
Mind the gap: Robotic Mission Planning Meets Software
Engineering

Mehrnoosh Askarpour

mehrnoosh.askarpour@polimi.it

Politecnico di Milano

Milan, Italy

Claudio Menghi

claudio.menghi@uni.lu

University of Luxembourg

Luxembourg, Luxembourg

Gabriele Belli

gabriele.belli@alten.it

Alten

Torino, Italy

Marcello M. Bersani

marcellomaria.bersani@polimi.it

Politecnico di Milano

Milan, Italy

Patrizio Pelliccione

patrizio.pelliccione@univaq.it

Chalmers | University of Gothenburg

and University of L’Aquila

ABSTRACT
In the context of robotic software, the selection of an appropriate

planner is one of the most crucial software engineering decisions.

Robot planners aim at computing plans (i.e., blueprint of actions)

to accomplish a complex mission. While many planners have been

proposed in the robotics literature, they are usually evaluated on

showcase examples, making hard to understand whether they can

be effectively (re)used for realising complex missions, with hetero-

geneous robots, and in real-world scenarios.

In this paper we propose ENFORCE, a framework which allows

wrapping FM-based planners into comprehensive software engi-

neering tools, and considers complex robotic missions. ENFORCE

relies on (i) realistic maps (e.g, fire escape maps) that describe the

environment in which the robots are deployed; (ii) temporal logic

for mission specification; and (iii) Uppaal model checker to compute

plans that satisfy mission specifications. We evaluated ENFORCE

by analyzing how it supports computing plans in real case scenar-

ios, and by evaluating the generated plans in simulated and real

environments. The results show that while ENFORCE is adequate

for handling single-robot applications, the state explosion still rep-

resents a major barrier for reusing existing planners in multi-robot

applications.

KEYWORDS
Planning, Robotics, Formal Methods, Timed Automaton, Temporal

Logic, Model Checking, Uppaal

ACM Reference Format:
Mehrnoosh Askarpour, Claudio Menghi, Gabriele Belli, Marcello M. Bersani,

and Patrizio Pelliccione. 2020. Mind the gap: RoboticMission PlanningMeets

Software Engineering. In 8th International Conference on Formal Methods in
Software Engineering (FormaliSE ’20), October 7–8, 2020, Seoul, Republic of
Korea. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3372020.

3391561

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7071-4/20/05. . . $15.00

https://doi.org/10.1145/3372020.3391561

1 INTRODUCTION
Robotic software engineering concerns the development of tech-

niques that enable a systematic and rigorous development of robotic

software [11]. As classical software, robotic software is not mono-

lithic, as it is usually obtained by assembling already existing com-

ponents, as well as developing brand new ones (when needed). The

lack of systematic and rigorous techniques, which promote reuse

of components and facilitate their integration, has been identified

as one of the major challenges in the robotic domain [31].

Formal methods are mathematical approaches to software and

system development, which support rigorous specification, design

and verification [20]. These approaches have been largely used

in the robotic domain [22], and one of their major applications is

mission planning, which is the topic of this work. Given a high

level defined goal, calledmission [40], e.g., “robot A goes to position

p, brings a box, goes to position q, waits 10 seconds and, finally,

reaches position r and releases the box”, robotic mission planning

aims at computing a set of actions that, if performed, ensure the

accomplishment of the goal.

Many FM-based planners have been used in the robotic domain

(e.g., [21, 27, 48, 50]). However, planners are usually evaluated on

showcase simple examples, have limited usage assumptions (of-

ten not explicitly documented), and their scalability properties are

usually not thoroughly evaluated. This restricts the usage of these

planners in industrial contexts, where there is an increasing need for

Integrated Formal Methods (iFMs) [22, 38]. Integrated Formal Meth-

ods refer to the integration of multiple formal methods, or/and semi-

or non-formal approaches, that complement each other. Following

this line of thought, integrating mission planners within SE-based

robotic frameworks requires to precisely understand when and how

planners can be reused. Thus, there is a need for robotic mission

planning to meet software engineering.

The goal of the paper is to perform a preliminary step to fill the

gap between robotic mission planning and software engineering.

To this end, we first identify a set of features that robotic mission

planners should possess to address complex problems coming from

the industrial domain. Specifically, these features refer to several

aspects of the application, namely, the mission to be accomplished

by the robots (F1), the robots capabilities (F2), the team of robot(s)

(F3), and the environment in which the robots are deployed (F4).

https://doi.org/10.1145/3372020.3391561
https://doi.org/10.1145/3372020.3391561
https://doi.org/10.1145/3372020.3391561

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Mehrnoosh Askarpour, Claudio Menghi, Gabriele Belli, Marcello M. Bersani, and Patrizio Pelliccione

We propose formally vErified plaNning soFtware fOr Real-world
sCEnarios (ENFORCE), an approach for integrating FM-based plan-

ners and comprehensive software engineering tools, that allows

designer to deal with mission planning for complex robotic scenar-

ios. ENFORCE supports a systematic and rigorous design workflow,

fosters the reuse of already implemented third-party components,

and improves maintainability, as it promotes separation of con-

cerns by modeling several aspects of the robotic application (i.e.,

robots, environment and mission) with distinct artifacts. Specifi-

cally, ENFORCEmakes use of two distinct formal models to describe

independently how robots perform actions and move within their

environments, and themap that describes the environment in which

the robots are deployed. The mission the (team of) robot(s) should

achieve is specified by means of a temporal logic formula, written

in terms of robot actions and positions of the environment. All

these artifacts are automatically translated into the input language

of a model checker, by means of a formally-defined translation. EN-

FORCE can leverage off-the-shelf model checkers (provided they

enable mission planning) to determine (i.e., synthesize) the exis-

tence of a trace that satisfies the mission specification, and that can

be used to derive the motion plans for the robots operating in the

environment.

To implement our approach, we use the Uppaal [37] model check-

ing tool, since it can be used to realizemission planning that features

F1-F4. We rely on existing robotic techniques [8, 44] to represent

the area in which the robots are operating as a tiling of the plane

with squared cells. The area is modeled, with various precision lev-

els, using Timed Automata (TA), i.e., the input modeling formalism

of Uppaal. Locations of TA are used to capture both the cells of the

map and the dynamics of the robots. The mission is specified in

quantitative temporal logic (i.e., TCTL).

For the sake of simplicity, in this work, we assume that all robots

are controllable, i.e., uncontrollable agents are not operating in the

environment. Despite this simplification, we encounter different

hurdles that hamper an effective integration of existing FM-based

planning techniques in SE workflows.

To evaluate our approach, we assess the effectiveness and correct-

ness of the overall synthesis procedure implemented in ENFORCE.

The effectiveness is evaluated by checking whether ENFORCE syn-

thesizes plans in a reasonable time, both in the case of single-robot

(RQ1) and in the case of multi-robots (RQ2) applications, when
maps of real environments are considered. Correctness is evaluated

by checking whether the computed plans allow robots to achieve

the specified mission. This is performed both by evaluating the

behavior of the robots in simulated environments (RQ3) and in

real environments (RQ4). Our results show that ENFORCE can

effectively synthesize correct plans, in reasonable time, that ensure

the mission satisfaction for simulated and real environments, with

realistic size, and single-robot applications. Conversely, ENFORCE

is not able to compute a plan in a matter of minutes for multi-robots

applications deployed in realistic scenarios. We critically analyze

and discuss our results.

Integrating existing planning techniques within SE workflows

is not naive, yet requires an in-depth knowledge of the planner

features and its scalability, especially when the number of robots

increases. We believe that our thorough empirical evaluation paves

the way for a more critical analysis of the features of existing

Table 1: Number of papers and venues considered in the fea-
ture collection

Venue Acronym #Paper

Formal Methods FM 1

Conference on Formal Methods in Software Engineering FormaliSE 3

Conference on Robotics and Automation ICRA 2

Symposium on Intelligent Autonomous Vehicles 1

Conference on Intelligent RObots and Systems IROS 3

Conference on Networking, Sensing and Control ICNSC 1

Conference on decision and control CDC 3

Journal of Systems and Control 1

Transactions on Robotics T-RO 1

American Control Conference ACC 3

European Control Conference ECC 1

Journal of Automatica 2

Journal of China Information Sciences
∗

1

FM-based planning techniques to promote their reuse within SE

frameworks.

