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ABSTRACT

We present Quantum Belief Propagation (QBP), a Quantum An-
nealing (QA) based decoder design for Low Density Parity Check
(LDPC) error control codes, which have found many useful applica-
tions in Wi-Fi, satellite communications, mobile cellular systems,
and data storage systems. QBP reduces the LDPC decoding to a
discrete optimization problem, then embeds that reduced design
onto quantum annealing hardware. QBP’s embedding design can
support LDPC codes of block length up to 420 bits on real state-of-
the-art QA hardware with 2,048 qubits. We evaluate performance on
real quantum annealer hardware, performing sensitivity analyses
on a variety of parameter settings. Our design achieves a bit error
rate of 1078 in 20 ps and a 1,500 byte frame error rate of 107 in 50
us at SNR 9 dB over a Gaussian noise wireless channel. Further ex-
periments measure performance over real-world wireless channels,
requiring 30 us to achieve a 1,500 byte 99.99% frame delivery rate
at SNR 15-20 dB. QBP achieves a performance improvement over
an FPGA based soft belief propagation LDPC decoder, by reaching
a bit error rate of 1078 and a frame error rate of 107 at an SNR
2.5-3.5 dB lower. In terms of limitations, QBP currently cannot
realize practical protocol-sized (e.g., Wi-Fi, WiMax) LDPC codes
on current QA processors. Our further studies in this work present
future cost, throughput, and QA hardware trend considerations.
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1 INTRODUCTION

As the design of mobile cellular wireless networks continues to
evolve, time-critical baseband processing functionality from the
base stations at the very edge of the wireless network is being
shifted and aggregated into more centralized locations (e.g., Cloud/-
Centralized-RAN [15, 44, 63]) or even small edge datacenters. A key
component of mobile cellular baseband processing is the error cor-
rection code, a construct that adds parity bit information to the data
transmission in order to correct the bit errors that interference and
the vagaries of the wireless channel inevitably introduce into the
data. In particular LDPC codes, first introduced by Gallager[25] in
1962 but (with few exceptions [49, 67, 77]) mostly ignored until the
work of McKay et al. in the late 90s [48], have approached the Shan-
non rate limit [60]. Along with Turbo codes [6], LDPC codes stand
out today because of their exceptional error correcting capability
even close to capacity, but their decoding comprises a significant
fraction of the processing requirements for a mobile cellular base
station. LDPC codes are considered for inclusion in the 5G New
Radio traffic channel [24], the DVB-S2 standard for satellite com-
munications [55], and deep space communications [11, 12]. LDPC
codes are also currently utilized in the most recent revisions of the
802.11 Wi-Fi protocol family [32]. Given the dominance of LDPC
codes in today’s wireless networks, the search for computationally
efficient decoders and their ASIC/FPGA realization is underway.

Background: Quantum Annealing. This paper notes exciting
new developments in the field of computer architecture hold the
potential to efficiently decode LDPC codes: recently, quantum an-
nealer (QA) machines previously only hypothesized [36, 52] have
been commercialized, and are now available for use by researchers.
QA machines are specialized, analog computers that solve NP-com-
plete and NP-hard optimization problems in their Ising specifica-
tion [9] on current hardware, with future potential for substantial
speedups over conventional computing [53]. They are comprised
of an array of physical devices, each representing a single physical
qubit (quantum bit), that can take on a continuum of values, unlike
classical information bits, which can only take on binary values.
The user of the QA inputs a set of desired pairwise constraints be-
tween individual qubits (i.e., a slight preference that two particular
qubits should differ, and/or a strong preference that two particular
qubits should be identical) and preferences that each individual
qubit should take a particular classical value (0 or 1) in the solution
the machine outputs. The QA then considers the entire set of con-
straints as a large optimization problem that is typically expressed
as a quadratic polynomial of binary variables [36, 47]. A multitude
of quantum annealing trials comprises a single machine run, with
each anneal trial resulting in a potentially different solution to the
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problem: a set of classical output bits, one per qubit, that best fits
the user-supplied constraints on that particular trial.

Quantum-Inspired and Hybrid Algorithms. The growing inter-
est in quantum computing has recently led to the emergence of sev-
eral physics-based quantum-inspired algorithms (QIA) [4, 5, 28,
38] and quantum-classical hybrid algorithms (QCH) [33, 51, 66, 69].
QIA can be used to simulate quantum phenomena such as superpo-
sition and entanglement on classical hardware [54], where widely
practiced QIA approaches (e.g., digital annealing [4, 50]) have solved
combinatorial optimization problems with as many as 8,192 prob-
lem variables [50]. QCH algorithms broadly operate on a hybrid
workflow between classical search heuristics and quantum queries,
providing ways to use noisy intermediate-scale quantum computers
[59] for optimizing problems with as many as 10,000 variables [17].
In this work, while we demonstrate a quantum annealing based
LDPC decoder approach by realizing a small 700 variable problem,
we also note that implementation of the same ideas using QIA and
QCH methods is also a promising possibility.

This paper presents Quantum Belief Propagation (QBP), a new up-
link LDPC decoder that takes a new look at error control decoding,
from the fresh perspective of the quantum annealer. QBP is a novel
way to design an LDPC decoder that sets aside traditional belief
propagation (BP) decoding, instead reduces the first principles of the
LDPC code construction in a highly-efficient way directly onto the
physical grid of qubits present in the QA we use in this study, the
D-Wave 2000-qubit (DW2Q) quantum adiabatic optimizer machine,
taking into account the practical, real-world physical qubit inter-
connections. We have empirically evaluated QBP on the real DW2Q
QA hardware. Results on the real-world quantum annealer show
that QBP achieves a bit error rate of 1072 in 20 ys and a 1,500 byte
frame error rate of 107° in 50 ys at signal-to-noise ratio of 9 dB over
a Gaussian noise channel. In comparison with FPGA-based soft
BP LDPC decoders, QBP achieves the same 10~ bit error rate and
107% frame error rate at an SNR 2.5-3.5 dB lower, even when the
classical decoder is allowed a very large number of iterations (100).
Currently, QBP cannot realize practical protocol-sized LDPC codes
on state-of-the-art QA processors with 2,048 qubits. Our further
studies present limitations and predicted future of QA (§9).

2 PRIMER: LDPC CODES

A binary (N, K) LDPC code is a linear block code described func-
tionally by a sparse parity check matrix [25, 48]. It is said to be a
(dp, dc)-regular code if every bit node participates in d. checks, and
every check has dj, bits that together constitute a check constraint.
This section describes the conventional encoding and decoding
schemes of LDPC codes. Let H = [h;j]pxn be the LDPC parity
check matrix. Each row in H represents a check node constraint
whereas each column indicates which check constraint a bit node
participates in. In the Tanner graph [67] of Figure 1, the nodes
labeled c; are check nodes and those labeled b; are bit nodes, and
a value of 1 at hy,, € H represents an edge between ¢, and by,.
Code girth, the length of the shortest cycle in the Tanner graph,
is a crucial measure, as a low girth affects the independence of
information exchanged between check and bit nodes, diminishing
the code’s performance [16, 46, 57].
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Figure 1: A Tanner Graph of an example LDPC code.

