual graph are closely related, which follows from the
planar grid minor theorem. In particular, we use the
following sharp result:

Theorem 2.1. ([9]) For every plane graph G with dual
graph G∗, |tw(G)− tw(G∗)| ≤ 1.

The following well-known theorem follows in a
standard fashion from the grid minor theorem (our
particular statement follows from combining Theorem
7.23 from [13] with Lemma 3.1 in [14]).

Theorem 2.2. ([15]) If a graph G is planar and has a
dominating set of size k, then tw(G) ≤ 15

√
k.

Definition 2.1. (Balanced Separation) A pair of
vertex subsets (Y,Z) is a separator in graph G if Y ∪Z =
V (G) and there are no edges in G between Y \ Z and
Z \ Y . For a fixed weight function w : V (G) → R,
we say that a separation (Y,Z) is a w-weighted α-
balanced separation in G if w(Y \ Z) ≤ α · w(V (G))
and w(Z \ Y ) ≤ α · w(V (G)).

Lemma 2.1. (Lemma 7.20 from [13]) Suppose G has
treewidth tw, and consider a nonnegative function w :
V (G) → R≥0. Then G has a 2

3 -balanced separation
(A,B) of order at most tw + 1.

3 Algorithm for Planar Steiner Tree with
terminals on few faces

This section is devoted to the proof of Theorem 1.1.
Refer to Section 1.2 for a high level description and
intuition. To simplify the analysis of our algorithm,
we show (in the full version) that w.l.o.g. the degree of
each vertex is at most 3 and the graph is 2-connected.

Lemma 3.1. Let G be a plane graph with terminals T ,
edge weights ω : E(G) → {0, . . . ,W}, and a set K ⊆
2E(G) of k faces of G such that each vertex from T is on
a face in K. Then one can compute in polynomial time a
2-connected subcubic planar graph G′ with terminals T ′,
edge weights ω′ : E(G′) → {0, . . .W}, and a set K′ ⊆
2E(G′) of k faces of G′ such that each vertex in T ′ is
on a face in K′ and moreover, any Steiner tree in G
corresponds to a Steiner tree in G′ of the same weight
and any Steiner tree S′ in G′ corresponds to a Steiner
tree in G of weight at most ω′(S′).

We are now ready to describe the algorithm. Since
we present a recursive algorithm, it is more convenient
to work with a slightly more general problem that is
solved in recursive steps. We first define this more
general problem.

Definition 3.1. (Block Steiner Forest) Given
nonempty subsets B, T ⊆ V (G), and a partition π of
B, we say S ⊆ E(G) is a (G,B, π, T )-Block Steiner
Forest if in (V (G), S)

(a) every vertex in T is connected to at least one vertex
in B, and

(b) a pair of vertices in B are connected if and only if
they are in the same block of π.

Planar Block Steiner Forest (PBSF)

Instance: A plane graph G, weights ω : E(G) →
{0, . . . ,W}, subsets B, T ⊆ V (G), partition π of B.

Asked: The minimum ω(S) where S is a
(G,B, π, T )-Block Steiner Forest S.

In the above problem we can think of the vertices in B as
boundary vertices. Typically, other parts of the Steiner
tree will intersect only in B and already establish some
connectivity, which allows us to only connect vertices in
B according to π.

We need to establish the following for the base case
of the algorithm.

Lemma 3.2. For any constant c0 there is an algo-
rithm steinerBase(G,ω,B, π, T,K) that solves a Block
Steiner Forest instance (G,B, π, T ) in polynomial time,
provided that |B|+ |K| ≤ c0.

Before we prove Lemma 3.2, we need to introduce
the following tools.

Theorem 3.1. ([19]) Let (G,ω, T ) be a given instance
of Planar Steiner Tree, and let K be a given set of
O(1) faces such that T ⊆ V (K). Then the instance can
be solved in polynomial time.

Copyright © 2019 by SIAM
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Definition 3.2. (Non-crossing sequence)
A sequence x ∈ [`]n is non-crossing if for all
1 ≤ i < j < k < l ≤ n, we have that xi 6= xk,
xj 6= xl, or xi, xj , xk, xl are all equal. It is minimal if
there is no i such that xi = xi+1 = xi+2.

Lemma 3.3. The length of a minimal non-crossing se-
quence with ` different values is at most 4`.

Proof. Use induction on `. For ` = 1 the statement
trivially holds, so assume ` > 1. For a value v ∈ [`],
denote l(v) (and r(v)) the smallest i (and largest) i
such that xi = v. As any two intervals [l(v), r(v)]
and [l(v′), r(v′)] are either disjoint or contained in each
other, we can always find an interval that does not con-
tain any other interval. Then necessarily r(v) = l(v)+1
or r(v) = l(v). Consider the sequence obtained by re-
moving indices l(v), r(v). If this leads to a quadruple or
triple of consecutive equal values, then remove at most
two of them so that exactly two remain. We obtain a
minimal non-crossing sequence on ` − 1 values which
has length at most 4(`− 1) by induction. Since we have
removed at most four indices, the lemma follows. �

Proof of Lemma 3.2. Let S ⊆ E(G) be an optimal
solution. Then there exists a partition πS of B such
that π � πS and two vertices u, v of B are in the same
connected component of G[S] if and only if {{u, v}} �
πS . By enumerating all possibilities, we may by abuse
of notation assume that π = πS . This adds a constant
factor to the running time, as |B| ≤ c0.

Let {B1, . . . , B`} be the partition π, and let
S1, . . . , S` be the corresponding subtrees of S. Let
K ∈ K have terminals t1, . . . , tp, enumerated in or-
der of appearance of a walk on the face (since G is
2-connected, the face boundary forms a cycle). Sup-
pose that i < j < k < l, and terminals ti and tk are
connected in S and terminals tj and tl are connected in
S. Then all four terminals must be connected to each
other in a tree Sz as they all lie on the same face. Thus,
if for each terminal in ti we let xi ∈ [`] encode the in-
dex of the block it is connected to within S, then x is a
non-crossing sequence.

Such a non-crossing sequence can be encoded by its
minimal non-crossing sequence (obtained by removing
all but two elements from each subsequence of the same
element) and a mapping from the indices of the non-
crossing sequence to V (K)∩T . As the length of the min-
imal non-crossing sequence is at most 4` by Lemma 3.3,
there are at most `4`n4` different sequences x.

The algorithm now is as follows: enumerate all
possible combinations of sequences xK ∈ [`]|V (K)∩T | for
each face K ∈ K. Then for each i ∈ [`] solve the instance
(G,ω, Ti) using the algorithm of Theorem 3.1, where

Ti =
⋃

K∈K x
−1
K (i). The running time is polynomial

since ` ≤ |B| and |K| are constants. �

Our main effort in the remainder of this section will
be to prove the following lemma, of which Theorem 1.1
is an easy consequence (we postpone the proof of
Theorem 1.1 to the end of this section). By Lemma 3.1,
we may assume the input graph is 2-connected and
subcubic.

Lemma 3.4. Suppose (G,ω,B, T, π) is an instance of
Planar Block Steiner Forest, and K is a set of
faces of G such that T ⊆ V (K). Then Algorithm
steiner(G,ω,B, π, T,K) as listed in Algorithm 1 cor-
rectly solves the PBSF instance (G,B, π, T ).

We continue with the description of the procedure
steiner as listed in Algorithm 1. For a subset X ⊆
V (G), we let K(X) ⊆ K be the set of faces from K
whose edges intersect with X. For a face K ∈ K and a
vertex set X ⊆ V (G), let cc(K,X) ∈ Π(V (K) \X) be
the partition of the face vertices induced by removing
X, that is, cc(K,X) is the collection of vertex sets of the
connected components of the subgraph of (V (K), E(K))
induced by V (K) \X.

In Line 1 we use Lemma 3.2 as the base case. At
Line 3 we guess what the separator X is (as already
described in Section 1.2), and at Line 4 we guess how
the boundary vertices and faces not intersecting X
are distributed among the subproblems. At Line 7
we guess for each segment of faces from K obtained
after removing X whether they are connected in the
first or second subproblem. Note that these segments
do not include X itself. Based on all these guesses
we compute the set of terminals T1 and T2 to be
connected in both subproblems on Line 8 and Line 9.
At Line 10 we guess what connectivity is established in
both problems (encoded as partitions), and on Line 12
we check whether the two partitions jointly encode all
required connectivity.

Proof of Lemma 3.4. We need to establish that the
algorithm gives a feasible solution that is optimal, which
we do in two steps.

Correctness: Feasibility Let Best :=
steiner(G,ω,B, π, T,K). We prove that ω(S) ≤ Best
for some (G,B, π, T )-Block Steiner Forest S. The
base case follows from Lemma 3.2. For the recursive
case, consider the iteration at Line 15 where Best is
updated for the last time. By induction there is a
(G,B1 ∪ X,π1, T1)-Block Steiner Forest S1 such that
ω(S1) ≤ Best1, and a (G,B2 ∪X,π2, T2)-Block Steiner
Forest S2 such that ω(S2) ≤ Best2.

We claim that S := S1 ∪ S2 is a (G,B, π, T )-Block
Steiner Forest. Note that two vertices in B1 ∪ B2 ∪ X
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Algorithm steiner(G,ω,B, π, T,K)
Output: Minimum ω(S) over all (G,B, π, T )-Block Steiner Forests S ⊆ E(G).

