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The anomaly detection method presented by this paper has a special feature: it does not only indicate whether
an observation is anomalous or not but also tells what exactly makes an anomalous observation unusual.
Hence, it provides support to localize the reason of the anomaly.

The proposed approach is model-based; it relies on the multivariate probability distribution associated with
the observations. Since the rare events are present in the tails of the probability distributions, we use copula
functions, that are able to model the fat-tailed distributions well. The presented procedure scales well; it can
cope with a large number of high-dimensional samples. Furthermore, our procedure can cope with missing
values, too, which occur frequently in high-dimensional data sets.

In the second part of the paper, we demonstrate the usability of the method through a case study, where
we analyze a large data set consisting of the performance counters of a real mobile telecommunication
network. Since such networks are complex systems, the signs of sub-optimal operation can remain hidden for
a potentially long time. With the proposed procedure, many such hidden issues can be isolated and indicated
to the network operator.
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1 INTRODUCTION
Anomaly detection refers to the process of identifying unexpected objects or patterns, which do
not conform to the usual behaviour. On the other hand, there is no canonical definition of anomaly,
generally an object is called anomaly if it is different from normal instances with respect to its
features and it is rare in the dataset [26]. In the literature, these instances are also often referred to
as outliers, rare/extreme events, discordant objects [62]. The detection of "not-normal" observations
has attracted a lot of research interest from the machine learning community since it has a wide
variety of practical applications, including network intrusion, credit card fraud, health anomaly
detection and so on [12].

We can distinguish between threemain types of anomaly detection setups based on the availability
of labels in the dataset [26]. Supervised anomaly detection means that the data is fully labelled
and an ordinary classifier can be used after dealing with the unbalanced class distribution [18].
For semi-supervised anomaly detection, the training data consists of normal instances without
any anomalies, one-class classification algorithms can be used [39], moreover, density estimation
methods can be also used to model the density function of the normal class [36, 37], then the
instances that do not conform to the normal profile are identified as anomalies. Unsupervised
anomaly detection is performed on unlabeled data, taking only intrinsic properties of the dataset
into account [26].
Anomaly detection algorithms can be further classified based on the specific data types and

domains that they are suitable for, such as time series, categorical attributes, item sets, graphs,
spatial data [26, 65]. The present study focuses on unsupervised anomaly detection for numerical
high-dimensional data in Euclidean space. Due to the "curse of dimensionality" and the presence of
irrelevant attributes high-dimensional anomaly detection is particularly challenging [65]. In this
paper, we propose a probabilistic model-based unsupervised anomaly detection method that works
well with a large number of high-dimensional numerical observations. By numerical data we mean
that all variables are non-categorical and have a continuous distribution. This paper also describes a
possible way to model the joint probability density based on a general real-valued multidimensional
dataset. The proposed modelling approach can be used to assign anomaly scores to any point of the
multidimensional space: observations from low density areas of the space receive high anomaly
scores and vice versa.

Throughout the years, several algorithms have been proposed for unsupervised anomaly detection
in high-dimensional numerical data, for extensive reviews and comparative studies we refer the
reader to [3, 26, 62, 65].

A high number of outlier detection approaches rely on the concept of neighborhood, either using
k-nearest neighbor-distances [4] or using a density based approach, i.e. comparing the number of
instances in ε-neighborhood of the object to the ε-neighborhood of the object’s neighbors, e.g. Local
Outlier Factor (LOF) [10]. Although various variants of LOF have been proposed, it is important to
note that neighborhood is less meaningful if the dimension is high [65]. A possible approach to
handle high-dimensionality is to use dimension reduction methods to improve outlier detection [48].
The assumption of dimension reduction based outlier detection methods is that a single subspace is
sufficient to identify anomalies.