LDPC Encoder. Let u be a message of length K. The overall encod-
ing process is summarized as follows:

(1) Convert H into augmented form [P|In_k ] by Gauss-Jordan
elimination. (Here, P is obtained in the conversion process
and I is the identity matrix.)

(2) Construct a generator matrix G as [1x|PT].

(3) The encoded message c is constructed as ¢ = uG.

This way of encoding ensures that the modulo two bit-sum at every
check node is zero [25].

LDPC Decoder. We describe the BP-based min-sum algorithm
[76]. Let y be received information, N(c,,) the set of bit nodes
participating in check constraint c,,, and M(b,) the set of check
nodes connected to bit node by,.

Initialization. Initialize all the bit nodes with their respective a
priori log-likelihood ratios (LLRs) as:

Pr(bn = 0|y)

LLR =1
b °g(Pr(bn =)

) Vb, € N(cm) 1)

Step 1. For every combination {(m, n) | hyn = 1}, initialize messages
sent to check ¢, from bit b,, € N(c;, ) as:

an—wm(xn) = LLRbn (xn) (2

Step 2. Every check node ¢, then updates the message to be sent
back, w.r.t every b, € N(cp,) as:

Zepobnn) =[]

b €N(cm)\bn

Sgn(zbn/ —>cm) : min|an,_,cm| (3)

Step 3. Each bit node b, now updates the message to send back,
w.r.t every ¢, € M(by) as:

Zhysep(n) = LRy, () + )
Cpt EM(bp)\Com

Zcm/ﬁbn(xn) (4)

To decode, each bit node computes:

Zy,(tn) = LLRy, (xp) + D Zeposp,(n). (5)
cmeM(by)

Decision Step. After Step 3, quantize x = [Xg, X1, ..., XN—1] such
that X, = 0if Z; (xp) > 0, else X, = 1. % are the decoded bits. If
% satisfies the condition enforced at encoding (%HT = 0), then %
is declared as the final decoded message. If it doesn’t satisfy this
condition, the BP algorithm iterates Steps 1-3 until a satisfactory x
is obtained. The decoder terminates at a predetermined threshold
number of iterations.
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3 CLASSICAL BP DECODER LIMITATIONS

The goal of most classical BP LDPC decoders is an efficient hard-
ware implementation that maximizes throughput, thus driving a
need to minimize data errors. A variety of architectures for the
classical hardware implementation of LDPC decoders have been
developed [26, 29, 62], and in practice, depending on the problem
of interest and the hardware resource availability, the decoders
are implemented either in serial, partly-parallel, or fully parallel
architectures on FPGA/ASIC hardware. Although existing decoders
do reach theoretically supported line speeds of, e.g. Wi-Fi [30], Wi-
MAX [31], and DVB-S/S2 [23], they make throughput compromises,
in particular, reducing decoding precision (such as using low preci-
sion LLR bitwidth, limiting iterations, or using reduced-complexity
algorithms [26]). Therefore, the goal of maximizing throughput
requires making the most efficient trade-offs among the following:

(1) To achieve high throughput, a high degree of decoding
parallelism is required, demanding more resources in the
silicon hardware implementation.

(2) Accurate decoding results require high LLR bit precision
(ca. 8 — 10), along with a precise decoding algorithm, again
demanding more hardware resources.

(3) The iterative nature of the BP algorithm impedes throughput
by requiring numerous serial iterations before reaching
the best, final result. Thus a trade-off between iteration limit
and throughput must be made.

These tradeoffs induce network designers to compromise be-
tween decoder operation line rate and precision, within the avail-
able limited silicon hardware resources. Block RAMs (BRAMs) are
the fundamental array storage resources in FPGAs, where state-
of-the-art BRAMs have a read and a write port with independent
clocks, implying that a single BRAM can perform a maximum of
two read/write operations in parallel [2, 74]. Therefore, to real-
ize a high degree of parallelism required in protocol sized LDPC
codes, many BRAMs must be used in parallel to access the BP LLRs.
Furthermore to meet FPGA device timing constraints, today’s dual-
ported support for BRAMs limits the size of a single data access to
2,048 bits and the number of BRAMs accessible in a single clock
cycle to 1,024 [37, 68, 74]. This limitation results in the maximum
degree of achievable parallelization in current top-end Xilinx FP-
GAs, which corresponds to a 2,048 (1,024 x 2) LDPC code block
length. However, practical block lengths reach up to 1,944 bits in
Wi-Fi, 2,304 bits in Wi-MAX, and 64,800 bits in DVB-S2 protocol
standards [23, 30, 31].

A Xilinx FPGA Resource Study. Using the Xilinx synthesis tool
Vivado HLS, we have implemented a min-sum algorithm based
decoder for a %—rate, 1944 block-length, (3, 6)-regular LDPC code,
on the Xilinx Virtex Ultrascale 440 (xcvu440, the most resourceful
Xilinx FPGA) with 8-bit LLR precision. The resource measurement
metric in FPGAs is generalized to a Configurable Logic Block (CLB).
Each CLB in the Ultrascale architecture contains eight six-input
LUTs!, and 16 flip-flops along with arithmetic carry logic and multi-
plexers [73]. Our implementation of this fully parallel LDPC decoder
covers ~ 72% (229,322/316,220) of the CLBs in the device, the upper
limit of reliability in terms of resource utilization. Furthermore, our

!Most recent FPGAs are equipped with six-input LUTs, which is equivalent to 1.6
the resources of a four-input LUT [26, 73].
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Figure 2: A portion of the Chimera qubit connectivity graph of the
DW2Q QA, showing qubits (nodes in the figure) grouped by unit
cell. The edges in the figure are couplers.

HLS implementation of a (4,8)-regular LDPC code of block length
2048 bits (fully parallel decoder with 8-bit LLR precision) does not
fit into that FPGA.

4 PRIMER: QUANTUM ANNEALERS

Quantum Annealing is a heuristic approach to solve combinatorial
optimization problems and can be understood at a high level as
solving the same class of problems as the more familiar simulated
annealing [42] techniques. QA takes advantage of the fundamental
fact that any process in nature seeks a minimum energy state to
attain stability. Given a discrete optimization problem as input, a
QA quantum processor unit (QPU) internally frames it as an energy
minimization problem and outputs its ground state as the solution.