Structure. Sec. 2 describes the features of the planner we are
considering in this work. Sec. 3 introduces the basic notions on

TimedAutomata (TA) and quantitative temporal logic (TCTL). Sec. 4

presents ENFORCE. Sec. 5 shows our experimental results and Sec. 6

discusses our findings. Finally, Sec. 7 concludes.

2 COLLECTION OF THE PLANNING
FEATURES

We are considering mobile platforms and static/mobile manipula-

tors, since they are broadly used in the industrial domain [4, 5],

they are regulated by ISO standards [1, 2], and can work together

with or under supervision of human operators [3]. In order to make

our tool applicable on various available industrial robotic systems,

we performed a thorough state-of-the-art analysis on robot mo-

tion/mission planners. We had collected 24 different works focusing

on FM-based planners, that were presented in 14 different venues

(see Table 1). These works were collected by considering the knowl-

edge of the authors in the field, complemented by a snowballing

literature review. We reviewed these papers, and we identified

recurrent features of planners.

Based on the results of our review and a discussion with our

industrial partner, we identified four main features (F1, F2, F3, and
F4), discussed below.

F1 - Expressing explicit time concerns in roboticmissions.
Planners should analyze missions containing explicit time con-

straints. For example, the mission “visit region A, then B within 10
seconds” forces a robot to first visit A and then B within an explicit

time constraint, i.e., within 10 seconds.

Logic-based languages are broadly used in the literature for

specifying the mission that robots should achieve [22, 38]. The

column Log and Tp of Table 2 report, respectively, the logic that has
been used to specify missions for each paper, and whether explicit

time concerns have been specified.

LTL has been extensively used to express a rich variety of behav-

ior including robot missions [28, 32, 39, 40, 42]. It also benefits from

a consolidated knowledge containing algorithms for verification

and synthesis of controllers. However, it lacks a metric notion of

time, and it is not able to express bounds on the delay between

events. In LTL, one can express that an event B follows an event A,

Mind the gap: Robotic Mission Planning Meets Software Engineering FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

Table 2: Analysis of related work on planning. Log: the
used logic; Tp: explicit temporal concerns; MA: multi-agent
teams; Act: actions rather than motion; Sync: team synchro-
nization;Mp: map of realistic environment; Exp: real exper-
iments; Tool: the used verification tool.

F1 F2 F3 F4

Ref. Log Tp Act MA Sync Mp Exp Tool

[30, 44] TCTL ✓ ✗ ✓ ✗ ✗ ✗ Uppaal

[8] TCTL ✗ ✗ ✓ ✗ ✗ ✓ Uppaal

[35] CTL ✗ ✗ ✓ ✗ ✗ ✓ C-SMV

[49] LTL ✗ ✗ ✗ ✗ ✗ ✓ ✗

[27] LTL ✗ ✗ ✗ ✗ ✗ ✗ ✗

[46] LTL ✗ ✓ ✗ ✗ ✗ ✓ ✗

[32] LTL ✗ ✗ ✓ ✗ ✗ ✓ ✗

[12] LTL ✗ ✓ ✓ ✓ ✗ ✓ ✗

[33] LTL ✗ ✓ ✓ ✓ ✗ ✗ ✗

[34] LTL ✗ ✓ ✓ ✓ ✓ ✓ ✗

[47] LTL ✗ ✗ ✓ ✗ ✗ ✗ ✗

[29] LTL ✗ ✓ ✓ ✓ ✗ ✗ ✗

[21] LTL ✗ ✓ ✓ ✓ ✓ ✗ Matlab

[25, 28, 39, 48] LTL ✗ ✓ ✓ ✓ ✗ ✗ Matlab

[13, 26] LTL ✗ ✓ ✗ ✗ ✗ ✗ Matlab

[43] MTL ✓ ✓ ✓ ✓ ✗ ✓ ✗

[52] MTL ✓ ✓ ✗ ✗ ✗ ✗ CPLEX

[42] MTL ✓ ✓ ✓ ✓ ✗ ✗ Matlab

but it is not possible to limit the time interval between the two

events by imposing, for instance, that the delay is smaller than

5 time units. Therefore, a number of authors [8, 43, 44] have re-

cently considered formalisms that allow for expressing explicit time

constraints, such as Metric Temporal Logic (MTL) [36], or Timed

Computation Tree Logic (TCTL) [6]. However, some of these works

are mostly theoretical, some of them do not explicitly consider

how robots synchronize and perform actions, and usually they

are not validated on real maps but consider small environment

abstractions (usually represented through small-size matrices of

cells representing locations of the environment).

F2 - Replicating functionalities and actions of a robot. In-
dustrial robots are used for many different activities, commonly

realized by means of arms, or end effectors. Thus, planners have to

consider not only how robots move in their environment, but also

other types of functionalities, such as pick and place, grab, welding,

assembly. Column Act in Table 2 shows if a paper covers planning

by considering functionalities of robot other than movements.

F3 - Managing multi-robots and their action synchroniza-
tion. Planners should be able to manage both single-robot and

multi-robot systems. A robotic system could consist of multiple

robots, which potentially collaborate, or compete, for achieving a

given mission. Thus, their interaction, collaboration, and synchro-

nization must be considered for planning their actions.

The analysis of the behavior of a team of robots, and the syn-

thesis of the motion plans that regulate their movements over a bi-

dimensional area have been studied in the last decade [32, 34, 43, 45].

In Table 2, column MA indicates if a paper supports multi-robots,

and column Sync specifies if they collaborate to achieve a goal

together, and need to synchronize their actions.

F4 - Considering realistic environments. Planners should
be able to perform on realistic environments. Most of the plan-

ners in the literature consider abstractions of real environments

that are represented by grid of cells, usually of very limited size,

e.g., [44]. Thus, it is difficult to evaluate how the algorithms scale

when the size of the environment (and of the corresponding grid

of cells) grows, such as when planning must be performed on real

buildings. In Table 2, the ✓symbol in column Mp indicates that the

planning procedure has been applied on maps representing realistic

buildings.

The majority of the planners, except for [21, 34], are only evalu-

ated through simulation, and no experiments in real environments

have been performed. In Table 2, column Exp indicates if an ex-

perimental evaluation in a real scenario has been performed, and

algorithms are deployed on real robots.

Most of the planners are developed by means of ad-hoc solutions,

rather than built on pre-existing solutions with proven effective-

ness. The use of consolidated tools has many advantages. In many

cases the implemented procedure is stable and efficient, as the tools

include optimizations that work at the engine level. Moreover, con-

solidated tools might offer different options to the user for the

analysis of the system, such as, for instance, the state space ex-

ploration policy (either breadth first or depth first). The user can

use off-the-shelf tools without the need of implementing ad-hoc

solutions on specific test cases. In the last column of Table 2, the ✗

symbol marks the works which used ad-hoc solutions. Otherwise,

we reported the name of the tool used for planning.

RelatedWork. The robotic mission planning problem has been

widely explored in the literature and in the FM community (see

Table 1 and Table 2). Some of these works considered the problem of

decision making and task planning as a two-player temporal logic

game between the planner component and its environment [51],

other focused on planning multi-robot systems and collision avoid-

ance [9, 16, 30]. From a technological perspective, several solutions

have been proposed, such as the use of Satisfiability Modulo The-

ories to verify the fulfilment of defined missions [15] or model

checkers [18]. Planning robotic systems has also been analysed

by considering other characteristics, spanning from hardware fea-

tures [23, 23] to the provision of support to people with disabil-

ities [14]. However, while these works provide FM-solutions for

specific problems, less attention is usually given to making the

solutions reusable, and to their evaluation from a SE perspective.

Some works have also been done to help users in engineering

robotic applications. RoboChart [41] provides a language for mod-

elling robotic applications. It allows user to verify the models of the

robotic applications by reusing existing model checkers and theo-

rem provers. RobotML [17] is a robotic modeling language provided

as a Papyrus plugin, that enables the design of robotic applications,

their simulation, and their deployment to multiple target execution

platforms. FLYAQ [10] is a tool for defining missions of teams of

multicopters. It enables the automatic generation of the detailed

flight plan the multicopters have to follow.