Another related approach is using ensemble learning methods and combine different subspaces
for anomaly detection. The idea of "feature bagging" method is to derive outliers in randomly
selected feature subsets using multiple outlier detection algorithms and combine the outputs to
achieve more stable and effective results by avoiding the curse of high dimensionality [38, 47].
A sequential ensemble-based framework was proposed to mutually refine feature selection and
outlier scoring [51].
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Copula-based anomaly scoring and localization of high-dimensional data 1:3

Subspace outlier detection techniques define outlierness with respect to specific subspaces
based on the observation that outliers are often embedded in locally relevant subspaces but in
the full-dimensional space they are covered by irrelevant attributes [2, 24]. The challenge is to
identify the relevant subspaces. Several techniques have been proposed for subspace identification
recently, including rarity based techniques [63], density-based and grid-based subspace clustering
approaches [33, 45]. Subspace outlier detection (SOD) is a method that works without a previous
clustering step [32]. Another approach is to search for correlated subspaces of features [49, 50],
it was also proved that the subspace search problem can be transformed into a problem of clique
mining for highly correlated features. In a recent paper a new subspace analysis approach was
proposed named Agglomerative Attribute Grouping (AAG) that relies on a novel multi-attribute
information theoretical measure which evaluates the "information distance" between groups of
features [5].
Detecting outlying subspaces is also advantageous for the purpose of outlier interpretation, i.e.

identifying the attributes that contribute the most to abnormality [61]. Other methods have been
also proposed to address the issue of outlier interpretation, such as Local Outlier Detection with
Interpretation (LODI) [17] and Contextual Outlier INterpretation (COIN) [43].

Based on the observation that angles between data points are more meaningful in high dimension
than distances, angle-based outlier detection methods have also been proposed [34]. Angle-based
methods rely on the assumption that the variance of angles between an outlier and other data points
is lower than for normal observations, since for normal data points, other objects are distributed in
all direction, while for outliers, they are more concentrated in some direction. A random projection
based efficient approximation variant was proposed in [52].

Probabilistic anomaly detection methods have also been extensively used for high-dimensional
data. The general scheme is to estimate the density function of a dataset X by calibrating the model
parameters θ and identifying outliers as the observations having the smallest likelihood P(X |θ ).
The density function can be estimated by Gaussian Mixture Model using Expectation-Maximization
algorithm [59], by Dirichlet Process Mixture Model [21], by Kernel Densisty Estimators [59], and
by Robust Kernel Density Estimator [29] among others.
Isolation methods are also quite widespread, isolation forest compute an anomaly score using

random forest [40–42]. Instances which are easy to isolate, i.e., have short average path lengths on
the isolation trees, are considered anomalous. To reduce the dimension of the feature space, only
a subset of the features is considered based on their kurtosis, since it is observed that kurtosis is
sensitive to the presence of anomalies.

Neural networks are also used for anomaly detection in high-dimensional data. A reconstruction-
based self-organizing neural network, called Grow When Required [44] can be applied for outlier
detection [18], furthermore, Recurrent Neural Networks have also been used for network traffic
anomaly detection [54]. A Pattern Anomaly Value (PAV) [13] based anomaly detection method for
sensor data was introduced in [20].
We can observe that a high number of unsupervised anomaly detection methods have been

proposed throughout the years. On the other hand, it is important to note that there is no canon-
ical method, mainly because it is really difficult to interpret and compare various methods. The
continuous outlier scores provided by most of the algorithms vary widely in in their scale, range,
and meaning [65]. Evaluation of unsupervised anomaly detection methods is a notorious problem:
efficiency, effectiveness, interpretability, scalability, memory consumption and robustness should
also be considered. For some possible evaluation measures, strategies and empirical evaluation of
various anomaly detection techniques on benchmarks datasets we refer to [11, 62, 65].

In this paper, we introduce a method, which tackles the high dimensional feature space by
finding some special two dimensional subspaces, which also aims to minimize redundancy. An
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other important benefit of the presented approach is that it does not only give an anomaly score
but also indicates why exactly an observation is anomalous, making it easier to find and fix the
source of the problem. Furthermore, the proposed method scales well for high dimension and for
large sample size, and is able to return anomaly scores for samples with missing data as well.

