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ABSTRACT
Non-homogeneous hidden Markov models (NHHMM) are a sub-
class of dependent mixture models used for semi-supervised learn-
ing, where both transition probabilities between the latent states
and mean parameter of the probability distribution of the responses
(for a given state) depend on the set of p covariates. A priori we
do not know which (and how) covariates influence the transition
probabilities and the mean parameters. This induces a complex
combinatorial optimization problem for model selection with 4p
potential configurations. To address the problem, in this article
we propose an adaptive (A) simulated annealing (SA) expectation
maximization (EM) algorithm (ASA-EM) for joint optimization of
models and their parameters with respect to a criterion of interest.
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1 INTRODUCTION
Hidden Markov models (HMM) represent a tool used for pattern
recognition, inference and predictions in both social and natural
sciences, in different areas and for different purposes. For exam-
ple, in economics and econometrics, they are used for modelling
regime-switching processes [10] and various jump processes [9].
In psychology, they are used for learning process modelling [30].
Other applications include speech recognition [11], biology and
genetics [22]. Non-homogeneous hidden Markov models (NHH-
MMs) are the extension of standard HMMs that allow to model
both transition probabilities between the latent states and mean
parameters of the probability distribution of the responses with re-
spect to a set of covariates [20]. NHHMMs typically have the same
applications as standard HMMs [23], but allow additional flexibility.
In this article, we address the model (variable) selection problem in
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NHHMMs. Model selection problem in terms of the choice of ob-
servations influenced by the transitions of a hidden Markov chain
is well studied for simple HMMs and hidden semi-Markov models
(HSMMs). Existing methods include variational Bayes (VB) [31],
Markov chain Monte Carlo (MCMC) [3] and adaptations of expec-
tation maximization (EM) [2], and are summarized in Adams and
Beling [1]. At the same time, the inverse problem of selecting exoge-
nous variables that, conditionally on the hidden state, influence the
distributions of the observations as well as the problem of selecting
exogenous variables influencing transition probabilities are much
less studied. In Paroli and Spezia [25], a comparison of different
strategies of variable selection in NHHMMs is given, however, there
only Gaussian observations are considered, the problem is limited
to only inference (with no guidance to predictions), and only vari-
able selection for transition probabilities is allowed. The extended
MCMC based approach by the same authors is considered in Paroli
and Spezia [26], where both variable selection for transitions and
observations as well as the problem of selecting the number of hid-
den states are studied, however, the approach is still limited in the
sense that only Gaussian observations are addressed and no guid-
ance for model-based predictions is given. A more recent prediction
driven approach based on reversible jump MCMC [13] is suggested
in Meligkotsidou and Dellaportas [24], however, there, also, only
Gaussian observations are considered with variable selection only
on the level of transition probabilities and no guidance for pattern
recognition driven applications. All of the approaches mentioned
above are certainly sound mathematically and can be extended
to broader problems with a moderate effort, however, they (as of
today) remain slightly impractical for several reasons: 1. They are
computationally heavy; 2. They are not designed for parallel com-
puting; 3. No implementations or software are publically available
for the scientific community; 4. Only Gaussian observations are
considered. This results in that a) the approaches are only suited for
small problems (6 covariates at most were considered in application
of [24–26]), b) even more recent works cannot easily adapt them
and still rely on manual variable selection [15], c) it is impossible to
benchmark against them on new data sets without reimplementing
the approaches from scratch.

The main contribution of this paper is a pragmatic, yet rigorous,
solution for variable and model selection problems in NHHMMs.
We consider any distribution of the observations from the expo-
nential family and address both pattern recognition and prediction
driven examples. Additionally, we enable practical parallel com-
puting (allowing to perform variable selection for much larger sets
of covariates) and provide an R package on GitHub 1 for common
use. In particular, we suggest an adaptive irreducible simulated
1https://github.com/aliaksah/depmixS4pp
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annealing expectation maximization algorithm (ASA-EM) and its
parallel version for joint optimization of models and their param-
eters with respect to a criterion of interest, which can be chosen
among Akaike information criterion (AIC), Bayesian information
criterion (BIC), Deviance information criterion (DIC), focused in-
formation criterion (FIC), marginal log-likelihood (MLIK), marginal
posterior model probability (PMP) and others [5]. Alternatively,
a time-aware cross-validation can be used. All of the mentioned
model selection strategies induce regularization on the model com-
plexity and hence prevent themodel from overfitting. The suggested
ASA-EM algorithm has an asymptotic guarantee to find the optimal
model and values of its parameters, however, as we will show in
the experiments section, it works well even for the limited time
computations. To illustrate its performance, we address an example
for financial stock prices data from S&P 500 (30 covariates), and
an example dealing with epigenetic observations from Arabidopsis
plant (17 covariates). Both of the examples address significantly
larger sets of covariates than reported in all of the previous studies
[24–26].