Quantum Annealing Fundamentals. In the QA literature, qubits
are classified into two types: physical and logical. A physical qubit
is a qubit that is directly available physically on the QA hardware,
while a logical qubit is a set of physical qubits. It is often the case
that the QA hardware lacks a coupler between a particular pair of
physical qubits that the user would like to correlate. To construct
such a relationship, it is general practice to use intermediate cou-
plers to make several physical qubits behave similarly, as explained
below in §4.2, a process known as embedding. The set of these
similarly behaving embedded physical qubits is then referred to
a logical qubit. The process of evolution of quantum bits to settle
down at the ground state in the DW2Q QA is called an anneal, while
the time taken for this evolution is called the annealing time. The
strength of the preference given to each single qubit to end up in a
particular 0 or 1 state is a bias, while the strength of each coupler
is called coupler strength. Moreover the strength of the couplers
that are used to make physical qubits behave similarly as in the
aforementioned embedding process, are called jFerros.

Quantum Annealing Hardware. The QA processor hardware is
a network of interlaced radio-frequency superconducting quantum
interference device flux qubits fabricated as an integrated circuit,
where the local longitudinal fields (i.e., biases) of the devices are
adjustable with an external magnetic field and the interactions
(i.e., couplers) between pairs of devices are realized with a tunable
magnetic coupling using a programmable on-chip control circuitry
[35, 40]. The interconnection diagram of the DW2Q QA hardware
we use in this study is a quasi-planar bi-layer Chimera graph. Fig. 2
shows a 2x4 portion of the 16xX16 QA’s Chimera graph: each set
of eight physical qubits in the figure is called a Chimera unit cell,
whereas each edge in the figure is a coupler.
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The Annealing Process. QA processors simulate systems in the
two-dimensional transverse field Ising model described by the time-
dependent Hamiltonian:

H(s) = —A(s) Z o + B(s)Hp, 6)
HP—Zth' +Z]UO' 0' (7)
i<j

where O'l.x’z are the Pauli matrices acting on the ith qubit, h; and
Jij are the problem parameters, s = t/t, where t is the time and ¢,
is the annealing time. A(s) and B(s) are two monotonic signals such
that at the beginning of the anneal (i.e., t = 0), A(0) >> B(0) ~ 0
and at the end of the anneal (ie, t = t;), B(1) >> A(1) =
The annealing processor initializes every qubit in a superposition
state 7 (J0) + |1)) that has no classical counterpart, then gradually

evolves this Hamiltonian from time ¢ = 0 until t = ¢, by introducing
quantum fluctuations in a low-temperature environment. The time-
dependent evolution of these signals A and B is essentially the
annealing algorithm. During the annealing process, the system
ideally stays in the local minima and probabilistically finds the
global minimum energy configuration of the problem Hamiltonian
Hp at its conclusion [3, 20].

4.1 QA Problem Forms

QA processors can be used to solve the class of quadratic uncon-
strained binary optimization (QUBO) problems in their equivalent
Ising specification [9, 39], which we define here. The generalized
Ising/QUBO form is:

E = Zhlq, +Z];1qij (8)

i<j

Ising form solution variables {g; } take values in {—1,+1}, and in
QUBO form they take values in {0, 1}. The linear coefficient h; is
the bias of g;, whereas the quadratic coefficient J;; is the strength
of the coupler between g; and q;. Coupler strengths can be used to
make the qubits agree or disagree. For instance, let us consider an
example Ising problem:

(CII, q2 € {_1’+l})' (9)

Case I: J12 = +1. The energies for qubit states (q1, g2) = (-1, —1),
(-1, +41), (+1,-1), and (+1, +1) are +1, —1, —1, and +1 respectively.
Hence a strong positive coupler strength obtains a minimum
energy of —1 when the two qubits are opposites of each other.
Case II: J;3 = —1. The energies for qubit states (g1, q2) = (-1, —1),
(-=1,+1), (+1,-1), and (+1,+1) are —1, +1, +1, and —1 respectively.
Hence a strong negative coupler strength obtains a minimum
energy of —1 when the two qubits agree with each other.

E = 129192,

4.2 Embedding of Logical Qubits
To visualize the relationship between logical and physical qubits,
let us consider another example problem:

E = Ji2q192 + J239293 + J139193. (10)

Figure 3(a) is the direct graphical representation of this exam-
ple problem. However, observe that a three-node, fully-connected
graph structure does not exist in the Chimera graph (cf. Figure 2).
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(a) Before Embedding (b) After Embedding

Figure 3: The embedding process of Eq. 10, where the logical qubit
q1 in (a) is mapped onto two physical qubits g1 4 and g g as in (b)
with a JFerro of —1; here g1 4 and q;p agree.

Hence, the standard solution is to embed one of the logical qubits
into a physical realization consisting of two physical qubits, as
Figure 3(b) shows, such that we can construct each required edge in
Figure 3(a). Here, logical qubit q; is mapped to two physical qubits,
q14 and g g with a JFerro of —1 to make g1 4 and g, agree with
each other.

5 DESIGN

In this section we first detail Quantum Belief Propagation’s reduc-
tion of the LDPC decoding problem into a quadratic polynomial
(QUBO) form (§5.1), and then present QBP’s graph embedding
model (QGEM) design on real QA hardware (§5.2).

5.1 QBP’s LDPC to QUBO Reduction

Our QUBO reduction (§5.1.1) is a linear combination of two func-
tions we have created: (1) an LDPC satisfier function (§5.1.2), and
(2) a distance function (§5.1.3). During an anneal, the LDPC satisfier
function leaves all the valid LDPC codewords in the zero energy
level while raising the energy of all invalid codewords by a mag-
nitude proportional to the LDPC code girth (§2). QBP’s distance
function distinguishes the true solution of the problem among all
the valid LDPC codewords by separating them by a magnitude
depending on the distance between the individual codeword and
the received information (with channel noise).

System Model. Let y = [y, ¥, ..., Y1) be the received information
corresponding to an LDPC-encoded transmitted message x = [x,
X1, ... » XN-1)- Let V be the set of all check constraints ¢; of this LDPC
encoding. Furthermore, let the final decoded message be the final
states of the qubits [qy, gy, .. , qn.;] respectively, and let any g,, V
i> 0 be an ancillary qubit used for calculation purposes. Any given
binary string is said to be a valid codeword when it checks against
a given parity check matrix, and an invalid codeword otherwise.

5.1.1 QBP’s objective function. QBP’s QUBO objective function
comprises two terms, an LDPC satisfier function Yy, cv Lsat(ci)
to prioritize solutions that satisfy the LDPC check constraints (i.e.,
Lsqt(ci) =0),and a distance function ), jI\i 61 Aj to calculate candidate
solutions’ proximity to the received information. The entire QUBO
function is a weighted linear combination of these two terms:

N-1
m1n {Wl Z Lsar(ci) + Wy Z Aj} (11)
Ve eV =0
Here, W is a positive weight used to enforce LDPC-satisfying
constraints, while the positive weight W, increases the success
probability of finding the ground truth [34].
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Figure 4: (a) LDPC satisfier function creating an energy gap be-
tween valid and invalid codewords. (b) QBP’s objective function
seperating the energy bands of both the valid and invalid LDPC
codewords, to correctly decode.

