
ABSTRACT
There are three interdependent factors that drive our software
development processes: interval, quality and cost. As market
pressures continue to demand new features ever more
rapidly, the challenge is to meet those demands while
increasing, or at least not sacrificing, quality. One advantage
of defect prevention as an upstream quality improvement
practice is the beneficial effect it can have on interval: higher
quality early in the process results in fewer defects to be
found and repaired in the later parts of the process, thus
causing an indirect interval reduction.

We report a retrospective root cause defect analysis study of
the defect Modification Requests (MRs) discovered while
building, testing, and deploying a release of a transmission
network element product. We subsequently introduced this
analysis methodology into new development projects as an
in-process measurement collection requirement for each
major defect MR.

We present the experimental design of our case study
discussing the novel approach we have taken to defect and
root cause classification and the mechanisms we have used
for randomly selecting the MRs to analyze and collecting the
analyses via a web interface. We then present the results of
our analyses of the MRs and describe the defects and root
causes that we found, and delineate the countermeasures
created to either prevent those defects and their root causes
or detect them at the earliest possible point in the
development process.

We conclude with lessons learned from the case study and
resulting ongoing improvement activities.

KEYWORDS
root cause analysis, defect prevention, process improvement,
quality assurance, modification management

1 Introduction

1.1 RCA project overview
The product in our study is a network element (NE) that is a
flexibly configurable transmission system in an optical

network, consisting of circuit packs, ASICs, software units,
and a craft terminal. Total head count for this release was
180 people and the development project lasted for 19
months.

The NE software is developed in teams of 5-10 people. A
typical (large) NE configuration can consist of many
different hardware board types and up to 150 different
software components. A software team is responsible for a
collection of functionally related components, which
altogether form an architectural unit, called ‘subsystem’
within this paper. The overall size of the NE software
product is around 900 K-NCSL (non-commentary source
lines), 51% being newly developed software.

This release has been a very important and critical one
especially for the European market. Management concern
for process improvement enabled several project
retrospective activities, one of them being the root cause
defect analysis (RCA) project. Several improvement projects
towards, for example, better effort estimation, more efficient
development, and predictable and higher quality (measured
in number of defect MRs) have been initiated recently.

The team has been constituted as cross-functional team:
members represent the NE software and hardware
subsystems, as well as the independent integration &
certification department and quality support group. We also
have been supported by members of the Bell Laboratories
software productions research department who brought
extensive experiences from other similar studies (e.g. [12])
into our team. The mission of the RCA project was

• analyze sample defect MRs; find systematic root causes
of defects 

• analyze major customer-reported MRs during the mainte-
nance release (so-called post-GA MRs, GA = general
availability of the product)

• propose improvement actions, as input for current devel-
opment projects, in order to reduce number of critical
defects (severity 1&2 MRs) and to reduce rework cost,
e.g. MR fix effort.

1.2 Limitations 
This study has focused on defect analysis and determining
the underlying root causes of those defects. There are more
general perspectives that one might take (for example, what
went well and what went wrong) but they are out of scope
for this study. Moreover, correlations with other product
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metrics have not been considered either, though it would be
very interesting to analyze, for example, defect distributions
in relation to test effort and the number of defect MRs per
component (an associated analysis on the same project,
studying quality related inter-dependent process and product
measurements, is described in another paper [14].) We have
focused our effort analysis on the reproduction, investigation
and repair of the defect MRs, not on the retest effort that
makes up a significant part of the rework effort.

Due to time pressures resulting from limitations on team
member availability, we were not able to implement the
formal analysis training and testing to establish a defined
level of inter-rater reliability. However, there are two
mitigating factors. First, the analysts looking at the MRs
were members of the team putting together and reviewing
the analysis instrument. This participation resulted in project
relevant aspects being included in the questionnaire. We
argue that this participation also resulted in a shared
understanding of the components of the analysis. Second, we
did implement informal consistency checks during the
analysis process. Where inconsistencies were found, the
analysts made subsequent corrections to the defect analyses.
Thus, we are relatively confident in the consistent ratings of
the resulting data.

1.3 Relation to other Work
Prior work on software faults has generally been reported on
initial developments and focused on the software faults
themselves rather than their underlying causes. The work of
Endress [5], one of the earliest papers to analyze software
faults, based his error classification on the primary activities
of designing and implementing algorithms in an operating
system. Thayer, Lipow and Nelson [15] provide an extensive
categorization of faults based on several large projects.
Schneidewind and Hoffman [13] categorize faults according
to their occurrence in the development life-cycle. Ostrand
and Weyuker [8] introduced a novel attributed categorization
scheme delineating fault category, type, presence and use.
Finally Basili and Perricone [1] provided an analysis of a
medium scale system.

