
Software Evolution in Componentware using
Requirements/Assurances Contracts�

Andreas Rausch

T ec hnische Universit�at M�unchen
Institut f�ur Informatik

Arcisstrasse 21
80290 Munich, Germany

+49 89 289 28362
rausch@in.tum.de

ABSTRACT
In practice, pure top-down and re�nement-based devel-
opment processes are not suÆcient. Usually, an iterative
and incremental approach is applied instead. Existing
methodologies, how ev er, do not support such evolution-
ary development processesvery well. In this paper, we
present the basic concepts of an overall methodology
based on componentw are and softw are ev olution.The
foundation of our methodology is a novel, w ell-founded
model for component-based systems. This model is suf-
�ciently po w erful to handle the fundamental structural
and behavioral aspects of componentw areand object-
orientation. Based on the model, we are able to provide
a clear de�nition of a softw are ev olution step.

During dev elopment, eac h ev olution step implies
changes of an appropriate set of development docu-
ments. In order to model and track the dependencies
betw een these documents, we introduce the concept of
R equir ements/Assuranc esContracts. These contracts
can be rechecked whenever the speci�cationof a com-
ponent evolv es, enabling us to determine the impacts of
the respective ev olution step. Based on the proposed
approach, developers are able to track and manage the
softw areev olution process and to recognize and avoid
failures due to softw areev olution. A short example
shows the usefulness of the presented concepts and in-
troducesa practical description technique for R equir e-
ments/Assurances Contracts.

Keywords
Soft w areev olution, componentw are, formal methods,
contracts, description techniques, softw are arc hitecture,
object-orientation.

1 INTRODUCTION
Most of today's soft w are engineering methodologies are

�This paper originates from the research in the project A1
\Methods for Component-Based Software Engineering" at the
chair of Prof. Dr. Manfred Broy, Institut f�ur Informatik,
T echnische Univ ersit�at M�unchen. A1 is part of \Ba yerischer
Forschungsv erbund Soft w are-Engineering" (FORSOFT) and sup-
ported b y Siemens AG, Department ZT.

based on a top-down development process, e.g., Ob-
ject Modeling T echnique(OMT) [27], Objectory Pro-
cess [15], or Rational Uni�ed Process (RUP) [14]. All
these methodologies share a common basic idea: Dur-
ing system development a model of the system is built
and stepwise re�ned. A re�nement step adds additional
properties of the desired system to the model. A t last
the model is a suÆciently �ne, consistent, and correct
representation of the system under consideration. It
may be implemented by programmers or even partly
generated. Surely, all of these processes support local
iterations, for instance the R UPallo ws iterations dur-
ing analysis, design or implementation. However, the
overall process is still based on re�nement steps to im-
pro ve thespeci�cation model and �nally end with the
desired system. In formal approaches, like ROOM [3] or
F ocus[4] the concept of re�nement is even more strict.

These kinds of process models involve some severe draw-
backs: Initially ,the customer often does not kno wall
relevant requirements, cannot state them adequately,
or ev en states inconsistent requirements. Consequently,
many delivered systems do not meet the customer's ex-
pectations. In addition, top-down development leads
to systems that are very brittle with respect to chang-
ing requirements, because the system architecture and
the in volved components are speci�cally adjusted to the
initial set of requirements. This is in sharp contrast to
the idea of building a system from truly reusable com-
ponents, as the process does not take already existing
components into account. Beyond this, software main-
tenance and life-cycle are not supported. This is ex-
treme critical as, for instance, no w adays maintenance
tak es about 80 percent of the IT budget of Europe's
companies in the average, and 20 percent of the user
requirements are obsolete within one year [21].

How ev er,softw are ev olutionas a basic concept is cur-
ren tly not well supported. In our opinion, this is partly
due to the lack of a suitable overall componentw are
methodology with respect to soft w are evolution. Such
a methodology should at least incorporate the following
parts [26]:

� The common system model provides a well-
de�ned conceptual framework for componentw are
and softw are ev olution is required as a reliable foun-
dation.

� Based on the system model a set of description
tec hniquesfor componentw are are needed.Devel-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee.
ICSE 2000, Limerick, Ireland
© ACM 23000 1-58113-206-9/00/06 �$5.00

147

http://crossmark.crossref.org/dialog/?doi=10.1145%2F337180.337198&domain=pdf&date_stamp=2000-06-01

opers need to model and document the evolution of
a single component or a whole system.

� Development should be organized according to
a software evolution process. This includes
guidelines for the usage of the description tech-
niques as well as reasonable evolution steps.

� To minimize the costs of software evolution, sys-
tems should be based on evolution-resistant ar-
chitectures. Such architectures contain a com-
mon basic infrastructure for components, like
DCOM [2], CORBA [22], or Java Enterprise
Beans [16]. But even more important are business-
oriented standard architectures, that are evolution-
resistant.

� At last, all former aspects should be supported by
tools.

The contribution of this work can be seen from two dif-
ferent perspectives. From the viewpoint of speci�ca-
tion methods, it constitutes a sophisticated basic sys-
tem model as solid foundation for new techniques in
the areas of software architectures, componentware, and
object-orientation. From a software engineering per-
spective, it provides a clear understanding of software
evolution steps in an evolutionary development process.
Moreover, it o�ers a new description technique, called
Requirements/Assurances Contracts. These contracts
can be rechecked whenever the speci�cation of an com-
ponent evolves. This allows us to determine the impacts
of the respective evolutionary step.

