
Public Review for

Securing Linux with a Faster and Scalable
IPtables

S. Miano, M. Bertrone, F. Risso, M. Vasquez Bernal, Y. Lu, J. Pi

System administrators routinely rely on iptables to configure the rules for

the Linux kernel firewall. The increasing communication rates and changes

in applications on Linux servers are putting iptables under a lot of strain

with respect to its scalability, flexibility, and performance. While e↵ective

replacements of iptables have been proposed, the system administrators

are reluctant to adopt them for legacy reasons so that old configurations and

scripts could still be used.

Addressing this pressing problem, the paper presents bpf-iptables that

reimplements iptables by using eBPF (extended Berkeley Packet Filter)

and XDP (eXpress DataPath) hooks in the kernel. bpf-iptables transpar-

ently translates existing iptables rules into eBPF programs, preserves the

filtering semantic, and improves on the speed and scalability of iptables. In
designing their iptables-compatible firewall, the authors use a vanilla Linux

kernel without expanding the existing or adding new hooks in the kernel. The

paper meticulously describes the architecture of its solution, including a bit-

vector matching algorithm for improved search, TCP/IP stack bypass, as well

as other data-plane and control-plane components. The authors facilitate ac-

cess to their functional prototype of bpf-iptables by providing a Docker

image that contains the instructions necessary to run the executable. The

extensive evaluation includes system benchmarking, two use cases from en-

terprise environments, and microbenchmarking. The evaluation shows that

bpf-iptables significantly improves throughput in comparison to existing

alternatives, with larger advantages for higher numbers of filtering rules.

Public review written by
Sergey Gorinsky

IMDEA Networks, Spain

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

2

Securing Linux with a Faster and Scalable Iptables
Sebastiano Miano

Politecnico di Torino, Italy
sebastiano.miano@polito.it

Matteo Bertrone
Politecnico di Torino, Italy
matteo.bertrone@polito.it

Fulvio Risso
Politecnico di Torino, Italy

fulvio.risso@polito.it

Mauricio Vásquez Bernal
Politecnico di Torino, Italy
mauricio.vasquez@polito.it

Yunsong Lu
Futurewei Technologies, Inc.
yunsong.lu@futurewei.com

Jianwen Pi
jianwpi@gmail.com

ABSTRACT
The sheer increase in network speed and the massive deployment
of containerized applications in a Linux server has led to the con-
sciousness that iptables, the current de-facto �rewall in Linux,
may not be able to cope with the current requirements particularly
in terms of scalability in the number of rules. This paper presents
an eBPF-based �rewall, bpf-iptables, which emulates the ipta-
bles �ltering semantic while guaranteeing higher throughput. We
compare our implementation against the current version of ipta-
bles and other Linux �rewalls, showing how it achieves a notable
boost in terms of performance particularly when a high number of
rules is involved. This result is achieved without requiring custom
kernels or additional software frameworks (e.g., DPDK) that could
not be allowed in some scenarios such as public data-centers.

CCS CONCEPTS
• Networks → Firewalls; Programmable networks; Packet classi�-
cation;

KEYWORDS
eBPF, iptables, Linux, XDP

1 INTRODUCTION
Nowadays, the traditional security features of a Linux host are
centered on iptables, which allows applying di�erent security
policies to the tra�c, such as to protect from possible network
threats or to prevent speci�c communication patterns between
di�erent machines. Starting from its introduction in kernel v2.4.0,
iptables remained the most used packet �ltering mechanism in
Linux, despite being strongly criticized under many aspects, such as
for its far from cutting-edge matching algorithm (i.e., linear search)
that limits its scalability in terms of number of policy rules, its
syntax, not always intuitive, and its old code base, which is di�cult
to understand and maintain. In the recent years, the increasing
demanding of network speed and the transformation of the type of
applications running in a Linux server has led to the consciousness
that the current implementation may not be able to cope with
the modern requirements particularly in terms of performance,
�exibility, and scalability [17].

Nftables [10] was proposed in 2014 with the aim of replacing
iptables; it reuses the existing netfilter subsystem through an
in-kernel virtual machine dedicated to �rewall rules, which rep-
resents a signi�cant departure from the iptables �ltering model.
Although this yields advantages over its predecessor, nftables
(and other previous attempts such as ufw [40] or nf-HiPAC [28])

did not have the desired success, mainly due to the reluctance of the
system administrators to adapt their existing con�gurations (and
scripts) operating on the old framework and move into the new
one [12]. This is also highlighted by the fact that the majority of to-
day’s open-source orchestrators (e.g., Kubernetes [20], Docker [19])
are strongly based on iptables.

Recently, another in-kernel virtual machine has been proposed,
the extended BPF (eBPF) [2, 16, 34], which o�ers the possibility to
dynamically generate, inject and execute arbitrary code inside the
Linux kernel, without the necessity to install any additional kernel
module. eBPF programs can be attached to di�erent hook points
in the networking stack such as eXpress DataPath (XDP) [18] or
Tra�c Control (TC), hence enabling arbitrary processing on the
intercepted packets, which can be either dropped or returned (pos-
sibly modi�ed) to the stack. Thanks to its �exibility and excellent
performance, functionality, and security, recent activities on the
Linux networking community have tried to bring the power of
eBPF into the newer nftables subsystem [5]. Although this would
enable nftables to converge towards an implementation of its VM
entirely based on eBPF, the proposed design does not fully exploit
the potential of eBPF, since the programs are directly generated
in the kernel and not in userspace, thus losing all the separation
and security properties guaranteed by the eBPF code veri�er that
is executed before the code is injected in the kernel.

On the other hand, bpfilter [7] proposes a framework that
enables the transparent translation of existing iptables rules into
eBPF programs; system administrators can continue to use the exist-
ing iptables-based con�guration without even knowing that the
�ltering is performed with eBPF. To enable such design, bpfilter
introduces a new type of kernel module that delegates its func-
tionality into user space processes, called user mode helper (umh),
which can implement the rule translation in userspace and then
inject the newly created eBPF programs in the kernel. Currently,
this work focuses mainly on the design of a translation architecture
for iptables rules into eBPF instructions, with a small proof of
concept that shows the advantages of intercepting (and therefore
�ltering) the tra�c as soon as possible in the kernel, and even in
the hardware (smartNICs) [39].

The work presented in this paper continues along the bpfilter
proposal of creating a faster and more scalable clone of iptables,
but with the following two additional challenges. First is to pre-
serve the iptables �ltering semantic. Providing a transparent
replacement of iptables, without users noticing any di�erence,
imposes not only the necessity to respect its syntax but also to
implement exactly its behavior; small or subtle di�erences could
create serious security problems for those who use iptables to

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

3

protect their systems. Second is to improve speed and scalability
of iptables; in fact, the linear search algorithm used for matching
tra�c is the main responsible for its limited scalability particu-
larly in the presence of a large number of �rewall rules, which is
perceived as a considerable limitation from both the latency and
performance perspective.

Starting from the above considerations, this paper presents the
design of an eBPF-based Linux �rewall, called bpf-iptables, which
implements an alternative �ltering architecture in eBPF, while main-
taining the same iptables �ltering semantic but with improved
performance and scalability. bpf-iptables leverages any possible
speedup available in the Linux kernel to improve the packet pro-
cessing throughput. Mainly, XDP is used to provide a fast path for
packets that do not need additional processing by the Linux stack
(e.g., packets routed by the host) or to discard tra�c as soon as it
comes to the host. This avoids useless networking stack processing
for packets that must be dropped by moving some �rewall process-
ing o� the host CPU entirely, thanks to the work that has been
done to enable the o�oading at XDP-level [6].

Our contributions are: (i) the design of bpf-iptables; it pro-
vides an overview of the main challenges and possible solutions in
order to preserve the iptables �ltering semantic given the di�er-
ence, from hook point perspective, between eBPF and netfilter.
To the best of our knowledge, bpf-iptables is the �rst application
that provides an implementation of the iptables �ltering in eBPF.
(ii) A comprehensive analysis of the main limitations and challenges
required to implement a fast matching algorithm in eBPF, keeping
into account the current limitations [27] of the above technology.
(iii) A set of data plane optimizations that are possible thanks to
the �exibility and dynamic compilation (and injection) features of
eBPF, allowing us to create at runtime an optimized data path that
�ts perfectly with the current ruleset being used.

This paper presents the challenges, design choices and implemen-
tation of bpf-iptables and it compares with existing solutions
such as iptables and nftables. We take into account only the
support for the FILTER table, while we leave as future work the
support for additional features such as NAT or MANGLE.

2 DESIGN CHALLENGES AND ASSUMPTIONS
This Section introduces (i) the main challenges encountered while
designing bpf-iptables, mainly derived from the necessity to
emulate the iptables behavior with eBPF, and (ii) our initial as-
sumptions for this work, which in�uenced some design decisions.

2.1 Guaranteeing �ltering semantic
The main di�erence between iptables and bpf-iptables lies in
their underlying frameworks, netfilter and eBPF respectively.
Iptables de�nes three default chains for �ltering rules associated
to the three netfilter hooks [30] shown in Figure 1, which allow
to �lter tra�c in three di�erent locations of the Linux networking
stack. Particularly, those hook points �lter tra�c that (i) terminates
on the host itself (INPUT chain), (ii) traverses the host such as when
it acts as a router and forwards IP tra�c betweenmultiple interfaces
(the FORWARD chain), and (iii) leaves the host (OUTPUT chain).

On the other hand, eBPF programs can be attached to di�erent
hook points. As shown in Figure 1, ingress tra�c is intercepted in

PREROUTING INPUT FORWARD OUTPUT POSTROUTING

netfilter
NAT

Routing
Decision

FILTER

FILTER

Routing
Decision NAT

Routing
Decision

NAT

FILTER

iptables (netfilter)
filtering hook

eBPF TC hook

eBPF XDP hook

Local
processes

netdev
(e.g., eth0)

netdev
(e.g., eth1)

eBPF
program

eBPF
program

skb
alloc

Figure 1: Location of netfilter and eBPF hooks.

the XDP or tra�c control (TC) module, hence earlier than netfil-
ter; the opposite happens for outgoing tra�c, which is intercepted
later than netfilter. The di�erent location of the �ltering hooks
in the two subsystems introduces the challenge of preserving the
semantic of the rules, which, when enforced in an eBPF program,
operate on a di�erent set of packets compared to the one that would
cross the same netfilter chain. For example, rule “iptables -A
INPUT -j DROP” drops all the incoming tra�c crossing the INPUT
chain, hence directed to the current host; however, it does not a�ect
the tra�c forwarded by the host itself, which traverses the FORWARD
chain. A similar “drop all” rule, applied in the XDP or TC hook, will
instead drop all the incoming tra�c, including packets that are for-
warded by the host itself. As a consequence, bpf-iptables must
include the capability to predict the iptables chain that would be
traversed by each packet, maintaining the same semantic although
attached to a di�erent hook point.