1: If |B|+ |K(T )| ≤ c0 then return steinerBase(G,ω,B, π, T,K)
2: Best←∞
3: for every X ∈

(
V (G)

≤ 15
√
|K(T )|+ |B|+ 2

)
do

4: for B1 ⊆ B \X, and K1 ⊆ K(T ) \ K(X) such that
|B1|+ |K1|
|B|+ |K(T )|

∈ [ 1
3 ,

2
3 ] do

Based on the above guessed split of boundary vertices and terminal faces for

the first subproblem, compute the corresponding sets for the second subproblem

5: B2 ← (B \X) \B1

6: K2 ← (K(T ) \ K(X)) \ K1

Try all subsets of segments of terminal faces to assign to the first subproblem

7: for all A1 ⊆
⋃

K∈K
cc(K,X) do

Compute the terminal sets for both subproblems based on the above guesses

8: T1 ← (A[
1 ∩ T ) ∪

⋃
K∈K1

(V (K) ∩ T )

9: T2 ← (V (K(X)[) \X) \ A[
1 ∪

⋃
K∈K2

(V (K) ∩ T )

10: for all partitions π1 on B1 ∪X and partitions π2 on B2 ∪X do
11: π′ ← π1 t π2

Check if the two partitions implement the required connectivity

12: if π′|B = π and for all u ∈ X, there exists v ∈ B with {{u, v}} � π′ then

Solve the subproblems recursively, and update current minimum if needed

13: Best1 ← steiner(G,ω,B1 ∪X,π1, T1 \X,K1 ∪ K(X))
14: Best2 ← steiner(G,ω,B2 ∪X,π2, T2 \X,K2 ∪ K(X))
15: Best← min{Best,Best1 + Best2}
16: return Best

Algorithm 1: Algorithm implementing Theorem 1.1.

are connected in S if and only if they are in the same
block of π′ = π1 t π2. Therefore, as we require that
(π1 t π2)|B = π on Line 12, S satisfies property (b)
of Definition 3.1. To see that S also satisfies (a) of
Definition 3.1, consider some terminal t ∈ T . We
distinguish three cases:

• If t = u ∈ X, then u is connected to a vertex v ∈ B
as we require {{u, v}} � π1 tπ2 for some v ∈ B on
Line 12.

• If t /∈ X, and K(t) ∈ K(X), then t will be either
in Ti for i = 1 or i = 2, depending on whether the
member of cc(K,X) containing t is in A1 or not,
and by induction t will be connected to some vertex
u ∈ Bi ∪X in (V, Si). If t is connected to a vertex
in Bi, then we are done as Bi ⊆ B; if t is connected
to a vertex in X, then the first case applies.

• If t /∈ X, and K(t) ∈ Ki for i ∈ {1, 2} then either at
Line 8 or Line 9 we add t to Ti, and by induction

t will be connected to some vertex in Bi ∪ X in
(V, Si). If t is connected to a vertex in Bi, then we
are done as Bi ⊆ B; if t is connected to a vertex in
X, then the first case applies.

Thus S is a (G,B, π, T )-Block Steiner Forest. The
claim follows as

ω(S) ≤ ω(S1) + ω(S2) ≤ Best1 + Best2 ≤ Best.

Correctness: Optimality Denote Best :=
steiner(G,ω,B, π, T,K). We prove that ω(S) ≥ Best
for every (G,B, π, T )-Block Steiner Forest S. We do
this by showing that there exists some partition S1, S2

of S such that in some iteration ω(S1) ≥ Best1 and
ω(S2) ≥ Best2. Note that since ω(e) ≥ 0 for every
e ∈ E(G), we may assume that S is a forest: if S would
have a cycle, then we could remove any edge on the
cycle to obtain a new S with less or equal weight.

Consider the subgraph H = (V (S) ∪ V (K(T )) ∪
B,S ∪K(T )[) of G, with the embedding inherited from
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the embedding of G. Let H∗ be the planar dual of H;
that is, for every face of H we create a vertex H∗, and
two vertices in H∗ are connected with an edge in H∗ if
and only if the corresponding faces in H share an edge.

Claim 3.1. tw(H) ≤ 15
√
|K(T )|+ 1.

Proof. If K(T ) = ∅, then H is a forest and tw(H) = 1.
Otherwise, we claim that K(T ) ⊆ V (H∗) is a dominat-
ing set of H∗. To see this, note that removing the edges
of a face in the primal H amounts to contracting the
neighborhood of the corresponding vertex in the dual
to a single vertex. Therefore we know that if we con-
tract the sets NH∗ [v] for all v ∈ K(T ), we are left with
a single vertex (being the planar dual of a forest). This
implies that K(T ) is a dominating set of H∗: if there is
a vertex in V (H∗)\NH∗ [K], it would still be a vertex in
the graph after contracting and there would be at least
two vertices in the planar dual of the forest, which is a
contradiction.

Now we use Lemma 2.2 to obtain tw(H∗) =
15
√
|K(T )|. As H∗ is the dual of H, by Theorem 2.1

we have the bound tw(H) ≤ 15
√
|K(T )|+ 1. �

Now we consider the following weight function w :
V (H)→ N:

• For every v ∈ V (G), set w(v) = 0

• For every face K in K(T ), arbitrarily pick a vertex
v ∈ V (K) (which could be in B) and set w(v) = 1,

• For every v ∈ B, set w(v) = w(v) + 1.

By Claim 3.1 and Lemma 2.1 there is a w-weighted
2
3 -balanced separation (Y,Z) in H such that |Y ∩
Z| ≤ 15

√
k + 2. In some iteration of the loop at

Line 3, the algorithm will set X = Y ∩ Z. Since
the separation (Y,Z) of H is balanced with respect
to w, we have that w(Y ), w(Z) ≤ 2

3w(V (G)). This

implies that |B∩(Y \X)|+|K(Y )\K(X)|
|K(T )|+|B| ∈ [ 1

3 ,
2
3 ]. Therefore,

the algorithm will set B1 = (B ∩ Y ) \ X and K1 =
K(Y ) \ K(X) in some iteration of the loop at Line 4.

Note that in this iteration we set B2 = (B \X)\B1

which equals (B ∩ Z) \X, since B ⊆ Y ∪ Z. Similarly,
we set K2 = ((K(T ) \ K(X)) \ K1.

Note that K2 = K(Z) \ K(X), because if a face has
vertices from both Y and Z, then it must also have
vertices from X as (X,Y ) is a separation and every face
is a cycle (this follows as G is 2-connected, see i.e. [16,
Theorem 4.2.5]). Moreover, if two vertices a, b /∈ X are
in the same connected component C ∈ cc(K,X), then
either both are in Y or both are in Z, as (Y,Z) is a
separation of a graph containing the edge set K.

Thus, at some iteration of the loop at Line 7 the
algorithm will setA1 such that for every faceK ∈ K(X),
any connected component C of cc(K,X) is contained
in Y if it is in A[

1 ∩ V (K), and it is contained in Z
otherwise. It follows that there is some iteration in
which T1 \X = (Y \X) ∩ T and T2 \X = (Z \X) ∩ T .

The separation (Y, Z) of H induces a partition of
S into two subforests S1, S2, where S1 = {{u, v} ∈ S :
{u, v} ∈ Y } and S2 := S \ S1 (note that we add edges
of S contained in E(X) to S1 and not to S2).

Let π1 be the partition on B1 ∪ X where {u, v} ∈
B1 ∪X are in the same block of π1 if and only if u and
v are connected in the graph (V, S1). Similarly, let π2

be the partition on B2∪X where {u, v} ∈ B2∪X are in
the same block of π2 if and only if u and v are connected
in the graph (V, S2).

Since S = S1 ∪ S2 is a (G,B, π, T )-Block Steiner
Forest, we see that π1tπ2 equals π, and that it satisfies
the conditions checked on Line 12. As the algorithm
loops over all options of π1, π2 on Line 10, eventually it
will try the pair π1, π2.

We can conclude that S1 is a (G,B1 ∪ X,π1, T1)-
Block Steiner Tree, and that S2 is a (G,B2 ∪X,π2, T2)-
Block Steiner Tree. As K1 ⊆ K(T ) and K2 ⊆ K(T )
we have by induction that ω(S1) ≥ Best1 and, ω(S2) ≥
Best2. Now ω(S) = ω(S1) + ω(S2) ≥ Best1 + Best2 ≥
Best follows. This concludes the proof. �

Proof of Theorem 1.1. Arbitrarily pick a terminal t0 ∈
T . Then steiner(G,ω, {t0}, {{t0}}, T0 \ t0,K) will
be the minimum weight of a tree connecting T by
Lemma 3.4, which is exactly what needs to be computed
in the Planar Steiner Tree instance. Since G is
subcubic, every vertex is in at most three faces of K
and thus, |K(X)| + |X| ≤ 4|X|. Therefore, if |K| + |B|
is larger than some constant c0, then in a recursive call
with parameters K′, B′ we have

|K′|+ |B′| ≤ 2
3 (|K|+ |B|) + 4(15

√
|K|+ |B|+ 2)

≤ 3
4 (|K|+ |B|).

Thus the recursion depth of steiner is at most
O(log |K|), and |B| = O(

√
k log k) for any recursive call.

If we let T (n, p) denote the running time of steiner
when |B|+ |K| = p we see that

T (n, p) =

{
nO(1) if p is constant

nO(
√
p)2O(p)T (n, 3

4p) otherwise.