The paper is structured as follows. Section 2 provides
the basic de�nitions to model dynamics in a component-
based system. In the next section, Section 3, we specify
the observable behavior of an entire component-based
system based on former de�nitions. In Section 4, we
provide a composition technique that enables us to de-
termine the behavior of the system from the behavior
of its components. Section 5 will complete the formal
model with a simple concept of types. These types are
described by development documents. Section 6 intro-
duces our view of development documents and evolu-
tion steps on those documents. In Section 7 we present
the concept of Requirements/Assurances Contracts to
model explicitly the dependencies between development
documents. Section 8 provides a small example to show
the usefulness of the proposed concepts in case of soft-
ware evolution. A short conclusion ends the paper.

2 BASIC CONCEPTS
This section elaborates the basic concepts and notions
of our formal model for component-based systems. The
system model incorporates two levels: The instance-
level represents the individual operational units of a
component-based system that determine its overall be-
havior. We distinguish between component, interface,
connection, and variable instances. We de�ne a num-
ber of relations and conditions that model properties of
those instances. The type-level contains a normalized
abstract description of a subset of common instances
with similar properties.

Although some models for component-based and object-

oriented systems exist, we need to improve them for an
evolutionary approach. Formal models, like for instance
Focus [4] or temporal logic [17], are strongly connected
with re�nement concepts (cf. Section 1). Furthermore,
these methods do not contain well elaborated type con-
cepts or sophisticated description techniques, that are
needed to discuss the issues of software evolution (as in
case of evolution the types and the descriptions are usu-
ally evolved). Moreover, in practice formal methods are
not applicable, since formal models are too abstract and
do not provide a realistic view on today's component-
based systems.

Architectural description languages, like MILs, Rapide,
Aesop, UniCon, are other, less formal approaches. As
summarized in [5] they introduce the concepts of com-
ponents and communication between them via connec-
tors, but do not consider all behavior-related aspects
of a component system. In a component-based system
behavior is not limited to the communication between
pairs of components, but also includes changes to the
overall connection structure, the creation and destruc-
tion of instances, and even the introduction of new types
at runtime. In the context of componentware and soft-
ware evolution, these aspects are essential because dy-
namic changes of a system may happen both during its
construction at design-time as well as during its execu-
tion at runtime, either under control of the system itself
or initiated by human developers.

Other approaches, like pre/post speci�cations cannot
specify mandatory external calls that components must
make. This restriction also applies to Meyer's de-
sign by contract [20] and the Java Modeling Language
(JML) [18], although they are especially targeted at
component-based development.

int i =7
String s = "Hello"

<message>

<message>

int i =5

time t1 time t2

Figure 1: A Component System: Behavioral Aspects

For that reason, we elaborated a novel, more realistic
model. We claim, that the presented formal model is
powerful enough to handle the most diÆcult aspects of
component-based systems (cf. Figure 1): dynamically
changing structures, a shared global state, and at last
mandatory call-backs. Thus, we separate the behavior
of component-based systems into these three essential
parts:

148

� Structural behavior captures the changes in the
system structure, including the creation or deletion
of instances and changes in the connection as well
as aggregation structure.

� Variable valuations represent the local and
global data space of the system. This enables us
to model a shared global state.

� Component communication describes message-
based asynchronous interaction between compo-
nents. Thus, we can specify mandatory call-backs
without problems.

In the following sections we �rst come up with de�-
nitions for these three separate aspects of behavior in
component-based systems.

STRUCTURAL BEHAVIOR
Components are the basic building blocks of a
component-based system. Each component possesses
a set of local attributes, a set of sub-components, and a
set of interfaces. Interfaces may be connected to other
interface via connections. During runtime some of these
basic building blocks are created and deleted.

In order to uniquely address the basic elements of a
component-based system, we introduce the disjoint sets:
COMPONENT [INTERFACE [CONNECTION [
VARIABLES � ID.

As Figure 1 shows, a component-based system may
change its structure dynamically. Some of these basic
elements may be created or deleted (ALIVE). New in-
terfaces may be assigned to components (ASSIGNED).
Interfaces may be connected to or de-connected from
other interfaces (CONNECTED). New Subcompo-
nents may be aggregated by existing parent-components
(PARENT). The following de�nitions cover the struc-
tural behavior of component-based systems:

ALIVE =def ID! BOOLEAN

ASSIGNED =def INTERFACE! COMPONENT

CONNECTED =def CONNECTION!

ffi; jg j i; j 2 INTERFACE ^ i 6= jg

PARENT =def COMPONENT! COMPONENT

Note, that this approach is strong enough to handle not
only dynamic changing connections structures in sys-
tems but also mobile systems as, for instance it covers
mobile components that migrate from one parent com-
ponent to another (PARENT).

VARIABLE VALUATIONS
Usually, the state space of a component-based system
is not only determined by its current structure but also
by the values of the component's attributes (cf. Fig-
ure 1). With VALUES the set of all possible valuations
for attributes and parameters are denoted. They are
in essence mappings of variables (attributes, parame-
ters, etc.) to values of appropriate type (VALUATION).
These variables belong to components, characterizing
the state of the component (ALLOCATION). The
following de�nitions cover the variable valuations of

component-based systems:

ALLOCATION =def VARIABLES! COMPONENT

VALUATION =def VARIABLES! VALUES

Later on we will allow components to change the values
of other component's variables (cf. Section 4). Thus,
we can model shared global states as well-known from
object-oriented systems. Note, we do not elaborate on
the underlying type system of the variables and values
here, but assume an appropriate one to be given.