2.2 E�cient classi�cation algorithm in eBPF
The selection and implementation of a better matching algorithm
proved to be challenging due to the intrinsic limitations of the eBPF
environment [27]. In fact, albeit bettermatching algorithms arewell-
known in the literature (e.g., cross-producting [33], decision-tree
approaches [13, 29, 31, 32, 37, 38]), they require either sophisticated
data structures that are not currently available in eBPF1 or an un-
predictable amount of memory, which is not desirable for a module
operating at the kernel level. Therefore, the selected matching al-
gorithm must be e�cient and scalable, but also feasible with the
current eBPF technology.

2.3 Support for stateful �lters (conntrack)
Netfilter tracks the state of TCP/UDP/ICMP connections and
stores them in a session (or connection) table (conntrack). This table
can be used by iptables to support stateful rules that accept/drop
packets based on the characteristic of the connection they belong to.
For instance, iptables may accept only outgoing packets belong-
ing to NEW or ESTABLISHED connections, e.g., enabling the host to
generate tra�c toward the Internet (and to receive return packets),

1eBPF programs do not have the right to use traditional memory; instead, they need
to rely on a limited set of prede�ned memory structures (e.g., hash tables, arrays,
and a few others), which are used by the kernel to guarantee safety properties and
possibly avoid race conditions. As a consequence, algorithms that require di�erent
data structures are not feasible in eBPF.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

4

while connections initiated from the outside world may be forbid-
den. As shown in Figure 1, bpf-iptables operates before packets
enter in netfilter; being unable to exploit the Linux conntrack
module to classify the tra�c, it has to implement its own equivalent
component (Section 4.5.)

2.4 Working with upstream Linux kernel
Our initial assumption for this work is to operate with the existing
Linux kernel in order to bring the advantages of bpf-iptables to
the wider audience as soon as possible. In fact, the process required
by the Linux kernel community to agree with any non-trivial code
change and have them available in a mainline kernel is rather
long and may easily require more than one year. This assumption
in�uenced, in some cases, the design choices taken within bpf-
iptables (e.g., the de�nition of a new conntrack in eBPF instead
of relying on the existing Linux one); we further analyze this point
in Section 7, providing a discussion of the possible modi�cation to
the eBPF subsystem that could further improve bpf-iptables.

3 OVERALL ARCHITECTURE
Figure 2 shows the overall system architecture of bpf-iptables.
The data plane includes four main classes of eBPF programs. The
�rst set (blue) implements the classi�cation pipeline, i.e., the ingress,
forward or output chain; a second set (yellow) implements the logic
required to preserve the semantics of iptables; a third set (orange)
is dedicated to connection tracking. Additional programs (grey) are
devoted to ancillary tasks such as packet parsing.

The ingress pipeline is called upon receiving a packet either on
the XDP or TC hook. By default, bpf-iptables works in XDP
mode, attaching all the eBPF programs to the XDP hook of the
host’s interfaces. However, this requires the explicit support for
XDP in the NIC drivers2; bpf-iptables automatically falls back to
the TC mode when the NIC drivers are not XDP-compatible. In the
latter case, all the eBPF programs composing the ingress pipeline
are attached to the TC hook. The egress pipeline is instead called
upon receiving a packet on the TC egress hook, before the packet
leaves the host, as XDP is not available in egress [9].

Once in the ingress pipeline, the packet can enter either the IN-
PUT or FORWARD chain depending on the routing decision; in the
�rst case, if the packet is not dropped, it will continue its journey
through the Linux TCP/IP stack, ending up in a local application. In
the second case, if the FORWARD pipeline ends with an ACCEPT deci-
sion, bpf-iptables redirects the packet to the target NIC, without
returning it to the Linux networking stack (more details in Sec-
tion 4.4.2). On the other hand, a packet leaving the host triggers the
execution of bpf-iptables when it reaches the TC egress hook,
where it will be processed by the OUTPUT chain.

Finally, a control plane module (not depicted in Figure 2) is exe-
cuted in userspace and provides three main functions: (i) initializa-
tion and update of the bpf-iptables data plane, (ii) con�guration
of the eBPF data structures required to run the classi�cation algo-
rithm and (iii) monitoring for changes in the number and state of
available NICs, which is required to fully emulate the behavior of
iptables, handling the tra�c coming from all the host interfaces.
We will describe the design and architecture of the bpf-iptables
2NIC driver with native support for XDP can be found at [8].

data plane in Section 4, while the operations performed by the
control plane will be presented in Section 5.

4 DATA PLANE
In the following subsections we present the di�erent components
belonging to the bpf-iptables data plane, as shown in Figure 2.

4.1 Header Parser
The bpf-iptables ingress and egress pipelines start with a Header
Parser module that extracts the packet headers required by the
current �ltering rules, and stores each �eld value in a per-CPU
array map shared among all the eBPF programs in the pipeline,
called packet metadata. This avoids the necessity of packet parsing
capabilities in the subsequent eBPF programs and guarantees both
better performance and a more compact processing code. The code
of theHeader Parser is dynamically generated on the �y; when a new
�ltering rule that requires the parsing of an additional protocol �eld
is added, the control plane re-generates, compiles and re-injects the
obtained eBPF program in the kernel in order to extract also the
required �eld. As a consequence, the processing cost of this block
is limited exactly to the number of �elds that are currently needed
by the current bpf-iptables rules.

4.2 Chain Selector
The Chain Selector is the second module in the data plane and has to
classify and forward the tra�c to the correct classi�cation pipeline
(i.e., chain) in order to preserve the iptables semantic (Section 2.1).
In particular, it anticipates the routing decision that would have
been performed later in the TCP/IP stack and is, therefore, able to
predict the right chain that will be hit by the current packet. The
idea is that tra�c coming from a network interface would cross
the INPUT chain only if it is directed to a local IP address, visible
from the host root namespace, while incoming packets directed to
a non-local IP address would cross the FORWARD chain. On the other
hand, an outgoing packet would traverse the OUTPUT chain only if it
has been generated locally, i.e., by a local IP address. To achieve this
behavior, bpf-iptables uses a separate Chain Selector module for
the ingress and egress pipeline.

The Ingress Chain Selector checks if the destination IP address
of the incoming packet is present in the BPF_HASH map that keeps
local IPs and writes the resulting target chain in the packet metadata
per-CPU map shared across the entire pipeline. This value is used
by the �rst conntrack module to jump to the correct target chain;
in addition, it optimizes the (very common) case in which the �rst
rule of the INPUT chain accepts all the ESTABLISHED connections by
jumping directly at the end of the classi�cation pipeline, without
further processing (Section 4.4.2). On the other hand, the Egress
Chain Selector, which is part of the egress pipeline, classi�es tra�c
based on the source IP address and sends it to either the OUTPUT
chain or directly to the output interface. In fact, tra�c traversing
the FORWARD chain has already been matched in the ingress pipeline,
hence it should not be handled by the OUTPUT chain.

4.3 Matching algorithm
To overcome the performance penalties of the linear search of ipt-
ables, bpf-iptables adopts the more e�cient Linear Bit-Vector

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

5

Ingress pipeline

From netdev
(e.g., eth0)

To netdev
(e.g., eth1)

TC egress hookTo Linux
TCP/IP stack

From Linux
TCP/IP stack

Netfilter Netfilter

XD
P

in
gr

es
s h

oo
k

IP
 in

pu
t

pr
oc

es
sin

g

IP
 o

ut
pu

t
pr

oc
es

sin
g

FIB
Lookup

Header
Parser

Ingress Chain
Selector

INGRESS
CHAIN

FORWARD
CHAIN

[local dst] Conntrack
Update

Conntrack
Update[remote dst]

Conntrack
Label

Headers Destination
Chain

Flow State Flow StateHeader, Flow
State, etc…

Packet metadata (per-CPU map shared across the entire pipeline)

Redirect
program

Redirect
program

Conntrack
Table

Lookup
Lookup
failed

Update

Egress pipeline

Header
Parser

Egress Chain
Selector

OUTPUT
CHAIN

[local src] Conntrack
Update

Conntrack
Label

Headers Destination
Chain

Flow StateHeader, Flow
State, etc…

[remote src]

Lookup

Packet metadata (per-CPU map shared across the entire pipeline)

TC ingress hook

Redirect
program

Figure 2: High-level architecture of bpf-iptables.

Search (LBVS) [23] classi�cation algorithm. LBVS provides a reason-
able compromise between feasibility and speed; it has an intrinsic
pipelined structure which maps nicely with the eBPF technology,
hence enabling the optimizations presented in Section 4.4.2. The
algorithm follows the divide-and-conquer paradigm: it splits �lter-
ing rules in multiple classi�cation steps, based on the number of
protocol �elds in the ruleset; intermediate results that carry the
potentially matching rules are combined to obtain the �nal solution.
Classi�cation. LBVS requires a speci�c (logical) bi-dimensional
table for each �eld on which packets may match, such as the three
�elds shown in the example of Figure 3. Each table contains the
list of unique values for that �eld present in the given ruleset, plus
a wildcard for rules that do not care for any speci�c value. Each
value in the table is associated with a bitvector of length N equal to
the number of rules, in which the ith ‘1’ bit tells that rule i may be
matched when the �eld assumes that value. Filtering rules, and the
corresponding bits in the above bitvector, are ordered with highest
priority rule �rst. The matching process is repeated for each �eld
we operate with, such as the three �elds shown in Figure 3. The
�nal matching rule can be obtained by performing a bitwise AND
operation on all the intermediate bitvectors returned in the previous
steps and determining the most signi�cant ‘1’ bit in the resulting
bitvector. This represents the matched rule with the highest priority,
which corresponds to rule #1 in the example in Figure 3. Bitmaps
enable the evaluation of rules in large batches, which depend on the
parallelism of the main memory; while still theoretically a linear
algorithm, this scaling factor enables a 64x speedup compared to a
traditional linear search on common CPUs.

...

Value Matched
rules

* 00001

80 11001

53 00111

Value Matched
rules

* 01001

TCP 11011

UDP 01101

Values Matched
rules

0/0 11110

10.0.0.0/8 11111
...