2 MATHEMATICAL MODEL
We assume a parametric probability distribution f of the responses
Yi , i ∈ {1, ...,n}, which come from the exponential family [5]. We
define separate mean (µsi ) and dispersion (ϕsi ) parameters, con-
ditional on the latent states si ∈ {1, ..., S}, which are assumed to
have a Markovian dependence structure along indices {1, ...,n}
allowing to incorporate a simple temporal dependence between the
observations:

Yi |µsi ,ϕsi , si ∼ f(y |µsi ,ϕsi ), µsi = д
−1 (ηsi ) , (1)

ηsi = β
(si )
0 +

p∑
j=1

γjβ
(si )
j xi j , (2)

p(si |si−1) =
eω
(si ,si−1)
0 +

∑p
j=1 δjω

(si ,si−1)
j xi j

1 + eω
(si ,si−1)
0 +

∑p
j=1 δjω

(si ,si−1)
j xi j

. (3)

Here, д(·) is the link function, β (si )j ∈ R, j ∈ {0, ...,p} are re-
gression coefficients of the covariates of the model showing for a
given state si whether and how the corresponding covariate influ-
ences the mean parameter µsi of the distribution of the responses,
γi ∈ {0, 1}, i ∈ {1, ...,M} are latent indicators, defining if (for any
state) covariate i is included into the linear predictor of the model
(γi = 1) or not (γi = 0). ω(si ),(si−1)j ∈ R, j ∈ {0, ...,p} are regression
coefficients of the covariates of the model showing for a given state
si−1 whether and in which way the corresponding covariate influ-
ences the transition probabilities to state si . δi ∈ {0, 1}, i ∈ {1, ...,p}
are latent indicators, defining if (for any state) covariate i is included
into the model for transition probabilities between the latent states
(δi = 1) or not (δi = 0). Here both the mean parameters of the
responses and the transition probabilities of the Markov chain de-
pend upon up to p covariates and the combinatorics of the choice
of the covariates (model configurations) is incorporated via the
latent binary indicators, which switch the covariates on and off
separately for the latent Markov chain of the states (through δi )
and the distribution of the responses (through γi ). At the same time,
to avoid super-exponential explosion of the number of candidate

models, we assume that the same variables are influencing the ob-
servations for every hidden state and the same pattern of variables
is influencing transition probabilities between all pairs of hidden
states. The following section will present the algorithm for fitting
the model (1)-(3).

3 ADAPTIVE SIMULATED ANNEALING EM
ALGORITHM

In order to deal with the presence of latent states and latent binary
indicators for covariate selection as well as multimodality in the
joint space of model configurations m = {δ ,γ } ∈ M and their
parameters θm = {β,ϕ |m} ∈ Θm we will combine the adaptive
simulated annealing (SA) algorithm (for model space exploration)
and the standard expectation maximisation (EM) algorithm (for
parameter space exploration) into the novel ASA-EM algorithm,
described in Algorithm 2. There we consider the objective criterion
r (m,θm |Y ,x) to be minimized acrossm ∈ M and θm ∈ Θm . The
objective r (m,θm |Y ,x) can be chosen as AIC, BIC, DIC, FIC, MLIK
or PMP [5], with no loss of generality. Acceptance ratio of ASA-EM
Algorithm 2 at temperature τ is defined as

aτ (r1, r2) = min
{
1, exp (r1 − r2)

τ

}
. (4)

Here r1 = r (m1,θm1 |Y ,x) and r2 = r (m2,θm2 |Y ,x).

3.1 The EM algorithm
In this subsection, we describe the EM part of the ASA-EM algo-
rithm in more detail.

Conditional on having a fixed modelm from the model space
M, the standard expectation maximization (EM) algorithm is used
to make inference on the parameters θm of the modelm [22]. The
inference algorithm here works as follows: One first introduces the
likelihood of the model parameters p(Y |x ,θm ). Here, however, the
parameters of the model are not defined without the sequence of
latent states s for all of the observations. We hence add them and
then integrate out using the law of total probability as:

p(Y |x ,θm ) =
∑
s ∈Ω

p(Y , s |x ,θm ).

At this point, one still does not know explicitly p(Y , s |x ,θm ). To
resolve this, one can multiply and divide the expression by some
auxiliary q(s |θm ):

p(Y |x ,θm ) =
∑
s ∈Ω

q(s |θm )
p(Y , s |x ,θm )

q(s |θm )
.

In the E-step of the EM algorithm one obtains the likelihood ex-
plicitly by taking expectation with respect to q(s |θ∗m ). This means
getting:

p(Y |x ,θm ) = Eq(s |θ ∗m )
(
p(Y , s |x ,θm )

q(s |θ∗m )

)
. (5)

Here, θ∗m are the values of parameters obtained at a previous M-
step. Further the M-step consists of maximizing the expectation
(5) with respect to θm to obtain the new θ∗m , which will be used
in the new EM iteration. Typically, q(s |θm ) utilizes the Markovian
properties of the latent sequence of states to make the algorithm
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computationally more efficient. Also note that in the E-step, ana-
lytical expectation can be exchanged with importance sampling, if
the former is difficult to obtain.