COMPONENT COMMUNICATION
Based on existing formal system models, e.g. Focus [4],
sequences of messages represent the fundamental units
of communication. In order to model message-based
communication, we denote the set of all possible mes-
sages with M, and the set of arbitrary �nite message
sequences with M�. Within each time interval compo-
nents resp. interfaces receive message sequences arriving
at their interfaces resp. connections and send message
sequences to their respective environment, as given by
the following de�nition (cf. Figure 1):

EVALUATION =def INTERFACE! M�

The used message-based communication is asyn-
chronous, like CORBA one-way calls. Hence, call-backs
based on those asynchronous one-way calls can be ex-
plicitly speci�ed within our model. But one cannot
model \normal" blocking call-backs as usual in object-
oriented programming languages. However, our obser-
vation shows, call-backs need not to be blocking calls.
Often call-backs are used to make systems extensible.
In layered system architectures they occur as calls from
lower into higher layers in which the are known as
up-calls. These up-calls are usually realized by asyn-
chronous events (cf. the Layers Pattern in [9]). An-
other representative application of call-backs as asyn-
chronous events is the Observer Pattern [11]. There
the observer may be noti�ed via asynchronous events
if the observed object has changed. To sum up, we
believe call-backs as supported in our model are power-
ful enough to model real component-based systems un-
der the assumption that a middleware supporting asyn-
chronous message exchange is available.

SYSTEM SNAPSHOT
Based on all former de�nitions we are now able to char-
acterize a snapshot of a component-based system. Such
a snapshot captures the current structure, variable val-
uation, and actual received messages. Let SNAPSHOT
denote the type of all possible system snapshots:

SNAPSHOT =def ALIVE� ASSIGNED�

CONNECTED� PARENT� ALLOCATION�

VALUATION � EVALUATION

Let SYSTEM denote the in�nite set of all possible sys-
tems. A given snapshot snapshots 2 SNAPSHOT of
a system s 2 SYSTEM1 is tuple that capture the cur-
rent active sets of components, interfaces, connections,

1In the remainder of this paper we will use this shortcut.
Whenever we want to assign a relation X to a system s 2 SYSTEM
(component c 2 COMPONENT) we say Xs (Xc).

149

and variables, the current assignment of interfaces to
components, the current connection structure between
interfaces, the current super-/sub-component relation-
ship, the current assignment of variables to components,
the current values of components, and �nally the cur-
rent messages for the components.

3 TIME AND SYSTEM BEHAVIOR
Similar to related approaches [4], we regard time as an
in�nite chain of time intervals of equal length. We use
N as an abstract time axis, and denote it by T for clar-
ity. Furthermore, we assume a time synchronous model
because of the resulting simplicity and generality. This
means that there is a global time scale that is valid for all
parts of the modeled system. We use timed streams, i.e.
�nite or in�nite sequences of elements from a given do-
main, to represent histories of conceptual entities that
change over time. A timed stream (more precisely, a
stream with discrete time) of elements from the set X is
an element of the type

XT =def N+ ! X

with N+ = Nnf0g. Thus, a timed stream maps each
time interval to an element of X. The notation xt is
used to denote the element of the valuation x 2 XT at
time t 2 T .

Streams may be used to model the behavior of sys-
tems. Accordingly, SNAPSHOTT is the type of all sys-
tem snapshot histories or simply the type of the behav-
ior relation of all possible systems:

SNAPSHOTT =def ALIVE
T � ASSIGNEDT�

CONNECTEDT � PARENTT � ALLOCATIONT�

VALUATIONT � EVALUATIONT

Let SnapshotTs � SNAPSHOTT be the behavior a sys-

tem. A given snapshot history snapshots 2 SnapshotTs
is a timed stream of tuples that capture the changing
snapshots snapshott

s
over time t 2 T .

Obviously, a couple of consistency conditions can be de-
�ned on such a formal behavior speci�cation SnapshotTs .
For instance, we may require that all assigned interfaces
are assigned to an active component:

8i 2 INTERFACE; t 2 T: assignedts(i) = c =)

alivets(c) = true

Furthermore, components may only be connected via
their interfaces if one component is the parent of the
other component or if they both have the same parent
component. Connections between interfaces of the same
component are also valid:

8a; b 2 COMPONENT; c 2 CONNECTION;

i; j 2 INTERFACE; t 2 T: connectedt
s
(c) = fi; jg^

assignedt
s
(i) = a ^ assignedt

s
(j) = b =)

parentts(a) = b _ parentts(b) = a_

parentt
s
(a) = parentt

s
(b)

We can imagine an almost in�nite set of those con-
sistency conditions. A full treatment is beyond the
scope of this paper, as the resulting formulae are rather
lengthy. A deeper discussion of this issue can be found
in [1].