The overall mechanism is depicted in Fig. 4 with real data: com-
puting the energy values of 20 valid and 20 invalid codewords
drawn at random. In Fig. 4(a), we see an energy gap (whose mag-
nitude is denoted E!I]V) that our LDPC satisfier function creates
between valid and invalid codewords. Note that EIV is directly
proportional to the girth (§2) of the LDPC code (i.e., if the girth of
the code is low, there exists an invalid codeword which fails lesser
number of check constraints, thus implying a low energy gap E!I]V).
Increasing W in Eq. 11 increases this energy gap, thus eliminating
invalid codewords as potential solutions. We observe in Fig. 4(b)
that the distance function distinguishes the actually-transmitted
codeword from other valid (but not transmitted) codewords that
would otherwise also land in the ground energy state. The distance
function works by separating the energy levels of both the valid
E;/ and the invalid Eé codewords by a factor proportional to the
design parameter W,. We explore experimentally in §7 the impact
of wireless channel SNR and the QA dynamic range on the best
choice of Wy and W5.

5.1.2 LDPC satisfier function. The only LDPC encoding constraint
is that the modulo-two bit-sum at every check node is zero, i.e., that
the sum be even. For each check node ¢; we define the function:

Lsar(ei) = ((ZVj:hi]:l CIj) - 2Le(0i))2 VeieV,  (12)

The LDPC constraint is satisfied at check node c¢;, if and only if
Lgqt(ci) = 0. Here Le(c;) is a function of ancillary qubits {qe, } (de-
fined in §5.1). We formulate L, to use minimal number of ancillary
qubits with the following minimization:

t
Leer) = D02 - ge, ) (13)
s=1

= mirzl{z"“ —2>d(c;) - (d(c;) mod2)}. (14)

where d(c;) is the degree of ¢; (i.e., the number of bits in check
constraint ¢;). In Eq. 13, the value of k in L¢(c;) is the largest index
of the ancillary qubit used while computing L.(c;—1), ensuring
each ancillary qubit is only used once. This formulation of L, is

MobiCom °20, September 21-25, 2020, London, United Kingdom

Table 1: Ancillary qubits required versus check node degree.

Check node degree d(c;): 3 4-7 8-15 16-31
Ancillary qubits required: 1 2 3 4

the binary encoding of integers in the range [0, 2! — 1], where a
single integer corresponds to a single ancillary qubit configuration.
The number of ancillary qubits required per check node is given in
Table 1. Upon expansion of Eq. 12, Lgq(c;) introduces both biases
and couplers to the objective QUBO and hence require embedding
on the Chimera graph.

5.1.3 Distance function. We define a distance A; that computes
the proximity of the qubit g; to its respective received information
y; as:

Ai = (gi = Pr(qi = 1|y)*. (15)

In Eq.15, the probability that g; should take a one value given the
received soft information y;, can be computed using the likelihood
information obtained from the soft demapping of received symbols,
for various modulations and channels [75]. For instance, for a BPSK-
modulated (0 — —1, 1 — +1) information transmitted over an
AWGN channel with noise variance o2, this probability is given by
1/(1 + e~2yil 0%y,

Hence, we observe that A; is lesser for the g; € {0, 1} that has a
greater probability of being the transmitted bit. Upon expansion of
Eq. 15, we note that the distance function introduces only biases to
the QUBO problem and hence do not require embedding due to the
absence of coupler terms.

5.2 Embedding on Annealer Hardware

Section 4 above has described the process of embedding problems
onto the QA in general terms. In this section, we explain how
we embed QBP’s QUBO reduction onto the Chimera graph of the
DW2Q QA hardware. QBP’s embedding design can make use of
an arbitrarily-large hardware qubit connectivity, supporting LDPC
code block lengths up to 420 bits on state-of-the-art DW2Q QA.
Let us assign 2D coordinate values U(x, y) to each unit cell in
the Chimera graph with the bottom-left most unit cell as the origin
U(0,0). Here we define terminology:
o A Chimera unit cell U(a, b) is said to be a neighbor of U(x, y)
if and only if |x — a| + |y — b| = 1, and let A(x, y) denote the
set of all neighbors of U(x, y).
e An intra-cell embedding is an embedding where both partic-
ipating qubits lie in the same Chimera unit cell.
e An inter-cell embedding is an embedding where one of the
qubits belongs to U(x, y), and the other participating qubit
belong to a unit cell in A(x, y).

QGEM: QBP’s Graph Embedding Model. We structure our em-
bedding scheme into two levels, Level I (§5.2.1) and Level I (§5.2.2).
QBP’s graph embedding model (QGEM) first maps the check con-
straints (i.e., Ls4¢(ci)) by constructing the Level-I embedding for all
the available Chimera unit cells, and next it accommodates more
check constraints via the Level-II embedding, using the idle qubits
that were left out during the Level-I embedding. QGEM makes use
of the entire qubit computational resources available in the DW2Q
QA hardware leaving no qubit idle in the machine.
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Figure 5: QBP’s unit cell schemas for Level-I Chimera Graph
embedding. Here (g4, qp. gc, ¢e,) of Eq. 16 can be interpreted as
(qo> q4, g7, q3) respectively in each schema. Idle qubits are shown
in a darker shade. Embeddings are thin-blue lines and thick-orange
lines are QUBO problem couplers.

In the Level-I embedding, QGEM represents a single check con-
straint (i.e., each Lgqs(c;)) of at most degree three on a single
Chimera unit cell using one of the four schemas presented in Fig. 5,
which we refer to as Types A-D. Each of these schemas uses six
qubits for a degree-three check constraint, leaving two qubits in the
unit cell idle. Based on the coordinate location U(x,y) of the unit cell,
QGEM chooses a single schema for a single Chimera unit cell in a
fashion that creates a specific pattern of idle qubits in the Chimera
graph, then leverages this pattern to accommodate more check
constraints as explained in §5.2.2. Next, QGEM places the check
constraints that share a common bit closest to each other, then
embeds the qubits representing this shared bit to make them agree,
as described in Fig. 3 (§4.2). Specifically, if a check constraint c; is
placed in U(xo, yo), then QGEM places the check constraints that
share common bits with ¢; in A(xp, yo) and embeds the qubits rep-
resenting such commonly shared bits via an inter-cell embedding
(see dotted lines in Fig. 6(a)).

In the Level-II embedding, QGEM represents a single check con-
straint in an ensemble of nine Chimera unit cells using the pattern
of idle qubits that the Level-I embedding leaves. The placement of
each of these ensembles in the Chimera graph follows a similar
fashion as in Level-I embedding (i.e., placing the ensembles whose
Level-II check constraints share bits close to each other).