3.2 SA model exploration algorithm
Having the methodology for estimating θm within the model, we
can move on to the model selection algorithm, which is an adap-
tive simulated annealing procedure. We will here first describe the
standard SA with fixed hyperparameters.

The standard simulated annealing algorithm generates a se-
quence of solutions {z1, ..., zk } minimizing some objective G(z) 2
as described in Algorithm 1.

Algorithm 1 Standard simulated annealing optimization
z ← z0 ;
zb ← z0 ;
for τ in {τmax , . . ., τmin } do

for k in {1, . . ., K } do
zc ← N(z);
if aτ (G(z), G(zc )) ≥ u ∼ Unif [0; 1] then

z ← zc ;
if G (zc ) < G (zb ) then

zb ← zc ;
end if

end if
end for

end for
return z, zb

Here the cooling schedule is assumed to be exponential, i.e.

τi+1 = τi exp (−κt ).

Acceptance probabilities for the simulated annealing kernel are
of form (4) but with r1 = G(z1) and r2 = G(z2). The initial point
z0 is drawn randomly. The limiting distributions of SA for each
temperature τ are found (due to the Markovian property of the
procedure) as follows:

p(zk = z |τ ) ∝ exp
(
−G(z)

τ

)
. (6)

Note that if G(z) is the likelihood multiplied by the prior scaled
with τ , i.e. for G(z) = −τ logp(Y |x , z)p(z) the SA corresponds to
the Metropolis-Hastings MCMC algorithm [12] and hence gives
samples from the posterior distribution of z. This can be easily
utilized in our approach if one is interested in the whole posterior
distribution of models and parameters rather than one best solution.

3.3 Adaptive SA hyperparameter tuning
Finally, the adaptive part of the ASA-EM acronym means that the
algorithm is gradually learning its own hyperparameters over some
time before switching to a stationary regime after Ra epochs. The
tuning process is described in this subsection.
♦ For a random variable of the number of iterations of EM algo-

rithm l we set l ∼ Poisson(λ) with the parameter prior of the form
λ ∼ Gamma(aλ ,bλ), which is conjugate to the distribution of l .

2In our case the solutions are different models and their parameters, i.e. zi =
{mi , θmi }, but we will in this section address zi , because the focus for the reader
here is understanding the standard simulated annealing procedure. Additionally for
simplicity we consider a general objective G(z) to be minimized, whereas the focus of
ASA-EM will be a specific G(z) := r (m, θm |Y , x )

Then throughout training, we draw proposals l from the following
posterior distribution:

p(l |Dl )
d
= NB ©­«aλ +

∑
x ∈Dl

x ,
1

1 + bλ + | |Dl | |
ª®¬ , (7)

which we call adaptive posterior distribution. Here | | ®v | | is a L0 norm
representing the length of the vector ®v and Dl is the synthetic data
on the (what we call) successful iterations, that is if a new global
optima in terms of r (m,θm |Y ,x) or the move is accepted by SA
algorithm at temperature τ < 1, we append the current l to Dl .
♦ The number of iterations K of SA per temperature τ is also

assumed Poisson distributed K ∼ Poisson(µ)with a conjugate prior
µ ∼ Gamma(aµ ,bµ ). During training we draw proposals K from
the adaptive posterior distribution:

p(K |Dk )
d
= NB ©­«aµ +

∑
x ∈DK

x ,
1

1 + bµ + | |DK | |
ª®¬ , (8)

where again DK is the synthetic data, to which we append the
current K on successful iterations.
♦ Similarly, for the size c of the neighbourhood operator Nc (m)

of SA we assume c ∼ Binomial(C,pc ) with pc ∼ Beta(ac ,bc ). Then
the posterior adaptive distribution for c becomes:

p(c |Dc )
d
= BetaBin ©­«ac +

∑
x ∈Dc

x ,bc +C · | |Dc | | −
∑
x ∈Dc

x
ª®¬ . (9)

Here, for successful iterations we append c to the synthetic data Dc .
♦ Finally, for the probabilities of having the covariates included

into the model Ψj , j ∈ {1, ...,p} we consider the Multinomial prior
Ψj ∼ Multinomial(pj1 ,pj2 ,pj3 ,pj4 ), where the four states corre-
spond to {γj = 0,δj = 0}, {γj = 1,δj = 0}, {γj = 0,δj = 1}
and {γj = 1,δj = 1} accordingly. Here, we set a conjugate Dirich-
let prior for the hyperparameters of the Multinomial distribution
{pj1 ,pj2 ,pj3 ,pj4 } ∼ Dirichlet(ζ1, ζ2, ζ3, ζ4) leading to a Dirichlet-
Multinomial posterior adaptive distribution:

p(Ψj |DΨj )
d
= DirMult(ζ1 +

∑
x ∈DΨj

I(x = {0, 0}),

ζ2 +
∑

x ∈DΨj

I(x = {0, 1}), ζ3 +
∑

x ∈DΨj

I(x = {1, 0}), (10)

ζ4 +
∑

x ∈DΨj

I(x = {1, 1})).