4 BEHAVIOR COMPOSITION
In the previous sections we have presented the observ-
able behavior of a component-based system. This be-
havior is a result of the composition of all component
behaviors. To show this coherence we �rst have to pro-
vide behavior descriptions of a single component. In
practice are transition-relations an adequate behavior
description technique. In our formal model we use a
novel kind of transition-relation: In contrast to \nor-
mal" transition-relations|a relation between predeces-
sor state and successor state|the presented transi-
tion relation is a relation between a certain part of the
system-wide predecessor state and a certain part of the
wished system-wide successor state:

BEHAVIOR =def SNAPSHOT! SNAPSHOT

Let behaviorc � BEHAVIOR be the behavior of a compo-
nent c 2 COMPONENT. The informal meaning of each
tuple in behaviorc is: If the speci�ed part of the system-
wide predecessor state �ts (given by the �rst snapshot),
the component wants the system to be in the system-
wide successor-state in the next step (given by the sec-
ond snapshot). Consequently we need some specialized
runtime system that collects at each time step from all
components all wished successor states and composes a
new well-de�ned successor state for the whole system.

The main goal of such a runtime system is to determine
the system snapshot snapshott+1

s from the snapshot
snapshott

s
and the set of behavior relations behaviorc of

all components. In essence, we can provide a formulae
to calculate the system behavior from the initial con-
�guration snapshot0

s
, the behavior relations behaviorc,

and external stimulations via messages at free inter-
faces. Note, free interfaces are interfaces that are not
connected with other interfaces and thus can be stimu-
lated from the environment.

First we have to calculate all transition-tuples of all ac-
tive components:

behaviorts =def

[

c2COMPONENT: alivets = true

behaviorc

Now, we can calculate all transition-tuples of the ac-
tive components that �t the actual system state. Let
transitiont

s be the set of all those transition-tuples that
could �re:

transitiont

s =def
f(x; y) j (x; y) 2 behaviort

s
^ x 2 snapshott

s
g

Before we can come up with the �nal formulae for the
calculation of the system snapshot snapshott+1

s
we need

150

a new operator on relations. This operator takes a re-
lation X and replaces all tuples of X with tuples of Y if
the �rst element of both tuples is equal2:

X j
Y

=def fa j a 2 Y _ (a 2 X ^ �1(a) 62 �1(Y))g

At last, we are now able to provide the complete formu-
lae to determine the system snapshot snapshott+1

s
:

snapshott+1
s

=

(alivet+1
s

; assignedt+1
s

; connectedt+1
s

; parentt+1
s

;

allocationt+1
s

; valuationt+1
s

; evaluationt+1
s

):

alivet+1
s = alivets j�8(transitionts)^

assignedt+1
s

= assignedt
s
j
�9(transitionts)

^

connectedt+1
s

= connectedt
s
j
�10(transitionts)

^

parentt+1
s

= parentt
s
j
�11(transitionts)

^

allocationt+1
s = allocationt

s j�12(transitionts)^

valuationt+1
s

= valuatioint

s
j
�13(transitionts)

^

evaluationt+1
s

= evaluationt

s
j
�14(transitionts)

Intuitively spoken, the next system snapshot
(snapshott+1

s) is a tuple. Each element of this tuple,
for instance alivet+1

s
, is a function, that is determined

simply by merging the former function (alivet
s
) and the

\delta-function" �8(transition
t

s). This \delta-function"
includes all \wishes" of all transition-relations that �re.

5 TYPE SYSTEM
The basic concepts and their relations as cov-
ered in the previous sections provide mathemati-
cal de�nitions for the constituents of a component-
based system at runtime. However, in order to
present an adequate model useful for practical de-
velopment, we introduce the concept of a type.
Let COMPONENT TYPE [INTERFACE TYPE [
CONNECTION TYPE [VARIABLES TYPE � TYPE
be the in�nite set of all types. A type models all com-
mon properties of a set of instance in an abstract way.
TY PE OF assigns to each instance (component, inter-
face, connection, and variables) its corresponding type:

TYPE OF =def ID! TYPE

Let PREDICATE be the in�nite set of all predicates
that might ever exist. Predicates (boolean expres-
sions) on a type are functions from instances of this
type to BOOLEAN. For instance, for the component
c 2 COMPONENT, transition 2 behaviorc is a predi-
cate on the type of c. This is one of the simplest predi-
cate we can imagine. It provides a direct mapping from
the type-level to the instance-level. The predicate is
true, if the arbitrary transition is part of component
the behavior. Now, we can de�ne functions that pro-
vide an abstract description for all existing types3:

DESCRIPTION =def TYPE! P(PREDICATE)

2The \standard" notation �i1;i2;:::;im(R) denotes the set of
m-tuples as a result of the projection of the relation R of arity r
onto the components i1; i2; : : : ; im(1 � ij � r; ij 6= ik if j 6= k).

3P(A) denotes the powerset of the set A.

6 SOFTWARE EVOLUTION
Usually, during the development of a system, various de-
velopment documents are created. These development
documents are concrete descriptions, in contrast to the
abstract descriptions linked to types as discussed in the
last sections. Such a development document is separate
unit that describes a certain aspect of, or \view" on
the system under development. In componentware we
typically have the following kinds of documents:

� Structural Documents describe the internal
structure of a system or component. The struc-
ture of a component consists of its subcomponents
and the connections between the subcomponents
and with the supercomponent, e.g. aggregation or
inheritance in UML Class Diagrams [23] or archi-
tecture description languages [5].

� Interface Documents describe the interfaces of
components. Currently most interface descriptions
(e.g. CORBA IDL [24]) only allow one to specify
the syntax of component interfaces. Enhanced de-
scriptions that also capture behavioral aspects use
pre- and post-conditions, e.g. Ei�el [20] or the Java
Modeling Language [18].