3 BACKGROUND
This section recalls the definition of Timed Automata (TA) [7] and

TCTL, which are the formalisms used in the rest of this work.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Mehrnoosh Askarpour, Claudio Menghi, Gabriele Belli, Marcello M. Bersani, and Patrizio Pelliccione

Table 3: The notation used in definition of a TA. c is a natural
number, d is an integer, and ∼∈ {<,=}.

Notation Definition

X finite set of clocks with real values

Y finite set of integer variables

Act finite set of actions

η := x ∼ c | ¬η | η ∧ η clock constraints (x ∈ X)

Γ(X) set of clock constraints

ζ := y∼ d |y∼y′ | ¬ζ | ζ ∧ζ variable constraints (y,y′ ∈Y)

Γ(Y) set of variable constraints

assign(Y) := {y :=d | y ∈ Y } set of assignments

Timed Automata. Given the notation introduced in Table 3, a

timed automaton (TA) is defined by a tuple ⟨Q,q0,v
0, I ,T ⟩, where

(1) Q is a finite set of locations,

(2) q0 ∈ Q is the initial location,

(3) v0 : Y → N is a function assigning each variable in Y with

an integer value,

(4) I : Q → Γ(X) is an invariant assignment function, and

(5) T ⊆ Q ×Q × Γ(X) × Γ(Y) × Sync × ℘(X) × ℘(assign(Y)) is a
finite set of transitions such that Sync = Act × {!, ?}.

The configuration of a TA is denoted by a pair (q,v), where q ∈ Q
is the current location of the automaton, and v is a function over

X ∪ Y that assigns a non-negative real value to every clock of X
and an integer to every variable of Y .

A configuration change (q,v) → (q′,v ′) changes the configu-
ration of the TA from (q,v) to (q′,v ′) ,and occurs due to either a
transition inT (discrete transition), or time elapsing (time transition).

When a discrete transition (q,q′,σ ,η, ζ , S,A) ∈ T is fired:

(1) the clock and the variable values in v satisfy, respectively,

guards η and ζ , and v ′ satisfies the invariant I (q′);
(2) for each clock x , if x is in S , then it holds that v ′(x) = 0,

otherwise v ′(x) = v (x); and
(3) for each variable y ∈ Y , it holds that v ′(y) = d and y := d is

an assignment in A.

When a time transition is fired:

(1) location does not change q = q′;
(2) each variables y ∈ Y retains its value, and v ′(x) = v (x) + δ ,

with δ ∈ R≥0, for all x ∈ X ; and

(3) invariant I (q) is satisfied by all assignments of the clocks

from v to v ′.

A run or execution of a TA is a (possibly infinite) sequence of

configurations (q0,v0) (q1,v1) (q2,v2) · · · such that, for any i ≥ 0,

(qi ,vi) → (qi+1,vi+1) is a discrete transition or a time transition.

The set of all the executions of a TA A is indicated with R (A).
When several TAs are considered, the configuration contains

locations of all of them and the values of all their clocks and vari-

ables. The symbols in Σ are used to constrain the executions of the

TA—i.e., the ways in which a network of TA synchronize while

changing the configuration of the system. Each symbol σ ∈ Σ that

labels a transition has the form σ? or σ !. Informally, two TAs syn-

chronize when they simultaneously perform a discrete transition

respectively labeled with σ? and σ !.
For example, Figures 1 shows a network of TA representing a

mobile robot with two components, i.e., a moving platform and a

gripper, that is used in an industrial environment to move around

and collect objects from a number of object storages which contain.

The robot is able to load objects in a mounted bin (action roload)
and move (action romove) within its environment.

The model of the moving platform described in Figure 1a shows

that the robot alternates between “moving" and “still". In particular,

the robot traverses the distance between its starting point and

reaches the first storage (moving) and then stops for loading (still).

The same thing is repeated from the first storage to the next one

until all of the storages are met. This alternation is regulated by

the values assigned to the clock x which constraints the duration

of moving. The clock x constraint the robot movement to last at

most ten time units. As the value of x reaches ten, the robot stops

moving and x is reset.

We assume that a group of storages contain only five objects and

the rest contain ten objects. The model of the gripper described in

Figure 1b can alternate among three different states: “idle", when

no object have to be loaded, “loading1", when five objects (n = 5)

have to be loaded, and “loading2", when ten objects (n = 10) have to

be loaded. Loading five objects requires 10 seconds, while loading

ten objects requires 17 seconds. The robot is not supposed to move

unless the loading action is completed (idle).
The synchronization of the two TAs in Figure 1 forces the mobile

platform to become still before the gripper starts loading. Similarly,

the gripper should reach the state “idle" before the mobile platform

starts moving.

TCTL. Uppaal allows for specifying missions through an exten-

sion of the CTL logic, which also contains “time related" constraints

(TCTL). Let ϕ be a boolean combination of formulae on variables

and clocks such as, for instance, x ≤ 10 ∧ loadinд1 indicating that

clock x is less than or equal to 10 and that TA of Figure 1b is in

location “loadinд1". TCTL allows the specification of properties in

the form ∀G ϕ, ∀F ϕ, ∃ G ϕ and ∃ F ϕ whose semantics is defined

as follows:

∀G ϕ ⇔ for every execution, ϕ holds globally

∀F ϕ ⇔ for every execution, ϕ holds eventually

∃ G ϕ ⇔ exist a path such that ϕ holds globally

∃ F ϕ ⇔ exist a path such that ϕ holds eventually.

4 FORMALLY VERIFIED PLANNING
SOFTWARE FOR REAL-WORLD SCENARIOS

An overview of the ENFORCE framework is presented in Figure 2.

ENFORCE promotes the reuse of FM-based planners by integrating

low-level FM-based planners with higher-level SE artifacts. EN-

FORCE takes as inputs an image that describes the environment in

which the robots will be deployed (1), e.g., the layout of a building,

themodels that describe the robots’ behaviors (2), and themissions

the robot should achieve, i.e., the properties of interest (3). Those

artifacts are combined into a comprehensive model of the robotic

application (5), and used to compute a set of plans ensuring the

Mind the gap: Robotic Mission Planning Meets Software Engineering FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

moving

x ≤ 10

stillstart

sync : ro
load

?

assign : x := 0

sync : romove!

guard : x = 10 ∨ x = 17

(a) Timed Automaton modeling the moving platform of the robot.

idle

start

loadinд1
x ≤ 10

loadinд2
x ≤ 17

guard : x = 10

sync : romove?

guard : n = 5

sync : ro
load

!

assign : x := 0

guard : n = 10

sync : ro
load

!

assign : x := 0

guard : x = 17

sync : romove?

(b) Timed Automaton modeling the gripper of the robot.

Figure 1: A network of Timed Automata

mission achievement (6). Finally, the plan is performed by sending

executable actions to the physical robots, or robot simulators (7).

In this section, we describe the inputs of ENFORCE (Section 4.1),

and the procedures used by ENFORCE to compute the plans to be

executed by the robots (Section 4.2).

4.1 Inputs
The inputs of ENFORCE are discussed in the following.

Environment Description (1). The environment processed

by ENFORCE is described using a high-level description of the en-

vironment represented by the images of the buildings contained in

classical building layouts, such as the one used to indicate emer-

gency exits in public buildings. An example of environment that

can be processed by ENFORCE, representing the Building 22 of

Politecnico di Milano, is reported in Figure 3.

Models of the Robots (2). In our envisioned usage, the mod-

els of the robots are provided by third party companies, such as

robots manufacturers, or designed by developers that want to use

ENFORCE. The model of the robot describes how a robot (1) moves,

(2) performs actions, and (3) synchronizes with other robots.