Our current study is based in part on earlier work by Perry
and Evangelist [10,11] on interface faults which, while
cognizant of the earlier fault categorization work listed
above derived its list of interface faults from the fault data
rather than using a pre-existing categorization. It is based
also on the work by Perry and Stieg [12] --- a study of one of
the releases of one of Lucent’s very large switching systems.
The fault categorization used in this study was based in part
on the published categorizations and part on the experience
of the developers in the reported project. 

The work here is similar in intent but differs in
implementation details. First, the defect categories are an
improvement on the original categories in that they are
separated into three classes for better human factors reasons,
breaking up a large set of defects to be selected from into
three reasonable sized sets of defects. Second, the effort
estimation scales are uniform here where they were different
there; further we added investigation effort here. Third, we
expanded the root causes over what we had in the original

study. This expansion was done in conjunction with the
knowledgeable developers from the project and reflects both
the current state of their project and their processes. Fourth,
and our most novel aspect from a research point of view, we
allowed for multiple root causes to be defined as well as for
no root causes (i.e., a simple mistake with no underlying,
lurking cause). And finally, rather than surveying the entire
set of defect MRs, we have randomly selected a statistically
significant sample from each of the subsystems for detailed
analysis.

Card’s "Learning from out Mistakes with Defect Causal
Analysis" [3] provides a generic process which is congruent
with the process followed here.

There are several strands of related work that are similar to
ours but which did not have a direct influence on our
approach. Chillarege, et. al. in their paper "Orthogonal
Defect Classification" [4] focuses on defect types and defect
triggers as a means of feedback to the development process.
In spirit, this is much the same as our approach except that
their method is used throughout the entire development
process for immediate feedback where ours is essentially a
retrospective and ‘end of development’ feedback process.

More recent work on defect and root cause analysis by
Weider Yu et. al. [16,17] has followed a process similar to
ours, but using different defect and root cause classification
schemes. They have not focused explicitly on the effort
related to the defects. However, the general shape of their
results are similar to ours.

In a larger context, our methodology applies key aspects of
the defect prevention process area of the CMM [9] and is
similar to the one described in [5].

1.4 Organization of the Paper
We first discuss our methodology for the root cause analysis
study in section 2. After presenting our defect classification
scheme and its interesting new aspects in section 2.1, we
discuss the defect selection procedure and our method for
deriving countermeasures and actions for improvement in
section 2.2 and 2.3. We then present our data analysis
focusing first on how we prepared the data (3.1), then on the
results of our general analyses of the defects, effort and root
causes (3.2), and finally on the selection of critical root
causes to be either prevented or found earlier (3.3). We
conclude in section 4 with lessons learned, defining the most
promising countermeasures and outlining resulting ongoing
improvement activities, and describing our future plans.

2 RCA Methodology

2.1 MR Classification Scheme
We designed and implemented a web interface tool for RCA
which provides an on-line representation of the MR
classification scheme. The purpose of this tool and its
associated form is to be accessible easily and to provide a
simple means of data collection with appropriate online
human factors support. The form has the appropriate census
and MR data extracted from the MR database. Beyond that
there are the following subsections to the analysis form: 
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MR classification: phase detection information
An important fact needed if we are to find defects earlier is
when the defect was in fact found. The analyst may choose
any one of 10 process phases as the phase in which the defect
is found. In addition, the analyst may indicate why the defect
was not found earlier.

MR classification: real defect classification
We divided the defects into three classes of defects:
implementation, interface and external. Within each of these
classes there are a set of appropriate defects types, depicted
in table 1.

The third factor in the defect classification is the defect
nature: incorrect, incomplete, other. These were to be
applied wherever they were appropriate. Their use was to
reduce the number of explicit defect types. The other part of
the defect classification focused on reclassifying the severity
if that was necessary and reporting the amount of effort to
reproduce the defect, to investigate it, and to repair it. We
used a uniform scale for these effort reports: zero (meaning
negligible effort), less than one day, one to five days (i.e., up
to a week), five to twenty days (one to four weeks), and more
than 20 days (more than a month).

MR classification: real defect location
The real defect location specified either a document
identifier, or whether it was software or hardware.
’Real’ location characterizes the fact that in real projects
some defects are not fixed by correcting the ’real’ error-
causing component, but rather by a so-called ’work-around’
somewhere else. 