� Protocol Documents describe the interaction be-
tween a set of components. Typical interactions
are messages exchange, call hierarchies, or dynamic
changes in the connection structure. Examples of
protocol descriptions are: Sequence Diagrams in
UML [23], Extended Event Traces [6], or Interac-
tion Interfaces [7].

� Implementation Documents describe the im-
plementation of a component. Program code is the
most popular kind of those descriptions, but we can
also use automatons, like in [28, 12] or some kind
of greybox speci�cations [8]. Especially in compo-
nentware the implementation of a component can
be (recursively) described by a set of structural, in-
terface, protocol, and implementation documents.

During development we describe a system|or more ex-
actly the types of the system|by sets of those docu-
ments. Let DOC be the in�nite set of all possible doc-
uments. Each type of a component-based system is de-
scribed by a set of those development documents:

DESCRIBED BY =def TYPE! P(DOC)

The semantics of a given set of development documents
is simply a mapping from this set of documents to a
set of predicates. Thus, we can de�ne a semantic func-
tion which assigns to a given set of documents a set of
properties characterizing the system:

SEM =def P(DOC)! P(PREDICATE)

The semantic mapping from the concrete descriptions
of a system (docs � DOC) into a set of predicates is
correct, if these predicates are equal with the predicates
of the abstract description of each t 2 TYPE. More for-
mally, the semantic mapping is correct if the following

151

Time t 1
t 2 t 3

Documents

Semantics

sem (doc)t1 sem (doc)2 sem (doc)3
ss s

t
s s

t
s

Figure 2: Software Evolution during System Development

condition holds:

sems(described bys(t)) = descriptions(t)

As already discussed in Section 1, the ability for soft-
ware to evolve in a controlled manner is one of the most
critical areas of software engineering. Developers need
support for an evolutionary approach. Based on the se-
mantic function SEM, we are able to formulate the con-
cept of an evolution step. Figure 2 shows three typical
evolution steps during system development. An evolu-
tion step in our sense causes changes in the set of devel-
opment documents within a certain time step as given
by the functions of type EVOLVE:

EVOLVE =def P(DOC)! P(DOC)

We call an evolution step of a set of documents docs �
DOC

� re�nement, if the condition
sems(evolves(docs)) � sems(docs) holds,

� abstraction, if the condition
sems(docs) � sems(evolves(docs)) holds,

� strict evolution, if the condition
sems(docs) 6� sems(evolves(docs))^
sems(evolves(docs)) 6� sems(docs)^
sems(docs) \ sems(evolve(docs)) 6= ; holds, or

� total change, if the condition
sems(docs) \ sems(evolves(docs)) = ; holds.

Obviously, we should pay the most attention to the
strict evolution. In the remaining paper we use evo-
lution and strict evolution as synonymous, unless if
we explicitly distinguish the various kinds of evolution
steps. A more detailed discussion about the di�erences
between evolution and re�nement steps can be found
in [26].

7 REQUIREMENTS/ASSURANCES
CONTRACTS

If a document changes via an evolution step, the conse-
quences for documents that rely on the evolved doc-
ument are not clear at all. Normally, the developer
who causes the evolution step has to check whether the

other documents are still correct or not. As the con-
crete dependencies between the documents are not ex-
plicitly formulated, the developer has usually to go into
the details of all concerned documents. For that reason
we claim that an evolution-based methodology must be
able to model and track the dependencies between the
various development documents.

To reach this goal we have to make the dependencies be-
tween the development documents more explicit. Cur-
rently, in description techniques or programming lan-
guages dependencies between di�erent documents can
only be modeled in an extremely rudimentary fashion.
For instance, in UML [23] designers can only specify the
relation uses between documents or in Java [10] pro-
grammers have to use the import statement to specify
that one document relies on another.

Surely, more sophisticated speci�cation techniques ex-
ist, e.g. Evolving Interoperation Graphs [25], Reuse
Contracts [29, 19], or Interaction Contracts [13]. Evolv-
ing Interoperation Graphs provide a framework for
change propagation if a single class changes. These
graphs take only into account the syntactical interface
of classes and the static structure (class hierarchy) of
the system, but not the behavioral dependencies.

Reuse Contracts address the problem of changing im-
plementations of a stable abstract speci�cation. There,
evolution con
icts in the scope of inheritance are dis-
cussed, but not con
icts in component collaborations.
This might be helpful to predict the consequences of
evolving a single component, but the e�ects for other
components or the entire system are not clear at all.

Finally, Interaction Contracts are used to specify the
collaborations between objects. Although the basic idea
of interaction contracts|to specify the behavioral de-
pendencies between objects|seems to be a quite good
suggestion, this approach takes neither evolution nor
componentware suÆciently into account. Interaction
contracts strongly couple the behavior speci�cation of
the component seen as an island and the behavioral de-
pendencies to other components. Hence, the impacts of
an evolutionary step can not be determined.

152

Figure 3: Requirements/Assurances Contracts between Development Documents of Component Types

To avoid these drawbacks and support an evolution-
based development process at the best, we propose to
decouple the component island speci�cation from the be-
havioral dependencies speci�cation. The following two
types of functions allow us to determine the behavioral
speci�cation of a single component seen as an island:

REQUIRES =def
COMPONENT TYPE! (P(DOC)! P(PREDICATE))

ASSURES =def
COMPONENT TYPE! (P(DOC)! P(PREDICATE))

Intuitively, a function requiress 2 REQUIRES calcu-
lates for a given set of documents docs 2 P(DOC)
the set of predicates the component type ct 2
COMPONENT TYPE expects from its environment.
The function assuress 2 ASSURES calculates the set
of predicates the component type provides to its envi-
ronment.