Here, for successful iterations we update the synthetic dataDΨj with
the currently drawn Ψj . Other tuning parameters of the algorithm
including the cooling schedule and the stopping time for adaptive
learning are assumed fixed.
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Algorithm 2 Adaptive Simulated Annealing Expectation Maximization
initialize {mд , θmд };
for r in {1, . . ., R} do

initialize {mc , θmc };
for τ in {τmax , . . ., τmin } do

sample K ∼ p(K |DK );
for k in {1, . . ., K } do

sample c ∼ p(c |Dc );
choose J from Nc (m);
samplem∗j from p(Ψj |DΨ ) for j ∈ J ;
initialize θm∗ form∗ ;
sample l ∼ p(l |Dl );
run EM for l iterations and obtain θ̂m∗ ;
if aτ

(
r (mc , θmc |Y , x ), r (m∗, θm∗ |Y , x )

)
then

set {mc , θmc } ← {m∗, θm∗ };
if r < Ra and τ < 1 then

Dl ← Dl ∪ l , Dc ← Dc ∪ c , DK ← DK ∪ K , DΨ ← DΨ ∪ Ψ;
end if
if r (mc , θmc |Y , x ) < r (mд , θmд |Y , x ) then

set {mд , θmд } ← {mc , θmc };
if r < Ra then

Dl ← Dl ∪ l , Dc ← Dc ∪ c , DK ← DK ∪ K , DΨ ← DΨ ∪ Ψ;
end if

end if
end if

end for
end for

end for

The ASA-EM Algorithm 2 converges to a homogeneous Markov
chain by design, since the adaptations of the hyperparameters are
stopped after Ra epochs. Hence after Ra epochs we end up with a
standard simulated annealing algorithm for the model exploration
combined with a standard expectation maximization algorithm
for parameter estimation. The resulting algorithm is represented
by a Markov chain and converges to a stationary distribution at
any given temperature τ independently of the starting solution. At
the same time, the EM part of the algorithm is greedy and thus
it finds only the local optimum, which depends on the starting
points. Multiple revisits of the same modelm with different initial
points for parameters in Θm resolves this issue, if there is only a
finite countable number of local extrema of the objective in Θm .
ASA-EM has a guarantee to find the global optimum asymptotically
since it is a positively recurrent Markov chain in {M⋃

m∈M Θm }.
However, in the limiting case, it needs exponential time to do this.
Otherwise (within a small finite amount of time) it can be seen
as a metaheuristic optimization strategy for model selection in
non-homogeneous hidden Markov models.

The algorithm can be embarrassingly parallelized in a straight
forward fashion either from the beginning (with the same or differ-
ent tuning parameters for each thread) or after Ra epochs 3. Note
that additionally different number of hidden states can be consid-
ered in different threads by e.g. sampling from a uniform integer
distribution within a reasonable range, allowing to combine vari-
able selection problem with the problem of selecting the optimal
number of states.

4 EXPERIMENTS
To study the performance of the proposed model and algorithm
in the case of limited computational time we will address the data
from the first chromosome of Arabidopsis plant belonging to several
predefined groups of genes and the logreturns data from the S&P
500 listing. The first example will serve as a pattern recognition
3Whilst we do not give any guidance on how many Ra epochs should be considered,
we numerically show that even 2-3 Ra epochs are typically enough, provided that at
least one additional epoch is run to guarantee ergodicity of the Markov chain

Table 1: hyperparameters of ASA-EM. Here U[a, b] is a uniform
distribution on the interval from a to b .

ζ1 ζ2 ζ3 ζ4 aλ bλ aµ
0 0 0 1 100 ∗ U[1, 2] U[1, 10] 5 ∗ U[3, 7]

bµ as bs Ra τmin τmax kt
2 5 15 3 5 ∗ U[10−7, 10−2] 2 ∗ U[104, 109] U[2, 6]

Table 2: The selected model for epigenetics study.

BIC AIC Init. State 1 Init. State 2
1481.928 1412.839 1.000 0.000

→ State 1 Intercept XMa XEXPR
State 1 0.000 0.000 0.000
State 2 -129.264 119.104 0.000

→ State 2 Intercept XMa XEXPR
State 1 0.000 0.000 0.000
State 2 5.478 0.288 0.000

Observations Intercept XCHG XCG
State 1 -5.518 -79.583 -1.770
State 2 -2.303 1.714 2.152

study alongside the genome, whilst the second example is used as
a prediction driven experiment.