MR classification: defect triggers 
Our approach to defect triggers (root causes) is rather novel.
There are a number of dimensions that may in fact be at the
root of each of the defects - that is, there may be several
underlying causes rather than just one. We therefore
provided a set of four root cause classes: phase-related,
human-related, project-related, and review-related. These
four classes span a four-dimensional root cause space, i.e.
each individual defect root cause is uniquely characterized
by specifying a value in each of the four root cause
dimensions.

• the phase triggers are the standard development phases
or documents: requirements, architecture, high level
design, component spec/design, component implementa-

tion and load building. The phase related root causes
could be qualified by the nature of the trigger: incorrect,
incomplete, ambiguous, changed/revised/evolved, not
aligned with customer needs, and not applicable (the
default).

• The human related triggers are: change coordination,
lack of domain knowledge, lack of system knowledge,
lack of tools knowledge, lack of process knowledge, indi-
vidual mistake, introduced with other repair, communica-
tions problem, missing awareness of need for
documentation, and the default, not applicable. The
"individual mistake" trigger is similar to the "Execution/
oversight" category of Yu et al [17]. It reflects the fact
that sometimes you just make mistakes.

• The project triggers are: time pressure, management mis-
take, caused by other product, and not applicable (again
the default).

• The review triggers are: no or incomplete review, not
enough preparation, inadequate participation, and not
applicable. (Note that a review is a formal moderator-
controlled inspection of a document or code artifact. Our
review process is described in [7].)

• other triggers: And, of course, there is the escape "other"
allowing a different trigger to be specified.

MR classification: barrier analysis
Finally, the analyst may suggest measures for ensuring
earlier defect detection and/or for preventing or avoiding the
defect altogether.

2.2 MR Selection Procedure for Root Cause Analysis
As is usual in these kinds of studies, there is a problem with
the magnitude of the amount of work that would have to be
done to analyze all the relevant MRs to get a complete

Table 1: Classification of defect types

Implementation       Interface            External

1: data design/usage      9: data design/usage       16: development environment

2: resource allocation/usage 10: functionality design/usage 17: test environment (tools/infrastructure)

3: exception handling      11: communication protocol 18: test environment (test cases/suites)

4: algorithm 12: process coordination       19: concurrent work (other releases)

5: functionality           13: unexpected interactions 20: previous (inherited from prev. release)

6: performance            14: change coordination       21: other

7: language pitfalls        15: other                              

8: other                            
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picture of the defects and their causes. One way of reducing
the amount of work is to randomly select a significant subset
of the MRs to represent the whole set and carefully analyze
that subset. Thus our selection procedure was as follows:

• define a set of MRs per subsystem (not per team), such
that a subteam analyzes selected MRs per subsystem

• for each set of MRs per subsystem:
* filter out inappropriate MRs
* split into n MR subsets, such that each MR in a certain

subset “Si” belong to exactly one subsystem
* from the MR subset Si, select further a (typically much

smaller) subset Si’ such that
1) one part (say 5 - 10) is selected manually by the sub-
team analyzing Si’, based on own selection criteria like
“this MR hurt us a lot”, long lifetime, overly complex
problem solution, etc.
2) the second part is a random sample of Si of order 40
MRs. In case Si is not `significantly larger’ than 40, all
MRs in Si are selected.
Explicitly not excluded are severity 3 or 4 MRs (being
not customer-visible ), no-change MRs (false positives),
and documentation MRs.

2.4 Methodology to derive Countermeasures & Improve-
ment Actions
Our methodology entails four steps.

1. Selection of most significant MR subset

Critical for proposing countermeasures is to focus on a
reasonable subset of all defects. 

To arrive at such a set we apply a filtering mechanism. The
filter cannot be defined beforehand, but is the outcome of a
first analysis step. In this first step the goal is to identify
selection criteria which filter those MRs that have together a
significant part of rework effort and which to a large extend
are found late in the development process. This way we
arrive at a first subset of MRs that will be analyzed in more
detail.

As second criterion for finding important defects we look
into Post-GA MRs and search there for dominant
contributions. If the defects that are found to be important
differ in their characteristics from the first set, we get a
second set of MRs for detailed study. These results provide
the statistical input to the team for the selection of
countermeasures that were suggested for each MR during its
analysis.