To see this, note the loop at Line 3 has at most
nO(|X|) iterations; the loop at Line 4 has at most
2|B|+|K| iterations, the loop on Line 7 has at most
2|X| iterations (as |cc(K,X)| ≤ |X|), and the loop on
Line 10 has at most (|B|+ |X|)O(|B|+|X|) iterations (as
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|π(B)| = |B|O(|B|)). All other operations (apart from
the recursion) require polynomial time. This recurrence
solves to 2O(p)nO(

√
p), thus the theorem follows. �

4 Lower Bound

In this section, we aim to prove Theorem 1.2. Through-
out, for any integer n, let [n] = {1, . . . , n} (where [0] =
∅) and let [n]×[n] = {(1, 1), . . . , (1, n), (2, 1), . . . , (n, n)}.

We present a reduction from Grid Tiling, which is
defined as follows. An instance of Grid Tiling consists
of two integers n and k, and k2 sets Ma,b ⊆ [n] × [n]
for a, b ∈ [k]. Let M = {Ma,b | a, b ∈ [k]}. Since n
and k can be derived by inspecting M, we may specify
the instance by M alone. The Grid Tiling problem
asks to decide whether there exist integers xa ∈ [n] and
ya ∈ [n] for a ∈ [k] such that (xa, yb) ∈ Ma,b for all
a, b ∈ [k]. In this case, we call x1, . . . , xk, y1, . . . , yk
a solution to the instance. The following statement is
known for Grid Tiling.

Theorem 4.1. ([32, 13]) There is no f(k) ·no(k)-time
algorithm for Grid Tiling for any computable function
f , unless the Exponential Time Hypothesis fails.

The reduction follows from the following theorem.

Theorem 4.2. Let M be an instance of Grid Tiling,
with associated integers n and k. Then in time polyno-
mial in n and k, one can construct an integer KM a
planar graph GM and set TM of terminals such that

• GM has size O(k16n27);

• TM can be covered by k(k − 1) + 1 faces of an
embedding of GM;

• M admits a solution if and only if GM admits a
Steiner tree of at most KM edges.

The construction draws on ideas from Marx et
al. [34], but differs in crucial points. A sequence of
the elaborate verification gadgets by Marx et al. [34]
is capable of communicating while relying on only con-
stantly many terminals as long as the Steiner tree con-
nects these gadgets in a chain. In essence, the gadgetry
can be used to represent the choices in a single row of
the k × k grid, and ensure the communication. In ad-
dition, each copy of the verification gadget is capable
of extracting 1 bit of information vertically. Unfortu-
nately such gadgetry cannot be used for communicating
both horizontally and vertically in the k × k grid, since
the chaining property would mean that the Steiner tree
would have to induce cycles. To get around this prob-
lem, Marx et al. designs a “connector gadget” that can
transmit one bit of information vertically, without in-
troducing connectivity. The gadget uses four terminals

adjacent that are on one face. Since we would need
a large number of terminal faces to communicate the
required bits vertically, the connector gadget does not
yield a parameterized reduction for our parameter k.
In order to extract multiple bits, we modify the gad-
get sequence into n-tuples of verification gadgets; this
only leaves open the issue of communicating ω(1) bits of
information without connectivity, and using only O(1)
terminal faces.

Given Theorem 4.2, Theorem 1.2 is quickly proven.

Proof of Theorem 1.2. Suppose there is an f(k)no(
√
k)-

time algorithm A for Planar Steiner Tree for some
computable function f . We now construct a fast
algorithm for Grid Tiling. Let M be an instance
of Grid Tiling, with associated integers n and k′.
Apply Theorem 4.2 toM, which takes time polynomial
in n and k′, and let KM be the resulting integer, GM
the resulting planar graph, and TM the corresponding
terminal set. Run A on GM and let S denote the
resulting Steiner tree. Answer “yes” if S has at most
KM edges, and answer “no” otherwise. This completes
the description of the algorithm.

The correctness of the algorithm is immediate from
the third item of Theorem 4.2. Since TM can be covered
by k′(k′ − 1) + 1 faces of an embedding of GM and GM
has size O((k′)16n27), the algorithm runs in f ′(k′)no(k′)

time for some computable function f ′. According to
Theorem 4.1, this implies that the Exponential Time
Hypothesis fails. �

We now set out to prove Theorem 4.2. Throughout,
let N,L, t be large integers to be chosen later. Let M be
a large integer such that M > 10 ·NL and let Mi = M i.
The construction consists of two types of gadgets. The
first is the flower gadget (the main novelty of our
construction), the second are the verification gadgets.
We now present both types in detail and discuss their
properties. Then we show how these gadgets can be
brought together and prove Theorem 4.2.

4.1 Flower Gadget The gadget is based on a
“rolled” grid whose edges have a special weighting
scheme. It is easier to study the unrolled version of
the grid first, which we do in Section 4.1.1. We estab-
lish some properties of the metric space induced by the
weighting, and prove the key statement (Lemma 4.1)
that we need for Steiner trees in this unrolled context.
Then, in Section 4.1.2, we present the full rolled gadget
and prove the essential properties we need in the final
construction.

4.1.1 The unrolled grid For a, b ∈ Z, the discrete
interval with endpoints a, b is the set {a, a + 1, . . . , b},
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which we denote by Ja, bK. The discrete intervals form
a poset with respect to the containment relation: let
Γ be the (undirected) Hasse diagram of this poset.
Equivalently, Γ is the subgraph of the square grid
restricted to integer points on or above the line y− x =
0. In this diagram, we can talk about ancestors and
descendants; in particular, for any pair of points p and
q the lowest common ancestor (the smallest interval that
contains both p and q) is well-defined.

We define a weight function w on the edges of Γ in
the following way. For an edge pq, let q = Ja, bK be the
larger discrete interval, that is, suppose p ⊂ q. Then
the weight w(pq) is set to 2−blog(b−a)c. See Figure 1.

We introduce some more terminology and notation.
For discrete intervals that are singletons, we use the
shorthand JaK = Ja, aK. A monotone path in Γ is a path
p1, p2, . . . , pk where p1 ⊂ p2 ⊂ · · · ⊂ pk. For a pair of
intervals that share an endpoint, the monotone path be-
tween them is unique. The triangle of a discrete interval
q = Ja, bK is the set of its subintervals; we denote this
set by ∆(q) or ∆(Ja, bK). The lowest common ancestor
of the intervals p and q is denoted by p ∧ q. Let dist
denote the shortest path distance in Γ, i.e., dist(a, b) :=
inf{

∑
pq∈P w(pq) | P is a path from a to b}. For a ver-

tex subset S ⊂ V (Γ), let dist(p, S) = infs∈S dist(p, s);
the distance of subsets of V (Γ) is their Hausdorff dis-
tance. A layer is a maximal subset of edges in Γ of the
same weight, i.e., layer i has weight 2−i. See Figure 1
for an illustration of the weights.

For any x ∈ Z, the vertical at x/2 is Vx/2 = {Ja, bK |
a+b

2 = x
2}. Note that if p = Ja, bK, then p ∈ V(a+b)/2;

also, if x is a multiple of 2, then Jx/2K ∈ Vx/2. A column
is the set of edges between two consecutive verticals Vx/2

and V(x+1)/2. For any y ∈ N, the horizontal at y is
Hy = {Ja, bK | b−a = y}. Note that H0 = {JaK | a ∈ Z}.
A row is the set of edges between two consecutive
horizontals Hy and Hy+1, and the height of an edge
is the index of the horizontal passing through its lower
endpoint. Notice that the weight of edges is weakly
decreasing as the height is increasing.

Proposition 4.1. If p ⊆ q are discrete intervals, then
any monotone path between them is a shortest path. If
p = Ja, bK is a discrete interval and x ∈ Z, then the
distance from p to the vertical Vx/2 is realized by the
straight monotone path from p to its lowest ancestor in
Vx/2. Finally, if p and q are incomparable, then the
union of the straight paths p→ (p ∧ q) and (p ∧ q)→ q
is a shortest path from p to q.

Proof. For the first claim, if p ⊂ q, then any path
between them must contain edges that traverse from
a discrete interval of size |p| to a discrete interval of size
|p|+ 1, an edge from size |p|+ 1 to |p|+ 2, etc., and an

edge from size |q|−1 to |q|. Any monotone path contains
only one of each edge listed. Furthermore, edges where
the intervals have identical size have identical weight.
Hence, all monotone paths are shortest paths.

For the second claim, suppose without loss of gen-
erality that x ≥ a + b. Let v ∈ Vx/2 be a vertex where
dist(p, Vx/2) = dist(p, v) (see Figure 2). Since the dis-
tance from a point to a set is defined as an infimum, we
first show that such a vertex minimizing the distance
exists. Note that all but finitely many vertices of Vx/2

are ancestors of p, and among the ancestors the closest
one is Ja, x− aK since it minimizes the set of rows that
it needs to pass. Therefore, the minimum distance is
either realized by Ja, x − aK or a non-ancestor of p, of
which there are finitely many; consequently, such a ver-
tex v exists, and if it is an ancestor of p, then it must
be Ja, x− aK.

Suppose that the straight path from p to Ja, x− aK
is not a shortest path. We now consider the case
where v is incomparable to Ja, bK. A path from p to a
vertex v in Vx/2 that is incomparable to p must traverse
an edge in each vertical column between V(a+b)/2 (the
vertical containing p) and Vx/2. Among the paths that
contain exactly one edge of each of these columns and
no other edges, we know that the straight path from p to
Ja, x−aK is shortest, since all of its edges have maximal
height, and therefore minimal possible weight; this is a
contradiction.