Input packet:
ip.dst=10.1.0.1
ip.proto= TCP
tcp.dport= 80

Dest. IP Protocol Dest. port

Rule #1: iptables –A INPUT –p tcp --dport 80 –j ACCEPT
Rule #2: iptables –A INPUT --dport 80 –j ACCEPT
Rule #3: iptables –A INPUT –p udp --dport 53 –j ACCEPT
Rule #4: iptables –A INPUT –p tcp --dport 53 –j ACCEPT
Rule #5: iptables –A INPUT –d 10.0.0.0/8 –j ACCEPT
Default rule: iptables -P INPUT DROP

11111 & 11011 & 11001 = 11001
o Rule #1

Figure 3: Linear Bit Vector Search

4.4 Classi�cation Pipeline
The bpf-iptables classi�cation pipeline (Figure 4) is in charge of
�ltering packets according to the rules con�gured for a given chain.
It is made by a sequence of eBPF programs, each one handling a
single matching protocol �eld of the current ruleset. The pipeline
contains two per-CPU shared maps that keep some common infor-
mation among all the programs, such as the temporary bitvector
containing the partial matching result, which is initialized with all
the bits set to ‘1’ before a packet enters the pipeline.

Each module of the pipeline performs the following operations:
(i) extracts the needed packet �elds from the packet metadata map,
previously �lled by theHeader Parser module; (ii) performs a lookup
on its private eBPF map to �nd the bitvector associated to the

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

6

…

eBPF program #1

Packet

ip.src
lookup

tmp_bitv
&=

bitvN;

[percpu_array shared across the entire bpf-iptables pipeline]

* bitv1
1.* bitv2
12.0.* bitv3
5.4.2.* bitv4

eBPF program #2

port.dst
lookup

tmp_bitv
&=

bitvN;

443 bitv1
8080 bitv2
9673 bitv3ta

il
ca

ll

Action Lookup

Search first
matching

rule

ACTION
(drop /
accept)

rule1 act1
rule2 act2
rule3 act3

Map keeping the
action for each rule

[Packet]
[percpu_array shared across the entire classification pipeline]

Packet metadata

ta
il

ca
ll

ta
il

ca
ll

Bitvector with temporary result

BPF_LPM_TRIE BPF_HASH

* bitvW

BPF_ARRAY

Figure 4: bpf-iptables classi�cation pipeline.

current packet value for that �eld. If the lookup succeeds, (iii-a) it
performs a bitwise AND between this bitvector and the temporary
bitvector contained in the per-CPU map. If the lookup fails and
there is a wildcard rule, (iii-b) the AND is performed between the
bitvector associated with the wildcard rules and the one present
in the per-CPU map. Instead, (iii-c) if the lookup fails and there
are no wildcard rules for that �eld, we can immediately conclude
that the current packet does not match any rule within the ruleset;
hence, we can exploit this situation for an early break of the pipeline
(Section 4.4.2). Finally, except the last case, (iv) it saves the new
bitvector in the shared map and calls the next module of the chain.
Bitvectors comparison. Since each matching rule is represented
as a ‘1’ in the bitvector, bpf-iptables uses an array of N 64bit un-
signed integers to support a large number of rules (e.g., 2.048 rules
can be represented as an array of 32 uint64_t). As consequence,
when performing the bitwise AND, the current eBPF program
has to perform N cycles on the entire array to compare the two
bitvectors. Given the lack of loops on eBPF, this process requires
loop unrolling and is therefore limited by the maximum number of
possible instructions within an eBPF program, thus also limiting
the maximum number of supported rules. The necessity to perform
loop unrolling is, as consequence, the most compelling reason for
splitting the classi�cation pipeline of bpf-iptables across many
eBPF modules, instead of concentrating all the processing logic
within the same eBPF program.
Action lookup. Once we reach the end of the pipeline, the last
program has to �nd the rule that matched the current packet. This
program extracts the bitvector from the per-CPU shared map and
looks for the position of the �rst bit to 1 in the bitvector, using the
de Bruijn sequences [24] to �nd the index of the �rst bit set in a
single word; once obtained, it uses that position to retrieve the �nal
action associated with that rule from a given BPF_ARRAY map and
�nally applies the action. Obviously, if no rules have been matched,
the default action is applied.

4.4.1 Clever data sharing. bpf-iptables makes a massive use of
eBPF per-CPU maps, which represent memory that can be shared
among di�erent cascading programs, but that exist in multiple inde-
pendent instances equal to the number of available CPU cores. This
memory structure guarantees very fast access to data, as it statically
assigns a set of memory locations to each CPU core; consequently,

data is never realigned with other L1 caches present on other CPU
cores, hence avoiding the (hidden) hardware cost of cache synchro-
nization. Per-CPUmaps represent the perfect choice in our scenario,
in which multiple packets can be processed in parallel on di�erent
CPU cores, but where all the eBPF programs that are part of the
same chain are guaranteed to be executed on the same CPU core.
As a consequence, all the programs processing a packet P are guar-
anteed to have access to the same shared data, without performance
penalties due to possible cache pollution, while multiple processing
pipelines, each one operating on a di�erent packet, can be executed
in parallel. The consistency of data in the shared map is guaranteed
by the fact that eBPF programs are never preempted by the kernel
(even across tail calls). They can use the per-CPU map as a sort of
stack for temporary data, which can be subsequently obtained from
the downstream program in the chain with the guarantees that data
are not overwritten during the parallel execution of another eBPF
program on another CPU and thus ensuring the correctness of the
processing pipeline.

4.4.2 Pipeline optimizations. Thanks to the modular structure of
the pipeline and the possibility to re-generate part of it at runtime,
we can adopt several optimizations that allow (i) to jump out of the
pipeline when we realize that the current packet does not require
further processing and (ii) to modify and rearrange the pipeline at
runtime based on the current bpf-iptables ruleset values.
Early-break. While processing a packet into the classi�cation
pipeline, bpf-iptables can discover in advance that it will not
match any rule. This can happen in two separate cases. The �rst
occurs when, at any step of the pipeline, a lookup in the bitvector
map fails; in such event, if that �eld does not have a wildcard value,
we can directly conclude that the current packet will not match
any rule. The second case takes place when the result of the bitwise
AND between the two bitvectors is the empty set (all bits set to
0). In either circumstance, the module that detects this situation
can jump out of the pipeline by applying the default policy for the
chain, without the additional overhead of executing all the follow-
ing components. If the policy is DROP, the packet is immediately
discarded concluding the pipeline processing; if the default policy
is ACCEPT, the packet will be delivered to the destination, before
being processed by the Conntrack Update module (Section 4.5).
Accept all established connections. A common con�guration
applied in most iptables rulesets contains an ACCEPT all ESTAB-
LISHED connections as the �rst rule of the ruleset. When the bpf-
iptables control plane discovers this con�guration in a chain,
it forces the Conntrack Label program to skip the classi�cation
pipeline if it recognizes that a packet belongs to an ESTABLISHED
connection. Since this optimization is performed per-chain (we
could have di�erent con�gurations among the chains), the Con-
ntrack Label module reads the target chain from the packet metadata
per-CPU map previously �lled by the Chain Selector and immedi-
ately performs a tail-call to the �nal connection tracking module
that will update the conntrack table accordingly (e.g., updating the
timestamp for that connection).
Optimized pipeline. Every time the current ruleset is modi�ed,
bpf-iptables creates a processing pipeline that contains the mini-
mum (optimal) number of processing blocks required to handle the
�elds of the current ruleset, avoiding unnecessary processing. For

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

7

instance, if there are no rules matching TCP �ags, that processing
block is not added to the pipeline. New processing blocks can be
dynamically added at run-time if the matching against a new �eld
is required. In addition, bpf-iptables is able to re-organize the
classi�cation pipeline by changing the order of execution of the
various components. For example, if some components require only
an exact matching, a match failed on that �eld would lead to an
early-break of the pipeline; putting those modules at the beginning
of the pipeline could speed up processing, avoiding unnecessary
memory accesses and modules.
HOmogeneous RUleset analySis (HORUS). The HORUS opti-
mization is used to (partially) overcome two main restrictions of
bpf-iptables: the maximum number of matching rules, given by
the necessity to perform loop unrolling to compare the bitvectors,
and the rule updating time since we need to re-compute all the
bitvectors used in the classi�cation pipeline when the user updates
the rulesets. The idea behind HORUS is based on the consideration
that often, �rewall rulesets (in particular, the ones automatically
con�gured by orchestrations software), contain a set of homoge-
neous rules that operate on the same set of �elds. If we are able to
discover this set of “similar” rules that are not con�icting with the
previous ones (with higher priority), we could bring them in front
of the matching pipeline for an additional chance of early-break.
In addition, since those rules are independent from the others in
the ruleset, we could compact all their corresponding bits in the
bitvectors with just one, hence increasing the space for other non-
HORUS rules. Finally, if the bpf-iptables control plane discovers
that a newly installed (or removed) rule belongs to the HORUS rule-
set, it does not need to update or even change the entire matching
pipeline, but a single map insertion (or deletion) would be enough,
thus reducing the rule update time in a way that is completely
independent from the number of rules installed in that chain. When
enabled, the HORUS ruleset is inserted right before the Conntrack
Label and consists of another eBPF program with a BPF_HASH ta-
ble that contains, as key, the set of �elds of the HORUS set and, as
value, the �nal action to apply when a match is found. If the �nal
action is DROP, the packet is immediately dropped; if the action is
ACCEPT, it will directly jump to the last module of the pipeline, the
Conntrack Update. Finally, if no match is found, HORUS jumps to
the �rst program of the classi�cation pipeline, following the usual
processing path. An important scenario where HORUS shows its
great advantages is under DoS attacks. In fact, if all the rules of
the HORUS ruleset contains a DROP action, matching packets will be
immediately discarded, hence exploiting (i) the early processing
provided by XDP that allows to drop packets at a high rate and
(ii) the ability to run this program on hardware accelerators (e.g.,
SmartNICs) that support the o�oading of “simple” eBPF programs,
further reducing the system load and the resource consumption.
Optimized forwarding. If the �nal decision for a packet travers-
ing the FORWARD chain is ACCEPT, it has to be forwarded to the
next-hop, according to the routing table of the host. Since, start-
ing from kernel version 4.18, eBPF programs can query directly
the Linux routing table, bpf-iptables can optimize the path of
the above packet by directly forwarding the packet to the target
NIC, shortening its route within the Linux stack, with a signi�cant
performance advantage (Section 6). In the (few) cases in which the

needed information are not available (e.g., because the MAC ad-
dress of the next hop is not yet known), bpf-iptables will deliver
the �rst few packets to the Linux stack, following the usual path.