4.1 Epigenetic data example
The addressed data set consists of 1502 observations from the first
chromosome of Arabidopsis plant belonging to several predefined
groups of genes. The observations are represented by the methy-
lated Yi versus total Ni number of reads inducing the binomial
distribution of the responses. The hidden Markov chain here has
just two states (1 - methylated and 0 - non-methylated), which
results in the following model specification:

Yi |psi , si ,Ni ∼ Binomial(psi ,Ni ), psi = logit−1
(
ηsi

)
, si ∈ {0, 1}.

We also have data on various exogenous variables (covariates).
Among these covariates, we address (following [19]) the factor
with 3 levels corresponding to whether the location belongs to
CGH, CHH or CHG genetic region, where H is either A, C or T and
thus generating two covariates XCG and XCHG . The second group
of factors indicates whether the distance to the previous cytosine
nucleobase (C) in DNA is 1, 2, 3, 4, 5, from 6 to 20 or greater than
20 inducing six binary covariates XDT 1,XDT 2,XDT 3,XDT 4,XDT 5,
and XDT 6:20. We also include such 1D distance as a continuous
covariate XDIST . The third addressed group of factors corresponds
to whether the location belongs to a gene from a particular group of
genes of biological interest. These groups are indicated asMa ,Mд
and Md , yielding two additional covariates XMa ,XMд . Addition-
ally, we have a covariate XCODE indicating if the corresponding
nucleobase is in the coding region of a gene and a covariate XSTRD
indicating if the nucleobase is on a "+" or a "-" strand. Finally, we
have a continuous covariate XEXPR ∈ R+ representing expression
level for the corresponding gene and interactions between expres-
sion levels and gene groups XEXPR,a ,XEXPR,д ,XEXPR,d ∈ R+.
Thus multiple predictors with respect to a strict choice of the refer-
ence model in our example inducedM = 17 potentially important
covariates, yielding 417 > 17 × 109 potential models to consider.

We run 30 parallel threads of ASA-EM algorithm with the choice
of hyperparameters shown in Table 1, whilst p(s |θ ) and sampling in
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the E-step are the default choices from Visser et al. [29]. The distri-
bution of the values of model selection criteria (AIC and BIC) across
the runs is shown in Figure 1 with BIC used as a primary criterion
for optimization. Then the best model found in all of the threads in
terms of BIC was selected for the given pattern recognition task.
According to Figure 1. Exactly this model was found in 10% of the
threads, whilst in 87.7% of the threads, the deviation of the BIC
value of the found solution is almost neglectable in comparison to
the best one found. The structure of the observations together with
the discovered pattern of the most probable sequence of states, rep-
resenting the methylation status of the observations, found by the
suggested ASA-EM procedure, are represented in Figure 2, whilst
the selected model is summarized in Table 2.

Figure 1: Values of BIC (red) and AIC (blue) across 30 parallel
threads of ASA-EM algorithm for epigenetics data.

Figure 2: Epigenetic observations, where blue dots are the total
number of reads, red dots - number of methylated reads, the light
blue line gives naïve probabilities as rates, the green line - most
probable latent states of the non-homogeneous hidden Markov
model, the brown line - probability of a latent state being 1.

According to the BIC criterion, only factors XCHG and XCG are
significant on the level of observations (conditional on the state) of
the methylation for the addressed epigenetic region. At the same
time, the factor XMa and the level of expression XEXPR are signifi-
cant for the transition probabilities between the latent states. The
detailed influence on the linear predictors and transition is given
in Table 2. Based on the results for the best model we carried out
computations of methylation probabilities of the locations along
the genome. Furthermore, we compared the results with the naïve
approach based on computing the proportion of methylated reads,
which is currently addressed in the biological literature as a stan-
dard way to evaluate methylation probability of a given nucleobase.

These results are summarized in Figure 2. The results show that
the naïve approach should not be trusted in the presence of spa-
tially correlated data and the corresponding to it probabilities are
strongly biased. Previously, a similar analysis of exactly the same
data was performed in Hubin et al. [19], where the inference was
based on the GLMM model fitted by the MJMCMC algorithm devel-
oped in Hubin and Storvik [16] also with the aim to capture spatial
structure of the methylation probabilities. In Hubin et al. [19] the
significant variables of GLMM’s linear predictor were XCHG ,XCG
and XCODE with less significant XMa and XMд . Hence variable
selection in both of the approaches shows the importance of almost
identical sets of covariates, though the models are rather different.
This creates insights to be studied further by the biologists. The pat-
terns of the recovered probabilities and most probable states (found
by the Viterbi forward algorithm [6]) in our study and in Hubin
et al. [19] are also quite similar and strongly agree for locations
1-7000 and 10250 - 10500. Also, both of the approaches are quite
sceptical to the methylation status of locations 7100 -7200, despite
some observations with a high proportion of methylated reads in
that region. Finally, the approaches disagree in locations 7250 -7400,
where the GLMM suggests an almost continuously methylated re-
gion, whilst the non-homogeneous HMM models multiple jumps
between the methylated and non-methylated states. This region
hence might need careful studies by the biologists in future. In
would be also of interest to obtain additional covariates such as
whether the corresponding nucleobase belongs to a particular part
of the non-coding gene region like promoter, intron or transposon,
and whether the nucleobase is within a CpG island.