If x/2 > b, then V is disjoint from ∆(p), that is,
it does not contain any descendants of p, therefore the
only remaining possible distance minimizing vertex is
Ja, x − aK. Otherwise, if v is a descendant of p, then
by the first claim of this lemma, any monotone path is
a shortest path, and in particular, the vertex Jx − b, bK
minimizes the distance to p among the descendants of
p in V (by minimizing the set of rows that it needs
to cross). But the unique monotone path from p to
Jx − b, bK is at least as long as dist(p, Ja, x − aK), since
both shortest paths have exactly one edge from each
column between V(a+b)/2 and Vx/2, but in each column
the edge in the path from p to Ja, x − aK is higher and
therefore has less or equal weight; this is a contradiction.
Therefore, v = Ja, x− aK is a closest neighbor of p in V ,
and the shortest path is a straight monotone path due
to the first claim of this lemma.

For the third claim, if p and q are incomparable,
then let Ja, bK = p and Ja′, b′K = q. Without loss
of generality, a′ > b. Let V be the vertical passing
through p ∧ q, that is, let V = V(a+b′)/2. Note that
Ja, bK ∧ Ja′, b′K = Ja, b′K ∈ V . Since V separates p and
q, we have that dist(p, q) ≥ dist(p, V ) + dist(V, q). By
the previous claim, we have dist(p, V ) = dist(p, Ja, ((a+
b′)− a)K) = dist(p, p ∧ q). Then, by symmetry, we have
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Figure 1: The Hasse diagram Γ of the poset of discrete intervals. Indicated are the weights assigned by the weight
function w as well as the different layers.

Jx/2K

p = Ja, bK

V(a+b)/2

p ∧ q = Ja, b′K

q = Ja′, b′K

V(a+b′)/2

p = Ja, bK

Jx− b, bK

Ja, x− aK
Vx/2

Figure 2: Left: Distance from p to a vertical. Right:
The distance between a pair of non-comparable points
p and q.

dist(q, S) = dist(q, p ∧ q), and the claim holds. �

The left diagonal at b is LDb = {Jx, bK | x ∈ Z}, the
right diagonal at a is RDa = {Ja, xK | x ∈ Z}. Figure 3
shows examples of both.

Proposition 4.2. The distance of LDb and Vb+1/2 is
1. The distance of LDa and RDa+1 is 2.

Proof. There is a shortest path from Ja, bK to Vb+1/2

that is monotone and has b − a + 1 edges and ends at
Ja, 2b+ 1− aK by Proposition 4.1. We claim that all of
these paths have weight exactly 1. We use induction on
b−a. The path from JbK to Jb, b+1K has a single edge of
weight 1. Consider the shortest path starting at Ja, bK.
By induction the shortest path starting at Ja + 1, bK
has weight 1, so it is sufficient to show that they have

equal weight. Notice that these paths traverse the same
horizontal edge rows, except the row from size |b−a−1|
to |b−a| that is only traversed by the path of Ja+ 1, bK,
and the rows from size |2b− 1− 2a| to |2b+ 1− 2a| that
are only traversed by the path of Ja, bK. Notice that
the edge row unique to the path of Ja+ 1, bK is in layer
blog(b− a)c, while the two edges unique to the path of
Ja, bK are both in layer blog(2b−2a)c = blog(2b−2a+1)c.
Consequently, the edge unique to Ja + 1, bK is precisely
one layer below the two edges unique to Ja, bK, and thus
the two paths have equal weight.

To prove the claim about the distance of diagonals,
we can apply the first claim: dist(LDa, RDa+1) ≤
dist(LDa, Va+1/2) + dist(Va+1/2, RDa+1), where both
terms on the right hand side are 1 by the first claim.
On the other hand, there is a path of length 2: the path
JaK; Ja, a+ 1K; Ja+ 1K. �

Lemma 4.1. Let p be a discrete interval and let ` > 0.
The weight of any Steiner tree for the terminal set
{p, J0K, . . . , J`K} is at least 2`+ dist(∆(J0, `K), p).

Proof. Let p = Ja, bK and suppose without loss of
generality that a+b ≥ `, that is, p is on or to the right of
V`/2. The proof is by double induction, first on `, and
second for a fixed ` on the distance dist(∆(J0, `K), p).
Clearly for ` = 0, the Steiner tree is at least as long as
the distance from J0K to p. Let ` ≥ 1, and let S be the
Steiner tree. We distinguish several cases based on the
location of p, see Figure 3.

Case 1. p ∈ ∆(J0, `K), (that is, a ≥ 0 and b ≤ `)
If p has degree 1, then let q be the nearest vertex
within S to p that has degree at least 3. The tree S is
also a Steiner tree for the terminal set {q, J0K, . . . , J`K},
and dist(∆(J0, `K), p) = 0 ≤ dist(∆(J0, `K), q), so it
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is sufficient to prove the claim for q instead of p.
Therefore, without loss of generality, assume that p
has degree at least 2. Let r be a neighbor of p. The
edge pr defines two subtrees rooted at p: one where
the shortest path to p traverses pr and one where it
does not. Each tree must contain some non-empty sub-
interval of the terminals J0K, . . . , J`K; suppose that S1

contains J0K, . . . , JxK and S2 contains Jx+ 1K, . . . , J`K.
By induction on `, we have that

w(S) ≥ w(S1) + w(S2)

≥ 2x+ dist(p,∆(J0, xK)) + 2(`− x− 1)+

dist(p,∆(Jx+ 1, `K))

≥ 2`− 2 + dist(∆(J0, xK),∆(Jx+ 1, `K))

≥ 2`− 2 + dist(LDx, RDx+1)

≥ 2`,

where the last inequality follows from Proposition 4.2.
Case 2. p 6∈ ∆(J0, `K), (that is, a < 0 or b < `)

Without loss of generality, assume that p is a vertex
of V (S) that maximizes dist(p,∆(J0, `K)). (Note that
for a given tree S, the lemma gives the strongest lower
bound for such a vertex p). Furthermore, among ver-
tices maximizing this distance, there must be at least
one vertex p with a neighbor q where dist(q,∆(J0, `K)) <
dist(p,∆(J0, `K)). Suppose there is no such vertex p;
then let p be an arbitrary distance-maximizing vertex.
There is a path from p to J0K where p is at positive dis-
tance from ∆(J0, `K), while J0K is at distance 0. So there
is an edge p′q′ on the path where dist(q′,∆(J0, `K)) <
dist(p′,∆(J0, `K)) = dist(p,∆(J0, `K)); this is a contra-
diction.

So we can suppose without loss of generality that
p has a neighbor q such that dist(q,∆(J0, `K)) <
dist(p,∆(J0, `K)). If p has degree 1, then by induction
on the distance we have that

w(S) = w(pq) + w(S \ {pq})
≥ w(pq) + 2`+ dist(q,∆(J0, `K))

≥ 2`+ dist(p,∆(J0, `K)).

Suppose now that p has degree at least 2. Similarly
to Case 1, we define the trees S1 containing J0K, . . . , JxK
and S2 containing Jx+1K, . . . , J`K based on the branching
at p. By induction, we have

w(S) ≥ w(S1) + w(S2)

≥ 2x+ dist(p,∆(J0, xK)) + 2(`− x− 1)

+ dist(p,∆(Jx+ 1, `K))

= 2`− 2 + dist(p,∆(J0, xK))

+ dist(p,∆(Jx+ 1, `K))

(4.1)

It remains to show that dist(p,∆(J0, xK)) +
dist(p,∆(Jx+ 1, `K)) ≥ 2 + dist(p,∆(J0, `K)).

J0K J`K

RDx+1

LDx

V`/2

JxK Jx+ 1K

Case 2a

Case 1

Case 2b

Case 2c

p

Figure 3: The case distinction of Lemma 4.1 with Case
2b illustrated.

Case 2a. J0, `K ∈ ∆(p), (that is, a ≤ 0 and b > `)
We take shortest paths from p to ∆(J0, xK) and ∆(Jx+
1, `K) as suggested by Proposition 4.1. Note that J0, `K ∈
∆(p) implies that all vertices in both triangles (and
also in ∆(J0, `K) are descendants of p, so the distance
can be realized from p to any of the three triangles
is realized by an arbitrary monotone path from p to
the tip of the triangle (this path traverses the least
amount of horizontal rows). In particular, we can use
an arbitrary monotone path P from p to J0, `K together
with the monotone path Px from J0, `K to J0, xK to
realize dist(p,∆(Jx+ 1, `K)), and we can use P with the
monotone path Px+1 from J0, `K to Jx + 1, `K to realize
dist(p,∆(Jx+ 1, `K)). Therefore,

dist(p,∆(J0, xK)) + dist(p,∆(Jx+ 1, `K))

= 2w(P ) + w(Px) + w(Px + 1)

= 2 dist(p,∆(J0, `K)) + dist(J0, xK, J0, `K)(4.2)

+ dist(J0, `K, Jx+ 1, `K)

≥ 2 dist(p,∆(J0, `K)) + dist(LDx, RDx+1)

≥ dist(p,∆(J0, `K)) + 2,

where the last inequality uses Proposition 4.2. Then
(4.1) and (4.3) combined imply that w(S) ≥ 2` +
dist(p,∆(J0, `K)), as claimed.