2. Prioritization of Countermeasures

The RCA action team brainstormed proposals and weighted
each proposal with overall consensus, according to three
factors: statistical weight as percentage of total effort,
effectiveness of the suggested countermeasure and estimated
cost of its implementation, on a scale of 0 to 1. The product
of the values is taken to get a first ranking of
countermeasures. Finally this ranking is taken as basic, but
not fully binding, input to select the countermeasures to
tackle. Typically

• countermeasures with weight >0.5 should be selected

• the number of countermeasures should be ‘small’ e.g.
<20, to remain manageable w.r.t. organizational changes 

3. Definition of Improvement Actions

We conducted a two-day workshop with the analysts in
which we focussed on the selected subset of defects and root
causes to determine the appropriate actions to the defined
and prioritized countermeasures. The results are summarized
in section 4.1. 

4. Deployment of Improvement Actions

Results were presented to our R&D Management Leadership
Team and the development teams. Key improvements
proposed have been approved and their implementation
initiated, see details in section 4.1.

3 Data and Analysis
We first discuss the issue of preparing the data for analysis,
then present our general analysis results and conclude with a
discussion of how we selected the critical root causes as a
focus for more detailed analysis and group discussion.

Before continuing we briefly clarify the terminology we use
in our MR handling process. The following types of MRs are
distinguished:

• initialization MR: used to add an artifact for the first time
to the configuration management repository. Once an
MR of this kind is closed, other MRs, of type enhance-
ment or defect, may be created on the associated artifact.

• enhancement MR: used to add new functionality as part
of a new release, i.e. as planned evolution of an existing
system.

• defect MR: used to correct any fault in specification,
design, or implementation. For each problem detected, a
new MR is issued. If several artifacts are affected by the
correction, this is handled by MR spawns. In this paper,
we consider always the problem-related MRs, not their
spawned sub-MRs.

3.1 Data Preparation
Data screening for the analysis proceeded in two steps. 

1. Consistency checking. A comparison of results between 
different subsystems was conducted. The rationale being 
the elimination of misunderstandings of terms and veri-
fication of results. In particular the analysts have been 
asked to provide reasons for atypical behavior or to cor-
rect the classification if it was due to a misinterpretation 
of terms.

2. Preparation of a representative sample. We separated 
from those settled analysis data the MRs which have not 
been selected randomly. From the rest of the MRs we 
split off so-called no-analysis MRs which were errone-
ously classified as defects but in fact were initial MRs or 
enhancement MRs. The remaining MRs constitute a 
basis of 427 MRs belonging to 13 subsystems (Post-GA 
MRs counted as separate subsystem). 

Each subsystem was represented with at least 8% of its MRs.
Typically 20%-40% of the MRs were analyzed. Taking also
the total number of MRs per subsystem we had a multiplicity
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factor depending on the subsystem that each MR was
weighted with during the analysis. E.g. each MR belonging
to a sample that was represented with 20% of its MRs was
counted as 5 MRs with all the characteristics the particular
sample MR had like severity, defect type, etc. These
weighted MRs were used throughout the following analysis,
to extrapolate from the random sample to the total set of
MRs.

Extra MRs that have been analyzed in addition to the random
sample MRs were negligible in number except for one
subsystem. The MRs of this subsystem have been included
in the comparison between subsystems as separate group of
MRs. The remaining extra MRs have not been considered in
the statistical analysis but only in the manual evaluation of

countermeasures.

3.2 General Analysis Results
Our statistical analysis is mainly
descriptive in nature. Thus the
bulk of evaluation consists in
graphical or tabular aggregation
of the results of our
investigations and is done using
the “S” software tool [2] in an
exploratory way. Most results,
depicted in figures 1 - 6, are
presented using Pareto charts.

From the distribution shown in
figure 1 we can derive several
general results:

1. external defects are negligi-
ble, except for type “inher-
ited from previous release”.

2. interface defects consume 
about 25% of effort, the 
largest amount being caused 
by unexpected interactions, 
followed by functionality 
and data design.

3. implementation defects con-
sume 75% of all effort and 

are dominated by defects of type algorithm and of type 
functionality. These defects will be studied in more 
detail below.

Interesting is the mismatch between number and effort
which is most significant for defects of type previous,
unexpected interaction, performance, and data design. This
is reflected in the estimated effort (in person days) per MR of
those defects. On the average we find 4.6 days for external,
6.2 for interface, 4.7 for implementation defects. Outliers are
data design (at the low end) with 1.9 days and (at the high
end) inherited defects 32.8, unexpected interactions 11.1 and
performance defects 9.3.