We need specialized description techniques to model the
required and assured properties of a certain component
explicitly within this development document. Such de-
scription techniques must be strongly structured. They
should have at least two additional parts capturing the
set of required and assured properties (cf. Figure 3):

� Requirements: In the requirements part the de-
signer has to specify the properties the component
needs from its environment.

� Assurances: In the assurances part the designer
describes the properties the component assures to
its environment, assuming its own requirements are
ful�lled.

Once these additional aspects are speci�ed (formally
given by the functions requiress and assuress), the de-
signer can explicitly state the behavioral dependencies
between the components by specifying for each compo-
nent the assurances that guarantee the requirements.
We call such explicit formulated dependencies Require-
ments/Assurances Contracts (r/a-contracts). Figure 3
illustrates the usage of those contracts. The three devel-
opment documents include the additional requirements

(white bubble) and assurances (black bubble) parts. De-
velopers can explicitly model the dependencies between
the components by r/a-contracts shown as double ar-
rowed lines. Formally a r/a-contract is a mapping be-
tween the required properties of a component and the
assured properties of other components:

CONTRACT =def COMPONENT TYPE�

PREDICATE� COMPONENT TYPE� PREDICATE

FULFILLED =def COMPONENT TYPE!

(P(PREDICATE)! BOOLEAN)

For a given contract contracts 2 CONTRACT the pred-
icate fulfilleds 2 FULFILLED holds, if all required prop-
erties of a component are assured by properties of other
components:

fulfilleds(ct)(requiress(ct)(described bys(ct)))()

fp j (ct; r; x; p) 2 contracts ^

r 2 requiress(ct)(described bys(ct))g �

fq j q 2 assuress(x)(described bys(x))g

In the case of software evolution the designer or
a tool has to re-check whether requirements of
components, that rely on the assurances of the
evolved component, are still guaranteed. Formally
the tool has to re-check whether the predicate
fulfilleds(ct)(requiress(ct)(evolves(described bys(ct))))
still holds.

For instance, in Figure 3 component C has changed over
time. The designer has to validate whether Contract B
still holds. More exactly, he or she has to check whether
the requirements of component C are still satis�ed by the
assurances of component A or not.

The advantages of r/a-contracts come only fully to va-
lidity if we have adequate description techniques to
specify the requirements and assurances of components
within development documents. In the next section we
provide a small sample including some simple descrip-
tion techniques to prove the usefulness of r/a-contracts.

153

8 EVOLVING A HELP WINDOW
To illustrate the practical relevance of the proposed r/a-
contracts we want to discuss a short example. Consider
a windows help screen as shown in Figure 4. It con-
tains two components: a text box and a list box control
element. The content of the text box restricts the pre-
sented help topics in the list box. Whenever the user
changes the content of the text box|simply by adding
a single character|the new selection of help topics is
immediately presented in the list box.

Component HelpText

Component HelpList

Figure 4: A Short Sample: Windows Help Screen

A simple implementation of such a help screen may con-
tain the two components HelpText and HelpList. The
collaboration between these two components usually fol-
lows the Observer Pattern [11]. In the case of an \ob-
servable" component (HelpText) changing parts of its
state, all \observing" components (HelpList) are noti-
�ed.

Components in a system often evolve. To make the win-
dows help screen more evolution resistant, one should
specify the help screen in a modular fashion. Thus, we
use two di�erent kinds of descriptions as proposed in
Section 7:

� Descriptions of the behavior of a single component
seen as an island start with COMPONENT and

� descriptions of the behavioral dependencies be-
tween components start with
RA-CONTRACT.

In the example description technique we use, keywords
are written with capital letters. Each component island
speci�cation consists of two parts in the speci�cation:
The �rst part is the REQUIRES part containing all in-

terfaces the component needs. For each interface the
required predicates (syntax and behavior) are explicitly
speci�ed. The second part is the ASSURES part captur-
ing all interfaces the component provides to its environ-
ment. For each interface the assured predicates (again
syntax and behavior) are explicitly described.

The notation and semantic within these parts is equal to
the one used for the interaction contracts [13]. The lan-
guage only supports the actions of sending a messageM
to a component C, denoted by C !M , and change of a
value v, denoted by �v. The ordering of actions can be
explicitly given by the operator \;", an IF-THEN-ELSE
construct, or be left unspeci�ed by the operator k. The
language also provides the construct ho v : c : ei for the
repetition of an expression e separated by the operator
o for all variables v which satisfy c.

Now, we can start out with a textual speci�cation of
the requirements and assurances of the two components
HelpText and HelpList|the components island spec-
i�cation:

COMPONENT HelpText
REQUIRES INTERFACE Observer
WITH METHODS
update() : void

ASSURES INTERFACE TextBox
WITH LOCALS
observers : Set(Observer)
text : String

WITH METHODS
getText() : String) return text
addText(t : String) : void)
� text ftext = text + tg ; h k obs :
obs 2 observers : obs ! update() i

The component HelpText requires an interface support-
ing the method update():void. Note that, in the con-
text of this speci�cation the required interface is named
Observer. This represents neither a global name nor a
type of the required interface. Later, we can explicitly
model the mapping between the various required and
assured interface and method names via the proposed
r/a-contracts. Additionally, the component HelpText
assures an interface TextBox with the two meth-
ods getText():String and addText(t:String):void.
When addText(t) is called the method update() is in-
voked for all observers.