Case 2b. p and J0, `K are incomparable, and
Jx+ 1, `K ∈ ∆(p) (that is, 0 < a ≤ x+ 1)
As previously, it is sufficient to show that
dist(p,∆(J0, xK)) + dist(p,∆(Jx + 1, `K)) ≥
2 + dist(p,∆(J0, `K)). Let P1 be the unique monotone
path from p to Ja, `K and let P2 be the unique monotone
path from Ja, `K to Jx + 1, `K. By Proposition 4.1,
P1 ∪ P2 realizes the distance from p to Jx + 1, `K. Let
Px be a shortest path from p to ∆(J0, xK). Next,
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J0K
Layer 0

Layer 1

Layer 2

J1K J2K J3K J4K J5K J6K J7K

J0, 7K

Figure 4: Optimal Steiner tree for the terminal set
{J0, 23 − 1K, J0K, . . . , J23 − 1K}.

we replace P2 by P3 which is defined as the unique
monotone path from p to Jx + 1, bK. Notice that P2

and P3 has the same number of edges, but the edges
in P3 are higher and therefore w(P3) ≤ w(P2). So we
have that dist(p,∆(J0, xK)) + dist(p,∆(Jx + 1, `K)) =
w(Px)+w(P1)+w(P2) ≥ w(Px)+w(P3)+w(P1). Note
that Px ∪ P3 is a path from LDx to RDx+1, so it has
length at least 2, and P1 is a path from p to ∆(J0, `K),
so its length is at least dist(p,∆(Jx+ 1, `K)).

Case 2c. p and Jx + 1, `K are incomparable (that
is, a > x+ 1)
We again need that dist(p,∆(J0, xK)) + dist(p,∆(Jx +
1, `K)) ≥ 2 + dist(p,∆(Jx + 1, `K)). The intervals in
the area between LDx and RDx+1 are all between p
and ∆(J0, xK), so any shortest path from p to ∆(J0, xK)
contains a subpath from LDx to RDx+1, and therefore
has length at least 2. The shortest path from p to
∆(Jx + 1, `K) is also a path from p to ∆(J0, `K) since
∆(Jx+ 1, `K) ⊂ ∆(J0, `K); therefore, its length is at least
dist(p,∆(J0, `K)). �

Let ` = 2k − 1 for some positive integer k.
Observe that there is a tree for the terminal set
{J0, `K, J0K, . . . , J`K} of weight exactly 2` (which is short-
est possible by Lemma 4.1). It is easy to show by induc-
tion that there is a tree mimicking a binary tree that
contains 2k − i monotone paths traversing layer i for
each i = 0, . . . , k − 1; all such paths have weight 1. See
Figure 4 for an example.

4.1.2 Construction and properties of the flower
gadget The flower gadget is a finite planar graph
sharing many properties of Γ. We give two equivalent
definitions. Let t ≥ 4 be a power of 2.

The first definition is to restrict Γ to the set
{Ja, bK | b − a ≤ t/2 − 1, a ≥ 0, b ≤ t}, and identify
the vertex pairs (0, b) and (t, b′) where b′ = b + t for
all b = 1, . . . , t. Let Γt be the resulting weighted

graph. The alternative and more intuitive definition
requires the introduction of discrete intervals modulo
t. Let a, b ∈ {0, 1, . . . , t − 1}. The discrete interval
Ja, bKt is defined as {a, a + 1, . . . , b} if a ≤ b or as
{a, . . . , t − 1, 0, . . . , b} otherwise. Then Γt is the Hasse
diagram for the poset of discrete intervals modulo t of
size at most t/2, i.e., the Hasse diagram of the set{

Ja, bKt
∣∣ a, b ∈ {0, 1, . . . , t− 1},

(a ≤ b ∧ b− a ≤ t/2− 1)

∨ (b < a ∧ t+ b− a ≤ t/2− 1)
}
.

The weighting is identical to Γ: the weight of an edge pq
where p ⊂ q = Ja, bKt is 2−blog((b−a) mod t)c. Note that
Γt is planar, since it can clearly be drawn on a cylinder,
which is topologically equivalent to a punctured plane.
See Figure 5 for a planar embedding.

The terminals of the flower gadget are its discrete
intervals of size 1, and the portal vertices are the
maximal discrete intervals in the poset. The portals
will be used to connect a flower gadget to the rest of
the lower bound construction. Note that the portals all
reside on the outer face of the embedding (see Figure 5).
We also observe that the terminals of the flower gadget
can be covered by a single face, namely the carpel of the
flower.

We can define the direction of an edge both in Γ
and Γt the following way: pq is a right edge if the right
endpoint of p and q are equal, otherwise pq is a left edge.
An edge e = pq in Γt is isomorphic to an edge e′ = p′q′ in
Γ if |p| = |p′|, |q| = |q′|, and pq and p′q′ are both right or
both left edges. It is easy to see that given a subtree S of
Γt, there is an isomorphic tree S′ in Γ. For this purpose,
we define an isomorphism φ : V (S) → V (Γ). Pick an
arbitrary vertex p ∈ V (S), and let φ(p) := p′ where
p′ ∈ V (Γ) is an arbitrary discrete interval for which
|p| = |p′|. Using a depth-first search traversal of S,
the picture of each vertex v ∈ V (S) is uniquely defined:
upon stepping from v to w in S, the size of |w| compared
to |v| and the direction of the edge vw uniquely identifies
φ(w) (given φ(v)). Note that we do not run into conflicts
(φ is injective), since any cycle in the image would imply
the existence of a cycle in S, but S is a tree. For a tree
S in Γt, fix an isomorphism φS , and let SΓ be the image
of the tree. Then we say that the terminal sequence of
S is JaK, . . . , JbK if this is the left-to right sequence of
vertices in V (SΓ ∩H0). Consequently, Lemma 4.1 can
also be applied in Γt in the following sense. For a tree
S with terminal sequence JaK, . . . , JbK that induces p, its
weight is at least 2(b− a) + distΓ(∆(Ja, bK), φ(p)).

The key theorem for using the flower gadget is the
following.
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J0Kt J1Kt J2Kt
Jt− 1Kt

J0, t/2− 1Kt

Jt/2− 1Kt

Figure 5: Left: The flower gadget, with the terminals as black disks and portals as circles. Right: A canonical
solution.

Theorem 4.3. Let S be a Steiner forest in the flower
gadget (with terminal set J0Kt, . . . Jt−1Kt) where all trees
of S contain a portal vertex. Then S has weight at least
2t − 4, and it can have weight exactly 2t − 4 only if it
has at least two connected components, each component
contains exactly one portal, and for any sequence of t/2
consecutive portals, at least one component has its portal
there. Finally, if S has exactly two components and
weight exactly 2t − 4, then S is canonical, that is, it
induces exactly two opposite portal vertices: Ja, a+t/2−
1Kt and Ja+ t/2, a− 1Kt for some a ∈ {1, . . . , t/2}.

Proof. If S has only one component, then let p be a
portal vertex induced by S. By Lemma 4.1, the tree
has weight at least 2t − 2, which is strictly larger than
2t − 4. Hence, w(S) > 2t − 4 or S has at least two
connected components.

Now suppose that there are k ≥ 2 components;
we denote the i-th tree of S by Si, let pi be a portal
vertex from Si. We claim that the set of terminals
corresponding to each tree must form a contiguous
interval along the terminal face. To see this, suppose for
contradiction that JaKt, JbKt ∈ V (Si) and x ∈ Ja, bKt ∩
V (Sj) for some i 6= j. Then the shortest path in
Si from JaKt to JbKt in the planar embedding together
with an arbitrary planar curve from JaKt to JbKt inside
the terminal face forms a closed curve separating pj
and JxKt, or has pj on its boundary and JxKt inside.
Therefore Sj cannot be disjoint from Si. The claim
follows.

Let φi = φSi
, and let JaiK . . . JbiK ∈ V (Γ) be the

terminal sequence of Si. If we apply Lemma 4.1 for a
tree Si, we get

w(Si) ≥ 2(bi − ai + dist(φi(pi),∆(Jai, biK)).

Let `i = |Jai, biK| − 1. Observe that the terminals

are always mapped into H0 and the portal vertex pi
is always mapped into Ht/2−1 by all φi.

Consider the case when the triangle ∆(Jai, biK) does
not reach Ht/2−1, so `i < t/2 − 1. Then the distance
dist(φi(pi),∆(Jai, biK)) is at least as big as the distance
from the portal set Ht/2−1 to H`i (Note that H`i passes
through Jai, biK.) The weight of the edges below Ht/2−1

is precisely 4/t, and the number of edges required on a
shortest path from Ht/2−1 to H` for some ` ≤ t/2− 1 is
t/2− 1− `, so we have that

(4.3) dist(φi(pi),∆(Jai, biK)) ≥ (t/2− 1− `i)
4

t
.

If the triangle ∆(Jai, biK) reaches Ht/2, that is, if
`i > t/2 − 1, then inequality (4.3) still holds because
the distance is nonnegative and the right hand side is
nonpositive. Therefore by applying Lemma 4.1 to each
component Si and then applying the inequality (4.3) we
get the following:

w(S) =

k∑
i=1

w(Si)

≥
k∑

i=1

(
2(|Jai, biK| − 1) + dist(φi(pi),∆(Jai, biK))

)
≥ 2

k∑
i=1

`i +
k∑

i=1

(t/2− 1− `i) ·
4

t

= 2(t− k) + (kt/2− k − (t− k)) · 4

t
= 2t− 4.