Robot Movements. The TA that models the robot includes (at

least) five locations, one representing the idle state (s), and four

corresponding to the movements in the four directions, i.e., up (u),
down (d), left (l) and right (r). Note that, for simplicity we had only

considered four directions for movement. However, the approach

can be extended to consider more complex models of robot move-

ments. Figure 4 presents an example of model of the robot discussed

in the following. When the robot undertakes a motion action, one

transition from location s to one of the locations representing the

Environment
Description

(Building Layout)

Robots
Description

(TA)

Robotic
Mission
(TCTL)

1

2

3

Environment
Description2TA

TANetworkCreation

FM-based Plan
Computation PlanExecutor

4

5

6 7

Legend
Input Procedure

Figure 2: ENFORCE overview.

motions is performed. For the action α to be performed, a transition

of the robot labeled with α ! is fired. For any α ∈ {u,d, l , r }, the TA
changes the current location into location α to model that the robot

has just finished action α . All the transitions leading from s to α
are labeled with a guard that encodes the duration of the shift. The

automaton measures the temporal delay ensued from the kinetics

of the robot by means of a clock t . Let speed be the maximum speed

of the robot and tmove be span
speed , i.e., tmove is the minimum time

required to cover a distance of length span. The value tmove is

used in the guards t ≥ tmove to set the duration of each transition

labeled with action u, d , l and r , meaning that it takes to the robot

at least tmove to move up, down, left, and right, respectively. Every

time one of those transitions is performed, clock t is reset in order

to begin the measure of the delay of the next action. Once a motion

action is finished, the robot can either stop, or keep moving in the

same direction. If the robot stops, a transition labeled with action

“stay” (i.e., s!) is taken. Performing a “stay” action entails a change

of the TA current location, which is then set to s , and a reset of the

clock t . The time needed by the robot to stop is determined by the

value tstay. Hence, the transitions from locations α ∈ {u,d, l , r } to
s are guarded with t ≥ tstay. If the robot keeps moving towards

the same direction, then the same action α can be iterated multi-

ple times, provided that the condition tmove is satisfied and the

synchronization α ! with the TA modeling the map can be realized.

Robot actions. Actions are encoded in the automaton through

suitable TA locations. In Figure 4 locations a and b are associated

with “operation a” and “operation b” to represent the execution of

actions a and b. The locations are connected to state s by means

of two transitions, one enabling the activation of the action, and

the other representing its termination. The robot might start one

action if some suitable conditions are satisfied. These constraints

Figure 3: Building 22 of Politecnico di Milano.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Mehrnoosh Askarpour, Claudio Menghi, Gabriele Belli, Marcello M. Bersani, and Patrizio Pelliccione

s rl

d

b a

u

The formulae corresponding the numeric labels

of the edges:

(1) guard: t ≥ tstay sync: s! assign: t = 0

(2) guard: t ≥ tmove sync: l ! assign: t = 0

(3) guard: t ≥ tmove sync: u! assign: t = 0

(4) guard: t ≥ tmove sync: d! assign: t = 0

(5) guard: t ≥ tmove sync: r ! assign: t = 0

1

2

3

1 4

1

5

1

sync:t ≥ 0

guard:syncstart!
assign:t = 0

sync: t ≥ tactionb
guard: syncend!

sync: t ≥ 0

assign: t = 0
sync:t ≥ tactiona

assign:t = 0

3

1 5

4

2

Figure 4: An example of TA robot model able to move in four different directions and perform two different actions.

can be expressed in the guard of the transitions leading to their

associated locations. Once a transition is fired, the robot remains in

the target location for the entire duration tactionO of the operation
O , being O either a or b, and then, it returns in location s when
t ≥ tactionO.

Synchronizationwith other robots. Synchronizations among robots

is modeled using appropriate actions, that are added in the set Act .
In Figure 4, the robot synchronizes with another one on channel

syncstart when it performs operation a. Once the operation is done,

the robot notifies the termination on channel syncend. Given an

action α , the coupling between two robots requires on one side

sending a message on the channel (e.g., α !) and on the other side

receiving it (e.g., α?).
Robotic Mission (3). We assume that the mission the robots

have to perform is specified by users as a TCTL formula. In the

future, we plan to generate the TCTL specification by supporting

the usage of higher-level specification languages, such as robotic

mission specification patterns [40] or robotic DLSs [24]. We cur-

rently support two different types of missions that can be expressed

in TCTL, i.e., reachability and (ordered) execution of actions.

Reachability. Reachability properties require that within a given

time limit a location should be finally reached. Let time be a global

clock that is never reset, and let (x ,y) be a target location that

must be reached within a time bound tbound . Let l(x,y) be a boolean
variable that is set to one when the robot enters the location (x ,y).
The following TCTL formula states that the robot has reached (x ,y)
earlier than tbound time units from the beginning of the execution.

∃ F ((l(x,y) = True) ∧ (time < tbound))
Execution of Actions. Let flaga be a boolean variable (initially set to

false) indicating that action a has been performed. The following

TCTL formula specifies that actiona is performed earlier than tbound
time units.

∃ F ((flaga = True) ∧ (time < tbound)) (1)

Sometimes the mission may require a robot to perform a set of

actions {a,b, c} within a specific time bound. Hence, the property

can be expressed by the formula below.

∃ F ((
∧

i ∈{a,b,c }

f laдi = True) ∧ (time < tbound)) (2)

The specification of properties that require a robot to perform a set

of actions in a specific order within a specific time-bound, can be

done as follows. Consider the actions a,b, c to be done in this order.

This mission can be expressed by using the TCTL formula

∃ F ((G = True) ∧ (time < tbound)) (3)

where variable G is an additional variable added to the model of

the robots that holds only if a, b, and c follow the correct order.

4.2 Procedures
The main procedures of ENFORCE are discussed in the following.

These procedures are inspired by the one proposed by Quottrup

et al. [44] and Andersen et al. [8], which are well-known TA ap-

proaches for solving the planning problem in the robotic domain.

EnvironmentDescription2TA (4). The purpose of this proce-

dure is to convert a high-level SE environment description into a

lower-level FM-based modeling formalism. We propose two differ-

ent instances, as alternative options, of the procedure to convert

a high-level map of the environment into TA, namely Encoding 1
and Encoding 2.

Encoding 1. LetW and H be the width and the height (expressed

in meters) of the (rectangular) map where the robots move, and let

span be the sampling span, i.e., width and the high of the squared

cells that are used to tile this map. Let also be (0, 0) be the coordinate
of the bottom-left corner of the figure. We define two sets X , Y
containing respectively the x and y Cartesian coordinates of the

points (x ,y), generated by the creation of a grid with square cells

with width and high span. Formally,

X = {x | 0 ≤ x ≤W − span, (x % span) = 0}

Y = {y | 0 ≤ y ≤ H − span, (y % span) = 0}

where % is the modulus mathematical operator.

For every ar ∈ Act, let Bk(ar) be the set of positions (x ,y), with
x ∈ X , y ∈ Y , where the robot cannot take action ar when it is in

position (x ,y), i.e., the action ar is blocked. For instance, Bk(ur) are
those positions (x ,y) from which the robot cannot move to reach

(x ,y + span). For each robot, the environment is represented as a

TA, defined as ⟨Q,qx0,y0 ,v
0, I ,T ⟩, whose locations represent the

current position that is occupied by the robot, i.e., a location qx,y ∈
Q encodes position (x ,y). Location qx0,y0 is the initial location

of the robot. The TA constraints robot movements using actions

{ur ,dr , lr , rr , sr }. Transitions in T are defined as follows, for any

Mind the gap: Robotic Mission Planning Meets Software Engineering FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

(x ,y) ∈ X × Y :

(q(x,y) ,q(x,y+span) , ∅, ∅, (ur , ?), ∅, ∅) ∈ T if (x ,y) < Bk(ur);

(q(x,y) ,q(x,y−span) , ∅, ∅, (dr , ?), ∅, ∅) ∈ T if (x ,y) < Bk(dr);

(q(x,y) ,q(x+span,y) , ∅, ∅, (rr , ?), ∅, ∅) ∈ T if (x ,y) < Bk(rr);

(q(x,y) ,q(x−span,y) , ∅, ∅, (lr , ?), ∅, ∅) ∈ T if (x ,y) < Bk(lr);

(q(x,y) ,q(x,y) , ∅, ∅, (sr , ?), ∅, ∅) ∈ T

For example, the portion of the environment bounded by a red

dashed rectangle in Figure 5a is converted into the TA in Figure 5c.

Encoding 2. LetW ,H , span,X ,Y be defined as for Encoding 1, and

r be a robot. The position of the robot r is represented using two real
variables xr andyr , with 0 ≤ xr ≤W −span and 0 ≤ yr ≤ H −span.
The set of locations Q of the TA contains only location q, which
is also the initial state of the TA. Five transitions specify how the

robot can change its position in the environment, depending on

whether the robot is moving up, down, left, right or is remaining in

its current location. Every transition is labeled with (i) a guard that

specifies if the robot can move in a given direction; (ii) an event that

will be used to synchronize the model of the environment with the

actions taken by the robot r ; and (iii) an assignment that updates

the coordinates of the robot. For every action ar ∈ Act, we define a
guard γar that is enabled only if the current position of the robot

does not block the execution of the action ar , i.e., the position of

the robot is not in Bk(ar).