4.4.3 Atomic rule update. One of the characteristics of the LBVS
classi�er is that, whenever a new rule is added, updated or removed,
it needs to re-compute all the bitvectors associated with the current
�elds. However, to avoid inconsistency problems, we must update
atomically the content of all maps in the pipeline. Unfortunately,
eBPF allows the atomic update of a single map, while it does not
support atomic updates of multiple maps. Furthermore, de�ning
a synchronization mechanism for the update (e.g., using locks to
prevent tra�c being �ltered by bpf-iptables) could lead to un-
acceptable service disruption given the impossibility of the data
plane to process the tra�c in that time interval.

To solve this issue, bpf-iptables exploits the fact that the clas-
si�cation pipeline is stateless and therefore it creates a new chain
of eBPF programs and maps in parallel, based on the new ruleset.
While this new pipeline is assembled and injected in the kernel,
packets continue to be processed in the initial matching pipeline, ac-
cessing to the current state and con�guration; when this reloading
phase is completed, the Chain Selector is updated to jump to the �rst
program of the new chain, allowing new packets to �ow through it.
This operation is performed atomically, enabling the continuous
processing of the tra�c with a consistent state and without any
service disruption, thanks to a property of the eBPF subsystem that
uses a particular map (BPF_PROG_ARRAY) to keep the addresses of
the instantiated eBPF programs. Finally, when the new chain is up
and running, the old one is unloaded. We discuss and evaluate the
performance of the rules update within bpf-iptables, iptables
and nftables in Section 6.4.2.

4.5 Connection Tracking
To support stateful �lters, bpf-iptables implements its own con-
nection tracking module, which is characterized by four additional
eBPF programs placed in both ingress and egress pipeline, plus an
additional matching component in the classi�cation pipeline that
�lters tra�c based on the current connection’s state. These modules
share the same BPF_HASH conntrack map, as shown in Figure 2.

To properly update the state of a connection, the bpf-iptables
conntrack has to intercept the tra�c in both directions (i.e., host to
the Internet and vice versa). Even if the user installs a set of rules
operating only on the INPUT chain, outgoing packets have to be
processed, in any case, by the conntrack modules located in the
egress pipeline. The bpf-iptables connection tracking supports
TCP, UDP, and ICMP tra�c, although it does not handle advanced
features such as related connections (e.g., when a SIP control ses-
sion triggers the establishment of voice/video RTP �ows3), nor it
supports IP reassembly.
Packet walkthrough. The Conntrack Label module is used to asso-
ciate a label to the current packet4 by detecting any possible change

3eBPF programs can read the payload of the packet (e.g., [1]), which is required to
recognize related connections. Supporting these features in bpf-iptables can be done
by extending the conntrack module to recognize the di�erent L7 protocol from the
packet and inserting the correct information in the conntrack table.
4The possible labels that the conntrack module associates to a packet are the same
de�ned by the netfilter framework (i.e., NEW, ESTABLISHED, RELATED, INVALID).

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

8

in the conntrack table (e.g., TCP SYN packet starting a new connec-
tion triggers the creation of a new session entry), which is written
into the packet metadata per-CPU map shared within the entire
pipeline. This information is used to �lter the packet according to
the stateful rules of the ruleset. Finally, if the packet “survives” the
classi�cation pipeline, the second conntrack program (Conntrack
Update) updates the conntrack table with the new connection state
or, in the case of a new connection, it creates the new associated
entry. Since no changes occur if the packet is dropped, forbidden
sessions will never consume space in the connection tracking table.
Conntrack entry creation. To identify the connection associated
to a packet, bpf-iptables uses the packet 5-tuple (i.e., src/dst IP
address, L4 protocol, src/dst L4 port) as key in the conntrack table.
Before saving the entry in the table, the Conntrack Update orders
the key as follows:

ke� = {min(IpSrc, IpDest),max(IpSrc, IpDest), Proto,
min(PortSrc .PortDest),max(PortSrc, PortDest)} (1)

This process allows to create a single entry in the conntrack table
for both directions, speeding up the lookup process. In addition,
together with the new connection state, the Conntrack Update mod-
ule stores into the conntrack table two additional �ags, ip reverse
(ipRev) and port reverse (portRev) indicating if the IPs and the L4
ports have been reversed compared to the current packet 5-tuple.
Those information will be used during the lookup process to un-
derstand if the current packet is in the same direction as the one
originating the connection, or the opposite.
Lookup process. When a packet arrives to the Conntrack Label
module, it computes the key for the current packet according to the
previous formula and determines the ip reverse and port reverse �ags
as before. At this point it performs a lookup into the conntrack table
with this key; if the lookup succeeds, the new �ags are compared
with those saved in the conntrack table to detect which direction
the packet belongs to. For instance, if:

(currIpRev != IpRev) && (currPortRev != PortRev) (2)

we are dealing with the reverse packet related to the stored session;
this is used, e.g., to mark an existing TCP session as ESTABLISHED,
i.e., update its state from SYN_SENT to SYN_RCVD (Figure 5).
Stateful matching module. If at least one rule of the ruleset re-
quires a stateful match, bpf-iptables instantiates also the Con-
ntrack Match module within the classi�cation pipeline to �nd the
bitvector associated to the current label. While this module is
present only when the ruleset contains stateful rules, the two con-
nection tracking modules outside the classi�cation pipeline are
always present, as they have to track all the current connections in
order to be ready for state-based rules instantiated at a later time.
TCP state machine. A summary of the TCP state machine imple-
mented in the connection tracking module is shown in Figure 5.
The �rst state transition is triggered by a TCP SYN packet (all other
packets not matching that condition are marked with the INVALID
label); in this case, if the packet is accepted by the classi�cation
pipeline, the new state (i.e., SYN_SENT) is stored into the conntrack
table together with some additional �ow context information such
as the last seen sequence number, which is used to check the packet
before updating the connection state. Figure 5 refers to forward or
reverse packet (i.e., pkt or rPkt) depending on the initiator of the

START

SYN_SENT

Pkt: SYN
SEQ: pktSEQ
Label: NEW

SYN_RCVD

rPkt: SYN
rSEQ: pktSEQ
Label: ESTABLISHED

ESTABLISHEDFIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

LAST_ACK

Pkt/rPkt: *
Label: INVALID

Pkt: SYN
SEQ: pktSEQ
Label: NEW

Pkt/rPkt: *
Label: INVALID

Pkt: ACK
pktAck==rSEQ+1
Label: ESTABLISHED

rPkt: SYN,ACK
pktAck==SEQ+1
rSEQ: pktSEQ
Label: ESTABLISHED

Pkt/rPkt: FIN
SEQ/rSEQ: pktSEQ/rPktSEQ
Label: ESTABLISHED

rPkt/Pkt: ACK
(rpktAck==SEQ+1 ||
pktAck==rSEQ+1)

Label: ESTABLISHED

Pkt/rPkt: *
Label: ESTABLISHED

rPkt/Pkt: FIN
rSEQ/SEQ: rPktSEQ/pktSEQ
Label: ESTABLISHED

rPkt/Pkt: FIN,ACK
(rpktAck==SEQ+1 ||
pktAck==rSEQ+1)

Label: ESTABLISHED

Pkt/rPkt: ACK
(pktAck==rSEQ+1 ||
rPktAck==SEQ+1)

Label: ESTABLISHED

Pkt: *
Label: INVALID

Timeout or SYN

Figure 5: TCP state machine for bpf-iptables conntrack.
Grey boxes indicate the states saved in the conntrack table;
labels represent the value assigned by the �rst conntrack
module before the packet enters the classi�cation pipeline.

connection. Finally, when the connection reaches the TIME_WAIT
state, only a timeout event or a new SYN will trigger a state change.
In the �rst case the entry is deleted from the conntrack table, oth-
erwise the current packet direction is marked as forward and the
new state becomes SYN_SENT.
Conntrack Cleanup. bpf-iptables implements the cleanup of
conntrack entries in the control plane, where a dedicated thread
checks the presence of expired sessions. For this reason, the Con-
ntrack Update module updates the timestamp associated to session
each entry when a new packet is received. Since we noticed that
the usage of the bpf_ktime() helper to retrieve the current times-
tamp causes a non-negligible performance overhead, we store in a
dedicated per-CPU array the current time every second, which is
used by the data plane to timestamp the session entries. We are con-
�dent that a per-second precision is a reasonable trade-o� between
performance and accuracy for this type of application.

5 CONTROL PLANE
This Section describes the main operations of our control plane,
which are triggered whenever one of the following events occur.
Start-up. To behave as iptables, bpf-iptables has to intercept
all incoming and outgoing tra�c and handle it in its custom eBPF
pipeline. When started, bpf-iptables attaches a small eBPF redi-
rect program to the ingress (and egress) hook of each host’s interface

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

9

Algorithm 1 Pre-processing algorithm
Require: N , the list of �ltering rules
1: Extract K , the set of matching �elds used in N
2: for each ki 2 K do
3: bi # bit of �eld Ki
4: �i {ki , j | 8j  min (card (N), 2bi)} . set of distinct values
5: if 9 a wildcard rule 2 N for ki then
6: Add wildcard entry to �i
7: for each ki , j 2 �i do
8: bit�ectori , j [N] {0}
9: for each ni 2 N do
10: if ki , j ✓ ni then
11: bit�ectori , j [i] = 1

visible from the root namespace, as shown in Figure 2. This program
intercepts all packets �owing through the interface and calls the
�rst program of the bpf-iptables ingress or egress pipeline. This
enables the creation of a single processing pipeline that handles all
the packets, whatever interface they come from, as eBPF programs
attached to a NIC cannot be called from other interfaces. Finally,
bpf-iptables retrieves all local IP addresses active on any NIC
and con�gures them in the Chain Selector ; this initialization phase
is done by subscribing to the proper set of netlink events.
Netlink noti�cation. Whenever a new netlink noti�cation is
received, bpf-iptables checks if it relates to speci�c events in the
root namespace, such as the creation of an interface or the update
of an IP address. In the �rst case, the redirect program is attached
to the eBPF hook of the new interface, enabling bpf-iptables5 to
inspect its tra�c. In the second case, we update the list of local IPs
used in the Chain Selector with the new address.
Ruleset changes. When the user updates the ruleset, bpf-
iptables starts the execution of the pre-processing algorithm,
which calculates the value-bitvector pairs for each �eld; those val-
ues are then inserted in the new eBPF maps and the new programs
are created on the parallel chain. The pre-processing algorithm
(pseudo-code in Algorithm 1) works as follows. Let’s assume we
have a list of N packet �ltering rules that require exact or wildcard
matching on a set of K �elds; (i) for each �eld ki 2 K we extract
a set of distinct values �i = {ki ,1,ki ,2, ...,ki , j } with j  card(N)
from the current ruleset N ; (ii) if there are rules that require wild-
card matching for the �eld ki , we add an additional entry to the set
�i that represents the wildcard value; (iii) for each ki , j 2 �i we scan
the entire ruleset and if 8ni 2 N we have that ki , j ✓ ni then we set
the bit corresponding to the position of the rule ni in the bitvector
for the value ki , j to 1, otherwise we set the corresponding bit to
0. Repeating these steps for each �eld ki 2 K will allow to con-
struct the �nal value-bitvector pairs to be used in the classi�cation
pipeline.