As depicted in figure 2, system integration represents 50% of
the distribution for defect detection, while the elimination of
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 4: algorithm
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 6: performance
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Figure 1: Distribution of defect types.
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Figure 2: Distribution of phase where defect detected
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Figure 3:Distribution of phase where defect originated
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those defects taking up almost 60% of effort. As expected
the data show a significant variation in effort per MR.
Defects found in SW design and SW integration require less
effort than those found in system integration and test. The
estimated effort per MR (in person-days) as extracted from
those figures are 3 days during SW design and integration, 6
days during system integration and system test and 9 days
after delivery.

As shown in figure 3, defects are injected into the system
predominantly (71%) within the component oriented phases
of component specification, design and implementation. As
an interesting outcome of the analysis we observe that
defects from the requirements phase do not consume on the
average tremendously more fix effort to be eliminated than
others. Rather architectural mistakes turn out to require
much more effort. It turns out that the required effort is for
defects originating from requirements 6.5 days, from
architecture 10 days, from high level design 5.8 days and
from component spec./design 5 days.

An important study decision was to allow for several root
causes to be specified during analysis of each MR. The
intuition is that there may well be several factors
contributing to the occurrence of a defect. Thus, in addition
to phase, we have allowed human, project, and review root
causes to be specified. These four-dimensional root cause
classifications give indications as to what played a role in a
defects occurrence. A useful way of looking at the data is to
take the inverse percentages as an indication how many
defects remain unaffected if the particular root cause were
eliminated. 

Viewing the data this way, we see from figure 4 that
eliminating individual mistakes would have no effect on 67%
of all defects, eliminating lack of system and domain
knowledge would have no effect on 69%. If all
communication related problems were to be solved, 87% of
all defects remained unaffected.

For the selection of project root causes, while time pressure
was chosen to be one affecting factor in 40% of all defects,
mostly project root causes were not considered relevant. 

Review-related root causes have been considered in 73% of
all MRs and inadequate reviews have been specified as
important in 48% of all MRs. Thus in 66% of all defects
where review root causes have been considered at all, review
deficiencies have been diagnosed.

3.3 Selection of critical Root Causes, to be improved or 
eliminated
As first step in figuring out dominant contributions, the
distributions of MRs according to their defect type were
studied with the result that defects of type algorithm, and of
type functionality (defect class ‘implementation’) dominated
by far all other defect types. ‘Functionality defect’ refers to
missing or wrong functionality (w.r.t. requirements) in a
design or code artifact whereas ‘algorithm defect’ refers to
an inadequate (efficiency) or wrong (correctness)
algorithmic realization In terms of numbers those defects
represent 34% and 21%, respectively, of the defect
population and 35% and 19% of the fix effort. The remaining
defects are distributed over 16 other defect types. 

Of particular interest are the Post-GA defects because they
are typically detected by a customer. Of all Post-GA MRs
14% are classified as type algorithm and 68% of type
functionality. This re-enforces our interest in those two
defect types as deserving further detailed studies.

Specific Analysis of MRs with Defect Type 
’Algorithm’ or ’Functionality’ 
MRs of defect class “implementation” and defect type
“algorithm” or “functionality” have been correlated with the
phase when they have been detected:

The table shows that of both defect types, more than 60% of
the defects are detected late in the process, namely in system
integration and system test. Since the average is 60% this
also shows that the remaining 40% of all MRs is typically
earlier detected. In particular, algorithm defects exceed the
average finding in system integration by almost 50% and the
finding of other MRs by 100%. Besides the pure numbers,
late detection is a second strong argument for looking into
the root causes of these particular defect types. To this end
the correlations with various root causes were investigated.

The correlation with the phase when the defect was
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introduced

shows no unexpected behavior. As one would assume,
algorithm defects are introduced during design, specification
and implementation, deviating significantly from the average
distribution of defect defection. Functionality defects occur
in rates close to the average behavior.

The correlation with human root causes (figure 5) shows
significant contribution from lack of domain and system
knowledge, and of individual mistakes. Not unexpectedly the
contribution from lack of domain knowledge is smaller in
case of functionality defects.

With respect to the correlation with review root causes we
observe that of all MRs of defect type algorithm 75% are
afflicted with inadequate reviews with a total of 84%

reporting review root causes. For
functionality the amounts are 30%
inadequate reviews with a total of
67% reporting review root causes.

Contrasted with an average of 48%
inadequate reviews on the basis of a
reporting rate of 73%, we may infer
that in particular algorithm defects
escape earlier detection due to
review deficiencies. 

From all project root causes that
have been available for selection,
only time pressure constitutes a
major part. On the average 40% of
all defects are related to time
pressure whereas this amount is
70% for defects of type algorithm
and 17% for type functionality.