4.2 S&P500 data example
Our second example is focused upon Amazon stock (AMZN) pre-
diction with respect to logreturns of other p = 30 stocks from
the S&P500 listing, which have the highest correlations to AMZN.
The addressed data 4 consists of 1258 observations of logreturns
for 31 stocks based on the daily close price. The 30 predictors
are: XADBE, XAOS, XAPH, XATVI, XBLK, XCA, XCRM, XFB, XFISV,
XGOOGL,XGOOG,XITW,XMA,XMHK,XMMC,XMSFT,XMTD,XNFLX,
XPCLN, XPKI, XROP, XSBUX, XSNPS, XSPGI, XSYK, XTEL, XV, XTMO,
XVRSN, where the underscripts are representing official S&P500
acronyms of the corresponding stocks. In terms of physical time,
the observations are ranged from 11.02.2013 to 07.02.2018. The fo-
cus of this example is in both inference and predictions, hence we
divided the data into a training data set (before 01.01.2017) and a
testing data set (after 01.01.2017). Here, we address the Gaussian
NHHMM with three classes, which we hypothesize to represent
the "buy", "sell", "wait" states of the market:

Yi |µsi ,σ 2
si , si ∼ N (µsi ,σ 2

si ), µsi = ηsi , si ∈ {0, 1, 2}.

The primary model selection criterion addressed in this example
is AIC due to that we are mainly interested in predictions, whilst
BIC is the secondary reported criterion. Other hyperparameters of
the algorithm are the same as the ones used in the previous example.
Here we have in total 430 > 1.15 × 1018 candidate solutions, hence
50 parallel threads of ASA-EM algorithm were run. The distribution
of the best-found solutions across the threads is depicted in Figure 3.

4From www.kaggle.com/camnugent/sandp500.

www.kaggle.com/camnugent/sandp500
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We clearly see three major local extrema to which the threads are
converging. This indicates that more epochs of each thread would
be needed to resolve the issue of convergence to multiple local
extrema. On the other hand, it would also require significantly more
computational effort. In this sense (and since we are interested in
one "best" solution) running more parallel threads (50 instead of
30) is a far more practical and pragmatic solution. The best found
model is summarized in Table 3. We use the standard deviations

Figure 3: Values of BIC (red) and AIC (blue) across 50 parallel
threads of ASA-EM algorithm for S&P500 data.

σsi , si ∈ {0, 1, 2} and means µ0si , si ∈ {0, 1, 2} at zero values of the
predictors for distributions of the observations from the 3 different
classes in order to resolve the label switching problem and see if
the discovered classes are "buy", "wait", and "sell". These standard
deviations and means at zero values of the covariates are σ0 =
0.008, µ00 = 0.000 σ1 = 0.007, µ01 = −0.001 and σ2 = 0.019, µ02 =
0.009. This indicates that si = 0 might represent the "wait" or
neutral state of the market, si = 1 - the "buy" state of the market
and si = 2 - the "sell" state of the market. Let us illustrate the
market structure, returns and hidden states graphically. In Figure 4
we clearly see that si = 2 states of the selected by ASA-EMNHHMM
(SNHHMM) correspond to the pikes of the price and highly volatile
logreturns and hence create the best moment for the investor to sell
the stock. The si = 1 states correspond to the moments when the
price starts to grow and volatility of the logreturns is low, which
can be clearly interpreted as the best moment to buy the stock. The
states si = 0 correspond to the "wait" situation on the market when
the investor should hold either the bought asset or the funds. At the
same time, this does not seem to be the case for the full NHHMM
(FNHHMM), which has all of the covariates included. FNHHMMhas
less transparent states in terms of interpretations (hence we will not
use states of FNHHMM as investment triggers). Note that the most
probable states for both inference and predictions are recovered by
the Viterbi algorithm [6, 29]. Consider that the investor during the
training period keeps to the following strategy: She invests all her
money into AMZN stock when the latent variable of SNHHMM
takes the value of 1 and sells all her stocks when the latent variable
takes the value of 2. Assume the investor had 1000$ on 11.02.2013.
Then on 01.01.2017 she would have 1915.137$ in case she used the
strategy purely based on SNHHMM, which shows that the latent
states indeed correspond to the "buy", "sell", "wait" states.

