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Interpersonal conflict between couples is a significant source of stress with long-lasting effects on partners’

physical and psychological health. Motivated by findings in psychological science, we study how couples with

distinct relationship functioning characteristics experience conflict in real life. We propose sub-population

specific machine learning models using hierarchical and adaptive learning frameworks to automatically de-

tect interpersonal conflict through the ambulatory monitoring of couples’ physiological signals, audio sam-

ples, and linguistic indices. Results indicate that the proposed models outperform a general model learned

for the entire population and separate models independently trained on each sub-population, providing a

foundation toward personalized health applications.
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1 INTRODUCTION

Interpersonal conflict is known for its deleterious effects on personal and professional functioning.
Conflict between co-workers can result in prolonged fatigue and poor general health and can
negatively affect productivity [20, 32, 60]. Conflict in romantic relationships serves as a risk factor
for partners’ psychological and physical health problems and can result in decreased relationship
satisfaction, as well as emotional and physical withdrawal [22, 56]. Understanding the causes,
antecedents, and sequelae of interpersonal conflicts can therefore help to promote healthier and
more fulfilling romantic relationships.
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Recent advances in ambulatory technologies now allow the continuous monitoring of human
behavior in real-life settings. Smart sensing devices can collect data around the clock with little
energy expenditure, and yield high volumes of multimodal recordings. Such data can afford re-
searchers valuable insights into a person’s life by monitoring how various behaviors and feelings
are elicited and manifested across time and under realistic conditions [24, 48, 63]. By monitor-
ing and detecting the onset and evolution of psychological events of interest, researchers could
intervene in real time and real life as these events develop or even before they occur [61].

In this era of highly voluminous and highly variable data, emerging advances in computational
science can help translate raw sensor values obtained from ambulatory devices into behavioral
markers related to health and well-being [26, 45]. A large body of work has focused on the de-
velopment of signal processing and machine learning techniques for analyzing collected data and
relating them to outcomes of interest. Applications of such approaches span various topics of inter-
est within mental health, including treatment of depression, social anxiety, and bipolar disorders,
with current results indicating the feasibility of automated data analysis techniques for detecting
events of interest in real life [35, 49]. Despite these advances, several methodological limitations
regarding the data labeling, integration of context, and the generalizability of automated systems
have arisen from these studies [23, 61].

The large inter-individual variability across people is a major hurdle for current automated sys-
tems, interfering with adequate generalization to unseen test samples. Current approaches typi-
cally assume a uniform group of individuals when modeling human behavior [38]. However, hu-
man behavior is unique to each person, who expresses and experiences the same stressor event
or emotional stimulus in different ways [7, 44]. These inter-individual differences are amplified in
real life, since the unstructured nature of such settings can increase the variability and complexity
of human expression. Indicatively, Levenson et al. found that distressed couples’ interactions are
more strongly linked to emotional reactivity compared to their non-distressed counterparts [41].
According to Campbell and Simpson, anxiously attached individuals perceive conflict in a more
intense way compared to securely attached partners and depict high levels of distress [10]. Re-
search on adolescents further suggests that insecurely attached individuals show high negative
affect in interpersonal conflicts compared to securely attached partners [19]. In the light of these
findings from psychological science, general machine learning models, which assume the same
association between the input features and the outcome of interest for all people, are not always
effective for quantifying human conflict, thereby indicating the need for alternative models that
can better address these challenges by taking inter-individual differences into account.

Personalized computational models of conflict are one possible method to address inter-
individual variability. Personalized models can achieve high predictive ability, since they are fine-
tuned to each individual separately [4]. However, this approach has several limitations. Individu-
alized machine learning models assume the presence of labeled data for each person, which might
not always be the case. Therefore, they are not generalizable to unseen individuals. Moreover, low-
frequency behaviors, such as conflict, impose additional constraints; obtaining both positive and
negative samples for each individual is time-consuming and resource-intensive. An alternative
method for modeling inter-individual variability is to cluster people into sub-populations based
on individual characteristics relevant to the outcome of interest. Sub-population refers to a group
of individuals with common characteristics, while sub-population specific machine learning sys-
tems refer to models that learn the most relevant features of the sub-population of interest and
make the final decision based on the sub-population to which a test sample belongs [6, 38]. In
this way, sub-population specific models can more reliably represent the outcome of interest com-
pared to general machine learning models, while also being more generalizable compared to fully
personalized models.
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The current article focuses on building sub-population specific machine learning models for
detecting interpersonal conflict between couples in real life using ambulatory speech and physio-
logical recordings collected from wearable and mobile devices. We propose a hierarchical and an
adaptive framework to learn the common characteristics across populations and utilize the popu-
lation specific information to cater to each specific population separately. The hierarchical model
is implemented using a feedforward neural network (FNN), trained in a multi-task learning (MTL)
framework. According to this framework, the first layers of the FNN are shared across all individ-
uals, while the latter sub-population specific layers are learned for each cluster. Adaptive learning
is implemented with an FNN, initially trained on the entire dataset. The last layers of the FNN
are separately fine-tuned for each sub-population, resulting in one final FNN per sub-population.
The proposed hierarchical and adaptive learning approaches are compared to a general machine
learning model trained on all participants. We test whether the proposed models outperform the
aforementioned baseline to evaluate the benefits of integrating sub-population specific informa-
tion for detecting interpersonal conflict. Quantitative analysis regarding the most conflict-relevant
features for each sub-population is further provided and discussed in relation to findings from psy-
chological studies.