γar =
∧

(x,y)∈Bk(ar)

¬ (x = xr ∧ y = yr)

Then, the TA modeling the environment of the robot r contains the
following five transitions:

(q,q,γur , ∅, (ur , ?), ∅,yr = yr + span);

(q,q,γdr , ∅, (dr , ?), ∅,yr = yr − span);

(q,q,γr r , ∅, (rr , ?), ∅,xr = xr + span);

(q,q,γlr , ∅, (lr , ?), ∅,xr = xr − span);

(q,q, ∅, ∅, (sr , ?), ∅, ∅) ∈ T ;
For example, consider the portion of the environment bounded by

a red dashed rectangle in Figure 5a, the portion of the guard of

the transitions that allows the robot to go down is presented in

Figure 5b.

Network Creation (5). To create a comprehensive model of the

robotic application, the model of the robots and their environment

are combined into a (single) network of TA. To this end, every TA

modeling a robot r is added to the network. Furthermore, a copy

of the TA describing the environment obtained in (4) is created

for each robot r of the robotic application, and it is added to the

network. This ensures that the robot r can perform a movement

action αr ∈ {ur ,dr , rr , lr } only if a transition labeled with αr !
synchronizes with a transition labeled with αr ? of the copy of TA

modeling its environment.

FM-based Plan Computation (6). Before executing the plan-

ning, the network of TA is modified depending on the type of the

mission to be considered.

• Reachability. To handle reachability missions, the model of the

environment of the robot r that should reach position (x ,y) is mod-

ified as follows. If the environment is generated using Encoding 1,

an assignment that sets variable l(x,y) to True is added to all the

transitions that enter the state representing location (x ,y). If the
transition is generated using Encoding 2, an additional transition

that sets the variable l(x,y) to True when the variables xr and yr
are set to values (x ,y) is added to the TA.

• Execution of Actions. To handle execution of actions, the TA of

the robots are changed as follows. If the mission is specified as

in formula 1, the assignment flaga = True is added to the transi-

tion that connect state a to state s . If the mission is specified as in

formulae 2 and 3, flaga = True, flagb = True, flagc = True are

respectively added to the transitions that connect states a, b and c
to state s . Furthermore, for the mission specified in formula 3, (i)

two additional guards requiring that that flaga and flagb are set to

True are respectively added to the transitions that connect state s
to states b and c; and (ii) the assignment G = True is added to the

transition that connect state c to state s .
After performing these changes, the network of the TA and the

TCTL mission are fed into the Uppaal model checker. If the network

of TA contains a trace that satisfies the mission under analysis, it is

returned by Uppaal. Otherwise, an error reporting that no plan is

available is shown to the user.

Plan Executor (7). The plan executor uses the traces produced by

the planner to generate the commands to be sent to the robots. The

trace is iteratively parsed, and the actions contained in the trace

are converted into commands that are sent to the actual physical

robots, or to the robotic simulator.

5 EVALUATION
This section assesses the effectiveness of ENFORCE which is imple-

mented as a standalone Python application. The source code and a

complete replication package are available from [19]. In particular,

we have conducted several experiments
1
in order to answer four

main questions:

RQ1: Does ENFORCE effectively synthesize plans ensuring the

satisfaction of the mission for single-robot applications? If

yes, how long does the synthesis procedure take?

RQ2: Does ENFORCE effectively synthesize plans ensuring the

satisfaction of the mission for multi-robot applications? If

yes, how long does the synthesis procedure take?

RQ3: Are the plans computed by ENFORCE ensuring the mission

satisfaction in simulated environments?

RQ4: Are the plans computed by ENFORCE ensuring the mission

satisfaction in real environments?

RQ1 - Single Robot Effectiveness.We have evaluated differ-

ent scenarios that vary over different missions, environment maps,

sampling steps values, and the encoding of the environment.

Experiment Design. We analysed three different maps described

in Table 5, representing real buildings and their sizes and num-

ber of rooms, as described in the table. The maps are available

in our online repository [19]. We used three different maps in or-

der to make sure that our experiments consider test cases that

are representatives of realistic maps. For each map, we assumed

four different sampling steps (ST) 50cm, 75cm, 100cm, and 125cm.

Furthermore, we tried both encoding 1 (C1) and encoding 2 (C2),

1
All the experiments have been conducted on a machine with 8 GB 1600 MHz.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Mehrnoosh Askarpour, Claudio Menghi, Gabriele Belli, Marcello M. Bersani, and Patrizio Pelliccione

(a) A portion of the Building 22 of Politecnico di Milano. hgdiqwdgr-
grhgdiqwdgrgrhgdiqwdgrgrhgdiqwdgrgrhgdiqwd

guard:...¬(xr ≥ 0 ∧ xr ≤ 500 ∧ yr == 22)∧
(¬(xr ≥ 580 ∧ xr ≤ 800 ∧ yr == 22))

sync:d?
assign:yr = yr + 1

(b) Encoding 2 applied to the portion of the environment contained in
the red dashed box of Figure 5a

id6|9 id6|10 id6|11 id6|12

id7|9 id7|10 id7|11 id7|12

sync: r ?

sync:l? sync:l?

sync:r? sync:r?

sync:l?

sync:r?

sync: l?

sync:r?

sync:l?

sync:r?

sync:l?

sync:u?
guard:d?

guard:d?
sync:u?

sync:s? sync:s? sync:s?sync:s?

sync:s? sync:s? sync:s? sync:s?

(c) Encoding 1 applied to the portion of the environment
contained in the red dashed box of Figure 5a.

Figure 5: Two different encoding of the environment.

Table 4: Computation time (seconds) required by ENFORCE to generate plans for each scenario.

M1 M2 M3

T 1 T 2 T 3 T 1 T 2 T 3 T 1 T 2 T 3

E ST C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

E1 50 39.9 8.7 37.2 8.2 44.6 8.2 40.2 2.5 41.6 2.7 40.8 2.7 101.2 93.4 61.0 32.5 61.5 32.4

E1 75 4.8 2.3 7.4 2.3 6.1 2.0 4.3 0.9 4.5 1.0 5.4 0.8 38.7 22.7 13.7 8.0 12.8 7.7

E1 100 2.4 0.9 1.9 1.0 1.9 1.0 1.9 0.5 1.7 0.5 1.5 1.0 17 .9 8.7 5.6 3.6 5.2 3.3

E1 125 0.8 0.5 1.0 0.7 0.8 0.5 0.6 0.3 0.7 0.3 0.7 0.3 8.5 4.9 3.4 1.8 2.8 1.8

E2 50 5.2 1.8 5.5 1.7 5.2 1.8 3.1 0.5 2.8 0.5 2.9 0.5 24.0 9.7 6.6 2.6 6.8 2.6

E2 75 4.5 1.1 4.7 1.1 4.5 1.3 2.4 0.5 2.4 0.4 2.6 0.4 20.6 5.0 2.0 0.7 6.5 1.7

E2 100 1.4 0.6 1.3 0.5 1.4 0.5 0.6 0.2 0.7 0.2 0.6 0.2 7.0 2.8 3.5 6.1 2.1 0.7

E2 125 0.5 0.2 0.5 0.1 0.5 0.6 2.5 0.2 2.5 0.1 2.5 0.2 3.5 0.2 0.8 0.1 0.8 0.3

E3 50 9.8 10.0 8.5 10.4 9.2 9.6 8.0 3.1 6.9 3.3 7.2 3.0 6.5 124.8 15.6 29.6 14.9 28.8

E3 75 2.5 1.7 2.3 1.5 2.4 1.5 2.0 0.6 1.5 0.6 1.6 0.6 6.2 30.8 4.8 5.5 4.8 5.8

E3 100 1.0 1.0 0.8 1.3 0.9 1.2 0.8 0.5 0.5 0.6 0.5 0.7 6.4 14.8 1.9 4.3 2.0 3.7

E3 125 0.3 0.5 0.5 0.2 0.5 0.2 4.3 0.3 0.3 0.3 0.3 0.3 3.4 6.7 1.0 1.5 1.2 1.5

∗ E1: Jupiter Building, E2: Building 22 E3: Building 20;

M1: Mission1,M2: Mission2,M3: Mission3;

C1: Encoding1, C2: Encoding2;
T 1: Time bound 1, T 2: Time bound 2, T 3: Time bound 3.

and three missions that the mobile robot has to achieve within a

predefined time-bound: reaching a point (M1), reaching two points

close to the initial position of the robot, and performing one action

in each of these points (M2), and reaching two points far from the

initial position of the robot, and performing one action in each of

these points (M3). For every map, we considered three values T1,
T2, and T3 as time-bound for the completion of the missions, i.e.,

T1, T2, and T3 are, respectively, equal to 150s , 500s , and 800s for
map E1, 160s , 300s , and 600s for maps E2 and E3. ENFORCE has

been applied on each map once for every sampling step (ST), every

encoding, every mission and every time bound, which implies a

total of 216 variations.