We detail the overall working of QBP’s graph embedding model
more fully with a running example. Consider a (2, 3)-regular LDPC
code: as the degree of each check node is three, let us assume
that [x4, xp, x¢] are the three bits participating in one of the check
constraints c;. Let [qq4, qp, qc] be the bit-node-representing qubits
used at the decoder to extract [xg4, xp, x.] respectively. From Egs.
12 and 13, the LDPC satisfying constraint of this check node is:

Lsat(ci) = (qa +4qp +qc — ZCIel)Z (16)

5.2.1 Level-1 Embedding. Upon expansion of Eq. 16, we observe
that the quadratic terms (i.e., qubit-pairs) requiring a coupler con-
nectivity are { (¢a, 9p), (9a; qc): (qa: ger): (9b: qc). (@b ger)s (e
de,) }. OBP’s Level-I embedding for the example in Eq. 16 can be
visualized by interpreting (qa, qp, qc, ge,) as equivalent to (qo, g4,
q7, q3) respectively in Figs. 5 and 6. QBP realizes the above required
coupler connectivity in four schemas presented in Fig. 5. We next
demonstrate the Type A schema.

Construction. We construct the required-and-available coupler
connectivity using the QA’s direct physical couplers (e.g., go to ga
in Type A, Fig. 5), and realize the required-but-unavailable coupler
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Figure 6: QBP’s Level-I Chimera Graph Embedding.

connectivity {(qo, q3); (g4, q7)}, using two intra-cell embeddings
(e.g. g2 to q4 in Type A, Fig. 5).

Placement. Let us assume that QGEM chooses the above Type A
schema for one of the Chimera unit cells whose placement is shown
in Fig. 6(a). We note that the example LDPC code is (2, 3)-regular,
and so every bit node participates in two check constraints. This im-
plies that each bit-node-representing qubit (i.e., excluding ancillary
qubits) must be present in two Chimera unit cells since in the Level-
I embedding, we represent a check constraint in a single Chimera
unit cell. QGEM thus represents the other check constraint of each
of these bit-node-representing qubits {qo, q4, q7} in a neighbor unit
cell connected via an inter-cell embedding as depicted in Fig. 6(a),
thus making the physical qubits involved in the embedding agree.
QGEM repeats this construction over the entire Chimera graph,
mapping each check constraint to an appropriate physical location
in the QA hardware. QGEM selects the schema type to use (see
Fig. 5) for each unit cell in a way that the two idle qubits of the
Level-I unit cell schemas form the pattern as shown in Fig. 7(a).

5.2.2  Level-l1l Embedding. Let us continue with the example of
Eq. 16. The overview of QBP’s Level-IIl embedding is presented in
Fig. 7. Here, in Level-II, the mapping of bits in the check constraint
of Eq. 16 to physical qubits is (¢4, 9p, gc, ge,) map to (qa, 9B, 9c,
qg) respectively. In the Fig. 7, qubits g4, V i € [0, 3] represent g4,
qB; Vi€ [0, 2] represent qp, qc, Vi € [0, 2] represent qc, and the
qubits gg, Vi€ [0, 3] represent g, as they are embedded together as
shown in Fig. 7(b). The pattern in the figure now allows us to realize
all the required coupler connectivity of the example in Eq. 16 as
depicted in Fig. 7(a). Similar to our Level-I placement policy, QGEM
repeats this construction over the entire Chimera graph, mapping
each Level-II check constraint to an appropriate physical location

in the QA.

6 IMPLEMENTATION

We implement QBP on the DW2Q QA: our decoder targets a (2, 3)-
regular maximum girth LDPC code of block length 420 bits. In
the DW2Q, a solver is a resource that runs the input problem. We
implement QBP remotely via the C16-VFYC hardware solver API,
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Figure 7: QBP’s Level-II Chimera Graph Embedding. In Fig. 7(b),
(qa. 9B, 9c, qE) represent (qa; b, Ges Ge,) of Eq. 16.

using the Python client library. This solver first maps the imple-
mentation of the problem at hand directly onto the DW2Q’s QPU
hardware, then determines the final states of the few (15 on our par-
ticular DW2Q) defective qubits via post-processing on integrated
conventional silicon [22]. Since post-processing problem size is two
orders of magnitude smaller than overall problem size, post-pro-
cessing parallelizes with annealer computation and therefore does
not factor into overall performance.

DW2Q readout fidelity is greater than 99%, and the chance of
QPU programming error is less than 10% for problems that use all
the available QA hardware resources [19]. However, we increase
readout fidelity and decrease the chance of programming error
via the standard method of running multiple anneals for every
LDPC decoding problem, where each anneal reads the solution bit-
string once. In our evaluation, we further quantify the unavoidable
intrinsic control errors (§9) that arise due to the quantization effects
and the flux noise of the qubits [19]. Our end-to-end evaluation
results capture all the above sources of QA imprecision.

7 EVALUATION

Our experimental evaluation is on the DW2Q QA, beginning with
our experimental methodology description (§7.1). We measure per-
formance over a variety of DW2Q parameter settings (chosen in
§7.2), and in both simulated wireless channels, and realistic trace-
driven wireless channels. End-to-end experiments (§7.3) compare
head-to-head against FPGA-based soft belief propagation decoding.

7.1 Experimental Methodology

Let us define an instance I as an LDPC codeword. Our evaluation
dataset consists 150 instances with an overall 2 X 10* message bits.
We conduct 10% anneals for each instance and note the distribution
of the solutions returned along with their occurrence frequency. If
NSI is the number of different solutions returned for an instance
I, we rank these solutions in increasing order of their energies as
Ry, ..., Ry with Ry being the rank of the minimum energy solu-

tion. All the NSI solutions can be treated as identically independent
random variables, as each anneal is identical and independent.
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7.1.1 BER Evaluation. Let Ry, i, be the rank of the minimum en-
ergy solution in a particular population sample of the entire solution
distribution, of size N, (<10%) anneals. We compute the expected
number of bit errors Né of an instance I over N, anneals as:

NI

E[NL|N,] = ZPr (Rmin = Rill, Na) - NA(Ri|ILNg),  (17)
i=1

where the probability of Ry, being R; Vi € [1, NSI] for an instance
I, over performing N, anneals is computed using the cumulative
distribution function F(-) of observed solutions in 10% anneals as
[41]:

Pr (Rmin = Rill. Ng) = (1= FRi—1)) " = (1= F(R))N, (18)

Hence we compute the bit error rate (BER) of an instance I with K
information bits upon performing N, anneals as:

BER = E[N}|N]/K. (19)

7.1.2  FER Evaluation. Frame Construction: We construct a frame
of length NF using data blocks of length Np, so we require Ng/Np
such blocks, where each block is an instance. If N;,5 is the number
of available instances, we can construct a single frame by combining
any Nf/Np instances among the available N;,s instances. Thus
the total number of distinct frames we construct for our frame error
rate (FER) evaluation is ( NI;I;’E\SIB).