The �nal step for this phase is to insert the generated values in
their eBPF maps. Each matching �eld has a default map; however,
bpf-iptables is also able to choose the map type at runtime, based
on the current ruleset values. For example, a LPM_TRIE is used as
default map for IP addresses, which is the ideal choice when a range

5There is a transition window between the reception of the netlink noti�cation and
the load of the redirect program, during which the �rewall is not yet active. As far as
the eBPF is concerned, this transition cannot be totally removed.

of IP addresses is used; however, if the current ruleset contains only
rules with �xed (/32) IP addresses, it changes the map into a HASH_-
TABLE, making the matching more e�cient. Before instantiating
the pipeline, bpf-iptables modi�es the behavior of every single
module by regenerating and recompiling the eBPF program that
best represents the current ruleset. When the most appropriate
map for a given �eld has been chosen, bpf-iptables �lls it with
computed value-bitvector pairs. The combination of eBPF map and
�eld type a�ects the way in which bpf-iptables represents the
wildcard rule. For maps such as the LPM_TRIE, used to match IP
addresses, the wildcard can be represented as the value 0.0.0.0/0,
which is inserted as any other value. On the other hand, for L4
source and destination ports, which use a HASH_MAP, bpf-iptables
instantiates the wildcard value as a variable hard-coded in the eBPF
program; when the match in the table fails, it will use the wildcard
variable as it was directly retrieved from the map.

Bpf-iptables adopts a variant of the previous algorithm for
�elds that have a limited number of possible values, where instead
of generating the set �i of distinct values for the �eld ki , it produces
all possible combinations for that value. The advantage is that (i)
it does not need to generate a separate bitvector for the wildcard,
being all possible combinations already contained within the map
and (ii) can be implemented with an eBPF ARRAY_MAP, which is
faster compared to other maps. An example is the processing of
TCP �ags; since the number of all possible values for this �eld is
limited (i.e., 28), it is more e�cient to expand the entire �eld with
all possible cases instead of computing exactly the values in use.

6 EVALUATION
6.1 Test environment
Setup. Our testbed includes a �rst server used as DUT running
the �rewall under test and a second used as packet generator (and
possibly receiver). The DUT encompasses an Intel Xeon Gold 5120
14-cores CPU @2.20GHz (hyper-threading disabled) with support
for Intel’s Data Direct I/O (DDIO) [21], 19.25 MB of L3 cache and
two 32GB RAMmodules. The packet generator is equipped with an
Intel® Xeon CPU E3-1245 v5 4-cores CPU @3.50GHz (8 cores with
hyper-threading), 8MB of L3 cache and two 16GB RAM modules.
Both servers run Ubuntu 18.04.1 LTS, with the packet generator
using kernel 4.15.0-36 and the DUT running kernel 4.19.0. Each
server has a dual-port Intel XL710 40Gbps NIC, each port directly
connected to the corresponding one of the other server.
Evaluationmetrics.Our tests analyze both TCP andUDP through-
put of bpf-iptables compared to existing (and commonly used)
Linux tools, namely iptables and nftables. TCP tests evaluate
the throughput of the system under “real” conditions, with all the
o�oading features commonly enabled in production environments.
Instead, UDP tests stress the capability of the system in terms of
packet per seconds, hence we use 64B packets without any o�oad-
ing capability. When testing bpf-iptables, we disabled all the
kernel modules related to iptables and nftables (e.g., x_tables,
nf_tables) and the corresponding connection tracking modules
(i.e., nf_conntrack and nft_ct). Although most of the evaluation
metrics are common among all tests, we provide additional details
on how the evaluation has been performed on each test separately.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

10

 0

 0.2

 0.4

 0.6

 0.8

 1

50 100 500 1000 5000

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

of rules

bpf-iptables iptables nftables

 0

 2

 4

 6

 8

 10

 12

50 100 500 1000 5000

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

of rules

bpf-iptables iptables nftables

Figure 6: Single 6(a) andmulti-core 6(b) comparisonwhen in-
creasing the number of loaded rules. Generated tra�c (64B
UDP packets) is uniformly distributed among all the rules.

Testing tools. UDP tests used Pktgen-DPDK v3.5.6 [14] and DPDK
v18.08 to generate tra�c, while for TCP tests we used either iperf
v2.0.10 or weighttp [3] v0.4 to generate a high number of new
parallel TCP connection towards the DUT, counting only the suc-
cessful completed connections [22]. Particularly, the latter reports
the actual capability of the server to perform real work.
Rulesets and Packet-traces.We used the same ruleset for all the
�rewalls under consideration. In particular, nftables rules have
been generated using the same rules loaded for bpf-iptables and
iptables but converted using iptables-translate [4]. Since syn-
thetic rulesets vary depending on the test under consideration, we
describe their content in the corresponding test’s section. Regard-
ing the generated tra�c, we con�gured Pktgen-DPDK to generate
tra�c that matches the con�gured rules; also in this case we discuss
the details in each test description.

6.2 System benchmarking
This Section evaluates the performance and e�ciency of individual
bpf-iptables components (e.g., conntrack, matching pipeline).

6.2.1 Performance dependency on the number of rules. This test
evaluates the performance of bpf-iptables with an increasing
number of rules, from 50 to 5k. We generated �ve synthetic rule-
sets with rules matching the TCP/IP 5-tuple and then analyzed
a �rst scenario in which rules are loaded on the FORWARD chain
(Section 6.2.2) and a second that involves the INPUT chain (Sec-
tion 6.2.3). In the �rst case, performance are in�uenced by both
the classi�cation algorithm and the TCP/IP stack bypass; in the
second case packets are delivered to a local application, hence the
performance are mainly in�uenced by the classi�cation algorithm.

6.2.2 Performance dependency on the number of rules (FORWARD
chain). This test loads all the rules in the FORWARD chain and the
DUT is con�gured as router in order to forward all tra�c received
from one interface to the other. The generated tra�c is uniformly
distributed among all the rules6, without any packet hitting the de-
fault rule. Since each rule is a 5-tuple, the number of TCP generated
�ows is equal to the number of rules.
Evaluation metrics. We report the UDP throughput (in Mpps)
averaged among 10 di�erent runs. This value is taken by adjusting
the sending rate not to exceed 1% packet loss. Single-core results

6We used a customized version of Pktgen-DPDK [25] to randomly generate packet for
a given range of IP addresses and L4 port values.

 0

 2

 4

 6

 8

 10

50 100 500 1000 5000T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

of rules

bpf-iptables iptables nftables

Figure 7: Performance of the INPUT chain with an increasing
number of rules. bpf-iptables runs on a single CPU core
and iperf on another core.

are taken by setting the interrupts mask of each ingress receive
queue to a single core, while multi-core performance represent the
standard case where all the available cores in the DUT are used.
Results. Figure 6(a) and 6(b) show respectively the single-core and
multi-core forwarding performance results. We can notice from
Figure 6(a) how bpf-iptables outperforms iptables by a factor
of two even with a small number of rules (i.e., 50); this gap is even
larger with nftables, which is almost 5 times slower in the same
conditions. The advantage of bpf-iptables is even more evident
with more rules; the main performance bottleneck is the scanning
of the entire bitvector in order to �nd the �nal matching rule, whose
size depends on the number of rules (Section 4.4). Finally, Figure 6(b)
shows how bpf-iptables scale across multiple cores; the maxi-
mum throughput is achieved with 1K rules since the number of
generated �ows with a smaller number of rules is not enough to
guarantee uniform processing across multiple cores (due to the
RSS/RFS feature of the NIC), with a resulting lower throughput.

6.2.3 Performance dependency on the number of rules (INPUT
chain). This test loads all the rules in the INPUT chain; tra�c tra-
verses the �rewall and terminates on a local application, hence
following the same path through the TCP/IP stack for all the �re-
walls under testing. As consequence, any performance di�erence
is mainly due to the di�erent classi�cation algorithms. We used
iperf to generate UDP tra�c (using its default packet size for UDP)
toward the DUT, where the default accept policy causes all packet
to be delivered to the local iperf server, where we compute the �-
nal throughput. To further stress the �rewall, we used eight parallel
iperf clients to generate the tra�c, saturating the 40Gbps link.
Evaluation metrics. We report the UDP throughput (in Gbps)
among 10 di�erent runs; we forced the �rewall to run on a single
core, while the iperf server runs on a di�erent core.
Results. Figure 7 shows how bpf-iptables perform better than
the other �rewalls, with an increasing gap with larger rulesets.
However, the advantage with a low number of rules is smaller com-
pared to the previous case; in fact, in this scenarios, bpf-iptables
cannot avoid the cost of passing through the TCP/IP stack (and the
allocation of the sk_buff). Therefore its performance advantage is
given only by the di�erent classi�cation algorithm, which is more
evident when the number of rules grows. However, it is impor-
tant to note that in case of DROP rules, bpf-iptables discards the
packets far before they reach the local application, with a sensible
performance advantage thanks to the early processing of XDP.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

11

 0

 2

 4

 6

 8

 10

 12

 14

IPSrc +IPDst +L4Proto +L4SrcPort +L4DstPortT
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Rules fields

bpf-iptables iptables nftables

Figure 8: Multi-core performance comparisonwhen varying
the number of �elds in the rulesets. Generated tra�c (64B
UDP packets) is uniformly distributed among all the rules.

