
acmqueue | september-october 2019 1

Dear KV,
While debugging a set of networked systems that seemed
to be executing operations out of the expected order, I
discovered an interesting feature of the protocol used
by the application. The system is fairly old, and I wasn’t
involved in its creation, but I was asked to figure out why
about 10 percent of the transactions were flagged as being
in the wrong order. All the application communication
happens using TCP. And since TCP guarantees the ordering
of messages, I was confused as to how transactions
between two systems could arrive out of order. What I
found—by using Wireshark—was that the TCP stream was,
as expected, in order, but the application protocol used on
top of TCP had some rather odd properties.

In particular, all of the information, including time, was
communicated as strings. The bug turned out to be an
incorrect conversion of the time from a string to a value
that could easily be compared. Although the messages
arrived in the correct order, the system, reading the time,
thought they were out of order and complained loudly.
When I finally tracked down the developer who wrote the
code, he said that he had used strings to make the protocol
easier to debug and to make it easier for people looking at
the log file to know what was happening in the system. My
feeling is that he got this concept the wrong way around,

Numbers Are for Computers,
Strings Are for Humans

How and where
software should
translate data
into a human-
readable form

1 of 5 TEXT
ONLY kode vicious

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3371595.3379349&domain=pdf&date_stamp=2020-01-13

acmqueue | september-october 2019 2

and I’m wondering how you might feel about this, as you’ve
written about time in the past.

Stung by Strings

Dear Stung,
How does this make me feel? Well, like nearly all questions
around software and technology, it makes me angry, but
then, what doesn’t make me angry? When you play only
one note, you might as well play it really well, even if your
instrument is a hammer and anvil.

As you point out, the developer definitely has this the
wrong way around for at least two reasons: The first has
to do with how one communicates a value as important as
time; and the other has to do with how and where software
should translate data into a human-readable form.

Computer systems generally, and networked systems
specifically, often depend on time and time stamps to
maintain or reconstruct the ordering of events, and
this ordering often must be maintained so that the system
as a whole can function properly. Some systems can
operate without needing to know the time of day; instead,
they depend on a total ordering of events, as established
by Leslie Lamport, who ACM saw fit to honor with a Turing
Award for bothering to figure out that
little problem (https://amturing.acm.org/award_winners/
lamport_1205376.cfm).

There remains a class of systems that actually do care
about the very human time of day, such as credit card
processing. If your payment to the bank isn’t timestamped
with the appropriate time of day (e.g., midnight on the first
day of the month), then you are going to be subject

2 of 5

Ikode vicious

https://amturing.acm.org/award_winners/lamport_1205376.cfm
https://amturing.acm.org/award_winners/lamport_1205376.cfm

acmqueue | september-october 2019 3

to interest and penalty payments that will likely make you
even angrier than KV. Time also plays an important role
in many nonbanking security protocols. Get a comparison
backwards, or let it roll over to 0 or to a negative value,
and the security of the system is broken. The number of
attacks on systems based on time fills a large number of
papers and books on computer security.

Computers, it should be pointed out, like to work with
numbers. Strings are for humans, and so the idea of storing
something as integral as time in a string is ridiculous on
the face of it. The only way to know if X came before Y
with a string-formatted time is to convert the times into
something easily comparable (i.e., integers) and then to
have the computer do the comparison by math, which
computers are very good at.

The number of times that a human will be looking at any
of this data to make the same comparison is minuscule,
which is the whole reason that pretty much all computer
languages have a time data structure that can be both
easily compared and that, hopefully, is resistant to
misinterpretation. Not that we can’t get time wrong as an
integer; we can, but it’s far less likely than getting it wrong
when stored as a string and converted before the math
happens. KV is a pretty permissive guy, but when it comes
to time, he’s pretty strict. Find your language’s provided
time type and use it, and check for errors on every
comparison.

The second fallacy under which your software was
written has become more common as computers have
become more powerful, and that fallacy is that compute
power should always be used to give the human the best

3 of 5

I

T
he number
of attacks
on systems
based
on time

fills a large
number of papers
and books on
computer
security.

kode vicious

acmqueue | september-october 2019 4

experience. When computers were slow and expensive,
programmers were able to avoid dealing with the human
question by pointing out that storing data in a compact
numerical form resulted in better efficiency and use of
an expensive resource. As computers became cheap and
pervasive, many people pointed out that these efficiencies
were no longer as strictly necessary as they used to be.

Those of us who continue to
program near bare metal have
never really let go of this
cherished orthodoxy, but
KV must, grudgingly, very
grudgingly, admit that the
other camp might have a point
here. A few bytes here, a few
instructions there, they do add
up, but often saving them isn’t
worth the effort, unless that
leads either to incorrect
results (see previous section)
or to increased complexity,
which usually leads to incorrect
results (again see previous
section).

Unless what you are
processing, storing, or

transmitting are, quite literally, strings that come from
and are meant to be shown to humans, you should avoid
processing, storing, or transmitting that data as strings.
Remember, numbers are for computers, strings are for
humans. Let the computer do the work of presenting your

4 of 5

I

Related articles

3 Time is an illusion
Lunchtime doubly so.
George Neville-Neil
https://queue.acm.org/detail.cfm?id=2878574

3 Time, but Faster
A computing adventure about time
through the looking glass
Theo Schlossnagle, Circonus
https://queue.acm.org/detail.cfm?id=3036398

3 There is No Now
Problems with simultaneity in
distributed systems
Justin Sheehy
https://queue.acm.org/detail.cfm?id=2745385

kode vicious

https://queue.acm.org/detail.cfm?id=2745385

acmqueue | september-october 2019 5

data to the humans in a form they might find palatable.
That’s where those extra bytes and instructions should be
spent, not doing the inverse.

KV
George V. Neville-Neil works on networking and operating-
system code for fun and profit. He also teaches courses
on various subjects related to programming. His areas of
interest are code spelunking, operating systems, and rewriting
your bad code (OK, maybe not that last one). He earned
his bachelor’s degree in computer science at Northeastern
University in Boston, Massachusetts, and is a member of ACM,
the Usenix Association, and IEEE. He is an avid bicyclist and
traveler who currently lives in New York City.
Copyright © 2019 held by owner/author. Publication rights licensed to ACM.

5 of 5

Ikode vicious