FER Calculation: A frame is error-free iff all the code blocks in the
frame has zero errors, just as if it has a cyclic redundancy check
appended. We compute the probability of a particular k' frame

being error-free ( Pr(Fff) ) as:

Ng/Ns

Pr (ijf) = ] {Z Pr (le-,, = Rill, Na, NL(R;) = 0)} (20)

I=1 Vi
Then we compute the overall frame error rate (FER) as:
Nins
(NF/NB) f N;
FER = {1-pe( 75 )} ins 21
l; r( e i/ NFp/Np @)

7.1.3  Wireless Trace-driven Evaluation. We collected channel traces
from an aerial drone server communicating with a ground client in
an outdoor environment, using the Intel 5300 NIC wireless chip at
the client [27]. In realistic wireless transmissions, code blocks are
transmitted over multiple OFDM symbols, where subcarriers within
an OFDM symbol typically experience a diverse range of channels.
In our performance evaluation over experimental channels, we
compute the per-subcarrier SNR information through channel state
information (CSI) readings, and distribute a corresponding Gaussian
noise over bits individually for every subcarrier. Next we demodu-
late and interleave the data symbols and perform QBP’s decoding.
Hence we use the distance function (§5.1.3) for this evaluation with
o2 equal to the noise variance experienced by y;’s subcarrier.

7.1.4 QA versus FPGA Throughput Evaluation. Consider a data
frame with N message bits. Let us assume that QBP decodes this
frame on the QA for a T, compute time, and soft BP decodes the same
frame on an FPGA with clock frequency f;x, for Nj;, iterations. Let
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Figure 8: Left. Choosing JFerro strength to minimize BER. Right.
Effect of W, on BER at various channel SNRs. The magnitude of W»
that minimizes BER is proportional to SNR.

Ncik/ir be the number of FPGA clock cycles the soft BP requires
to complete an iteration. The actual throughput QBP achieves is
then (1 — FERpA) - Nk /Tc, and the actual FPGA soft BP-based
throughput is then (1 — FERppGa) - Nk * feik/(Nit * Netkjie)-
The values of N¢j/;; and fojx depend on the decoder implemen-
tation architecture (i.e., serial or parallel) and FPGA hardware type.
In order to make a throughput comparison between QA and FPGAs,
we evaluate the QA throughput versus the best silicon realization
(i.e, a fully-parallel decoder, N /;; = 1) throughput on the highest
specification Xilinx FPGA, for a range of FPGA clock frequencies
and highlight the design-dependent operating-time regions (§7.3).

7.2 Parameter Sensitivity Analysis

In this section, we determine DW2Q QA’s optimal system parame-
ters, including JFerro (|Jr|), annealing time (T,), number of anneals
(Ng), and the design parameter W, for evaluating QBP’s overall
end-to-end system performance (§7.3).

7.2.1 Choice of Embedding Coupler Strength |Jr|. In the QA lit-
erature, the coupler strength of an embedding is termed JFerro
(§4). As the fundamental purpose of embeddings is to make qubits
agree, a large, negative JFerro is required in order to ensure the
embedding is effective (§4.1). However, as the supported range for
coupler strengths in DW2Q QA is [—1, 1], it is general practice to
normalize all QUBO coefficients with respect to | Jg| to bring all the
coupler strengths into this supported range [-1, 1].

Consider a QUBO problem with coupler strengths in the range
[A, B]. Then |Jr| must be greater than max(|A|, |B|) to prioritize
embeddings over problem couplers, and moderate enough to dis-
[ﬁ, %] as the

F|” 1JF|
range lessens. We perform our JFerro sensitivity analysis at a mod-
erate SNR of 8 dB. We use a relatively high anneal time (T, = 299 ps),
to ensure minimal disturbance from the time limit, and we choose
our QUBO design parameters Wj = 1.0 and Wy = 6.0, experiments
show that all other values of W; and W5 results in similar trends for
the JFerro sensitivity. Fig. 8 (left) depicts QBP’s BER performance
at various | Jr| strengths. The BER curve of N, = {50, 102} anneals
clearly depict that | Jr| = 8.0 minimizes BER, while for N, = {1, 10}
anneals BER is barely minimized at |Jr| = 8.0, as the effect of | /|
is slight because of fewer anneals. Hence heretofore we set |Jr| =
8.0 for further evaluation.

tinguish the new normalized coupler strengths
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Figure 9: Choosing anneal time T,. Figure depicts the probability
of not finding the ground truth across distribution of problem
instances. T, = 1 ps is sufficient to achieve a high probability of
finding ground truth.

7.2.2  Choice of design parameter Wo. QBP’s LDPC satisfier func-
tion (Eq. 12) introduces coupler strengths (i.e., quadratic coefficients)
greater than one, and hence must be normalized to bring all the
problem coupler strengths into the supported [-1, 1] range. Hence
we set Wi = 1.0 and consider the choice of W», the parameter that
determines sensitivity to the received bits, in order to identify the
correct codeword. We find the optimal value for W, dynamically
with the wireless channel SNR, to balance between the received
soft information and the LDPC code constraints.

We perform our W, sensitivity analysis at |Jr| = 8.0 (§7.2.1), W;
= 1.0 (§7.2.2), and use a high anneal time (T, = 299 ps), to ensure
minimal disturbance from the time limit. Fig. 8 (right) depicts QBP’s
BER performance at various SNRs while varying W. In the figure
we observe that the magnitude of W» that minimizes BER, increases
with increase in channel SNR. Hence QBP chooses W, at the time
of data reception. As an incoming frame arrives, the receiver uses
the packet preamble to estimate SNR, and then looks up the best
W for decoding in a lookup table.

7.2.3 Choosing the annealing time T,. We perform our annealing
time sensitivity analysis using | Jp| = 8.0 (§7.2.1) and W; = 1.0 (§7.2.2).
We choose W as above (§7.2.2) and perform N, = 10 anneals (any
number of anneals results in similar trends). Fig. 9 presents the
probability of not finding the minimum energy solution over the
cumulative distribution across problem instances. We find that an
anneal time as low as one ps yields a high probability of finding
the ground truth, hence we consider T, = 1 ps.

Heretofore we quantify QBP’s performance over total compute
time T, where T; = N, -T,. Fig. 10 depicts the combined result of the
overall calibrations presented in (§7.2). Specifically, Fig. 10 shows
the probability of not finding the minimum energy solution across
the cumulative distribution of problem instances at wireless channel
SNR 6 dB over various choices of W and computing times (T;). The
figure shows that the best choice of W5 results in a relatively low
probability of not finding the ground truth, as well as the benefits
of increasing compute time up to 100 ps.
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Figure 10: The effect of calibrations in (§7.2) at SNR 6 dB, depicting
the probability of not finding the minimum energy state at |J| =
8.0. All plots share common x-y axes, and the distribution is across
problem instances. The bottom-left plot corresponds to the best
Ws at SNR 6 dB (see Fig. 8 right).