Table 5: ID, size, number of rooms (#R) and description of
the environments considered in RQ1.

ID Size #R Description

E1 80m × 90m 80 Jupiter Building, Chalmers University

E2 120m × 50m 57 Building22, Politecnico di Milano

E3 70m × 50m 50 Building20, Politecnico di Milano

Results. The results are reported in Table 4, which shows that

ENFORCE succeeded in computing a plan that satisfied the consid-

ered missions for all the cases. The magnitude of the highest time

Mind the gap: Robotic Mission Planning Meets Software Engineering FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

measured for the encoding 1 and 2 is few minutes (respectively,

101.2 and 124 seconds).

The answer toRQ1 is that on the considered scenarios, ENFORCE

effectively synthesized plans ensuring the satisfaction of the mis-

sion for single-robot applications.

RQ2 - Multi-Robots Effectiveness. To answer this question,

we studied a scenario with two robots, E1 map and a sampling step

measuring 125cm, that is the most coarse-grained among those

considered in RQ1.
Experiment Design. The robots are supposed to start from differ-

ent initial locations, meet at the same pre-chosen point to execute a

collaborative action, and finally move to a destination point within

1600 seconds. We performed the analysis with three values for des-

tination point P1, P2, and P3 by increasing distance from the initial

robots locations; meaning that P3 is the farthest from the initial

point and P1 is the closest one to it.

Results. The experiment showed that in case of two robots, EN-

FORCE takes at least 45 minutes to compute a plan, or return a time

out error. Therefore, the performance is not acceptable for practical

usage of a planner in real cases scenarios.

The answer to RQ2 is that for the three considered scenarios,

ENFORCE was able to synthesize plans ensuring the satisfaction

of the mission for multi-robots applications. However, computing

the plans required at least 45 minutes.

RQ3 - Correctness in Simulated Environments. In order to

better investigate the generated plans by ENFORCE, we realised

them with Choreographe simulator
2
, which allows for simulation

of a Nao robot
3
. Our goal is to verify that the synthesized plans are

correct, i.e, they allow satisfying the corresponding missions.

Experiment Design.We had used the environment E1 since it is
the biggest (in terms of m

2
) among the considered environment

maps. Moreover, we had to consider missions that are feasible to be

simulated with Choregroaphe. The simulated scenario was based

on executing the following three missions by the robot in E1.

– the robot has to start from an initial location, reach a given

position, get a set of items from a table, and return to its

initial location;

– the robot has to start from its initial location, reach a given

position, say a sentence or a warning, return to its initial

location; and

– the robot has to start from its initial position, reach a given

position, unload an object, and return to its initial position.

The movements, the say and the unload actions are simulated,

respectively, by means of theMoveAlong, Say, and Cartesian motion
actions of the Choreographe simulator.

Results. The simulator confirmed that the actions executed by

the robots successfully satisfied the mission requirements.

2
http://doc.aldebaran.com/1-14/software/choregraphe

3
http://www.ald.softbankrobotics.com/robots/nao

The answer to RQ3 is that on the three considered scenarios, the

Choreographe simulator confirms the correctness of the plans

computed by ENFORCE.

RQ4 - Correctness in Real Environments. As it was of ut-
most importance for our tool to be practical, we experimented the

correctness of ENFORCE plans in real environments.

Experiment Design.We conducted the real experiments in E1, and
the offices of our industrial partner PAL-robotics

4
, with Turtlebot

5

and a TIAGO robot
6
and a sampling step of 50cm long. For this

experiment, we had considered the following three missions, that

were defined based on (i) the requirements of our industrial partner,

and (ii) the type of the robots and facilities we had access to.

– the TurtleBot patrols the building during the night. It starts

from the initial position P1, and reaches the location P2,

where it checks the presence of an intruder. If an intruder is

detected the robot calls the surveillance. Then, it goes back

to P1.

– the TurtleBot delivers a box from one office to another. The

robot starts from office P1, where a user loads it, and moves

to the delivery point P2 within 2 minutes, where it unloads

the box, and finally returns to P1.

– TIAGO starts from location P1, reaches first location P2 and

then P3, and goes back to location P1 within 3 minutes. In

every locations, an audio message is delivered (to users).

We used ENFORCE to compute the motion plans within the

environments, that were enriched with the recording actions. To

test the plans in the environment, we send ROS
7
navigation goals

to the robots, to enforce the movement actions, and the Linux

command Say to play audio messages.

Results. In all the considered scenarios, the robots effectively

satisfy their missions. Videos of our experiments are available in

our online repository [19].

The answer to RQ4 is that on the three considered scenarios, our

experiments confirm the correctness of the plans computed by

ENFORCE.

6 DISCUSSION
The results of the evaluation lead us to the following findings. We

present our discussion by relating it with the inputs of ENFORCE.

– Environment Description and Planning Precision (1). From a soft-

ware engineering standpoint, the reusability of planners in indus-

trial applications depends on their performance and scalability.

The experimental evaluation in Sec. 5, points out that mapping

areas with a low sampling value ensures accurate movements,

but increases the computation time, as it enlarges the size of

the TA modeling the entire system. Information related to the

sampling values, and the size of the maps that can be effectively

processed by planners, are usually not extensively discussed in

research papers. Conversely, in this work, we considered three

4
http://pal-robotics.com/

5
http://www.turtlebot.com/

6
https://tiago.pal-robotics.com/

7
http://wiki.ros.org/ROS

http://doc.aldebaran.com/1-14/software/choregraphe
http://www.ald.softbankrobotics.com/robots/nao
http://pal-robotics.com/
http://www.turtlebot.com/
https://tiago.pal-robotics.com/

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Mehrnoosh Askarpour, Claudio Menghi, Gabriele Belli, Marcello M. Bersani, and Patrizio Pelliccione

different maps of real environments, robotic missions, and sin-

gle and multi-robot applications, to extensively discuss how the

sampling step, and the size of the map, affect the performance

of the ENFORCE (inspired by [8]). The sampling step and the

size of the map do not pose a threat to single-robot applications,

whereas dramatically affect the use of planners for multi-robots

applications. However, choosing the right value for the sampling

step is essential, as an unreasonably large value assigned to the

sampling step does not allow ENFORCE to synthesize plans.

Possible Improvement. One solution to the previous problem

would be to consider a dynamic sampling of the environment.

Instead of decoding the whole environment once, dynamic sam-

pling can consider only a local neighborhood of the current

location at each time step, improving performance.

– Robotic System Characteristics (2). When software engineers

want to design a robotic application, they have to find a planner

that is suitable for the set of robots they are using, each one

having specific characteristics. For this reason, the features and

the assumptions of a planner should be clearly stated, to allow the

designers to select the best option, that can satisfy the modeling

requirements needed to represent the behavior of the robots.

However, these data, as well as the performance of planners,

are often not clearly stated and thoroughly evaluated, and it is

often difficult to understand whether a planner meets certain

expectations. For example, the size of the team of robots that can

be managed by a planner (with certain performances) is often

not precisely specified. In this work, we have considered one

among many planners that have been proposed in the robotics

literature (for the reasons specified in Section 4).While ENFORCE

uses a well-known efficient and optimized model checker, the

state explosion problem still represents the major obstacle to

the adoption of FM-based solutions, in particular those based on

TA-planners, in the robotic domain.