Correspondingly, the component HelpList requires an
interface named Observable that includes the method
getText():String. Moreover, whenever the return
value of getText() changes, the update() method of
the component HelpList has to be called via the inter-
face ListBox. This is the basic behavior requirement
the component HelpList needs to be assured by its en-
vironment.

COMPONENT HelpList
REQUIRES INTERFACE Observable
WITH METHODS

154

getText() : String
WITH INVARIANTS
Observable ! getText() 6= �(Observable
! getText())) ListBox ! update()

ASSURES INTERFACE ListBox
WITH LOCALS
observable : Observable

WITH METHODS
update() : void) ListBox !
redisplayTopics(observable ! getText())

Now, we can specify two r/a-contracts: One to sat-
isfy the requirements of the component HelpList and
the other for the requirements of component HelpText.
Such a contract contains two sections: The �rst sec-
tion, the INSTANTIATION, declares the participants of
the contract and their initial con�guration. For in-
stance, in the contract HelpListContract are two par-
ticipants hl:HelpList and ht:HelpText instantiated
and the initial connection between both is established.
Note, the variables declared in the instanciation section
are global identi�ers, as one must be able to refer them
in the current contract as well as in other contracts..

The second section, the PREDICATE MAPPING, maps the
required interfaces to assured interfaces of the partic-
ipants. Additionally, it contains the most important
part of the contract: the \proof". There, the designer
has to validate the correctness of the contract, means
he or she has to proof whether the syntax and behavior
of the requirements/assurance pair �ts together. The
contract HelpListContract includes a proof. It simply
starts with conjunction of all assured predicates of the
interface ht.TextBox and has to end with all required
predicates of the interface hl.Observable:

RA-CONTRACT HelpListContract
INSTANTIATION
hl : HelpList
ht : HelpText
ht.TextBox.observers.add(hl)
hl.ListBox.observable = ht

PREDICATE MAPPING: REQUIRED hl.Observable
ASSURED BY ht.TextBox

ht ! getText()) return text ^ ht !
addText(t)) � text ftext = text + tg ;
h k obs : obs 2 ht:T extBox:observers :
obs ! update() i =)

ht ! getText() 6= �(ht ! getText()))
h k obs : obs 2 ht:T extBox:observers :
obs ! update() i =)

ht ! getText() 6= �(ht ! getText()))
hl ! update()

RA-CONTRACT HelpTextContract
INSTANTIATION

PREDICATE MAPPING: REQUIRED ht.Observer
ASSURED BY hl.ListBox

proof is omitted

Once the windows help screen is completely speci�ed
and implemented, it usually takes a couple of months
until one of the components appears in a new, improved
version. In our example, the new version of the com-
ponent HelpText has been evolved. The new version
assures an additional method addChar(c:Char):void.
For performance reasons, this method does not guar-
antee that the observers are noti�ed if the method is
invoked:

COMPONENT HelpText
REQUIRES INTERFACE Observer
WITH METHODS
update() : void

ASSURES INTERFACE TextBox
WITH LOCALS
observers : Set(Observer)
text : String

WITH METHODS
getText() : String) return text
addText(t : String) : void)
� text ftext = text + tg ; h k obs :
obs 2 observers : obs ! update() i

addChar(c : Char) : void)
� text ftext = text + cg

The assurances part in the speci�cation of the compo-
nent HelpText has changed. Therefore, the designer
or a tool should search for all r/a-contracts where
HelpText is used to ful�ll the requirements of other
components. Once, all of these contracts are identi�ed,
the corresponding proofs have to be re-done. In our
example the contract HelpListContract is concerned.
The designer has to re-check whether the goal ht !
getText() 6= �(ht ! getText())) hl ! update() still
can be reached. But the premises have been changed.

Obviously the goal cannot be derived, as a call of
addChar(c) changes the return value of the method
getText() but does not result in an update() for the
HelpList. Thus, the requirement of the component
HelpList|whenever the text in HelpText changes
update() is called|are no longer satis�ed by the new
component HelpText. The current design of the sys-
tem may not longer meet the expectations or the re-
quirements. Now, the designer can decide to keep the
former component in use or to realize a workaround in
the HelpList component. However, this is outside the
scope of the discussed concepts.

9 CONCLUSION AND FUTURE WORK
The ability for software to evolve in a controlled manner
is one of the most critical areas of software engineer-
ing. Therefore, a overall evolution-based development
methodology for componentware is needed. In this pa-
per we have outlined a well-founded common system
model for componentware that copes with the most dif-
�cult behavioral aspects in object-orientation or com-
ponentware: dynamicall changing structures, a shared
global state, and �nally mandatory call-backs. The
model presented includes the concepts of a type and ab-
stract as well as concrete descriptions for types. During

155

system development a set of those descriptions are cre-
ated. Software evolution means that these descriptions
are changed over time. Thus, we need techniques to de-
termine the impacts of the respective evolution steps.
With the presented requirements/assurances-contracts
developers can explicitly model the dependencies be-
tween the di�erent components. Whenever a compo-
nent or the entire system changes the contracts show
the consequences for other components. Contracts help
the developer to manage the evolution of the complete
system.