2 PRIOR WORK

Sub-population specific models have been previously proposed to detect human outcomes of in-
terest and are generally divided into signal-based and machine learning approaches. Signal-based
approaches compare signals obtained during a baseline state to the ones collected during the events
of interest. The amount of divergence from baseline is used as a probability of occurrence of the
target phenomenon [30]. De Santos et al. proposed the extraction of signal trajectories across var-
ious tasks to quantify person-dependent deviations [21], while Zeevi et al. suggested augmenting
the signal-based feature space with person-dependent characteristics [69]. Despite the intuitive
and cost-effective nature of signal-based approaches, it is not always possible to collect baseline
data for each individual. Also, data labels are not considered during the learning process; therefore,
the outcome of interest might not always be reliable.

The following four major approaches have been proposed for the design of sub-population spe-
cific machine learning models: (a) models independently learning data from a group of participants
(separate); (b) models whose initial components are catering to the entire population, while the
later ones become specific to the sub-population specific information (hierarchical); (c) models
involving a two-stage process, where the model parameters are initially estimated using all data
samples and are then refined using sub-population specific information (adaptive); and (d) models
utilizing only the subset of data that is most relevant to the sample of interest in order to make a
final decision (ensemble).

According to the separate models approach, a pre-determined criterion, such as demographics
or medical history, is used to divide the original population into different clusters, which are then
used to separately train one model for each sub-population. For example, Koldijk et al. divided the
original set of participants into two separate groups based on their body movements and facial
expressions in order to detect stress in work environments [38]. Bertsimas et al. and Kallus further
proposed the use of separate learners jointly trained based on a target optimization criterion [6,
34]. Research to date suggests that models trained on separate sub-population clusters tend to
outperform models learned based on the entire population [6, 34, 38]. However, separate models
might not be adequately generalizable, since they do not incorporate population data from the
entire sample in the final decision-making process.

Hierarchical models are comprised of several layers of hierarchy. Information from the en-
tire population is represented in the first layers of these models, while sub-population specific
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knowledge is integrated in the later levels. To implement this model, a hierarchical MTL frame-
work implemented with FNNs has been proposed for the detection of stress, mood, and happiness
in real-life scenarios, as well as for the detection of interpersonal conflict between couples [29, 31,
62]. Jaques et al. and Taylor et al. used individual characteristics as clustering criteria, while Gujral
et al. employed individual and relationship-specific criteria to cluster the original population.

Adaptive models leverage transfer learning techniques and are achieved via fine-tuning of gen-
eral models. According to these, general models are being initially trained on the entire dataset and
are refined using data samples from the sub-population of interest [17, 43, 54]. Although adaptive
models are conceptually similar to hierarchical models, they tend to be less resource-intensive to
train because only part of these models is re-adjusted based on each sub-population.

Ensemble methods make decisions for the outcome of interest using the sub-population of par-
ticipants most relevant to the test sample. Previous studies have used this approach to detect social
and physical activity indicating the superiority of ensemble methods compared to general and sep-
arate models [33, 39]. Despite their intuitive nature and encouraging results, ensemble approaches
can underperform with a small number of data samples, given that the final decision is made from
limited number of participants, compromising the generalizability of the system. Due to the lim-
ited number of data samples and highly unbalanced classes in our problem of interest, ensemble
approaches will not be considered in this article.

Previous studies have further attempted to detect interpersonal conflict in real-life settings.
In Refs [36] and [52], the authors used audio signals and video as an input feature to detect conflicts
in political debates. Speech interruptions have been used as a reliable marker of conflict during
group discussions [12, 28]. Speech signals from body-worn audio sensors have been employed to
detect conflict in police-public interactions [40]. In contrast to the aforementioned studies, where
interpersonal conflict is well-defined, conflict between romantic partners can be a complex and
sometimes subtle event, affected by a variety of interpersonal and psychological factors. In our
previous work, we have attempted to use general machine learning models and hierarchical ap-
proaches to detect couples’ interpersonal conflict [29, 63].

The current article provides the following contributions to existing studies: (1) assuming that
interpersonal conflict is expressed in various ways depending on partners’ relationship function-
ing characteristics, the current article introduces the use of sub-population specific models for the
automatic detection of conflict in real life; (2) statistical analysis provides insights into the most
discriminative features with respect to the outcome of interest for each sub-population; (3) sub-
population specific models implemented with hierarchical and adaptive approaches are evaluated
and compared against each other and against general machine learning models learned on the
entire population; (4) in addition to acoustic and linguistic indices, the current study further lever-
ages physiological data, which provides access to the generative processes in the human body and
can be indicative of the emotional arousal present during interpersonal conflict.

3 DATA DESCRIPTION

Our data come from the University of Southern California (USC) Couple Mobile Sensing Project [3]
and include 87 couples aged between 18–25 years old. Participant recruitment focused on young
adult couples to investigate how adverse experiences in childhood and adolescence relate to ro-
mantic relationships in young adulthood, a unique developmental stage during which dating part-
ners begin to take on a more central role [25]. Additionally, relationships during young adulthood
predict functioning in future marital relationships [11, 51], suggesting that identifying relation-
ship patterns during young adulthood may have long-term implications. Although participants
depicted a limited age range, they were ethnically/racially diverse, and in different stages of their
academic/professional life and romantic relationship. Specifically, 27.0% of participants identified
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as Caucasian, 25.9% Hispanic/Latino, 16.7% African American, 12.6% Asian, 13.2% multiracial, and
4.6% other. Approximately half of the participants were part-time or full-time students (51.1%),
while the majority were employed at least part time (77%). Couples had been dating for 29.2 (±24.2)
months on average and 43.7% of couples were cohabitating.

Prior to the beginning of data collection, participants were asked to complete the Quality of
Marriage Index (QMI) [50] and Experiences in Close Relationships-Revised (ECR-R) [59] ques-
tionnaire. The QMI includes six questions capturing each partner’s satisfaction in various areas of
the relationship. The first five questions are related to partners’ specific emotions of happiness, sta-
bility, and strength elicited by the relationship and will be referred to as “QMI-1.” The last item of
the questionnaire captures general relationship satisfaction and will be referred to as “QMI-2.” The
ECR-R questionnaire includes 36 items, scored separately to provide indices of individuals’ anxi-
ety and avoidance toward their partner. Relationship anxiety refers to feelings of fear and worry
regarding the partner’s love and support, while avoidance is related to sharing private thoughts
and feelings, as well as to feelings of closeness in the relationship.