Possible Improvements. We believe that to enable and facilitate (re)-

use of existing planners, additional effort is required to provide

upfront documentation on the working assumptions, and more

rigorous and thorough evaluations of planners. The research

community has to develop guidelines to help developers and

researchers in this direction. While the FM-community has been

studying for several decades solutions to limit the state explosion

problem, it is unknown whether this problem will be solved in

the future. Therefore, to earn the benefits of FM-techniques in

practical contexts, theymust bewisely used.We believe that there

is a need for understanding how to effectively (re)-use existing

FM-based planners within robotic projects. For example, it is

necessary to understand at which level of abstraction planning

should be performed. Performing planning on a higher level

of abstraction provides computational benefits, but opens new

problems, i.e., how high-level models and plans can be bound to

the physical world and the low-level problems that can occur as

the mission is performed.

– Characteristics of Missions (3). Planners compute sequences of

actions that ensure the satisfaction of a mission that the robotic

team has to achieve. While robotic users often have a clear high-

level idea of the goal the robotic application, they are usually not

familiar with logic-based languages, that are the most recurrent

means adopted for mission specification. Since understanding

whether a logical language is suitable for expressing the mis-

sion under analysis might be difficult, the choice of a planner is,

generally, not trivial. Furthermore, even when a language that

is enough expressive to capture the missions is found, writing

mission might still be hard.

Possible Improvements. We believe that it is important to formally

state and discuss the type of missions that can be processed by

the different planners, and to provide high-level languages that

guide non-expert users during the mission specification. In our

previous work, we performed an initial step in this direction. We

proposed robotic mission specification patterns [40], that map

recurrent mission specification problems to logic-based solutions,

and integrated them into a robotic Domain Specific Language

(DSL) [24].

7 CONCLUSION
In this paper, we proposed ENFORCE (formally vErified plaNning

soFtware fOr Real-world sCEnarios), a robot planning framework

that uses Timed Automata to represent the robot behavior and the

environment in which the robots are deployed, and that adopts

TCTL for the specification of the missions, including real-time

constraints. The framework enables the automatic computation

of plans, that ensure the satisfaction of a mission of interest. EN-

FORCE relies on Uppaal, a state-of-the-art model-checker for the

computation of plans. To evaluate ENFORCE, we considered both

simulated environments and real robots.

We believe that this work warns the research community to pro-

mote a systematic and extensive evaluation of FM-based planners in

robotic applications, and to push for a closer integration of formal

methods into software engineering. Our contribution increases the

quality of software applications in robotics, as it fosters a deeper

evaluation of FM-based planners and in particular those built upon

TA, a deeper evaluation of their underlying assumptions, and use

context. The analysis paves the way for more conscious and sys-

tematic reuse of existing planners across (different) SE platforms

of robotic applications. Our discussion, in fact, clearly highlights

the limitation of the FM-based planner used in this work with the

purpose of strengthening the — still too weak — links between FM

and SE.

ACKNOWLEDGMENTS
This work has received funding from the European Research Coun-

cil under the European Union’s Horizon 2020 research and innova-

tion programme (grant No 694277 and No 731869). We also acknowl-

edge financial support from Centre of EXcellence on Connected,

Geo-Localized and Cybersecure Vehicle (EX-Emerge), funded by

Italian Government under CIPE resolution n. 70/2017 (Aug. 7, 2017).

REFERENCES
[1] ISO 10218-1. 2011. Robots and robotic devices – Safety requirements for industrial

robots – Part 1: Robots. Organization for Standardization, Geneva, Switzerland.

43 pages.

[2] ISO 10218-2. 2011. Robots and robotic devices – Safety requirements for industrial
robots – Part 2: Robot systems and integration. Organization for Standardization,

Geneva, Switzerland. 72 pages.

[3] ISO/TS 15066. 2016. Robots and robotic devices – Collaborative robots. Organization
for Standardization, Geneva, Switzerland.

Mind the gap: Robotic Mission Planning Meets Software Engineering FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

[4] ISO/TR 20218-1:2018. 2018. Robotics – Safety design for industrial robot systems –
Part 1: End-effectors. Organization for Standardization, Geneva, Switzerland.

[5] ISO/TR 20218-2:2017. 2017. Robotics – Safety design for industrial robot systems –
Part 2: Manual load/unload stations. Organization for Standardization, Geneva,

Switzerland.

[6] Rajeev Alur, Costas Courcoubetis, and David L. Dill. 1993. Model-Checking in

Dense Real-Time. Information and Computation 104, 1 (1993), 2 – 34.

[7] Rajeev Alur and David L Dill. 1994. A theory of timed automata. Theoretical
computer science 126, 2 (1994), 183–235.

[8] Michael S. Andersen, Rune S. Jensen, Thomas Bak, and Michael M. Quottrup.

2004. Motion planning in multi-robot systems using timed automata. IFAC 37, 8

(2004), 597 – 602. https://doi.org/10.1016/S1474-6670(17)32043-8 IFAC/EURON

Symposium on Intelligent Autonomous Vehicles.

[9] Saddek Bensalem, Lavindra de Silva, Andreas Griesmayer, Felix Ingrand, Axel

Legay, and Rongjie Yan. 2011. A Formal Approach for Incremental Construction

with an Application to Autonomous Robotic Systems. In Software Composition.
Springer, 116–132.

[10] Darko Bozhinoski, Davide Di Ruscio, Ivano Malavolta, Patrizio Pelliccione, and

Massimo Tivoli. 2015. FLYAQ: Enabling Non-expert Users to Specify and Generate

Missions of Autonomous Multicopters. In Automated Software Engineering, ASE.
[11] Davide Brugali. 2007. Software engineering for experimental robotics. Vol. 30.

Springer.

[12] Yushan Chen, Xu ChuDing, and Calin Belta. 2011. Synthesis of distributed control

and communication schemes from global LTL specifications. In Conference on
Decision and Control and European Control Conference. IEEE.

[13] Yushan Chen, Jana Tumova, and Calin Belta. 2012. LTL robotmotion control based

on automata learning of environmental dynamics. In International Conference on
Robotics and Automation. IEEE.

[14] Alessio Colombo, Daniele Fontanelli, Axel Legay, Luigi Palopoli, and Sean Sed-

wards. 2015. Efficient customisable dynamic motion planning for assistive robots

in complex human environments. Journal of ambient intelligence and smart
environments 7, 5 (2015), 617–634.

[15] Rafael Rodrigues da Silva, Bo Wu, and Hai Lin. 2016. Formal design of robot

Integrated Task and Motion Planning. In Conference on Decision and Control
(CDC). IEEE.

[16] Jonathan A. DeCastro, Javier Alonso-Mora, Vasumathi Raman, Daniela Rus, and

Hadas Kress-Gazit. 2018. Collision-Free Reactive Mission and Motion Planning
for Multi-robot Systems. Springer, 459–476. https://doi.org/10.1007/978-3-319-

51532-8_28

[17] Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, and Mikal Ziane.

2012. Robotml, a domain-specific language to design, simulate and deploy robotic

applications. In International Conference on Simulation, Modeling, and Program-
ming for Autonomous Robots. Springer, 149–160.

[18] Ha Thi Thu Doan, François Bonnet, and Kazuhiro Ogata. 2017. Model Checking of

a Mobile Robots Perpetual Exploration Algorithm. In Structured Object-Oriented
Formal Language and Method, Shaoying Liu, Zhenhua Duan, Cong Tian, and

Fumiko Nagoya (Eds.). Springer International Publishing, Cham, 201–219.

[19] ENFORCE 2019. ENFORCE: formaly vErified plaNning soFtware fOr Real-world
sCEnarios. https://github.com/Askarpour/ENFORCE

[20] Formal Methods Europe. 2019. Formal Methods. http://www.fmeurope.org/

formalmethods/

[21] Georgios E. Fainekos, Antoine Girard, Hadas Kress-Gazit, and George J. Pappas.

2009. Temporal logic motion planning for dynamic robots. Automatica 45, 2

(2009), 343 – 352. https://doi.org/10.1016/j.automatica.2008.08.008

[22] Marie Farrell, Matt Luckcuck, and Michael Fisher. 2018. Robotics and integrated

formal methods: necessity meets opportunity. In International Conference on
Integrated Formal Methods. Springer, 161–171.