The goal of this example was not only inference but also pre-
dictions, which means we have to check both how the predicted
values of AMZN stock price behave and what would have happened

Table 3: The selected model for s&p500 study of AMZN prediction

BIC AIC Init. State 1 Init. State 2 Init. State 3
−5534.046−6159.914 0.000 1.000 0.000

→ State 1 Inter. XBLK XFISV XGOOG XMA XMHK XMMC X4NFLX XSBUX XTEL XTMO
State 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
State 2 −5.80 14.66 −13.09 −197.69 54.81 25.68 −9.14 50.23 4.31 −73.78 74.03
State 3 −4.81 6.88 −745.00 −67.42 −32.22 −90.12 139.29 −5.61 63.93 −49.40 49.85

→ State 2 Inter. XBLK XFISV XGOOG XMA XMHK XMMC X4NFLX XSBUX XTEL XTMO
State 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
State 2 −8.75 −410.08 −838.22 154.20 −675.17 449.64 −708.36 −183.25 639.17 1509.92 548.74
State 3 −14.84 951.36 866.36 −40.28 445.56 210.34 −589.45 −181.41 −128.87 −929.12 −754.37

→ State 3 Inter. XBLK XFISV XGOOG XMA XMHK XMMC X4NFLX XSBUX XTEL XTMO
State 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
State 2 −0.29 494.63 −800.14 1449.02 758.39 387.67 −652.24 −366.78 266.96 −1132.37−372.49
State 3 −12.66 192.90 223.25 1463.84 323.61 930.92 −1671.98 −132.73 626.89 −277.53 −383.94

Observ. Inter. XADBE XAPH XATVI XBLK XCA XFB XGOOGL XITW XMA −
State1 0.00 0.10 0.03 0.05 0.00 −0.02 0.11 0.42 −0.07 0.09 −
State 2 0.00 −0.11 −0.72 0.08 0.17 −0.64 −0.04 −0.13 −0.52 0.89 −
State3 0.01 −1.32 −0.07 0.30 −1.56 0.38 −1.03 3.01 1.64 −0.85 −
Observ. SD XMMC XNFLX XPCLN XSBUX XSNPS XSYK XTEL XVRSN XV −
State 1 0.01 0.03 0.05 0.08 0.15 0.02 0.03 −0.02 0.11 −0.03 −
State 2 0.01 0.12 −0.23 0.37 −0.06 0.52 0.32 0.25 0.36 1.16 −
State 3 0.02 3.58 0.18 −0.02 −0.15 0.93 0.50 −1.77 −0.65 −0.91 −

Figure 4: Amazon prices and logreturns for training data, where
blue dots are stock prices, red dots - logreturns, green line - most
probable latent states of the selected by ASA-EM NHHMM, brown
line - most probable latent states of full NHHMM.

should the investor had used the suggested investment strategy on
the test data. In terms of the second goal, if the investor kept to the
strategy described in the previous paragraph during the test period
(from 01.01.2017 to 07.02.2018), she would end up with 1198.636$ at
the end of the test period, provided that she started with 1000$ on
01.01.2017. This clearly shows that the strategy works in the very
long test period, even though both the model and its parameters
were fixed on 01.01.2017 and were never updated during test time.

In terms of the other goal, we predict daily stock prices for
the whole test period based on the selected by ASA-EM optimal
model (SNHHMM) and full NHHMM (FNHHMM). Here, we also



An adaptive simulated annealing EM algorithm for inference on non-homogeneous hidden Markov models Submitted to AIIPCC 2019, December 2019, Sanya, China

Table 4: Test statistics results. For DM-test 0.1 level of significance
corresponds to ∗, 0.05 - to ∗∗, 0.01 - to ∗∗∗.

Criterion Data NHHMM FNHHMM LASSO RIDGE SARIMAX CAUSAL PROPHET

RMSE AMZN 78.614 153.391 92.266 89.015 87.439 159.687 181.475
PVDM AMZN - 0.0000∗∗∗ 0.0109∗∗ 0.0597∗ 0.0496∗∗ 0.0000∗∗∗ 0.0000∗∗∗
COINT AMZN 0.9999 1.0043 1.0035 1.0036 1.0048 1.0026 1.0039
MONEY AMZN 1198.63 - - - - - -
RMSE AAPL 22.795 36.625 19.725 18.738 18.304 17.422 23.601
PVDM AMZN - 0.0000∗∗∗ 1.0000 0.9998 1.0000 1.0000 0.1738
COINT AAPL 1.0019 1.0055 1.0055 1.0054 1.0053 1.0050 1.0050
MONEY AAPL 1456.46 - - - - - -
RMSE AAPL (HALF) 5.4772 33.468 14.333 13.474 13.195 13.124 20.211
PVDM AAPL (HALF) - 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗
COINT AAPL (HALF) 0.9766 1.0063 1.0105 1.0105 1.0104 1.0102 1.0094
MONEY AAPL (HALF) 1185.59 - - - - - -

address several benchmark approaches, namely LASSO [28] and
RIDGE regressions [14] combined with AIC used for the hyperpa-
rameter selection and SARIMAX model with automatic selection
of hyperparameters based on AICc criterion [21]. Finally, as two
industrial state-of-the-art models we addressed Bayesian struc-
tural time series model (CAUSAL) developed by Google [4] and
PROPHET model developed by Facebook [27]5. The benchmark
approaches were trained and tested using the same splits of the
data. For all of the models, the predicted prices of AMZN shares
were obtained using the following transformation of logreturns
p̂i = p0 exp(

∑i
j=1 Ŷj ), i ∈ {1, ...,ntest}, where p0 is the actual stock

price on the last training day. Then test RMSE was evaluated as:

RMSE =

√√√
1

ntest

ntest∑
j=1

(
pj − p̂j

)2
.