The analysis thus far indicates that
important areas to look for
improvements are reviews, domain
and system knowledge, and test
strategies (e.g. defined vs. achieved
test coverage) because of late
detection of defects. Means of
prevention and earlier detection -
provided by the MR analysts - are
further evaluated manually to arrive
at concrete counter measures.

Specific Analysis of Post-GA MRs
Although we intended to get a subset of MRs from a detailed
analysis of Post-GA MRs, the outcome may be summarized
very briefly. In fact we observe that defects of type algorithm
and functionality again dominate by far all other defects.
Thus having arrived at this subset already nothing must be
added to cover defect causes that become visible to the
customer. With respect to finding countermeasures this
sample adds, however, the question why so many defects
have been classified as “introduced by another repair”.

4 Conclusion
We have described the origins of our study, delineated the
process of our retrospective root cause analysis, and
provided some of the analyses we performed on the data as
illustrations and support for our subsequent improvement
decisions. The primary novelty in our approach is the
replacement of a one-dimensional root cause classification
(that allows only for a single unique root cause to be
selected) by a four-dimensional root cause space. The four
dimensions are spanned by human, review, project, and life-
cycle phase root cause classes. Unique root cause selection
thus requires specification of a value in each of the four
directions. This choice reflects the general richness that
underlies most of the faults that occur in the building and
evolution of large complex software systems. The rest of our
contributions are incremental to the approach in [12].

4.1 Countermeasures and Improvement Actions
Our strategy was to find and deploy an effective set of
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improvement actions, so that for future development projects

• the overall number of defect MRs is significantly reduced

• the defects are detected earlier in the lifecycle

• the mean effort to fix a defect is reduced

• the actions are really effective, i.e. focussing on system-
atic errors which result in a small number of process
changes, promising at the same time to affect multiple
defect root causes

In the countermeasure definition meeting the team decided
to select 10 focus areas on the basis of the statistical data
evaluation. The areas chosen from the effort distribution over
the phase defects have been introduced, are component
specification and design, component implementation and
architecture. Note that this selection covers all algorithm
defects and 73% functionality defects which were found to
dominate all other defect types. Review root causes were
selected as one single category. From the human root cause
data the team selected ‘individual mistake’, ‘lack of system
knowledge’ combined with ‘lack of domain knowledge’ as
one area, and selected ‘introduced with other repair’ and
‘communication problems’ together with ‘missing
awareness for need of communication’ as another area. The
reason for selecting categories with small contributions was
the insight that only human and review root causes can be
addressed by countermeasures directly. Finally the team
added the categories ‘subcontracted software components’
and ‘project management’, due to specific proposals for
means of prevention found in the analysis data. Within these
categories a set of countermeasures was distilled from the
suggestions provided by the analysts during the analysis. The
same procedure was followed to arrive at a set of measures
for earlier detection of defects found in phases system
integration, system test, and maintenance. All
countermeasures thus assembled have been weighted to
arrive at a ranking. 
As ranking criteria the team decided to use three inputs

• Savings potential per RC area, represented by  portion of
total bugfix effort (this the maximum effort that can be
saved by avoiding defects of this particular category), 

• effectiveness per countermeasure, i.e. estimated percent-
age of MRs of this RC area which can maximally be
influenced by a countermeasure,

• cost per countermeasure, i.e. estimated additional cost to
implement the countermeasure. In order to combine the
cost measured in 1000 US-$ with the other ranking crite-
ria we mapped cost ranges onto factors in the interval
[0,1] in the following way:
[0 ,6[ -> 1.0 
[6 ,30[ -> 0.8
[30 ,130[ -> 0.6
[130 ,600[ -> 0.4 
[600, [ -> 0.2

The following main countermeasures (CM) and associated
improvement projects/activities (IP) have been defined, with
increasing potential benefit in the ordered list below. All
proposed IPs have been started and are ongoing. Note also
that countermeasures are defined even in areas where SW

development is already comparatively mature. Since our
organization satisfies CMM level 3 criteria in several key
process areas, we understand the improvement activities as
one of the means that allow us to reach level 3 fully.
Potential savings, effectiveness and cost (S/E/C) shown in
brackets.

CM1: component specification & design documentation
• extend ensure required contents especially include com-

pliance to non-functional and performance requirements
(32% / 20% / 0.8)

IP: improve requirements management and systems
engineering process w.r.t. traceability process, capturing
non-functional SW requirements.