[23] Mohammed Foughali, Bernard Berthomieu, Silvano Dal-Zilio, Pierre-Emmanuel

Hladik, Félix Ingrand, and Anthony Mallet. 2018. Formal Verification of Com-

plex Robotic Systems on Resource-Constrained Platforms. In Formal Methods in
Software Engineering (FormaliSE).

[24] Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger, and Tomas

Bures. 2019. High-Level Mission Specification for Multiple Robots. In Conference
on Software Language Engineering (SLE). ACM.

[25] Meng Guo and Dimos V. Dimarogonas. 2013. Reconfiguration in motion planning

of single- and multi-agent systems under infeasible local LTL specifications. In

Conference on Decision and Control. IEEE.
[26] Meng Guo, Karl Henrik Johansson, and Dimos V. Dimarogonas. 2013. Motion

and action planning under LTL specifications using navigation functions and

action description language. In Intelligent Robots and Systems. IEEE.
[27] Meng Guo, Karl Henrik Johansson, and Dimos V. Dimarogonas. 2013. Revising

motion planning under Linear Temporal Logic specifications in partially known

workspaces.. In International Conference on Robotics and Automation. IEEE.
[28] Meng Guo, Jana Tumova, and Dimos V. Dimarogonas. 2014. Cooperative decen-

tralized multi-agent control under local LTL tasks and connectivity constraints.

In Conference on Decision and Control. IEEE.
[29] Meng Guo, Jana Tumova, and Dimos V. Dimarogonas. 2015. Hybrid control of

multi-agent systems under local temporal tasks and relative-distance constraints.

In Conference on Decision and Control (CDC). IEEE.
[30] Raju Halder, José Proença, Nuno Macedo, and André Santos. 2017. Formal

Verification of ROS-Based Robotic Applications Using Timed-Automata. In Formal
Methods in Software Engineering, FormaliSE.

[31] IFR. 2016. World Robotic Survey. https://ifr.org/ifr-press-releases/news/world-

robotics-survey-service-robots-are-conquering-the-world-.

[32] Marius Kloetzer and Calin Belta. 2006. LTL Planning for Groups of Robots. In

International Conference on Networking, Sensing and Control. IEEE.
[33] Marius Kloetzer and Calin Belta. 2007. Control of Multi-Robot Teams Based on

LTL Specifications, In Conference on Management and Control of Production

and Logistics. IFACs.
[34] Marius Kloetzer and Calin Belta. 2010. Automatic Deployment of Distributed

Teams of Robots From Temporal Logic Motion Specifications. IEEE Transactions
on Robotics 26, 1 (2010), 48–61. https://doi.org/10.1109/TRO.2009.2035776

[35] T. John Koo, Rongqing Li, Michael Melholt Quottrup, Charles A. Clifton, Roozbeh

Izadi-Zamanabadi, and Thomas Bak. 2012. A framework for multi-robot motion

planning from temporal logic specifications. Science China Information Sciences
55, 7 (2012), 1675–1692. https://doi.org/10.1007/s11432-012-4605-8

[36] Ron Koymans. 1990. Specifying real-time properties with metric temporal logic.

Real-Time Systems 2, 4 (1990), 255–299. https://doi.org/10.1007/BF01995674

[37] Kim G Larsen, Paul Pettersson, and Wang Yi. 1997. UPPAAL in a nutshell.

International journal on software tools for technology transfer 1, 1-2 (1997), 134–
152.

[38] Matt Luckcuck, Marie Farrell, Louise A Dennis, Clare Dixon, and Michael Fisher.

2019. Formal specification and verification of autonomous robotic systems: A

survey. ACM Computing Surveys (CSUR) 52, 5 (2019), 100.
[39] Claudio Menghi, Sergio Garcia, Patrizio Pelliccione, and Jana Tumova. 2018.

Multi-robot LTL Planning Under Uncertainty. In Formal Methods. Springer.
[40] Claudio Menghi, Christos Tsigkanos, Patrizio Pelliccione, Carlo Ghezzi, and

Thorsten Berger. 2019. Specification Patterns for Robotic Missions. IEEE Transac-
tions on Software Engineering (2019). https://doi.org/10.1109/TSE.2019.2945329

[41] Alvaro Miyazawa, Pedro Ribeiro, Wei Li, Ana Cavalcanti, Jon Timmis, and Jim

Woodcock. 2019. RoboChart: modelling and verification of the functional be-

haviour of robotic applications. Software & Systems Modeling (2019), 1–53.

[42] Alexandros Nikou, Dimitris Boskos, Jana Tumova, and Dimos V. Dimarogonas.

2017. Cooperative planning for coupled multi-agent systems under timed tempo-

ral specifications. In American Control Conference (ACC).
[43] Alexandros Nikou, Jana Tumova, and Dimos V. Dimarogonas. 2016. Cooperative

task planning of multi-agent systems under timed temporal specifications. In

American Control Conference (ACC).
[44] Michael Melholt Quottrup, Thomas Bak, and Roozbeh Izadi-Zamanabadi. 2004.

Multi-robot planning: a timed automata approach. In International Conference on
Robotics and Automation. IEEE.

[45] E. Rabiah and B. Belkhouche. 2016. Formal specification, refinement, and im-

plementation of path planning. In International Conference on Innovations in
Information Technology (IIT).

[46] Stephen L. Smith, Jana Tumova, Calin Belta, and Daniela Rus. 2010. Optimal

path planning under temporal logic constraints. In International Conference on
Intelligent Robots and Systems. IEEE/RSJ.

[47] Jana Tumova, Luis I. Reyes Castro, Sertac Karaman, Emilio Frazzoli, and Daniela

Rus. 2013. Minimum-violation LTL planning with conflicting specifications. In

American Control Conference.
[48] Jana Tumova and Dimos V. Dimarogonas. 2016. Multi-agent planning under local

LTL specifications and event-based synchronization. Automatica 70 (2016), 239 –
248. https://doi.org/10.1016/j.automatica.2016.04.006

[49] Jana Tumova, Alejandro Marzinotto, Dimos V. Dimarogonas, and Danica Kragic.

2014. Maximally satisfying LTL action planning. In International Conference on
Intelligent Robots and Systems. IEEE/RSJ.

[50] Alphan Ulusoy, Stephen L. Smith, Xu Chu Ding, Calin Belta, and Daniela Rus.

2011. Optimal multi-robot path planning with temporal logic constraints. In 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems. 3087–3092.
https://doi.org/10.1109/IROS.2011.6094884

[51] Ye Zhao, Ufuk Topcu, and Luis Sentis. 2016. High-level planner synthesis for

whole-body locomotion in unstructured environments. In Conference on Decision
and Control (CDC). IEEE.

[52] Yuchen Zhou, Dipankar Maity, and John S. Baras. 2015. Optimal mission planner

with timed temporal logic constraints. In European Control Conference (ECC).

https://doi.org/10.1016/S1474-6670(17)32043-8
https://doi.org/10.1007/978-3-319-51532-8_28
https://doi.org/10.1007/978-3-319-51532-8_28
https://github.com/Askarpour/ENFORCE
http://www.fmeurope.org/formalmethods/
http://www.fmeurope.org/formalmethods/
https://doi.org/10.1016/j.automatica.2008.08.008
https://ifr.org/ifr-press-releases/news/world-robotics-survey-service-robots-are-conquering-the-world-
https://ifr.org/ifr-press-releases/news/world-robotics-survey-service-robots-are-conquering-the-world-
https://doi.org/10.1109/TRO.2009.2035776
https://doi.org/10.1007/s11432-012-4605-8
https://doi.org/10.1007/BF01995674
https://doi.org/10.1109/TSE.2019.2945329
https://doi.org/10.1016/j.automatica.2016.04.006
https://doi.org/10.1109/IROS.2011.6094884

	Abstract
	1 INTRODUCTION
	2 Collection of the Planning Features
	3 BACKGROUND
	4 formally vErified plaNning soFtware fOr Real-world sCEnarios
	4.1 Inputs
	4.2 Procedures

	5 EVALUATION
	6 DISCUSSION
	7 Conclusion
	Acknowledgments
	References