This shows that any Steiner forest of Γt where each tree
contains a portal has weight at least 2t − 4. In case
w(S) = 2t − 4, both inequalities in this chain must be
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equalities, and in particular, each component attains
equality for Lemma 4.1.

Suppose that w(S) = 2t− 4 and that a component
Si contains at least two portal vertices, pi and p′i. If we
remove an edge from the tree path that goes from pi to
p′i, then all terminals remain connected to either pi or p′i.
Therefore, we get a Steiner forest that is strictly lighter
than 2t− 4 where all components contain a portal; this
is contradiction.

Suppose that w(S) = 2t − 4 and there are t/2
consecutive portals not induced by any component of
S; without loss of generality, suppose that these are
J0, t/2 − 1Kt, J1, t/2Kt . . . Jt/2 − 1, t − 2Kt. Let Si be the
tree in S that induces Jt/2− 1Kt. Then φi(Jt/2− 1Kt) ⊂
Jai, biK. In the second inequality above, equality is only
attainable if `j ≤ t/2 − 1 for all j, since otherwise
the distance can be lower bounded by 0 instead of the
negative value we are using. Consequently, `i ≤ t/2−1.
Then in order for the equality to hold for Si, it is
necessary that φi(pi) is at distance (t/2− 1− `i) 4

t from
∆(Jai, biK), which is only possible if Jai, biK ⊆ φi(pi)
by Lemma 4.1. Consequently, φi(Jt/2 − 1Kt) ⊂ φi(pi).
Therefore, pi ∈ {J0, t/2−1Kt, J1, t/2Kt . . . Jt/2−1, t−2Kt}.

Suppose that w(S) = 2t − 4 and there are exactly
two components in S. We want to show that S is
canonical. If `1 6= `2, then at least one of them is
strictly larger than t/2 − 1; suppose that `1 > t/2 − 1.
Then in the above calculation we can lower bound
dist(φ1(p1),∆(Ja1, b1K)) with 0 instead of (t/2−1−`1)· 4t ,
which yields a lower bound strictly larger than 2t − 4.
Therefore, `1 = `2 = t/2 − 1, and the triangles
φ−1

1 (∆(Ja1, b1K)) and φ−1
2 (∆(Ja2, b2Kt)) are completely

contained in the flower gadget, with their tip being two
opposite portal vertices Ja1, b1Kt = Ja1, a1 + t/2 − 1Kt
and Ja2, b2Kt = Ja1 + t/2, a1− 1Kt. These are the unique
portal vertices in S1 and S2 respectively. �

4.2 Verification Gadgets We first construct a ver-
ification gadget VGN . We use exactly the same gadget
as Marx et al. (see Figure 6). 3 The gadget VGN has
2N + 1 so-called portals, which will be identified with
or connected to portals of other gadgets. To be precise,
the gadget has

• portals y[1], . . . , y[N ], w, z[N ], . . . , z[1], which ap-
pear in this order along the outer face of VGN ;

• vertices v[i, j] for each i, j ∈ [N ];

• edges from y[i] to v[1, i] of weight iM2 and from z[i]
to v[N, i] of weight iM3 for each i ∈ [N ];

3Figures 6 and 7 from [34] were reproduced here with an
author’s permission.

Figure 6: The verification gadget VGN from [34, Figure
9]. The open circles indicate the portals that are
connected to other parts of the graph. The blue
edges indicate the connected subgraph mentioned in
Lemma 4.2(i).

• ‘horizontal’ edges from v[i, j] to v[i+ 1, j] of weight
M4 for each i ∈ [N − 1] and j ∈ [N ];

• ‘vertical’ edges from v[i, j] to v[i, j + 1] of weight
M3 for each i ∈ [N ] and j ∈ [N ] \ [i− 1];

• edges from v[i,N ] to w of weight M5−iM2 for each
i ∈ [N ].

We call the edge between v[i,N ] to w the i-selector of
VGN . We actually require the so-called S-reduction of
VGN , denoted VGS

N , for a set S ⊆ [N ], which is obtained
from VGN by removing the edges from v[i,N ] to w for
each i 6∈ S.

The following lemma summarizes the properties we
require of this gadget.

Lemma 4.2. Let S ⊆ [N ]. Then

(i) for any i ∈ [S], there is a connected subgraph of
VGS

N of weight M5 + (N − 1)M4 + (N − 1)M3 that
contains y[i], z[i], w, and the i-selector;

(ii) any connected subgraph H of VGS
N that contains

y[i], z[j], and w for i, j ∈ [N ] has weight at least
M5 + (N −1)M4 + (N −1)M3; moreover, if H has
weight less than M5+(N−1)M4+(N−1)M3+M2,
then i = j and H contains the i-selector and no
other selector edge;
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Figure 7: The paired verification gadget from [34, Figure 9]. In our gadget L-VGN , the edges incident to wi are
omitted depending on Si

(iii) there is a connected subgraph of VGS
N of weight

(N − 1)M4 + iM2 + iM3 that contains y[i] and z[i]
for i ∈ [N ];

(iv) any connected subgraph of VGS
N that contains y[i]

and z[j] for i, j ∈ [N ] has weight at least (N −
1)M4 + iM2 + iM3 + 2 ·max{0, j − i} ·M3.

Since most properties are similar to those derived in [34,
Lemma 7.5, 7.6], we defer the proof of this lemma to the
full version.

Marx et al. then pair two verification gadgets, see
Figure 7. We generalize their construction to combine L
verification gadgets. To be precise, our gadget L-VGN

has

• portal vertices p[1], . . . , p[N ], w[1], . . . , w[L], and
q[N ], . . . , q[1], which appear in this order along the
outer face of VGN ;

• L verification gadgets VGN . Let
y`[1], . . . , y`[N ], w`, and z`[N ], . . . , z`[1] de-
note the portals of VGSi

N and identify w[`] with
w`;

• edges from p[i] to y1[i] of weight iM1 for i ∈ [N ];

• edges from q[i] to zL[i] of weight M2 − iM1 for
i ∈ [N ];

• edges e`i from z`[i] to y`+1[i] of weight M5− iM3−
iM2 for i ∈ [N ] and ` ∈ [L−1], called the connector
edges.

For L = 2, this is exactly the paired verification gadget
of [34]. We require the S-reduction of L-VGN , which for
S = {S1, . . . , SL} where S` ⊆ [N ] for ` ∈ [L], contains
the S`-reduction VGS`

N as the `-th verification gadget
(instead of the plain vanilla VGN ) for ` ∈ [L].

The following lemma summarizes the properties we
require of this gadget.

Lemma 4.3. Let S = {S1, . . . , SL}, where S` ⊆ [N ] for
` ∈ [L]. Then

(i) for any ` ∈ [L] and i ∈ S`, there is a connected
subgraph of L-VGSN of weight LM5+L(N−1)M4+
(N − 1)M3 +M2 that contains p[i], q[i], w[`] and
the i-selector incident on w[`];

(ii) any connected subgraph H of L-VGSN that contains
p[i], q[j], and w[`] for some i, j ∈ [N ] and ` ∈ [L]
has weight at least LM5 + L(N − 1)M4 + (N −
1)M3+M2; moreover, if H has exactly this weight,
then i = j and H contains exactly one selector
edge, namely the i-selector incident on w[`].

Since most properties are similar to those derived in [34,
Lemma 7.5, 7.6], we defer the proof of this lemma to the
full version.

4.3 Construction In the next two subsections, we
aim to prove the following theorem, which will quickly
imply Theorem 4.2.

Theorem 4.4. Let M be an instance of Grid Tiling,
with associated integers n and k. Then in time polyno-
mial in n and k, one can construct an integer KM and
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a planar graph GM with positive edge weights and set
TM of terminals such that

• GM has size O(k2n5);

• TM can be covered by k(k − 1) + 1 faces of GM;

• each edge has weight O(k14n22);

• M admits a solution if and only if GM admits a
Steiner tree of weight at most KM.

Consider an instanceM of Grid Tiling consisting
of two integers n and k, and k2 sets Ma,b ⊆ [n] × [n]
for a, b ∈ [k]. By increasing n if necessary, we may
assume that n is a power of 2. Throughout, let N = n2,
L = n, t = 2L = 2n, and M = 10k2NL; observe that
M > 10NL as required. Figure 8 is provided to get a
better understanding of the construction.

For each a, b ∈ [k], we create two gadgets GW
a,b =

L-VG
SW
a,b

N and GE
a,b = L-VG

SE
a,b

N for well-chosen sets SWa,b
and SEa,b. The w-portals of GW

a,b will face south, while

the w-portals ofGE
a,b will face north (i.e.GE

a,b is L-VG
SE
a,b

N

rotated by 180 degrees). The q-portals of both gadgets
will then be connected: we place an edge from qW [j]
to qE [N − j + 1] for each j ∈ [N ]. The idea will
be that selecting a ‘row’ in GW

a,b and GE
a,b corresponds

to selecting a valid choice (xa, yb) ∈ Ma,b. We then
add a flower gadget between SWa,b and SEa,b+1 to ensure
that the same yb is chosen in each column of the Grid
Tiling instance, while a simpler construction ensures
that the same xa is chosen in SWa+1,b. We now describe
the construction in more detail.