6.2.4 Performance dependency on the number of matching fields.
Since the bpf-iptablesmodular pipeline requires a separate eBPF
program (hence an additional processing penalty) for eachmatching
�eld, this test evaluates the throughput of bpf-iptables when
increasing the number of matching �elds in the deployed rules in
order to characterize the (possible) performance degradation when
operating on a growing number of protocol �elds.
Ruleset.We generated �ve di�erent rulesets with a �xed number
of rules (i.e., 1000) and with an increasing complexity that goes
from matching only the srcIP address to the entire 5-tuple. All the
rules have been loaded in the FORWARD chain and have the ACCEPT
action, while the default action of the chain is DROP.
Test setup and evaluation metrics. Same as Section 6.2.2.
Results. Results in Figure 8 show that iptables performs almost
the same independently on the complexity of the rules; this is
expected given that is cost is dominated by the number of rules.
Results for bpf-iptables are less obvious. While, in the general
case, increasing the number of �elds corresponds to a decrease in
performance (e.g., rules operating on the 5-tuple show the lowest
throughput), this is not always true, with the �rst four columns
showing roughly the same value and the peak observed when
operating on two �elds. In fact, the performance of bpf-iptables
are in�uenced also by the type of �eld and number of values for each
�eld. For instance, the matching against IP addresses requires, in
the general case, a longest pre�x match algorithm; as consequence,
bpf-iptables uses an LPM_TRIE, whose performance depend on
the number of distinct values. In this case, a single matching on
a bigger LPM_TRIE results more expensive than two matches on
two far smaller LPM_TRIE, which is the case when rules operate
on both IP source and destination addresses7.

6.2.5 Connection Tracking Performance. This test evaluates the
performance of the connection tracking module, which enables
stateful �ltering. We used TCP tra�c to stress the rather complex
state machine of that protocol (Section 4.5) by generating a high
number of new connections per second, taking the number of suc-
cessfully completed sessions as performance indicator.
Test setup. In this test weighttp [3] generated 1MHTTP requests
towards the DUT, using an increasing number of concurrent clients
to stress the connection tracking module. At each request, a �le of
100 byte is returned by the nginx web server running in the DUT.
7First ruleset had 1000 rules, all operating on source IP addresses. Second ruleset used
#50 distinct srcIPs and #20 distinct dstIPs, resulting again in 1000 rules.

 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

 0 200 400 600 800 1000

#
 k

re
q

/s

clients

iptables
nftables
bpf-iptables

(a) NIC interrupts set to a single core;
nginx running on the remaining ones.

 40
 60
 80

 100
 120
 140
 160

 180
 200
 220

 0 200 400 600 800 1000

#
 k

re
q

/s

clients

iptables
nftables

bpf-iptables

(b) NIC interrupts are set to all the cores;
nginx running without any restrictions.

Figure 9: Connection tracking with an increasing number of
clients (number of successfully completed requests/s).

Once the request is completed, the current connection is closed and
a new connection is created. This required to increase the limit of
1024 open �le descriptors per process imposed by Linux in order to
allow the sender to generate a larger number of new requests per
second and to enable the net.ipv4.tcp_tw_reuse �ag to reuse
sessions in TIME_WAIT state in both sender and receiver machines8.
Ruleset. This ruleset is made by three rules loaded in the INPUT
chain, hence operating only on packets directed to a local applica-
tion. The �rst rule accepts all packets belonging to an ESTABLISHED
session; the second rule accepts all the NEW packets coming from
the outside and with the TCP destination port equal to 80; the last
rule drops all the other packets coming from outside.
Evaluation metrics.We measure the number of successfully com-
pleted requests; in particular, weighttp increments the above num-
ber only if a request is completed within 5 seconds.
Results. bpf-iptables scores better in both single-core and multi-
core tests, with iptables performing from 5 to 3% less and
nftables being down from 7 to 10%, as shown in Figures 9(a)
and 9(b). However, for the sake of precision, the connection track-
ing module of bpf-iptables does not include all the features sup-
ported by iptables and nftables (Section 4.5). Nevertheless, we
remind that this logic can be customized at run-time to �t the ne-
cessity of the particular running application, including only the
required features, without having to update the Linux kernel.

6.3 Common use cases
In this set of tests we analyzed some scenarios that are common in
enterprise environments, such as (i) protecting servers in a DMZ,
and (ii) performance under DDoS attack.

6.3.1 Enterprise public servers. This test mimics the con�guration
of an enterprise �rewall used as front-end device, which controls
the tra�c directed to a protected network (e.g., DMZ) that hosts a
set of servers that must be reachable from the outside world. We
increase the number of public servers that needs to be protected,
hence tests were repeated with di�erent number of rules.
Ruleset. The �rst rule accepts all the ESTABLISHED connections
towards the protected network; then, a set of rules accept NEW con-
nections generated by the servers in the protected network toward
the outside world; the latest set of rules enable the communication

8We also tuned some parameters (e.g., max backlog, local port range) in order to reduce
the overhead of the web server.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

12

 0

 2

 4

 6

 8

 10

 12

50 100 500 1000 5000

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

of rules

bpf-iptables iptables nftables

Figure 10: Throughput when protecting a variable number
of services within a DMZ. Multi-core tests with UDP 64B
packets, bidirectional �ows.

towards the services exposed in the protected network by match-
ing on the destination IP, protocol and L4 port destination of the
incoming packets. Among the di�erent runs we used an increasing
number of rules ranging from 50 to 5K, depending on the number
of public services that are exposed to the outside world.
Test setup. All the rules are loaded in the FORWARD chain and the
tra�c is generated so that the 90% is evenly distributed among all
the rules and the 10% matches the default DROP rule. The packet
generator is connected to the DUT through two interfaces, simulat-
ing a scenario where the �rewall is between the two (public and
protected) networks. When tra�c belonging to a speci�c �ow is
seen in both directions, the session is considered ESTABLISHED and
then will match the �rst rule of the ruleset.
Evaluation metrics. The test has been repeated 10 times; results
report the throughput in Mpps (for 64B UDP packets).
Results. bpf-iptables outperforms existing solutions thanks to
the optimized path for the FORWARD chain, which transparently
avoids the overhead of the Linux TCP/IP stack, as shown in Fig-
ure 10. In addition, its throughput is almost independent from the
number of rules thanks to the optimization on the ESTABLISHED
connections (Section 4.4.2), which avoids the overhead of the classi�-
cation pipeline if the conntrack module recognizes an ESTABLISHED
connection that should be accepted. Even if iptables would also
bene�t from the fact that most packets match the �rst rule, hence
making the linear search faster, the overall performance in Figure 10
show a decrease in throughput when the number of rules in the
ruleset grows. This is primarily due to the overhead to recognize
the tra�c matching the default rule (DROP in our scenario), which
still requires to scan (linearly) the entire ruleset.

6.3.2 Performance under DDoS A�ack. This tests evaluates the per-
formance of the system under DDoS attack. We analyzed also two
optimized con�gurations of iptables and nftables that make use
of ipset and sets commands, which ensures better performance
when matching an entry against a set of values.
Ruleset. We used a �xed set of rules (i.e., 1000) matching on IP
source, protocol and L4 source port, DROP action. Two additional
rules involve the connection tracking to guarantee the reachability
of internal servers; (i) accepts all the ESTABLISHED connections and
(ii) accepts all the NEW connection with destination L4 port 80.
Test setup and evaluation metrics. The packet generator sends
64Bytes UDP packets towards the server with the same set of source
IP addresses and L4 ports con�gured in the blacklisted rules. DDoS

 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000

 0 5 10 15 20 25 30 35 40

H
T

T
P

 r
e

q
/s

DDoS Traffic (Mpps)

bpf-iptables
iptables
nftables

ipset
nft-set

Figure 11:Multi-core performance under DDoS attack. Num-
ber of successfulHTTP requests/s under di�erent load rates.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

FORWARD Chain

U
D

P
 T

h
ro

u
g

h
p

u
t

(M
p

p
s

)

INPUT Chain
 0

 1000

 2000

 3000

 4000

 5000

 6000

H
T

T
P

 r
e

q
/s

bpf-iptablesiptablesnftables

Figure 12: Performancewith single default ACCEPT rule (base-
line). Left: UDP tra�c, 64B packets matching the FORWARD
chain. Right: number of HTTP requests/s (downloading a
1MB web page), TCP packets matching the INPUT chain.

tra�c is sent on a �rst port connected to the DUT, while a weighttp
client sends tra�c on a second port, simulating a legitimate tra�c
towards a nginx server running in the DUT. Weighttp generates
1M HTTP requests using 1000 concurrent clients; we report the
number of successfully completed requests/s, with a timeout of
5 seconds, varying the rate of DDoS tra�c.
Results. Figure 11 shows that the performance of bpf-iptables,
ipset and nft-set are similar for of low-volume DDoS attacks;
iptables and nftables are slightly worse because of their inferior
matching algorithm. However, with higher DDoS load (> 8Mpps),
the performance of ipset and nft-set drop rapidly and the server
becomes unresponsive, with almost no requests served; iptables
and nftables are evenworse (zero goodput at 2.5Mpps). Vice versa,
thanks to its matching pipeline at the XDP level, bpf-iptables
can successfully sustain ~95.000 HTTP requests/s of legitimate
tra�c when the DDoS attack rate is more than 40Mpps, i.e., ~60%
of the maximum achievable load. Higher DDoS load was not tested
because of a limitation of our tra�c generator.

6.4 Microbenchmarks
6.4.1 Baseline performance. This test analyzes the overhead of
bpf-iptables on a vanilla system, without any �rewall rule. This
represents the most favorable case for iptables where cost grows
linearly with the number of rules, while bpf-iptables has to pay
the cost of some programs at the beginning of the pipeline that must
be always active, such as the connection tracking and the logic that
applies the default action to all packets (i.e., ALLOW). The left side of
Figure 12 shows the performance of bpf-iptables, iptables and

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

13

Table 1: Comparison of the time required to append the (n +
1)th in the ruleset (ms).

rules ipt nft
bpf-iptables HORUS
t11 t22 t33 tH14 tH25

0 15 31 0.15 1165 0.34 382 0.0024
50 15 34 2.53 1560 0.36 1.08 0.0026
100 15 35 5.8 1925 0.35 2.06 0.0026
500 16 36 17 1902 0.34 8.60 0.0027
1000 17 69 33.4 1942 0.34 14.4 0.0027
5000 28 75 135 2462 0.38 37.3 0.0031

1 Time required to compute all the bitvectors-pairs.
2 Time required to create and load the new chain.
3 Time required to remove the old chain.
4 Time required to identify the rules belonging to a HORUS set.
5 Time required to insert the new rule in the HORUS set.

nftableswhen the tra�c (64B UDP packets) traverses the FORWARD
chain. This case shows a considerable advantage of bpf-iptables
thanks to its optimized forwarding mechanism (Section 4.4.2). The
situation is slightly di�erent when the tra�c hits the INPUT chain
(Figure 12, right). In fact, in such case the packets has to follow the
usual path towards the stack before reaching the local application,
with no chance to shorten its journey. While bpf-iptables does
not show the advantages seen in the previous case, it does not show
any worsening either, hence demonstrating that the overhead of
the running components is de�nitely limited.