2 OUTLINE OF THE PROCEDURE
Our procedure is based on probabilistic modeling. The main idea is to determine the joint distri-
bution of the random variables corresponding to the features, and to assign anomaly scores to
the observations based on the density of the observations. The subspaces where an observation
deviates from the majority of the samples indicate which variables are involved in the anomaly.
However, the realization of this high-level description of the algorithm faces some challenges that
the proposed approach aims to overcome:

• Obtaining the joint distribution of a high-dimensional dataset is difficult. Simple solutions
for this problem aim to fit the dataset by a multivariate Gauss distribution or by a mixture
of multivariate Gaussians. However, Gaussian density functions have a fast decay, they
fail to capture the heavy-tailed behavior where most anomalies take place, making them
inappropriate to use for anomaly detection.

• Even if the joint density function of the dataset is available, translating the density (a number
between zero and infinity) to an anomaly score (between zero and one) having a physical
interpretation, is not straightforward.

• Providing aid to localize the reason of the anomaly in a high-dimensional space, such that a
human can interpret it and take the necessary actions, is also challenging.

In our approach (see Figure 1), the high-dimensional problem is decomposed into several two-
dimensional ones. As the first step, we identify the most relevant pairs of variables whose joint
behavior retains as much information from the high-dimensional joint behavior as possible. The
details of this step are provided in Section 3.

In the next step, described by Section 4, the joint distributions of the selected pairs of variables
are characterized by a copula-based method.

Finally, the anomaly scores are calculated from the joint densities, as presented by Section 5. For
each observation, our procedure is able to report both an overall anomaly score, and individual
anomaly scores for the selected variable pairs. Knowing the variable pairs affected helps to localize
the reason of the anomaly.

3 DECOMPOSITION OF THE HIGH DIMENSIONAL SPACE
The directmodeling of the joint behavior of high-dimensional observationswith reasonable accuracy
is intractable. To cope with the exploding complexity, we use only some of the two-dimensional
marginal probability distributions in the presented method, those that are the most relevant from
the anomaly detection point of view.
The question that naturally arises is how to chose a relatively small number of pairs from all

possible pairs of random variables, while retaining as much information as possible. The answer is
inspired by the work of Chow and Liu [15], where a similar problem has been solved for discrete
joint probability distributions. In this section, we provide a summary on this method, and adapt it
to the case of continuous variables.
Let us consider X = (X1, . . . ,Xd )T a d-dimensional discrete random vector with probability

distribution P(X). The probability of a realization x is denoted by P(x), and the set of indices
of the random variables are denoted by V = {1, . . . ,d}. Furthermore, we denote the probability
distributions of the two-dimensional marginals by P(Xi ,X j ), i, j ∈ V , i , j.
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Fig. 1. Concept of the presented anomaly scoring method

In [15], a product-form probability distribution has been introduced, associated with a spanning
tree over the set of indices, defined by

PCh_L(X) =

∏
(i, j)∈T

P(Xi ,X j )∏
i ∈V

[P(Xi )]vi−1 , (1)

where T is a spanning tree defined on the vertex set V = {1, . . . ,d}, and vi denotes the number of
such two-dimensional marginal probability distributions in the numerator of (1) which contain
variableXi . This type of probability distribution has the property that its two-dimensional marginals
present in its formula coincide with the two-dimensional marginals of P(X).
Our aim is to find a probability distribution PCh_L(X) of (1) to approximate the probability

distribution P(X) = (X1, . . . ,Xd )T , with the goodness of fitting quantified by the Kullback-Leibler
divergence. Hence, the problem can be formulated as searching for a probability distribution
PCh_L(X) which minimizes the Kullback- Leibler divergence between P(X) and PCh_L(X).