A number of additional issues remain items of future
work: We are currently working on a �rst prototype
runtime environment for the presented system model.
We still have to elaborate on the underlying type sys-
tem. Addionally, we have to provide more sophisticated
graphical description techniques based on UML and
OCL (structural documents, interface documents, pro-
tocol documents, and implementation documents). A
complete development example will show these descrip-
tion techniques in practice. For each of those description
techniques a clear semantical mapping into the system
model has to be de�ned. Additionally, syntax compat-
ible checkers, theorem prover, and model checker could
be included to run the correctness proof for evolution
steps semi-automatically or even full-automatically. Fi-
nally, we have to develop tool support and provide a set
of evolution-resistant architectures based on technical
componentware infrastructures like CORBA, DCOM, or
Java Enterprise Beans.

ACKNOWLEDGEMENTS
I am grateful to Klaus Bergner, Manfred Broy, In-
golf Kr�uger, Jan Philipps, Bernhard Rumpe, Bernhard
Sch�atz, Marc Sihling, Oskar Slotosch, Katharina Spies,
and Alexander Vilbig for interesting discussions and
comments on earlier versions of this paper.

REFERENCES

[1] K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy. A
formal model for componentware. In Formale Beschreibung-
stechniken f�ur verteilte Systeme FBT'99. Herbert Utz Verlag,
1999.

[2] D. Box. Essential COM. Object Technology Series. Addison-
Wesley, 1998.

[3] B. Selic, G. Gullekson and P. T. Ward. Real-Time Object-
Oriented Modeling. Wiley & Sons, 1994.

[4] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. Gritzner,
and R. Weber. The design of distributed systems - an intro-
duction to FOCUS. Technische Universit�at M�unchen, Jan-
uary 1992.

[5] M. Broy, E. Denert, K. Renzel, and M. Schmidt (eds.). Soft-
ware architectures and design patterns in business applica-
tions. Technische Universit�at M�unchen, 1997.

[6] M. Broy, C. Hofmann, I. Kr�uger, and M. Schmidt. Using
extended event traces to describe communication in software
architectures. In Proceedings of the APSEC '97, Hong Kong.
IEEE Computer Society, 1997.

[7] M. Broy and I. Krger. Interaction Interfaces - Towards a
scienti�c foundation of a methodological usage of Message
Sequence Charts. In Proceedings of the ICFEM 98. IEEE
Press, 1998.

[8] M. B�uchi and W. Weck. A plea for grey-box components.
Technical Report 122, Turku Center for Computer Science,
September 1997.

[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture { A System
of Patterns. Wiley & Sons, 1996.

[10] D. Flanagan. Java in a Nutshell. O'Reilly & Associates,
Inc., 2nd edition, 1996.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

[12] D. Harel. On Visual Formalisms. Communications of the
ACM, 31(5):514{531, May 1988.

[13] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts:
Specifying Behavioral Compositions in Object-Oriented Sys-
tems. ECOOP/OOPSLA '90 Proceedings, pages 169{180,
Oct. 1990.

[14] Ivar Jacobson and Grady Booch and James Rumbaugh.
The Uni�ed Software Development Process. Addison Wes-
ley, 1999.

[15] I. Jacobson. Object-Oriented Software Engineering | A Use
Case Driven Approach. Addison-Wesley, 1992.

[16] JavaSoft. Enterprise JavaBeans website,
<http://java.sun.com/~products/~ejb/>, 1999.

[17] L. Lamport. The temporal logic of actions. ACM Transac-
tions on Programming Languages and Systems, 16(3), 1994.

[18] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary de-
sign of JML: A behavioral interface speci�cation language for
Java. Iowa State University, 1999.

[19] C. Lucas, P. Steyaert, and K. Mens. Managing software
evolution through reuse contracts. Vrije Universiteit Brussel
Faculteit Wetenschappen, BELGIUM, 1997.

[20] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, 2nd edition, 1997.

[21] G. Neumann. 500 Europa: Der Club der Innovatoren. In-
formation Week, pages 10{12, Jan. 1999.

[22] OMG. The Common Object Request Broker: Architec-
ture and Speci�cation. Object Management Group, February
1998.

[23] OMG. OMG Uni�ed Modeling Language Speci�cation. Ver-
sion 1.3, Object Management Group, 1999.

[24] R. Orfali and D. Harkey. Client/Server Programming with
Java and CORBA. John Wiley & Sons, 1997.

[25] V. Rajlich. Modeling Software Evolution by Evolving Inter-
operation Graphs. In Software Change and Evolution 1999
Workshop Proceedings, 1999.

[26] A. Rausch. Executive Summary: Software Evolution in Com-
ponentware { A Practical Approach. In Software Change and
Evolution 1999 Workshop Proceedings, 1999.

[27] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design. Prentice
Hall, 1991.

[28] B. Rumpe. Formale Methodik des Entwurfs verteilter ob-
jektorientierter Systeme. PhD thesis, Technische Universit�at
M�unchen, 1996.

[29] P. Steyaert, C. Lucas, K. Mens, and T. D'Hondt. Reuse
Contracts: Managing the Evolution of Reusable Assets. In
OOPSLA 1996 Conference Proceedings, ACM Sigplan No-
tices, pages 268{285. ACM Press, 1996.

156