Let a, b ∈ [k]. We aim to construct SWa,b and

SEa,b, so that GW
a,b and GE

a,b are well defined. For each

l ∈ [L], let SW,l
a,b = {(i − 1)n + l | (i, l) ∈ Ma,b} and let

SE,l
a,b = {N − ((i − 1)n + l) + 1 | (i, l) ∈ Ma,b}. Then

SWa,b = {SW,1
a,b , . . . , S

W,L
a,b } and SEa,b = {SE,1

a,b , . . . , S
E,L
a,b }.

Now let GW
a,b = L-VG

SW
a,b

N and GE
a,b = L-VG

SE
a,b

N . We use

pWa,b[1], . . . , pWa,b[N ], wW
a,b[1], . . . , wW

a,b[L], qWa,b[N ], . . . , qWa,b[1]

to denote the portals of GW
a,b and

pEa,b[1], . . . , pEa,b[N ], wE
a,b[1], . . . , wE

a,b[L], qEa,b[N ], . . . , qEa,b[1]

to denote the portals of GE
a,b. Now we connect qWa,b[j]

with qEa,b[N − j + 1] for each j ∈ [N ] by a join edge eja,b
of weight M6. Denote the resulting gadget by Ga,b.

We now fuse the gadgets Ga,b for fixed a ∈ [k]. Let
b ∈ [k − 1] and i ∈ [n]. Create a new vertex fa,b[i]. For
each l ∈ [n], add an edge from pEa,b[N−((i−1)n+ l)+1]

to fa,b[i] and from fa,b[i] to pWa,b+1[(i − 1)n + l], both
of weight M6. The idea of fa,b[i] is that it allows us to
switch the value selected in our solution of the Grid
Tiling instance between column b and column b + 1,

while the value selected for row a remains the same
(namely i).

Let b ∈ [k]. For each a ∈ [k − 1], create a flower
gadget Fa,b of size t. Since n is a power of 2, this is
indeed possible. Multiply all weights in the gadget by
2log tM7 = tM7, so that each weight is at leastM7 and at
most O(LM7). Identify the vertex Jl, l+ t/2−1Kt of the
flower gadget with wW

a,b[l] and the vertex Jl+ t/2, l−1Kt
of the flower gadget with wE

a+1,b[l]. If the Steiner tree
in Fa,b is canonical, then we can ensure that the value
selected in our solution of the Grid Tiling instance for
column b is the same, namely l, throughout. Finally,
create a single terminal vertex F0,b and identify it with
wE

a,b[l] for all l ∈ [L], and create a single terminal vertex

Fk,b and identify it with wW
a,b[l] for all l ∈ [L]. We call

these the dummy terminals.
As a last step, create a terminal r and k terminals

h1, . . . , hk. Add an edge of weight M6 from r to all
vertices pWa,1[j] for a ∈ [k] and j ∈ [N ]. For each a ∈ [k]

and all j ∈ N , add an edge of weight M6 from qEa,k[j] to
ha. For notational convenience, we will sometimes write
that fa,0[i] = r and fa,k[i] = ha for a ∈ [k] and i ∈ [n].

Finally, let KM := k(k−1) ·(2t−4) ·tM7 +3k2M6 +
2k2 · (LM5 + L(N − 1)M4 + (N − 1)M3 +M2).

This completes the construction. Observe that
the resulting graph GM is planar. Moreover, GM
has exactly k(k − 1) + 1 faces that jointly contain all
terminals: k(k − 1) faces that form the carpels of the
flower gadgets, plus the outer face of GM. Finally,
observe that GM has O(k2N2L + k2L2) = O(k2n5)
vertices.

4.4 Correctness

Lemma 4.4. If M admits a solution, then GM admits
a Steiner tree of weight at most

KM = k(k − 1) · (2t− 4) · tM7 + 3k2M6+

2k2 · (LM5 + L(N − 1)M4 + (N − 1)M3 +M2).

Proof. Let x1, . . . , xk, y1, . . . , yk be a solution. We
construct a tree as follows. For each a, b ∈ [k], it follows
from Lemma 4.3(i) and the construction of SWa,b that

GW
a,b has a connected subgraph of weight LM5 +L(N −

1)M4 + (N − 1)M3 +M2 that contains pWa,b[xa · n+ yb],

qWa,b[xa · n + yb], and wW
a,b[yb]. Similarly, GE

a,b has a
connected subgraph of weight LM5+L(N−1)M4+(N−
1)M3+M2 that contains pEa,b[(n−xa+1)·n+(n−yb+1)],

qEa,b[(n − xa + 1) · n + (n − yb + 1)], and wE
a,b[yb].

Since qWa,b[xa · n + yb] and pEa,b[(n − xa + 1) · n + (n −
yb + 1)] are connected by a join edge, we obtain a
connected subgraph Ha,b that contains pWa,b[xa · n + yb]

and pEa,b[(n− xa + 1) · n + (n− yb + 1)] of total weight
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GW
1,1 GW

1,2

GW
2,1 GW

2,2

GE
1,1

GE
2,1 GE

2,2

GE
1,2

pW1,1[1]

pW1,1[N ]

pW1,2[1]

pW1,2[N ]

r

h1

h2

f1,1[1]

f1,1[n]

f2,1[1]

f2,1[n]

F1,1 F1,2

F0,1

F2,1

F0,2

F2,2

Figure 8: The graph GM. In both rows, two copies of L-VGN are fused as described in Subsection 4.3. The
gray clouds that connect the copies of L-VGN vertically indicate flower gadget, and the blue arrows indicates the
matched entry points into the flower gadget.

M6 + 2(LM5 +L(N −1)M4 + (N −1)M3 +M2). Hence,
the total weight of the union of the connected subgraphs
Ha,b over all a, b ∈ [k] is k2M6 + 2k2 · (LM5 + L(N −
1)M4 + (N − 1)M3 +M2).

Let b ∈ [k]. For each a ∈ [k − 1], it follows from
Theorem 4.3 that Fa,b has a canonical Steiner forest
HF

a,b on connector vertices wW
a,b[yb] = Jyb, yb + t/2− 1Kt

and wE
a+1,b[yb] = Jyb + t/2, yb − 1Kt of total weight

2t−3·tM7. Hence, the total weight of the Steiner forests
HF

a,b over all a ∈ [k−1], b ∈ [k] is k(k−1) · (2t−4) · tM7.

Observe that HF
a,b has two connected components: the

first is attached to Ha,b through wW
a,b[yb] = Jyb, yb +

t/2 − 1Kt; the second is attached to Ha+1,b through
wE

a+1,b[yb] = Jyb + t/2, yb − 1Kt.
Finally, for each a ∈ [k], b ∈ [k − 1], we select

fa,b[xa]. Note that fa,b[xa] is adjacent to pEa,b[(n −
xa + 1) · n + (n − yb + 1)], and thus to Ha,b, through
an edge of weight M6. Similarly, fa,b[xa] is adjacent
to pWa,b+1[xa · n + yb], and thus to Ha,b+1, through an
edge of weight M6. Moreover, for each a ∈ [k], r is
adjacent to pWa,1[xa · n + y1], and thus to Ha,1, through
an edge of weight M6. Similarly, ha is adjacent to
pEa,k[(n − xa + 1) · n + (n − yk + 1)], and thus to Ha,k,
through an edge of weight M6. Let H denote the
resulting subgraph.

Observe that H is connected by construction.
Moreover, the weight of H is

k(k − 1) · (2t− 4) · tM7 + 3k2M6

+ 2k2 · (LM5 + L(N − 1)M4 + (N − 1)M3 +M2).

Furthermore, H contains all terminals, including the
dummy terminals. Hence, by taking a spanning tree of
H, the lemma follows. �

Lemma 4.5. If GM admits a Steiner tree of weight at
most

KM = k(k − 1) · (2t− 4) · tM7 + 3k2M6

+ 2k2 · (LM5 + L(N − 1)M4 + (N − 1)M3 +M2),

then M admits a solution.

Proof. Let H be the assumed Steiner tree; without loss
of generality, H is inclusion-wise minimal. Let HF

denote the restriction of H to the flower gadgets, and
HFa,b

the restriction of H to Fa,b. In general, HF is a
forest. We observe that

M7 > 3k2M6+2k2·(LM5+L(N−1)M4+(N−1)M3+M2)

by the choice of M . Since every edge in the flower
gadgets has weight at least M7 and is a multiple of M7,
it follows that HF has weight at most k(k−1) · (2t−4) ·
tM7. As any path from a terminal in a flower gadget to
r contains a portal of that flower gadget, the minimality
of H implies that all trees of HF contain a portal
of the corresponding gadget. In particular, for each
a ∈ [k−1], b ∈ [k], HFa,b

contains a portal of Fa,b. Then,
by Theorem 4.3, it follows that HFa,b

has weight at least
(2t−4)·tM7. Since there are k(k−1) flower gadgets, this
implies that HF has weight at least k(k−1)·(2t−4)·tM7,
and thus weight exactly k(k− 1) · (2t− 4) · tM7. Hence,
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for each a ∈ [k − 1], b ∈ [k], HFa,b
has weight exactly

(2t−4)·tM7. Then Theorem 4.3 implies that each tree of
HFa,b

(and in HF ) contains exactly one portal, and for
any sequence of t/2 consecutive portals, at least one tree
of HFa,b

has its portal there. Moreover, H has weight at
most 3k2M6+2k2·(LM5+L(N−1)M4+(N−1)M3+M2)
outside the flower gadgets.