Historically stock price prediction algorithms are compared in terms
of RMSE. However, relying only on RMSE might be not enough to
decide which of them yields the best predictive performance. This
is due to the fact that the variance of squared errors of predictions
is completely ignored in such a case. Hence rigorous statistical
testing should be applied. Simple t-test or z-test in this context
can not be trusted, since forecast errors may be serially correlated,
and a robust Diebold-Mariano (DM) test [7], designed to compare
forecasts, should be applied. We hence are additionally reporting
p-values (PVDM) of one-sided DM-test [8] of that our method
is superior to the corresponding competitors. We also tested the
absence of auto-correlations of the residuals of the predicted prices
using the following cointegration test statistics:

COINT = max{|ρ̂ + 1.96σ̂ρ |, |ρ̂ − 1.96σ̂ρ |}.
Here ρ̂ is estimated from the following equation εt = ρεt−1 + ηt ,
and εt is the noise equal to p̂i − pi . We want COINT as small as
possible and accept the series to be cointegrated if it is below 1.
The results for the set of compared approaches are summarized
in Table 4. They clearly show that our method (SNHHMM) yields
the smallest test RMSE error and its advantage of predictive perfor-
mance is statistically significant according to DM-test on α = 0.01
level for FNHHMM, CAUSAL and PROPHET, on α = 0.05 level for
LASSO and SARIMAX, and on α = 0.1 level for RIDGE. Moreover,
SNHHMM is the only method with stationary and cointegrated
residuals for AMZN data. We repeated the experiment for Apple
data (AAPL) as observations with 30 explanatory stocks (with the
5No explanatory variables are addressed by PROPHET due to its model assumptions.

highest correlations to AAPL) and also report the results in Table 4.
For AAPL, RMSE of SNHHMM was slightly worse than for most
of the competitors except for FNHHMM and PROPHET (also, no
significant evidence of that our method is better in accordance with
PVDM, except for FNHHMM on 0.01 level of confidence), but coin-
tegration results were still the best. Graphically the results for AAPL
are summarized in Figure 6. There one can see that the predictions
for SNHHMM worsen in the second part of the test period, where
some sort of a causal impact could have happened. This means that
the model should be calibrated with some frequency. In particular,
the results for all of the methods could be improved should we
retrain the models after each test day by adding the corresponding
logreturns to improve the following day’s predictions, however, we
leave this option outside of the scope of the paper. Note, however,
that if one only used the first half of the test period for AAPL, both
the RMSE (with a significant difference of predictive performance
on α = 0.001 level according to DM-test), and COINT of SNHHMM
would be by far the best on the given set of baselines (see Table 4).
Finally, using 1000$ as the starting capital, the investor would gain
1456.457$ for AAPL using our strategy based on the hidden states
during the whole test period and 1185.59$ during the first half of
the period.

Figure 5: Amazon prices, log-returns and most probable latent
states as in caption to Figure 4. Green signs correspond to the se-
lected by ASA-EM NHHHM predictions, brown - to full NHHMM,
black - to LASSO, purple - to RIDGE, light blue - to SARIMAX, grey
- to CAUSAL, pink - to PROPHET.

5 DISCUSSION
In this article, we have suggested a novel adaptive simulated anneal-
ing expectation maximization algorithm for simultaneous explo-
ration of model and parameter space of non-homogeneous hidden
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Figure 6: Apple results. See details in the caption to Figure 5

Markov models. Also, parallelization strategies were suggested for
ASA-EM. The algorithm has shown to efficiently converge to good
solutions within finite time. The solutions both yield high sparsifi-
cation rates and interpretable results in terms of the meaning of the
latent states and inference on the observations. In two applications
we found the latent states to be associated with important biological
and financial phenomena, namely methylation status of the nucle-
obases along the genome and extremal/non-extremal points of the
stock price, which can be interpreted as "buy"-"wait"-"sell" states.
Finally, the resulting model yields good predictive properties and
often outperforms the baseline approaches. In future, it would be
of interest to allow for sub-sampling from the data in the EM part
of the algorithm to deal with large high dimensional data samples.
Also, allowing complex non-linear relations in the model like those
described in [18] and [17] could be of interest.
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