7.3 System Performance

This section reports the QBP’s end-to-end performance under the
above system and design parameter choices (§7.2).

7.3.1  AWGN Channel Performance. We first evaluate over a Gauss-
ian wireless channel at SNRs in the range 1-11 dB, comparing
head-to-head against soft BP decoders operating within various
iteration count limits.

Bit error rate performance. In Fig. 11(a), we investigate how
average end-to-end BER behaves as the wireless channel SNR varies.
At regions of channel SNRs less than 6 dB, QBP’s performance
lags that of conventional soft BP decoders operating at 20 and 100
iterations, and differences in QBP’s performance at various QA
computing times are barely distinguishable. This is because the
optimal choice of W, at low SNRs is low (§7.2.2), thus making the
probability of finding the ground truth low for a QA. However as
we meet SNRs greater than 6 dB, we observe QBP’s BER curves
quickly drop down, reaching a BER of 1078 at SNR 7.5-8.5 dB only,
whereas conventional soft BP decoders acheive the same BER at an
SNR of 10.5-11 dB. This is because the optimal choice of W, at high
SNRs is high (§7.2.2), thus separating the ground truth and the rest
with a high energy gap, making the true transmitted message easier
to distinguish. Our QBP LDPC decoder acheives a performance
improvement over a conventional silicon based soft BP decoder by
reaching a BER of 1078 at an SNR 2.5-3.5 dB lower.

Across problem instances. In Fig. 11(b), we investigate how bit
errors are distributed among individual LDPC problem instances
in the same parameter class. The figure shows that when the QBP
decoder fails due to too-low QA compute time, bit error rates are
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rather uniformly distributed across different problem instances.
Conversely, increasing the computing time to 10-100 ps, the de-
coder drives BER low, so most instances have zero bit errors, and
BER variation reduces. The result shows that {0, 28, 56, 73, 92, 98} per-
cent of instances under QBP’s decoding are below the BER achieved
by soft BP at QA compute times {1,5,10,20,50,100} us respectively.

Frame error rate performance. We investigate QBP’s FER per-
formance under frame sizes NF of 420, and 12,000 bits. In Fig. 11(c),
we observe a shallow FER error floor for SNRs less than 6 dB, noting
the dependence of that error floor value on the frame length. When
we meet an SNR of 8-9 dB, QBP acheives an FER of 107 with low
dependence on the frame length and QA compute time, while soft
BP achieves the same BER at an SNR 2-3 dB higher.

Throughput Analysis. An FPGA-based LDPC decoder is bounded
by a maximum operating clock frequency (f}}**), the frequency
beyond which the FPGA signal routing fails. Let us define the code
block solution time Ts; as the inverse of the minimum possible time
to obtain a decoded solution (i.e., T, for QA and fx - Nc_llk/”
for an FPGA). Fig.11(d) reports the throughputs. The figure shows
that as the channel SNR increases, the throughput gap between
QA (N, = 10) and FPGAs (Nj; = 15) tends toward a constant value
whose magnitude is essentially the gap between the processing
throughputs of QA and FPGAs, as the value of (1-FER) §7.1.4 tends
toward one. The results imply that the QA can achieve a throughput
improvement over the fastest FPGAs implementing a fully parallel
decoder, when either the annealing time only improves roughly by
40X, or when the annealing time improves by 5X in combination
with a 5.4% increase of qubit resources in the QA.

Fig.11(d) compares QBP against soft BP for a small code of 420
bits, thus f7}%* achieved (56 MHz) is high enough for the FPGA
to reach a throughput better than DW2Q QA. However, the value
of 7" significantly reduces as code block lengths increase, due
to higher complexity of the decoder. Our FPGA implementation
(fully parallel decoder, 8-bit LLR precision) of a (2,3)-regular LDPC
code of block length 2048 bits achieves an f7** of 17 MHz, while

clk
a (4,8)-regular similar LDPC code does not fit into that FPGA.

7.3.2  Trace-driven Channel Performance. Here we demonstrate
QBP’s performance in real world trace driven channels (§7.1.3).

Bit error rate performance. Fig. 12(a) depicts QBP’s BER per-
formance in trace-driven channels. For a given compute time, we
observe the BER distribution across problem instances, and its de-
pendency on the channel SNR. For channel average-SNRs in the
range 5-10 dB, we observe that a few instances lie at a high BER
of 1072, thus driving the mean BER high. As we step up to higher
average SNRs greater than 10-15 dB, BER goes down very rapidly
over increase in QA compute time for greater than 90% of problem
instances, since there is less probability that channel subcarriers
experience very low SNRs in this scenario.

Across problem instances. Drilling down into individual problem
instances at a particular average SNR in the range 10-15 dB, we
observe in Fig. 12(b) that more than 75% of the problem instances lie
below the 1078 BER at computing times 20~100 ys, while exhibiting
an error floor spanning two orders of BER between 10~* and 1072
when the QA computing time is set to 1 ps (far less than general
practices).
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Figure 11: Quantum Belief Propagation’s system performance in an AWGN channel. CDF in Fig. 11(b) is across individual LDPC problem
instances. In Fig. 11(c), the frame size N is bits and the Soft BP iterations are 100. In Fig.11(d), all plots share common x-y axes.

Frame error rate performance. Fig. 13 depicts QBP’s trace-driven
channels’ FER performance at various channel average-SNRs. Each
box in the figure represents 10 different channel traces, where we
compute FER by constructing 2x 102, 5x 10° distinct frames (as men-
tioned in §7.1.2) for each channel trace when N = 420 and 12,000
bits respectively. We observe that FER exhibits an error floor when
the average channel SNRs are less than 10-15 dB. FER drastically
drops down for channel SNRs greater than 15 dB.

8 RELATED WORK

Bian et al. [7] present discrete optimization problem solving tech-
niques tailored to QA, solving the LDPC decoding problem by
dividing the Tanner graph into several sub-regions using min-cut
heuristics, where a different QA run solves each sub-region. Bian et
al. coordinate solutions of each run to construct the final decoded
message. Conversely, QBP’s approach differs with [7] both with
respect to QUBO formulation and QA hardware embedding. The
Bian et al. QUBO design does not adapt to both the wireless channel

noise (distance function §5.1.3) and the binary encoding minimiza-
tion of the ancillary qubits (LDPC satisfier function §5.1.2). From
embedding perspective, QBP can solve up to 280 check constraints
in a single anneal while Bian et al. solves up to only 20 check con-
straints on an earlier QA with 512 qubits (which extends to 60-80
check constraints on the current QA with 2,048 qubits). Bian et al.
evaluate over a binary symmetric channel (each sub-region run
with T, = 20us) with crossover probabilities in the range of 8-14%,
unrealistically high for practical wireless networks, nonetheless
experiencing that only 4% out of 10* anneals had no bit errors,
lower-bounding their BER by 1073, Lackey proposes techniques for
solving Generalized BP problems by sampling a Boltzmann distri-
bution [43], but does not venture into a performance evaluation.
It is also possible to use the QBP’s QUBO design (§5.1) as an in-
put to D-Wave’s built-in greedy search embedding tool [14], but
this approach scales up to only 60 (2,3)-regular LDPC check con-
straints, which limits the LDPC code block length to an impractical
90 encoded bits.
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Figure 13: QBP’s FER performance in trace driven channels.
The unit of frame size Ny in the figure is bits. In the figure,
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10th /90t and 25th/75th percentiles repectively.