Participants in the study were lent smartphone and wearable devices collecting data from
9:00 a.m. till midnight for one day. During the data collection procedure, ecological momentary
assessments (EMA) were administered hourly through a Nexus 5 smartphone and assessed cou-
ples’ mood and quality of interactions (MQI). The detailed items of the EMA are listed in the Ap-
pendix. The smartphone device also continuously recorded GPS coordinates, as well as 3-minute
audio samples for every 12 minutes. The Actiwave sensor [1] was placed on participants’ chest
to obtain an electrocardiogram (ECG) signal with a 32Hz sampling frequency. The Q sensor [55]
recorded electodermal activity (EDA), wrist acceleration, and body temperature from participants’
non-dominant wrist with a sampling frequency of 8Hz.

Conflict labels were provided by each partner on an hourly basis through the EMAs. The final
conflict label per couple for each hour was obtained if any of the two partners reported conflict
during that time. The data include 117 conflict and 1,126 (90.5%) non-conflict samples.

4 METHODOLOGY

Human behavior is inherently complex and diverse, providing fundamental challenges to general
machine learning models, which assume a homogeneous group of individuals and learn a common
feature representation related to the outcome of interest for all participants. Conversely, due to data
sparsity issues, it is not always feasible to obtain highly personalized models. The proposed work
will examine how interpersonal conflict is manifested differently in couples with various levels
of relationship satisfaction and attachment characteristics, and how emerging machine learning
models can take this information into account to achieve more reliable decisions compared to gen-
eral machine learning models. Section 4.1 will describe the acoustic, linguistic, physiological, and
contextual indices of the feature space. Section 4.2 will provide the clustering criteria and method-
ology. Section 4.3 will outline the most discriminative features for each sub-population through
statistical analysis. Section 4.4 will describe the proposed sub-population specific machine learning
systems implemented in a hierarchical and adaptive framework. Finally, Sections 4.5 and 4.6 will
provide the details on the experimental setting, including baselines to the proposed sub-population
specific models, and the evaluation metrics used in this article.

4.1 Feature Extraction

Five different types of features, including acoustic, linguistic, physiological, contextual, and self-
reported MQI were extracted on an hourly basis. A summary of the features is provided in Table 1.

Audio signals were pre-processed to identify the speech segments for each partner. Fundamental
frequency and loudness were computed over 30msec frames. Mean, median, maximum, minimum,
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standard deviation, and range of the aforementioned acoustic measures were then calculated over
each hour, resulting in a total of 12 acoustic features per partner.

Manual transcriptions of the audio signals were employed to derive language features, which
were computed using the Linguistic Inquiry and Word Count (LIWC) software [53]. LIWC cal-
culates the degree to which various categories of words, related to different emotions, thinking
styles, social concerns, and parts of speech, are used in a text. It compares each word in the text
against a pre-defined dictionary. The dictionary identifies which words are associated with which
psychologically-relevant categories. For the purposes of this research, we used the built-in LIWC
2015 dictionary. Language features for each partner included 39 measures of psychological con-
structs, such as positivity, negativity, anxiety, insight, swearing, and personal concerns; 24 lin-
guistic indices, such as word count and personal pronouns; 7 features of personal concern, such as
home- and work-related words; and 3 paralinguistic markers, such as fillers. These 66 features were
computed for each partner, resulting in 132 language measures in total. A detailed enumeration of
the language features is provided in Table 8.

EDA was pre-processed through a low-pass filter of 16 samples to remove high-frequency noise.
Movement artifacts were automatically detected by fitting a predetermined knowledge-driven
structure to the original EDA signal [16]. SCR detection was automatically performed through the
LedaLab toolbox [5]. Mean skin conductance level, as well as the number, frequency, and ampli-
tude of skin conductance responses were extracted for the EDA features. Two different thresholds
of 0.01 and 0.02μS were used to quantify the EDA response. EDA synchrony was further employed
in order to quantify the co-activation of the sympathetic nervous system between the two part-
ners, a construct highly relevant to relationship connectedness and satisfaction [64]. The Sparse
EDA Synchrony Measure (SESM) was computed as the similarity of EDA signals between the two
partners using joint sparse representation techniques [15]. The objective of this approach was to
jointly model two EDA signals as the linear combination of a set of common atoms selected from
an EDA-specific dictionary. The dictionary includes 4,340 parametric atoms that yielded from dif-
ferent combinations of the recovery time a, rise time b, time scale s , and time shift t0 parameters

in the Bateman function дBateman (t ) = (e−a (st−t0 ) − e−b (st−t0 ) )u (t − t0) (u (t ) is the step function),
used to simulate the steep rise and slow recovery of SCRs. Joint decomposition of the two signals
based on the aforementioned dictionary was performed using the orthogonal matching pursuit
(OMP) algorithm of analysis windows of 5 and 15 min. duration. Various numbers of selected
atoms N were used for each window (N = 5, 10, 15 for 5 mins; N = 15, 20, 25, 30 for 15 mins) in
order to model multiple resolutions in the EDA representation. SESM was computed as the inverse
of the joint representation of the EDA signals from both partners based on the commonly selected
atoms. Intuitively, if the EDA signals are similar to each other, the common atoms can reliably cap-
ture their structure, resulting in low representation error, and therefore high synchrony quantified
through the SESM. An asynchronous version of the SESM was further computed in order to obtain
an estimate of directionality between the EDA signals of the two partners. According to the asyn-
chronous SESM, the atoms selected from the sparse decomposition of one’s EDA signal from one
partner were used to reconstruct the EDA signal of the second partner. Asynchronous SESM was
computed as the reconstruction error of the second partner. A detailed description of the SESM
indices and their validation can be found in Refs [14] and [15]. The BioSig toolbox was used to
detect artifacts in the ECG signal using a histogram-based approach and detect the ECG beats [65].
Automatically detected artifacts were visually inspected and revised by human annotators. Time-
and frequency-based ECG features were extracted, including average beats per minute, average
R-R interval, as well as the very-low, low, and high frequency component (0–0.04 Hz, 0.04–0.15
Hz, and 0.15–0.4 Hz, respectively). In addition to mean body temperature, activity count was com-
puted as the l2-norm of the 3-axis acceleration signals. These resulted in 48 physiological features
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Table 1. Language Features for Conflict Classification