IP: introduce performance engineering (i.e. performance
modeling, budgeting, and measurements).

CM2: component implementation
• increase usage of static & dynamic code analysis tools

(coding standards checking, memory leak detection, code
coverage analysis) (40% / 15% / 0.8)

• better unit tests (higher test coverage, complete test spec-
ification, systematic case selection, better host test envi-
ronment, test bed, test automation) (40% / 35% / 0.4)

IP: code analysis tools and unit test tools usage as standard
procedure in development process, fully integrated with load
build environment. (Note: other product improvements on
implementation level, e.g. cleanroom software engineering,
sophisticated coding standard based on pre-/post-conditions
etc. have not been tackled: this would mean a major
paradigm shift - considered too risky for ongoing
development of releases within the same product line in a
highly competitive market.)

CM3: system & domain knowledge
• extend training offers and attendance on architecture and

application domain, improve systems design skills 
(38% / 35% / 0.6)

IP: enhanced training program, assigned training coordinator

CM4: document & code reviews
• analyze review culture and performance, improve review

process (66% / 30% / 0.8)

IP: include total effort for reviews in realistic planning,
ensure sufficient review participation, increase awareness for
review importance by e.g. better training, establish review
process control: strict entry conditions, scheduling, timing.
An review improvement project has been started in
cooperation with Fraunhofer Institute for Experimental
Software Engineering (IESE). First analysis results appeared
in [7].

CM5: project management 
• increase process compliance, i.e. completeness of exit

conditions of systems and software development process
(100% / 30% / 0.5)

IP: study correlation of component measurements (size,
defects, complexity) and process compliance (see significant
results in [14]).
IP: Implement database system for all project-related data,

435



supporting project tracking and reporting early warnings on
process issues.

4.2 Lessons learned
1. Bugfix costs do not grow exponentially by phase, but 

rather linearly. (Note, however, that we don’t consider re-
testing effort which would have added a significant 
amount to total rework costs.)

2. The majority of defects do not originate in early phases

3. Within the same project, the defect attribute distribution 
per SW subsystem revealed large differences. (To our 
knowledge this has not been reported in other studies.)

The number of defects per subsystem found in system test
ranged from 0% to 55%, the respective range is 5% to 95%
for defects found in system test and system integration
together. Although intriguing, we learned that these numbers
cannot simply be attributed to differences in the quality of
SW artifacts. To a significant extent they are due to
architecture caused differences of subsystems. Thus, some
have been targets of requirement changes, others could reuse
existing functionality, others have higher operation profiles
due to belonging to a lower architectural layer, etc..
Although interesting, the data available did not permit a
detailed comparison along these lines which therefore is left
for future studies. In particular it would be interesting to
disentangle the architectural aspect from the team cultural
one, e.g. how unit testing or reviews are done, because it
would permit identification and promotion of best practices.
An interesting side-result of the comparison is the fact that
post-GA defects are to a much larger extent (30%) than on
average (5%) caused by another repair which may be traced
back to a project’s ’end-game’ pressure.

4. There is a significant influence of human factors on 
defect injection

Our study extended similar ones with regard to human
factors for defect infection, and it made them more explicit.
We recognized that this was in fact a particularly important
attribute. It allowed us to separate randomly inserted defects
due to unavoidable (human) mistakes and systematically
introduced defects due to mismatches in required and
available technical and/or soft skills. In software engineering
work the "human factor” should receive higher focus.

5. RCA has a low and tolerable effort, relative to its 
apparent benefits

Two technical insights that we think are worthwhile
mentioning, as well. In spite of starting the activity several
months after project completion, and that the defects to be
analyzed were on the average about a year old, the mean
time for analysis was just 19 minutes. Thus such activities
are even cheaper if they are performed during the project

when the detailed knowledge about defects can be recalled
easily. In-process RCA is a cost effective mean to identify
deficiencies and improvement areas. When combined with
statistical analysis, which of course is only possible in rather
large development projects, conclusions about
countermeasure selection can be made sound and put on a
solid basis with regard to costs and potential benefits. 

4.3 Current State and Future Plans
We plan to deploy RCA as continuous activity within all
future development projects. Since RCA has been a post-
mortem project activity so far, our RCA concept has been
generalized to be applied as in-process RCA, i.e. during the
development project. Concept extensions, already
implemented in a successor release to the one under study in
this paper, include

• MR selection criteria - which MRs need to be analyzed to
find root causes

• adapt MR analysis input tool - interfaces to our configu-
ration management tools is being built

• improved RCA analysis scheme, e.g. adding a test root
cause area

As future aspects, we plan for 

• installation of a permanent defect prevention / RCA team

• evaluation of cost-benefit of RCA, by comparing quality
gain vs. RCA costs of different product releases before/
after RCA introduction. Gain will be measured by post-
GA MRs, both absolute number and defect density until
one year after GA. 