Since each tree in HF contains exactly one portal,
the path Pa in H between r and ha for a ∈ [k] cannot
cross a flower gadget and is fully contained in {r, ha} ∪(⋃

b∈[k]Ga,b

)
∪
(⋃

b∈[k−1],i∈[n] fa,b[i]
)

. In particular, the

path contains at least k− 1 fuse vertices and two edges
of weight M6 incident on each of them, at least k join
edges of weight M6, an edge of weight M6 incident on
r, an edge of weight M6 incident on ha. Hence, the
path has weight at least 3kM6. Moreover, since Pa

cannot cross the flower gadgets, the k paths P1, . . . , Pk

from r to h1, . . . , hk respectively are internally vertex
disjoint. Hence, the total weight of the aforementioned
edges across all of the k paths is 3k2M6. Since M6 >
2k2 · (LM5 + L(N − 1)M4 + (N − 1)M3 + M2) by the
choice of M , it follows that H contains no further edges
of weight M6. In particular, H has weight at most
2k2 · (LM5 + L(N − 1)M4 + (N − 1)M3 +M2) in total
in the gadgets GW

a,b and GE
a,b for a, b ∈ [k].

The preceding implies that H contains exactly
k(k − 1) fuse vertices, one for each a ∈ [k], b ∈ [k − 1],
denoted fa,b[ia,b] for suitable ia,b ∈ [n]. For notational
convenience, define ia,0 = ia,1 and ia,k = ia,k−1 for
each a ∈ [k]. Moreover, each of these fuse vertices
has degree exactly 2 in H. Similarly, h1, . . . , hk each
have degree exactly 1 in H, and r has degree exactly k.

Finally, H contains exactly one join edge e
ja,b

a,b for each
a, b ∈ [k] for certain ja,b ∈ [N ]. From this, we conclude
that for each a, b ∈ [k], H contains exactly one p-
portal and exactly one q-portal of each of GW

a,b and

GE
a,b, specifically pWa,b[µ

W
a,b], q

W
a,b[ν

W
a,b], p

E
a,b[µ

E
a,b], q

E
a,b[ν

E
a,b]

for suitable µW
a,b, ν

W
a,b, µ

E
a,b, ν

E
a,b ∈ [N ].

Let b ∈ [k] and a ∈ [k − 1]. Since for any sequence
of t/2 consecutive portals of Fa,b, at least one tree
of HFa,b

has its portal there, it follows that one of
wW

a,b[la,b] = Jla,b, la,b+t/2−1Kt and one of wE
a+1,b[l

′
a,b] =

Jl′a,b + t/2, l′a,b − 1Kt is in HFa,b
for certain la,b ∈ [L]

and l′a,b ∈ [L]. From this and the placement of the
dummy terminals, we conclude that for each a, b ∈ [k],
H contains at least one w-portal of each of GW

a,b and

GE
a,b, specifically wW

a,b[λ
W
a,b] and wE

a,b[λ
E
a,b] for suitable

λWa,b, λ
E
a,b ∈ [L].

Now note that for each a, b ∈ [k], H contains exactly
one p-portal, exactly one q-portal, and at least one w-
portal of each of GW

a,b and GE
a,b. Moreover, H restricted

to Ga,b (denoted HGa,b
) must be connected in order

for a path from r to ha to exist in H. Since only one
join edge of Ga,b is in H, as established previously, it
follows that H restricted to GW

a,b (denoted HGW
a,b

) and

to GE
a,b (denoted HGE

a,b
) must each be connected. Then

Lemma 4.3(ii) implies that HGW
a,b

and HGE
a,b

each have

weight at least LM5 +L(N − 1)M4 + (N − 1)M3 +M2.
Since H has weight at most 2k2 · (LM5 +L(N −1)M4 +
(N − 1)M3 +M2) in total in the gadgets GW

a,b and GE
a,b

for a, b ∈ [k], it follows that HGW
a,b

and HGE
a,b

each have

weight exactly LM5 + L(N − 1)M4 + (N − 1)M3 +M2

for each a, b ∈ [k].
Let a, b ∈ [k]. Since HGW

a,b
has weight exactly

LM5 +L(N−1)M4 +(N−1)M3 +M2, is connected, and
contains pWa,b[µ

W
a,b], q

W
a,b[ν

W
a,b], and wW

a,b[λ
W
a,b], it follows

from Lemma 4.3(ii) that µW
a,b = νWa,b and that HGW

a,b

contains only one selector edge, namely the µW
a,b-selector

incident on wW
a,b[λ

W
a,b]. Consequently, wW

a,b[λ
W
a,b] is the

only portal among wW
a,b[1], . . . , wW

a,b[L] that is in HGW
a,b

.

Similar statements hold mutatis mutandis with respect
to HGE

a,b
. Since HGa,b

contains exactly one join edge, it

follows that µW
a,b = νWa,b = N − µE

a,b + 1 = N − νEa,b + 1.

The construction of SWa,b and SEa,b implies that λWa,b =

λEa,b. Also, note that H must contain the edge between

fa,b−1[ia,b−1] and pWa,b[µ
W
a,b] as well as the edge between

fa,b[ia,b] and pEa,b[µ
E
a,b]. The fact that µW

a,b = N−µE
a,b+1

implies that ia,b−1 = ia,b by the definition of the fuse
vertices. Hence, for each a ∈ [k], it follows that
ia,0 = · · · = ia,k. Set xa = ia,0 for each a ∈ [k].

Let a ∈ [k−1], b ∈ [k]. By the preceding paragraph,
wW

a,b[λ
W
a,b] is the only portal among wW

a,b[1], . . . , wW
a,b[L]

that is in HGW
a,b

, and wE
a+1,b[λ

E
a+1,b] is the only portal

among wE
a+1,b[1], . . . , wE

a+1,b[L] that is in HGE
a+1,b

. This

implies that HFa,b
has exactly two components. We

previously established that HFa,b
has weight exactly

(2t − 4) · tM7. Then Theorem 4.3 implies that HFa,b

is canonical, meaning that the two portals of HFa,b
in

Fa,b are opposite. By the construction of GM, this
implies that λWa,b = λEa+1,b. Recall that λWa,b = λEa,b
and λWa+1,b = λEa+1,b was established in the previous
paragraph. Hence, for each b ∈ [k], it follows that
λW1,b = · = λWk,b = λE1,b = · · · = λEk,b. Set yb = λW1,b
for each b ∈ [k].

We claim that x1, . . . , xk, y1, . . . , yk is a solution
to the Grid Tiling instance. Let a, b ∈ [k]. By
definition, λWa,b = λEa,b = yb and ia,b−1 = ia,b = xa. Note

that µW
a,b ∈ J(xa − 1)n + 1, xanK by the construction

of GM and by the fact that pWa,b[µ
W
a,b] is the only p-

portal of GW
a,b in H. Since the µW

a,b-selector incident on

wW
a,b[λ

W
a,b] = wW

a,b[yb] is in H, µW
a,b = (xa − 1)n + yb.
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The construction of L-VGSN implies that µW
a,b ∈ S

W,yb

a,b .

Then the construction of SWa,b, and specifically of SW,yb

a,b

implies that (xa, yb) ∈ Ma,b. The claim follows, and
thus so does the lemma. �

The construction and the above lemmas immediately
imply Theorem 4.4. The proof of Theorem 4.2 then
quickly follows.

Proof of Theorem 4.2. Let GM be the edge-weighted
planar graph resulting from Theorem 4.4, with terminal
set TM. Subdivide an edge e of GM of weight w > 1
exactly w − 1 times, such that e is replaced by a path
of w unit-weight edges. Call the resulting graph GM.

The bound on the size is immediate from the fact
that GM has O(k2n5) edges of weight O(k14n22) each.

Note that there is a bijection between the faces of
GM and of GM. Moreover, TM is still present in GM.
Hence, the terminals of TM can be covered by k(k−1)+1
faces of GM.

The final property follows immediately from the
subdivision of the edges in correspondence to their
weights and from the corresponding property in The-
orem 4.4. �

5 Concluding Remarks

In this paper we gave an 2O(k)nO(
√
k) time algorithm for

Planar Steiner Tree, if the terminals are covered by
k faces, and showed this is almost optimal assuming
the Exponential Time Hypothesis. The crucial idea
in the algorithm was to study seperators in a graph
with artificially added edges that enforce how connected
components are divided. The crucial idea in the lower
bound is the flower gadget that is a graph with all
terminals on one face where an optimal forest consisting
of two trees can divide the terminal set arbitrarily in two
parts.

Several exciting questions remain. First, an in-
teresting question is whether our techniques could in-
spire further progress in any of the studies that invoked
the original algorithm of Erickson [19]. For example
in the mentioned approximation and kernelization algo-
rithms [7, 39] the authors reduce the general Planar
Steiner Tree to the case where terminals lie on one
face. A natural direction to explore is to reduce the
number of faces with terminals to more than one, and
subsequently use the insights from this paper to aim for
improved algorithms. It would also be interesting to see
whether our techniques have consequences in the more
geometric setting outlined by Provan [41, 42].

Second, a natural question is whether the 2O(k)

term in our running time can be removed. This would

significantly generalize the nO(|
√
T |)W -time algorithm

of [34]. A natural approach would be to combine our
technique with the technique of [34], but it seems highly
unclear in which graph one should consider separators.
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