Category Extracted features

Linguistic indices number of total words, words longer than six letters, words in
LIWC dictionary, function words, pronouns, personal
pronouns, “I, We, You, He/She, They” pronouns, impersonal
pronouns, articles, verbs, auxiliary verbs, past/present/future
tense verbs, adverbs, prepositions, conjunctions, negations,
quantifiers, numbers

Psychological constructs social processes (family, friends, humans), affective processes
(positive/negative emotion, anxiety, anger, sadness), cognitive
processes (causation, discrepancy, tentative, certainty,
inhibition, inclusive, exclusive), perceptual processes (see,
hear, feel), biological processes (body, health, sexual,
ingestion), relativity (motion, space, time), personal concerns
(work, achievement, leisure, home, money, religion, death)

Paralinguistic indices assent, non-fluencies, fillers

per partner, a detailed description of which is provided in Table 2. Similar physiological features
have been employed in previous research studying affect and emotions using wearable devices
[37, 47].

Contextual indices were further obtained from the EMA reports in order to integrate context
to the signal-based measures. Contextual features included the hourly consumption of caffeine,
alcohol, tobacco, and other drugs, as well as the duration of exercise, interaction with others, and
driving within an hour. These data resulted in seven measures per person. Self-reported measures
collected each hour from the EMAs for each partner included stress, happiness, sadness, nervous-
ness, and anger.

Mean substitution was done for the missing features in the data, while the entire record was
removed if the conflict label was not available.

4.2 Sub-Population Specific Clustering

The criteria used for sub-population clustering are motivated by previous studies in psychology
indicating that conflict is experienced and expressed differently by insecure and anxiously at-
tached partners compared to their counter-peers, as well as by partners with different levels of
relationship satisfaction [8, 10, 19, 46]. Campbell and Simpson in Ref. [10] found that the percep-
tion of more anxiously attached individuals about conflicts with their partners was higher. They
also found that these individuals had greater feelings of distress, which can be potentially depicted
through partners’ physiological, acoustic, and linguistic indices. Research on adolescents further
suggests that individuals with an insecure attachment style depict more negative affect during
inter-personal conflict compared to their counter-peers [19]. These findings from psychological
studies suggest that individuals with distinct types of relationship functioning might depict dis-
tinct bio-behavioral patterns, as reflected by physiological, acoustic, and linguistic metrics, when
experiencing and expressing conflict.

Taking this into account, clustering criteria included the two relationship satisfaction dimen-
sions of the QMI questionnaire (QMI-1 and QMI-2), as well as the avoidance and anxiety mea-
sures from ECR-R (Section 3). These measures were used as the input of a K-means algorithm,
which was applied to obtain the sub-population clusters. From a total of 87 couples, we performed
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Table 2. Physiological Features for Conflict Classification

Signal Extracted features

Electrodermal activity Skin conductance level, skin conductance response (SCR)
frequency (SCR thresholds = 0.01, 0.02 muS), # SCRs (SCR
thresholds = 0.01, 0.02 muS), mean SCR amplitude (SCR
thresholds = 0.01, 0.02 muS), symmetric sparse EDA synchrony
measure (SESM) (analysis window = 5 min, #atoms = 5, 10, 15),
symmetric SESM (analysis window = 15 min, #atoms = 15, 20, 25,
30), asymmetric SESM (analysis window = 5 min, #atoms = 5, 10,
15), asymmetric SESM (analysis window = 15 min, #atoms = 15,
20, 25, 30)

Electrocardiogram Interbeat interval, mean heart rate (HR), standard deviation of
HR, min/max HR, rate variability (HRV), HRV triangular index,
mean R-R interval, standard deviation of R-R intervals, root mean
square of successive R-R interval differences, number of adjacent
NN intervals more than 50 ms apart, percentage of adjacent NN
intervals more than 50 ms apart, triangular interpolation of
normal-to-normal intervals, HRV peak frequency at very low
frequency (VLF: 0–0.04 Hz), low frequency (LF: 0.04–0.15 Hz), and
high frequency (HF: 0.15–0.4 Hz), HRV absolute power at
VLF/LF/HF, HRV relative power at VLF/LF/HF, ratio between LF
and HF power, total power, Shannon entropy

3-Axes Acceleration l2-norm of 3-axes acceleration
Body temperature mean body temperature

sub-population clustering based on the 123 participants for which all attachment and relationship
satisfaction scores were available. Three clusters provided the best empirical tradeoff between the
number of total samples and the resolution of each cluster.

4.3 Identifying Sub-population Specific Features of Conflict through Statistical
Analysis

Hypothesis testing was performed to identify the most indicative features of the conflict outcome
for each sub-population. An independent samples t-test was used to compare physiological, acous-
tic, and linguistic metrics obtained from conflict samples compared to the corresponding metrics
from the non-conflict samples for each sub-population. Our working hypothesis is that different
types of features will be most useful in detecting conflict for each sub-population (i.e., cluster of
individuals).