6.4.2 Rules insertion time. The LBVS matching algorithm requires
the update of the entire pipeline each time the ruleset changes
(Section 4.4.3). This test evaluates the time required to insert the
(n + 1)th rule when the ruleset already contains n rules; in case of
iptables and nft, this has been measured by computing the time
required to execute the corresponding userspace tool. Results, pre-
sented in Table 1, show that both iptables and nftables are very
fast in this operation, which completes in some tens of milliseconds;
bpf-iptables, instead, requires a far larger time (varying from
1 to 2.5s with larger rulesets). To understand the reason of this
higher cost, we exploded the bpf-iptables rules insertion time
in three di�erent parts. Hence, t1 indicates the time required by
the bpf-iptables control plane to compute all the value-bitvector
pairs for the current ruleset. Instead, t2 indicates the time required
to compile and inject the new eBPF classi�cation pipeline in the
kernel; during this time, bpf-iptables continues to process the
tra�c according to the old ruleset, with the swapping performed
only when the new pipeline is ready9. Finally, t3 is the time re-
quired to delete the old chain, which has no impact on the user
experience as the new pipeline is already �ltering tra�c after t2.

Finally, the last column of Table 1 depicts the time required to
insert a rule handled by HORUS (Section 4.4.2). Excluding the �rst
entry of this set that requires to load the HORUS eBPF program, all

9Since time t2 depends on the number of matching �elds required by each rule
(bpf-iptables instantiates the minimum set of eBPF programs necessary to handle
the current con�guration), numbers in Table 1 take into account the worst case where
all the rules require matching on all the supported �elds.

 0

 5

 10

 15

 20

 25

 30

 35

 40

bpf-iptablesT
C

P
 T

h
ro

u
g

h
p

u
t

(G
b

p
s

)

XDP INGRESS

TC INGRESS

Figure 13: TCP throughput when the bpf-iptables ingress
pipeline (with zero rules) is executed on either XDP or TC
ingress hook; bpf-iptables running on a single CPU core;
iperf running on all the other cores.

the other entries are inserted in the HORUS set within an almost
negligible amount of time (tH2). Instead, the detection if the new
rule belongs to an HORUS set takes more time (tH1 ranges from 1
to 40ms), but this can be de�nitely reduced with a more optimized
algorithm.

6.4.3 Ingress pipeline: XDP vs. TC. bpf-iptables attaches its
ingress pipeline on the XDP hook, which enables tra�c processing
as early as possible in the Linux networking stack. This is par-
ticularly convenient when the packet matches the DROP action or
when we can bypass the TCP/IP stack and forward immediately the
packet to the �nal destination (optimized forwarding, Section 4.4.2).
However, when an eBPF program is attached to the XDP hook, the
Generic Receive O�oad10 feature on that interface is disabled; as a
consequence, we may incur in higher processing costs in presence
of large TCP incoming �ows. Results in Figure 13, which refer to
a set of parallel TCP �ows between the tra�c generator and the
DUT, with a void INPUT chain and the default ACCEPT action, show
clearly how the XDP ingress pipeline pays a higher cost compared
to TC, which easily saturates our 40Gbps link11. This higher cost
is given by the larger number of (small) packets to be processed
by bpf-iptables because of the lack of GRO aggregation; it is
important to note that this cost is not present if TCP data exits from
the server (outgoing tra�c), which is a far more common scenario.

7 ADDITIONAL DISCUSSION
Although one of the main assumption of our work was to rely on
a vanilla Linux kernel (Section 2.4), as a possible future work we
present here a set of viable kernel modi�cations that are compatible
with bpf-iptables and that may enable new optimizations.
New kernel hooks. Being based on eBPF, bpf-iptables uses a
di�erent set of hooks compared to the ones used by the netfilter
subsystem (Section 2.1). This introduces the need to predict, in a
preceding eBPF hook, some decisions that would be performed
only later in the Linux stack. A possible alternative consists in
adding new eBPF hooks that operate in netfilter, hence enabling
the replacement of selected portions of the above framework that
su�er more in terms of performance (e.g., iptables classi�ca-
tion pipeline), while reusing existing and well-tested code (e.g.,
10Generic Receive O�oad (GRO) is a software-based o�oading technique that reduces
the per-packet processing overhead by reassembling small packets into larger ones.
11To avoid TCP and application-level processing to become the bottleneck, we set all
the NIC interrupts to a single CPU core, on which bpf-iptables has to be executed,
while iperf uses all the remaining ones.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

14

netfilter conntrack). Although this would be the most suitable
choice for a 100% iptables-compatible eBPF-based �rewall, on
the other side it would unavoidably limit the overall performance
of the system. In fact, this would set the baseline performance
of bpf-iptables to the one of the corresponding TCP/IP stack
layer, because of the large amount of code shared between the two
approaches and the impossibility to leverage earlier processing
provided by the XDP hook. Moreover, the early packet steering
provided by XDP enables also the creation of the exact processing
pipeline that is required in any given moment in time, instantiating
only the proper eBPF modules. This would avoid any source of
overhead in the processing path of a packet, which would not be
possible in case existing kernel stack components are used.
New eBPF helpers. Adding new eBPF helpers is de�nitely a suit-
able direction, in particular with respect to our eBPF conntrack
(Section 4.5) that is far from complete and supports only basic
scenarios. A dedicated helper would enable a more complete imple-
mentation without having to deal with the well-known limitations
of eBPF programs (e.g., number of instructions, loops). A similar
helper that reused the netfilter connection tracking was pro-
posed in [36], which was at the foundation of an alternative version
of bpf-iptables [26]. However, based on the above prototype, we
would suggest a custom implementation of the conntrack module
in order to be independent from the network stack; the above im-
plementation assumed the use of sk_buff structure and hence was
available only to eBPF programs attached to the TC hook.
Improve eBPF internals. One of the biggest limitation of the
eBPF subsystem that we faced in this work is the maximum number
of allowed instructions, currently constrained to 4K, which lim-
ited the maximum number of supported rules to ~8K (Section 4.4,
without HORUS). In this respect, the extension of the eBPF veri-
�er to support bounded loops would be extremely helpful. How-
ever, even though some proposal have been made in this direction
(e.g., [15]) the community has to yet found a consensus on how
to proceed [11]. A shortcut to this problem is a recent patch [35]
that introduced the support for larger eBPF programs up to one
million12; bpf-iptables can bene�t from this modi�cation, which
would increase the number of supported rules without any change
in the overall design of the system.

8 CONCLUSIONS
This paper presents bpf-iptables, an eBPF-based Linux �rewall
designed to preserve the iptables �ltering semantic while improv-
ing its speed and scalability, in particular when a high number of
rules are used. Being based on eBPF, bpf-iptables is able to take
advantage of the characteristics of this technology, such as the dy-
namic compilation and injection of the eBPF programs in the kernel
at run-time in order to build an optimized data-path based on the ac-
tual �rewall con�guration. The tight integration of bpf-iptables
with the Linux kernel may represent a great advantage over other
solutions (e.g., DPDK) because of the possibility to cooperate with
the rest of the kernel functions (e.g., routing) and the other tools of
the Linux ecosystem. Furthermore, bpf-iptables does not require
custom kernel modules or additional software frameworks that
could not be allowed in some scenarios such as public data-centers.

12This value indicates the number of instructions processed by the veri�er.

Bpf-iptables guarantees a huge performance advantage com-
pared to existing solutions, particularly in case of an high number of
�ltering rules; furthermore, it does not introduce undue overheads
in the system when no rules are instantiated, even though in some
cases the use of XDP on the ingress hook could hurt the overall
performance of the system. Existing eBPF limitations have been
circumvented with ad-hoc engineering choices (e.g., classi�cation
pipeline) and clever optimizations (e.g., HORUS), which guarantee
further scalability and fast update time.

On the other hand, currently bpf-iptables supports only a
subset of the features available in netfilter-based �rewalls. For
instance, iptables is often used to also handle natting functions,
which we have not considered in this paper, as well as the features
available in ebtables and arptables. Those functionality, together
with the support for additional matching �elds are considered as
possible direction for our future work.

9 ACKNOWLEDGEMENT
We would like to thank the many people who contributed to this
work, among the others Pere Monclus, Aasif Shaikh, Massimo Tu-
molo and the anonymous reviewers for their thoughtful feedback
which greatly improved this paper. Our thanks also to VMware and
the European Commission (project ASTRID, Grant Agreement no.
786922), which partially funded this project.

REFERENCES
[1] BCC Authors. 2016. HTTP Filter. https://github.com/iovisor/bcc/tree/master/

examples/networking/http_�lter [Online; last-retrieved 15-November-2018].
[2] Cilium Authors. 2018. BPF and XDP Reference Guide. https://cilium.readthedocs.

io/en/latest/bpf/ [Online; last-retrieved 29-March-2019].
[3] Lighttpd authors. 2018. weighttp: a lightweight and simple webserver bench-

marking tool. https://redmine.lighttpd.net/projects/weighttp/wiki [Online;
last-retrieved 10-November-2018].

[4] Net�lter Authors. 2018. Moving from iptables to nftables. https://wiki.nftables.
org/wiki-nftables/index.php/Moving_from_iptables_to_nftables [Online; last-
retrieved 10-October-2018].

[5] Pablo Neira Ayuso. 2018. [PATCH RFC PoC 0/3] nftables meets bpf. https:
//www.mail-archive.com/netdev@vger.kernel.org/msg217425.html [Online; last-
retrieved 29-March-2019].

[6] David Beckett. 2018. Hello XDP_DROP. https://www.netronome.com/blog/
hello-xdp_drop/ [Online; last-retrieved 15-November-2018].

[7] D. Borkmann. 2018. net: add bp�lter. https://lwn.net/Articles/747504/ [Online;
last-retrieved 30-June-2018].

[8] Jesper Dangaard Brouer. 2018. XDP Drivers. https://prototype-kernel.
readthedocs.io/en/latest/networking/XDP/implementation/drivers.html [Online;
last-retrieved 18-September-2018].

[9] Jesper Dangaard Brouer and Toke Høiland-Jørgensen. 2018. XDP: challenges and
future work. In LPC’18 Networking Track. Linux Plumbers Conference.

[10] J. Corbet. 2009. Nftables: a new packet �ltering engine. https://lwn.net/Articles/
324989 [Online; last-retrieved 30-June-2018].

[11] Jonathan Corbet. 2018. Bounded loops in BPF programs. https://lwn.net/Articles/
773605/ [Online; last-retrieved 29-March-2019].

[12] Jonathan Corbet. 2018. BPF comes to �rewalls. https://lwn.net/Articles/747551/
[Online; last-retrieved 29-March-2019].