QA machines have been recently used to successfully optimize
problems in several adjacent domains including Networks [39, 72],
Machine Learning [1, 56], Scheduling [71], Fault Diagnosis [8, 58],
and Chemistry [61]. Efficient embedding methods for mapping
fully-connected QUBOs on to QA hardware graphs have also been
discussed [13, 70] which support up to 64 variables on DW2Q QA.

9 LOOKING FORWARD

QA hardware trend predictions. For the past decade, the number
of physical qubits in D-Wave’s QPU has been steadily doubling each
year and this trend is expected to continue [20]. Fig. 14 presents
a predicted extrapolation of quantum annealer qubit and coupler
counts into the future. The figure shows that at these rates, an

annealer processing chip with one million qubits could be avail-
able roughly by the year 2037. Let us envision future QAs with
a processor topology that is either a Chimera or a supergraph of
Chimera (e.g., Pegasus [18]) with Ng available qubits, which en-
ables QBP to decode block lengths of at most 5Np/24 bits in a
single anneal. Thus in a QA with Ng = {10%, 10°, 10%} qubits, we
forecast QBP to be able to decode LDPC codes of block lengths
up to {2,083, 20,833, 208,333} bits respectively in a single anneal
with peak processing throughputs reaching {0.694, 6.94, 69.4} Gbps
respectively, while most classical fully parallel decoders do not
implement block lengths exceeding 2,048 bits due to signal routing
and clock frequency constraints [26].

Limitations of QA. The lack of all-to-all qubit connectivity in
today’s QPUs limits the size of the problems the QA can practically
solve, implying that the requirement of embedding is a major im-
pediment to leveraging QA for practical applications. Furthermore,
the process of transferring the computation and running on real
analog QA device introduces a source of noise distinct from com-
munication channel noise called intrinsic control error or ICE, which
arises due to the flux noise and the quantization effects of the qubits.
ICE effects in the QA alter both the problem biases (h; — h; + 5h;)
and couplers (J;j — Jij £ 6Jij), leading the QA to solve a slightly
modified input problem in each anneal. Although the errors 6h; and
8Jij are currently in the order of 1072, they may degrade the solu-
tion quality of some problems whose minimum energy state is not
sufficiently separated from the other states in the energy landscape
of the input problem Hamiltonian [19]. From a design perspective,
ideally the qubits that are embedded together must all agree and
end up in a similar final state at the end of the annealing process,
otherwise the embedding chain is said to be broken: typically bro-
ken chains lead to performance degradation, and they are more
likely to occur when the number of qubits embedded together in a
particular chain is large (> 10). QBP’s embedding design include
chains of length two—-four, and five—nine for Level I and Level II
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Figure 14: D-Wave QA’s hardware resource counts over time. His-
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respectively, whose upper/lower boundaries are extrapolations of
the most recent 2017-2020/2015-2017 qubit-coupler growths re-
spectively. Annotations in the figure are the QA processor titles in
the respective years.

embeddings (§5.2) respectively. Further, there exist post-processing
techniques such as majority vote, weighted random, and minimize
local energy that can be used to improve the performance of broken
chains [21]. QBP’s embedding results in a low fraction of broken
chains (~ 2%), and we use the majority voting technique in those
cases to find the variables involved.

Cost considerations. QA technology is currently a cloud-based
system and currently costs USD $2,000 for an hour of QPU access
time, which is approximately $17.5M for an year. As the evolution of
the technology is currently at an early stage (2011-), we consider the
next 15 years for the technology to mature to the market. As usage
becomes more widespread in future years, we hypothesize that
QA prices will decrease with the same trend as classical compute
prices have done since the late 20th century. Fig. 15 (top) shows the
consumer price index (CPI) of classical computers and peripherals
over time [45], while Fig. 15 (bottom) shows a similar predicted
trend for QA price per hour (PPH). Figs. 14 and 15 imply that, at
these rates QA technology is expected to deliver a machine with
more than 10% qubits on a single annealer processing chip at the
prices of $730, $235, $130, $82, and $68 per hour of QPU access time,
by the years 2040, 2045, 2050, 2055, and 2059, respectively. This
represents an approximate projected cost of $6.4M, $2M, $1.1M,
$700K, and $600K per year, by the above respective years.

Timing considerations. Currently, the DW2Q has a 30-50 ms pre-
processing time, 6—8 ms programming time, and 0.125 ms solution
readout time per anneal, which are beyond the processing times
available for wireless technologies (3-10 ms) [39], with supported
annealing times in the range [1 ps, 2 ms]. Given the large amount
of cost, embedding, and timing overheads of today’s annealers,
QBP currently cannot be deployed for use in practical applications.
While approaches [7, 21] that decompose large-scale optimization
problems can be used to study more problem variables, they suffer
from requiring additional factors of the aforementioned machine
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Figure 15: Top. The plot shows the consumer price index (CPI) of
classical computers and peripherals over time with 1997 as the base
year. Bottom. The plot shows the predicted price per hour (PPH) of
quantum annealers over time. The larger data point is the actual
2015-2020 QA price, which is conservatively assumed to remain
the same until the QA technology matures in a predicted 17 years.

overhead times for each extra anneal. The historical trend is encour-
aging, with the DW2Q having a 5X annealing time improvement
over the circa-2011 D-Wave One [10].

10 CONCLUSION AND FUTURE WORK

QBP is a novel QA-based uplink LDPC decoder that makes efficient
use of the entire QA hardware to achieve new levels of perfor-
mance beyond state-of-the-art BP decoders. Further efforts are
needed to generalize QBP’s graph embedding to large-scale LDPC
codes with higher check bit degrees. The techniques we propose
here may in the more distant future come to be relevant to prac-
tical protocol settings, while application of the aforementioned
Cloud/Centralized-RAN architecture has also been proposed for
small cells [64, 65]: opening the possibility to its future application
to managed Wi-Fi local-area networks. Investigating the QA tech-
nology for problems such as network security, downlink precoding,
scheduling, and other uplink channel codes such as Polar and Turbo
codes is potential future work direction.
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