4.4 Sub-population Specific Models of Conflict

Following evidence from previous literature (Section 3), and in an effort to obtain systems that
conceptually make most sense for the data of interest, sub-population specific models of conflict
have been designed using hierarchical and adaptive learning. Hierarchical models include multi-
level representations, where the first levels include information for the entire population and the
last levels capture information specific to each sub-population. Hierarchical models were imple-
mented with an MTL FNN, whose first hidden layers are shared among all individuals and last
output layers are split for each sub-population (Section 4.4.1). Adaptive approaches initialize a
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Fig. 1. Hierarchical and adaptive learning for sub-population specific machine learning models.

model using data from the entire population and refine the same model for each sub-population
separately. Adaptive sub-population specific models are implemented by fine-tuning a FNN to
each sub-population separately. This results in a final number of FNNs equal to the number of to-
tal sub-populations (Section 4.4.2). The main difference between hierarchical and adaptive models
lies in the fact that knowledge is simultaneously learned for all sub-populations in the hierarchical
models, while weights of the FNN are separately adapted for each sub-population in the adaptive
approach.

4.4.1 Hierarchical Sub-Population Specific Models. MTL is inspired by human learning, where
knowledge from one task is applied to obtain knowledge from another related task. MTL is
used to learn signal-based representations common among all samples and refined for each sub-
population. This method has been implemented with an FNN, whose initial layers capture the
common knowledge for the entire population and whose later layers cater explicitly to the dif-
ferent populations. The proposed model has one input layer, three hidden layers, and one output
layer. The number of layers was empirically determined to make sure that the parameters of the
network were learned based on the total number of training samples. The first two hidden layers
are shared among all individuals, while the last hidden and the output layer of the network are
kept specific to each sub-population (Figure 1(a)). Hence, the model is jointly learning both the
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Table 3. Set of Original Values for Hyper-Parameter Tuning

Hyper-parameter Values

# neurons in hidden layers 60, 80, 120
dropout 0, 0.2, 0.3
optimization algorithm adam, sgd, rmsprop
class weights {non-conflict:1, conflict:15},

{non-conflict:1, conflict:25}

Nested leave-one-couple-out cross-validation is performed to identify the

best combination based on the validation data using a grid search.

features inherent to the entire population, as well as the ones that are particularly relevant to each
sub-population.

4.4.2 Adaptive Sub-Population Specific Models. The proposed adaptive learning approach in-
cluded an FNN initially trained on all data samples and fine-tuned for each sub-population sep-
arately. Since the data samples per sub-population might not be enough to fine-tune all layers
of the FNN, only the parameters of the last two layers of the FNN were adapted based on each
sub-population. This resulted in three separate FNNs, one per sub-population. The FNN is ini-
tially learned based on all participants. Subsequently, the parameters of first two layers are kept
frozen, while the parameters of the last two layers are fine-tuned for the sub-population of interest
(Figure 1(b)). The main difference between the MTL and FNN fine-tuning frameworks lies in the
data samples upon which the loss function is optimized. The loss function of the MTL includes
all data samples, while the loss function of each of the fine-tuned FNNs includes the samples that
belong to the corresponding sub-population.

4.5 Experimental Setting

The modular structure of neural networks allows for flexible representations of the input space. For
this reason, neural networks with fully-connected layers were used as a basis for the proposed MTL
and fine-tuning approaches, implementing the hierarchical and adaptive sub-population specific
models, respectively. In order to ensure fair comparison of the proposed models, our first baseline
consists of a fully-connected FNN trained on all couples without any adaptation, referred to as
“Single”. The FNN has the same number of layers (i.e., five) as the MTL and FNN fine-tuning models
(Figure 1) to further make the systems as comparable as possible. A decision tree and a K-Nearest
Neighbor were further tested as baselines. The results from these classifiers were similar to the
single FNN; therefore, for the sake of brevity, they will not be further discussed in the paper. Our
second baseline will include separate 5-layer FNNs trained for each sub-population independently,
referred to as “Separate”.

Hyper-parameter tuning for both the MTL, FNN fine-tuning, and baseline approaches was per-
formed using a couple-independent 5-fold nested cross-validation [13]; samples from the same
couple were not included in the training, validation, or test sets during the same fold. The outer
fold of the nested cross-validation included the data from the test set, based on which the final
classification metrics were reported. Similar to Calefato et al. [9], the inner fold of the nested
cross-validation selected a sample of 20% of the data in a stratified manner as a validation set to
tune the hyper-parameters of the MTL and FNN networks. The test set did not overlap at any point
with the training and validation sets. Tuning was performed using a grid search with an initial set
of hyper-parameters as shown in Table 3. Both MTL and FNN fine-tuning were implemented using
the Keras toolbox [2]. Back-propagation was performed with a batch size of 32.
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Table 4. Results of Hypothesis Testing for Identifying Significant Differences between the Presence and

Absence of Conflict for Each Sub-Population with Respect to Skin Conductance Response (SCR)

Frequency, R-R Interval, and Fundamental Frequency (F0)

Measure Partner Cluster 1 Cluster 2 Cluster 3

SCR Frequency Male t(73.8) = 0.21, p = 0.82 t(28.5) = 0.2, p = 0.82 t(324.8) = 2.1, p = 0.03

Female t(66.6) = −0.6, p = 0.49 t(133.9) = 2.1, p = 0.03 t(62.18) = 0.29, p = 0.77

R-R Interval Male t(80.5) = 1.4, p = 0.16 t(135) = 4.1, p = 0.0 t(54.3) = 0.1, p = 0.98

Female t(74.7) = 0.6, p = 0.52 t(135) = 3.6, p = 0.0 t(61.3) = 0.7, p = 0.45

F0 Male t(77.3) = 2.5, p = 0.0 t(21.7) = 3.3, p = 0.0 t(47.9) = −2.4, p = 0.02

Female t(75.2) = 3.6, p = 0.0 t(15.9) = 0.6, p = 0.53 t(52.7) = −0.7, p = 0.47

Bold fonts indicate significant differences.