[13] James Daly and Eric Torng. 2017. TupleMerge: Building Online Packet Classi�ers
by Omitting Bits. In 2017 26th International Conference on Computer Communica-
tion and Networks (ICCCN). IEEE, 1–10.

[14] DPDK. 2018. Pktgen Tra�c Generator Using DPDK. http://dpdk.org/git/apps/
pktgen-dpdk

[15] John Fastabend. 2018. Bpf, bounded loop support work in progress. https:
//lwn.net/Articles/756284/ [Online; last-retrieved 29-March-2019].

[16] Matt Fleming. 2017. A thorough introduction to eBPF. https://lwn.net/Articles/
740157/

[17] T. Graf. 2018. Why is the kernel community replacing iptables with BPF? https:
//cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables
[Online; last-retrieved 30-June-2018].

[18] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

15

https://github.com/iovisor/bcc/tree/master/examples/networking/http_filter
https://github.com/iovisor/bcc/tree/master/examples/networking/http_filter
https://cilium.readthedocs.io/en/latest/bpf/
https://cilium.readthedocs.io/en/latest/bpf/
https://redmine.lighttpd.net/projects/weighttp/wiki
https://wiki.nftables.org/wiki-nftables/index.php/Moving_from_iptables_to_nftables
https://wiki.nftables.org/wiki-nftables/index.php/Moving_from_iptables_to_nftables
https://www.mail-archive.com/netdev@vger.kernel.org/msg217425.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg217425.html
https://www.netronome.com/blog/hello-xdp_drop/
https://www.netronome.com/blog/hello-xdp_drop/
https://lwn.net/Articles/747504/
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/drivers.html
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/drivers.html
https://lwn.net/Articles/324989
https://lwn.net/Articles/324989
https://lwn.net/Articles/773605/
https://lwn.net/Articles/773605/
https://lwn.net/Articles/747551/
http://dpdk.org/git/apps/pktgen-dpdk
http://dpdk.org/git/apps/pktgen-dpdk
https://lwn.net/Articles/756284/
https://lwn.net/Articles/756284/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables

Data Path: Fast Programmable Packet Processing in the Operating System Ker-
nel. In Proceedings of the 14th International Conference on Emerging Networking
EXperiments and Technologies (CoNEXT ’18). ACM, New York, NY, USA, 54–66.
https://doi.org/10.1145/3281411.3281443

[19] Docker Inc. 2018. Docker. https://www.docker.com/ [Online; last-retrieved
30-June-2018].

[20] Facebook Inc. 2018. Kubernetes: Production-Grade Container Orchestration.
https://kubernetes.io/ [Online; last-retrieved 30-June-2018].

[21] Intel(R). 2018. Intel® Data Direct I/O Technology. https://www.intel.it/
content/www/it/it/io/data-direct-i-o-technology.html [Online; last-retrieved
09-November-2018].

[22] József Kadlecsik and György Pásztor. 2004. Net�lter performance testing. (2004).
[23] T. V. Lakshman and D. Stiliadis. 1998. High-speed Policy-based Packet Forwarding

Using E�cient Multi-dimensional Range Matching. SIGCOMMComput. Commun.
Rev. 28, 4 (Oct. 1998), 203–214. https://doi.org/10.1145/285243.285283

[24] Charles E Leiserson, Harald Prokop, and Keith H Randall. 1998. Using de Bruijn
sequences to index a 1 in a computer word. Available on the Internet from
http://supertech. csail. mit. edu/papers. html 3 (1998), 5.

[25] Sebastiano Miano. 2018. Custom Pktgen-DPDK version. https://github.com/
sebymiano/pktgen-dpdk

[26] Sebastiano Miano. 2019. eBPF Iptables with Net�lter conntrack. https://github.
com/sebymiano/polycube/tree/iptables_linux_conntrack

[27] S. Miano, M. Bertrone, F. Risso, M. Vásquez Bernal, and M. Tumolo. 2018. Creating
Complex Network Service with eBPF: Experience and Lessons Learned. In High
Performance Switching and Routing (HPSR). IEEE.

[28] Thomas Heinz Michael Bellion. 2002. NF-HIPAC: High Performance Packet
Classi�cation for Net�lter. https://lwn.net/Articles/10951/

[29] Yaxuan Qi, Lianghong Xu, Baohua Yang, Yibo Xue, and Jun Li. 2009. Packet
classi�cation algorithms: From theory to practice. In INFOCOM 2009, IEEE. IEEE,
648–656.

[30] P. Russell. 1998. The net�lter.org project. https://net�lter.org/ [Online; last-
retrieved 30-June-2018].

[31] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. 2003. Packet
Classi�cation Using Multidimensional Cutting. In Proceedings of the 2003 Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM ’03). ACM, New York, NY, USA, 213–224. https:
//doi.org/10.1145/863955.863980

[32] V. Srinivasan, S. Suri, and G. Varghese. 1999. Packet Classi�cation Using Tuple
Space Search. SIGCOMM Comput. Commun. Rev. 29, 4 (Aug. 1999), 135–146.
https://doi.org/10.1145/316194.316216

[33] Venkatachary Srinivasan, George Varghese, Subhash Suri, and Marcel Waldvogel.
1998. Fast and scalable layer four switching. Vol. 28. ACM.

[34] Alexei Starovoitov. 2014. net: �lter: rework/optimize internal BPF interpreter’s
instruction set. In Linux Kernel, commit bd4cf0ed331a.

[35] Alexei Starovoitov. 2019. bpf: improve veri�er scalability. https://patchwork.
ozlabs.org/cover/1073775/ [Online; last-retrieved 02-April-2019].

[36] William Tu. 2017. [iovisor-dev] [PATCH RFC] bpf: add connection track-
ing helper functions. https://lists.linuxfoundation.org/pipermail/iovisor-dev/
2017-September/001023.html [Online; last-retrieved 30-March-2019].

[37] Balajee Vamanan, Gwendolyn Voskuilen, and TN Vijaykumar. 2011. E�Cuts:
optimizing packet classi�cation for memory and throughput. ACM SIGCOMM
Computer Communication Review 41, 4 (2011), 207–218.

[38] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. 2010. E�Cuts:
Optimizing Packet Classi�cation for Memory and Throughput. SIGCOMM Com-
put. Commun. Rev. 40, 4 (Aug. 2010), 207–218. https://doi.org/10.1145/1851275.
1851208

[39] Nic Viljoen. 2018. BPF, eBPF, XDP and Bp�lter...What are These Things andWhat
do They Mean for the Enterprise? https://goo.gl/GHaJTz [Online; last-retrieved
15-November-2018].

[40] J. Wallen. 2015. An Introduction to Uncomplicated Firewall (UFW). https:
//www.linux.com/learn/introduction-uncomplicated-�rewall-ufw [Online; last-
retrieved 30-June-2018].

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

16

https://doi.org/10.1145/3281411.3281443
https://www.docker.com/
https://kubernetes.io/
https://www.intel.it/content/www/it/it/io/data-direct-i-o-technology.html
https://www.intel.it/content/www/it/it/io/data-direct-i-o-technology.html
https://doi.org/10.1145/285243.285283
https://github.com/sebymiano/pktgen-dpdk
https://github.com/sebymiano/pktgen-dpdk
https://github.com/sebymiano/polycube/tree/iptables_linux_conntrack
https://github.com/sebymiano/polycube/tree/iptables_linux_conntrack
https://lwn.net/Articles/10951/
https://netfilter.org/
https://doi.org/10.1145/863955.863980
https://doi.org/10.1145/863955.863980
https://doi.org/10.1145/316194.316216
https://patchwork.ozlabs.org/cover/1073775/
https://patchwork.ozlabs.org/cover/1073775/
https://lists.linuxfoundation.org/pipermail/iovisor-dev/2017-September/001023.html
https://lists.linuxfoundation.org/pipermail/iovisor-dev/2017-September/001023.html
https://doi.org/10.1145/1851275.1851208
https://doi.org/10.1145/1851275.1851208
https://goo.gl/GHaJTz
https://www.linux.com/learn/introduction-uncomplicated-firewall-ufw
https://www.linux.com/learn/introduction-uncomplicated-firewall-ufw

A APPENDIX
We aim at making our bpf-iptables prototype available so that
anyone can use it and experiment the power of our eBPF based �re-
wall. In this respect, it is worth remembering that the performance
characterization requires a careful prepared setup, including tra�c
generators and proper hardware devices (server machines, NICs).

To facilitate the access and execution of bpf-iptables, we cre-
ated a Docker image containing all the instructions necessary to
run the executable, which can be used to replicate the results de-
scribed in this paper. The Docker image is hosted on a DockerHub
repository and can be downloaded with the following command:
$ docker p u l l n e t g r o u pp o l i t o / bpf� i p t a b l e s : l a t e s t

Once downloaded, the image can be executed with the un-
derlying command, which will print a detailed description on
the terminal containing all the information necessary to execute
bpf-iptables and how to use it.
$ docker run � i t n e t g r o u pp o l i t o / bpf� i p t a b l e s
Rulesets. The rulesets and the scripts used for the evaluation are
also shipped inside the Docker image and can be found inside the
directory tests of the container.
Moreover, all the instructions needed to replicate the results of the
paper are available in this repository:
$ g i t hub . com / netgroup � p o l i t o / bpf� i p t a b l e s � t e s t s
Finally, if the users want to try the prototype without the setup
needed to replicate the results of the paper, a comprehensive docu-
mentation is available at this URL:
$ h t t p s : / / g i t hub . com / polycube �network / po lycube /

/ b l ob / mas ter / Documentat ion / components / i p t a b l e s /
/ pcn� i p t a b l e s . r s t

Source code. This software project is available at this URL:
$ g i t hub . com / polycube �network / po lycube

ACM SIGCOMM Computer Communication Review Volume 49 Issue 3, July 2019

17

	Abstract
	1 Introduction
	2 Design challenges and assumptions
	2.1 Guaranteeing filtering semantic
	2.2 Efficient classification algorithm in eBPF
	2.3 Support for stateful filters (conntrack)
	2.4 Working with upstream Linux kernel

	3 Overall architecture
	4 Data plane
	4.1 Header Parser
	4.2 Chain Selector
	4.3 Matching algorithm
	4.4 Classification Pipeline
	4.5 Connection Tracking

	5 Control plane
	6 Evaluation
	6.1 Test environment
	6.2 System benchmarking
	6.3 Common use cases
	6.4 Microbenchmarks

	7 Additional Discussion
	8 Conclusions
	9 Acknowledgement
	References
	A Appendix