In-process RCA is an important step towards full integration
of the RCA methodology into the standard development
process. It makes sense to require the additional RCA
information from the bug fixer, prior to MR resolution. The
RCA team should assess the individual proposals and
provide feedback for organization change and process
change at regular intervals, e.g. after each development
phase or each major project milestone [3].

Since most engineers can then get involved in RCA
activities, an extensive training on defect prevention and
RCA should be performed, one essential step to make RCA a
collaborative, continuous, and best-in-class improvement
activity.

ACKNOWLEDGMENTS
We gratefully acknowledge the continuous commitment and
support of our R&D Director Warren Koontz to the RCA
project. The qualified contributions of the many RCA team
members is also largely appreciated.

436



REFERENCES
1. V. R. Basili and B.T. Perricone: Software Errors and 

Complexity: An Empirical Investigation, CACM 27:1 
(January 1984), 42-52.

2. R. A. Becker, J. M. Chambers and A.R. Wilks: The new 
S Language. Chapman and Hall, 1988

3. D. N. Card: Learning from our Mistakes with Defect 
Causal Analysis. IEEE Software 1/1998, p. 56-63

4. R. Chillarege et al: Orthogonal Defect Classification - A 
Concept for In-Process Measurements. IEEE Transac-
tions on SW Engineering, vol. 18(11), 11/1992

5. A. Endress: An Analysis of Errors and Their Causes in 
Systems Programs. IEEE TSE, SE-1:2 (June 1975), 140-
149.

6. C. Kaplan, R. Clark and V. Tang: Secrets of Software 
Quality - 40 Innovations from IBM. McGraw-Hill, 1995 
(Defect Prevention Process in chapter 15) 

7. O. Laitenberger, M. Leszak, D. Stoll and K. El-Amam: 
Causal Analysis of Review Success Factors in an Indus-
trial Setting. 6th International Symposium on Software 
Metrics, West Palm Beach, Florida 11/1999

8. T. J. Ostrand and E.J. Weyuker: Collecting and Catego-
rizing Software Error Data in an Industrial Environment, 
The Journal of Systems and Software, 4 (1984), 289-300.

9. M. C. Paulk, B. Curtis and M. B. Chrisis: Capability 
Maturity Model for Software (CMM) Version 1.1. SEI 
Report, CMU/SEI-93-TR, 1993   (RCA requirements in 
key process area “defect prevention”, CMM level5)

10. D. E. Perry and W. M. Evangelist: An Empirical Study of 
Software Interface Faults. Proc. of the International Sym-
posium on New Directions in Computing, IEEE CS, 
August 1985, Trondheim Norway, 32-38.

11. D. E. Perry and M. Evangelist: An Empirical Study of 
Software Interface Faults - An Update. Proc. of the 20th 
Hawaii Int. Conf. on System Sciences, 1987, 113-126.

12. 1D. E. Perry and C. S. Stieg: Software Faults in a Large 
Real-Time System: A Case Study. 4th European SW 
Engineering Conf., Garmisch-Partenkirchen, 10/1993

13. N. F. Schneidewind and H.M. Hoffmann: An Experiment 
in Software Error Data Collection and Analysis. IEEE 
TSE, SE-5:3 (May 1979), 276-286.

14. D. Stoll, M. Leszak and T. Heck: Measuring Process and 
Product Characteristics of Software Components - A 
Case Study. 3rd Conf. on Quality Engineering in Soft-
ware Technology (Conquest-99), Nuremberg, 27-29 
Sept. 1999. ISBN3-00-004774-3

15. T. A. Thayer, M. Pipow, and E.C. Nelson: Software Reli-
ability - a Study of Large Project Reality. TRW Series of 
Software Technology, Vol 2, North Holland, 1978

16. W.D. Yu, A. Barshefsky and S.T. Huang: An Empirical 
Study of Software Faults Preventable at a Personal Level 
in a Very Large Software Development Environment. 
Bell Labs Technical Journal, 2:3 (Summer 1997), 221-
232

17. W.D. Yu: A Software Prevention Approach in Coding 
and Root Cause Analysis. Bell Labs Technical Journal, 
vol. 3, no. 2, April-June 1998, 3-21

437