4.6 Evaluation

The aim of classification experiments was to detect the presence or absence conflict per hour
based on the physiological, acoustic, linguistic, and contextual features. Because of the highly
unbalanced nature of the dataset (90.5% non-conflict), the proposed systems are evaluated in terms
of both weighted and the unweighted precision, recall, and F1-scores. Unweighted scores remove
the distribution bias by computing each metric for the conflict and non-conflict class and then
providing the mean. Weighted metrics are computed using all samples without taking into account
the number of samples per class.

5 RESULTS

In this section, we first discuss the sub-populations resulting from the clustering algorithm (Sec-
tion 5.1). We then examine the most discriminative features per sub-population with respect to
the outcome of conflict (Section 5.2). Finally, we present the conflict classification results with the
proposed hierarchical and adaptive frameworks of sub-population specific models, as well as their
comparison with general machine learning models trained for the entire population (Section 5.3).

5.1 Clusters

Sub-population clustering resulted in 45 participants for cluster 1, 19 participants for cluster 2, and
59 participants for cluster 3. To gain insight regarding the types of individuals included in each
cluster, we visualized the corresponding clusters in 2-D plots using the relationship satisfaction
and attachment scores (Figure 2). Relationship satisfaction appeared to be the most separable sub-
population clustering criterion (Figure 2(b) and (c)), while relationship attachment characteristics
appeared to provide less distinct clusters (Figure 2(a)). Based on the aforementioned visual repre-
sentations, we can intuitively understand that three main clusters appear in the data: an anxiously
attached and avoidant group of individuals with low relationship satisfaction (Cluster 3), a securely
attached and non-avoidant cluster of partners with high relationship satisfaction (Cluster 2), and
a group of individuals lying in the middle (Cluster 1).

5.2 Statistical Analysis

Hypothesis testing indicated that different types of features were the most indicative of conflict
in each cluster (Table 4). EDA measures, such as skin conductance response frequency, obtained
from the male partners, appeared to be most indicative of conflict for securely attached individuals
highly satisfied in their relationships (Cluster 3), while R-R interval obtained from the female
partners discriminated between the presence or absence of conflict for anxiously and avoidantly
attached partners with low relationship satisfaction (Cluster 2). In contrast, acoustic features, such
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Fig. 2. Visualization of sub-population clusters using different criteria.

as speech loudness and fundamental frequency from both male and female partners, were most
discriminative for the group lying between those two clusters (Cluster 1). These findings suggest
that there are distinct associations between input features and the outcome of interest for the three
sub-populations of our data.

5.3 Classification Results

Conflict classification results are provided from a single FNN trained on the entire population,
as well as the proposed sub-population specific machine learning approaches using hierarchical
and adaptive learning (Table 5). In the majority of cases, both types of sub-population specific
models outperform the general FNN trained on the entire population (Single) and the three sepa-
rate FNNs trained on each sub-population (Separate), indicating the importance of incorporating
sub-population specific information into the machine learning models. Adaptive learning imple-
mented with FNN fine-tuning slightly outperformed the multi-task FNN. This might be because
the optimization criterion of the fine-tuned FNN only includes samples from one sub-population,
potentially resulting in a smoother loss function with less local optima compared to the one of the
MTL.

The different physiological, acoustic, and linguistic modalities resulted in various levels of per-
formance, with the self-reported MQI features outperforming all separate signal-based indices
(Table 6). However, when all signal-based indices were combined (Table 5), they yielded higher
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Table 5. Conflict Classification Using a Single Feedforward Neural Network

(FNN) Trained on the Entire Population and Sub-Population Specific

Machine Learning Models Based on Hierarchical and Adaptive Learning,

Implemented with a Multitask FNN and FNN Fine-Tuning, Respectively

Model Class Precision Recall F1

Single Conflict 0.13 0.67 0.22
Non-Conflict 0.94 0.54 0.69
Weighted Average 0.86 0.55 0.64
Unweighted Average 0.53 0.60 0.45

Separate Conflict 0.13 0.57 0.22
Non-Conflict 0.93 0.61 0.74
Weighted Average 0.86 0.61 0.69
Unweighted Average 0.53 0.59 0.48

Hierarchical Conflict 0.15 0.48 0.22
Non-Conflict 0.93 0.71 0.8
Weighted Average 0.86 0.69 0.75
Unweighted Average 0.54 0.60 0.51

Adaptive Conflict 0.21 0.76 0.34
Non-Conflict 0.96 0.68 0.80
Weighted Average 0.89 0.70 0.76
Unweighted Average 0.59 0.73 0.57

Input features include acoustic, linguistic, physiological, and contextual indices.

Table 6. Conflict Classification Using Self-Reported Mood and Quality of

Interaction Measures, Acoustic, Linguistic, and Physiological Indices with

the Adaptive Sub-Population Specific Machine Learning Models

Modality Class Weighted F1 Unweighted F1

Self-reported Single 0.61 0.43
Hierarchical 0.66 0.46
Adaptive 0.61 0.42

Acoustic Single 0.47 0.35
Hierarchical 0.61 0.43
Adaptive 0.37 0.28

Language Single 0.59 0.41
Hierarchical 0.58 0.41
Adaptive 0.08 0.12

Physiological Single 0.42 0.32
Hierarchical 0.52 0.35
Adaptive 0.35 0.27

accuracy compared to the self-reported measures, indicating the feasibility of employing passive
sensing modalities in real-life situations for detecting events of interest. As expected from the sta-
tistical analysis (Section 5.2), acoustic indices appeared to be the most discriminative modality,
yielding higher performance compared to linguistic and physiological measures.
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Table 7. Results of Conflict Classification per Cluster Using the Adaptive

Sub-Population Specific Models Implemented with Feedforward Neural

Network Fine-tuning

Model Class Precision Recall F-1

Cluster 1 Conflict 0.19 0.78 0.31
Non-Conflict 0.95 0.55 0.7
Weighted Average 0.859 0.577 0.65
Unweighted Average 0.57 0.665 0.505

Cluster 2 Conflict 0.23 0.71 0.35
Non-Conflict 0.97 0.78 0.86
Weighted Average 0.906 0.77 0.816
Unweighted Average 0.6 0.745 0.605

Cluster 3 Conflict 0.23 0.81 0.36
Non-Conflict 0.98 0.76 0.86
Weighted Average 0.92 0.763 0.82
Unweighted Average 0.605 0.785 0.61

We further observed performance differences across the three sub-populations (Table 7). Con-
flict classification for Clusters 2 and 3 generally yielded better results than did Cluster 1. This might
be due to the fact that Clusters 2 and 3 represented the groups of couples with extreme levels of
relationship satisfaction (low or high) and attachment characteristics (secure or insecure attach-
ment, high or low anxious attachment; Figure 2). Conversely, Cluster 1 included the individuals in
the “gray-area”, for which the aforementioned relationship-based characteristics are located in the
middle of the distribution. This might indicate that individuals in Cluster 1 have highly variable
conflict-relevant patterns, which the corresponding machine learning models cannot adequately
learn. Increasing the resolution of Cluster 1 by further splitting the corresponding samples into
smaller groups might result in more discriminative sub-populations and might benefit the final
system performance.

6 DISCUSSION

We proposed sub-population specific machine learning models for detecting couples’ interper-
sonal conflict in real life. In accordance with previous work [29, 38, 62], our results indicate that
different features are predictive of conflict for different sub-populations. Despite their limited age
range, the recruited participants in this study depicted significant variability in terms of their
socio-demographic (e.g., race, ethnicity, employment status) and relationship-based characteris-
tics (e.g., current length, cohabituation status, satisfaction, attachment). While our demographics
and survey data were typical of young adults in this age range, we cannot be certain that our al-
gorithms would translate to different populations. Further work with participants recruited based
on a different set of criteria will need to validate the effectiveness of existing methodologies.

Our result indicate that the clustering of individuals in different sub-populations allows the ma-
chine learning models to learn the most discriminative features per sub-population and benefits the
performance of the final system. These findings corroborate results in psychological science, which
report that conflict is experienced differently for couples with different relationship functioning
characteristics [10, 19, 41]. Levenson and Gottman found that the level of relationship satisfaction
moderates the amount of physiological reactivity between couples during their interactions [41],
while Campbell and Simpson indicated that anxiously attached individuals perceive conflicts
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differently compared to their counter-peers [10]. Our results indicate that EDA and ECG measures
were informative of conflict for individuals with very low or very high relationship satisfaction
(Clusters 2 and 3, respectively) but not for individuals in the middle of the spectrum (Table 4). Sim-
ilarly, conflict classification yielded higher accuracy for these extreme sub-populations compared
to the middle sub-population (Table 7). These results suggest that signal-based patterns of couples
with very high and very low relationship functioning reflect conflict in a more pronounced way
compared to the general population.

Results further indicate that by incorporating relationship-specific information, we can augment
the performance of predictive models. This possibly reflects the ability of sub-population specific
approaches to better address the inherent inter-individual variability of human behavior compared
to general machine learning models. Our best results for conflict detection yielded F1-score of 0.76
and unweighted recall of 0.70 using the adaptive-based sub-population specific models and all
the signal-based data (i.e., physiology, speech, language). Although the experimental frameworks
are not the same, these results are equivalent to similar approaches for classifying the presence
or absence of stress with 0.68 accuracy [62], as well as pain intensity with 0.40 accuracy in a 5-
class problem [33]. Jaques et al. utilized MTL for predicting the next-day happiness and stress,
yielding an accuracy of 0.60 for happiness and 0.63 for stress [31]. Kim et al. used a 3-way SVM
classifier on a two-label problem (low-conflict vs. high-conflict) and obtained an average recall of
0.71 and an average F-measure of 0.71 on taking both the conversational and prosodic features in
the case of political debates [36]. Taking into account that detecting conflict between couples is an
inherently difficult task, since it involves the modeling of the interplay between various complex,
psychological, interpersonal processes, the proposed multi-modal system achieved comparable
and sometimes slightly better performance to previous studies, indicating the feasibility of sub-
population specific machine learning for modeling subtle facets of human behavior.

The clustering criterion is an important factor for building sub-populations from a set of data.
We followed a knowledge-driven approach by taking into account findings from psychological
science indicating that individuals with different relationship satisfaction and attachment charac-
teristics perceive interpersonal conflict differently [10, 19]. While the majority of previous work
has successfully used such predetermined clustering criteria [6, 39, 62], there have also been stud-
ies that have split participants based on their signal-based measures (e.g., mean physiological lev-
els) [33]. In future work, we plan to explore joint optimization approaches to learn the optimal
cluster configuration for a given outcome of interest and examine whether this data-driven con-
figuration aligns with knowledge-driven approaches.

Sub-population clustering was performed using a K-Means classifier. Despite the intuitiveness
and effectiveness of this approach, more sophisticated clustering mechanisms, such as hierarchical
dendogram approaches [67], might be able to recover highly variable sub-populations with bet-
ter resolution and potentially stratify individuals in the middle of the spectrum. Using ensemble
learning that randomizes the various groups of features and clustering criteria [39] might also be a
useful approach to this problem. We further observed that while the proposed system was able to
reliably detect conflict for couples belonging to the “extreme” clusters (i.e., couples with low and
high relationship satisfaction), conflict detection for the intermediate cluster (i.e., couples with
medium relationship satisfaction and anxiety) was not as accurate. A potential reason behind this
could be that couples in the “gray-zone” might depict higher variability in the way they express
and experience conflict compared to the couples in the extreme clusters. This ambiguity might
prevent the model parameters for the couples in the “gray-zone” from being adequately learned.
A way to address this limitation would be to perform soft clustering, according to which each
couple is assigned to a probability of belonging to a given cluster, implemented through mixture
of experts methodologies [27, 62]. In this way, the parameters of each cluster will be learned using
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all samples, each weighted with an importance proportional to the strength of its belonging to a
given cluster, potentially yielding more robust representations.

The data was collected in an ambulatory setting, which inevitably increased the amount of noise
in the acoustic and physiological signals. Pre-processing techniques related to high-frequency
noise elimination, movement artifact detection, and voice activity detection (Section 4.1) were
applied to reduce the inherent noise in the data. Inspection by human annotators was further per-
formed to ensure that the automated techniques have reliably removed the noisy parts of the sig-
nals (e.g., motion artifacts, high-frequency noise) and have retained the meaninfgul ones (e.g., skin
conductance responses, QRS intervals). Although it is not guaranteed that noise is fully eliminated,
our results indicate that the features extracted from the denoised signals can still provide mean-
ingful patterns related to the outcome of interest. Signal denoising and pre-processing comprises
a fundamental and necessary step for any ambulatory monitoring application, especially when
real-life interventions are of interest. Researchers are advised to understand the inner mechan-
ics behind signal denoising techniques and make sure that the resulting denoised signals retaing
meaninfgul information regarding the outcome of interest.

Human transcribers converted the automatically detected speech segments of the audio signals
into text. This might impose a constraint on level of automation of the proposed model. Previous
studies, however, suggest that linguistic features derived based on automatic speech recognition
systems can yield comparable performance for detecting human-related outcomes to the same
features extracted based on human transcriptions [66, 68]. We expect that automatic speech tran-
scription systems will continue to improve in the near future [58], supporting the feasibility of a
fully automated approach for leveraging language features from speech in real-life applications.

Results from this work indicate the feasibility of detecting behaviors of clinical interest in real-
life for enhancing mental and emotional well-being. Despite the encouraging results, a variety of
steps need to occur before the broad adoption of such technologies in real-life applications. It is
of the utmost importance to rigorously test such algorithms in real-life situations in order to get
a better understanding their performance is various populations and under different conditions.
Baseline data from each user might be potentially valuable to increase the reliability and precision
of such algorithms. Technical considerations in terms of internet connectivity, storage capacity,
and on-device computational power for data analysis need to be taken into account to ensure
that the proposed applications can be accessible from diverse pool of individuals, such as people
with low socio-economic status, elderly adults, or individuals residing in remote geographical lo-
cations [42, 57]. Tuning the sensitivity and specificity of the proposed algorithms and designing
user-friendly human-computer interfaces for feedback provision needs to be performed in collab-
oration with researchers from Psychological Science and Human-Computer Interaction, in order
to ensure that potential users can unobtrusively and meaningfully engage with such systems [18].

7 CONCLUSIONS

In this article, we proposed the integration of sub-population specific information into machine
learning systems for accurately detecting couples’ conflict in real life. We used two different learn-
ing approaches: the first relied on hierarchical learning with a MTL FNN, while the second relied on
adaptive learning using FNN fine-tuning. We compared the aforementioned approaches to general
machine learning models through a dataset containing couples’ interactions in real life. Different
types of features were found to be more discriminative for various sub-populations, reflecting the
high levels of inter-individual variability observed in our population. The proposed sub-population
specific approaches outperformed general machine learning models and separate models trained
for each sub-population for detecting conflict. Our results further suggest that conflict is more
easily detected for couples with extreme levels of relationship satisfaction and attachment style.
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The same does not hold for couples in the intermediate “gray-zones,” indicating the presence of
more complex interactions between physiological and acoustic variables for detecting conflict in
these couples. Findings from this study can inform the development of machine learning systems
for detecting events of interest relevant to health and well-being in ambulatory settings, setting
the foundation for developing in-the-moment interventions in real life.

APPENDIX

This appendix includes a detailed information on the items of the EMA questionnaire, administered
every hour to each partner (Section 3).

Table 8. Items of the Ecological Momentary Assessment (EMA) Questionnaire

Item Choice of answers

What is your ID number? N/A
Which partner are you? a. Partner 1; b. Partner 2
How stressed were you in the last
hour?

0–100 (not at all–extremely)

What was the source of stress?
Please check all that apply.

a. The romantic partner; b. Another person; c. Work or
school; d. Other events/news; e. Not applicable. I
answered 0 to the last question.

Did you consume any of the
following in the last hour? Please
check all that apply.

a. Coffee, tea, or energy drinks; b. Alcohol; c. Tobacco;
d. Other drugs; e. None of the above

Did you engage in any physical
activity in the last hour?

a. Not at all; b. Low Intensity; c. Moderate intensity;
d. High intensity

In the last hour, how happy were
you?

0–100 (not at all–extremely)

In the last hour, how sad were you? 0–100 (not at all–extremely)
In the last hour, how nervous were
you?

0–100 (not at all–extremely)

In the last hour, how angry were
you?

0–100 (not at all–extremely)

In the last hour, how close or
connected did you feel toward
your romantic partner?

0–100 (not at all–extremely)

In the last hour, how irritated or
annoyed did you feel toward your
romantic partner?

0–100 (not at all–extremely)

Did you express this irritation to
your romantic partner (speaking,
texting, etc.)?

a. Yes; b. No; c. Not applicable. I answered 0 to the last
question.

In the last hour, have you had any
contact with your romantic
partner via text or phone?

a. Yes; b. No

If you disabled the audio, please
enable it now if you are able.

a. Okay
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