To solve this problem, [15] has introduced an undirected complete graph defined on the set of
vertices V . The edges of the graph are weighted by the mutual information of the two dimensional
marginal probability distributions corresponding to the two vertices connected. In that paper, it has
been proven that the Kullback-Leibler divergence between P(X) and PCh_L(X) can be expressed as

KL(PCh_L(X), P(X)) =
d∑
i=1

H (Xi ) −
∑

(i, j)∈T
I (Xi ,X j ) − H (X),
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where I (Xi ,X j ) is the mutual information defined by

I (Xi ,X j ) = H (Xi ) + H (X j ) − H (Xi ,X j ), (2)

and H (·) denotes the entropy of a random variable or a random vector.
It is easy to see that KL(PCh_L(X), P(X)) is minimal when we take edges from the complete graph

along the spanning tree having the maximum weight [15], i.e.,

T ∗ = argmax
T

©­«
∑

(i, j)∈T
I (Xi ,X j )

ª®¬ .
The maximum information tree T ∗ can be obtained by applying Prim’s or Kruskall’s algorithm.
It is important to mention that the spanning tree structure encodes conditional independencies

between the random variables associated to the vertices. If two nodes are not connected, the
corresponding random variables are conditionally independent given any random variable on the
path between them. Therefore, the best fitting PCh_L(X) exploits the conditional independencies
existing in the multivariate probability distribution that reduces the redundancy between the
corresponding random variables.

In many practical cases, such as in the case described in Section 6, the samples are obtained from
a continuous probability distribution instead of a discrete one. In such cases the samples can be
transformed to discrete, and the idea of Chow and Liu can still be applied. For this transformation
we use a partitioning such that each interval contains the same number of realizations for all
random variables. This way we get H (Xi ) = H (X j ), for all i, j ∈ {1, . . . ,d}, i , j, and therefore we
have that I (Xi ,X j ) depends only on H (Xi ,X j ) (see (2)).

Since the maximum of
∑

i, j ∈T I (Xi ,X j ) is obtained when
∑

i, j ∈T H (Xi ,X j ) is minimal, we weight
the edges of the complete graph by the entropy of the bivariate random variables connected, and
construct the minimal weighted spanning tree of this graph. As a result, we obtain a set of d − 1
variable pairs, whose bivariate marginal probability distributions capture as much information on
the joint behavior as possible (Step b. in Figure 1).

There are software packages available to obtain the maximum information tree, also for the case
of continuous variables [55]. These packages use Kendall’s tau instead of the mutual information
for weighting the graph. However, for big data the computation of Kendall’s tau is computationally
expensive, therefore we recommend to use the mutual information on the discretized data for this
purpose. The tree structure is not sensitive for the chosen metric, the obtained three structure
provided by these methods was the same in all of the studied cases.

4 COPULA-BASED MODELING OF PAIRS OF VARIABLES
The proposed method relies on copulas to model the joint distributions of the variable pairs
obtained by the maximum information tree. Copula-based methods are widely used in modelling
joint probability distributions (mainly in the field of financial mathematics) due to their benefits in
representing heavy tails [14]. Since anomalies can be considered as events falling in the tail of the
probability distribution, copulas are very useful in modeling anomalies.
According to Sklar’s theorem, the joint distributions are uniquely decomposed to the marginal

distributions and a so called copula function, that characterizes only the dependency structure
between the variables, and is independent from the marginal distributions. Consequently, copulas
enable the separate modeling of the dependence structure and the marginals; we are going to rely
heavily on this feature in the presented method.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: January 2019.
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4.1 A short overview on copulas
Before detailing the exact kind of copulas used in this paper, let us review some concepts related to
copulas (for more details see [46]).

Definition 4.1. A function C : [0; 1]d → [0; 1] is called a d-dimensional copula if it satisfies the
following conditions:
(1) C (u1, . . . ,ud ) is monotonously increasing in each component ui ,
(2) C (u1, . . . ,ui−1, 0,ui+1, . . . ,ud ) = 0 for all uk ∈ [0; 1], k , i, i = 1, . . . ,d ,
(3) C (1, . . . , 1,ui , 1, . . . , 1) = ui for all ui ∈ [0; 1] , i = 1, . . . ,d ,
(4) C is d-increasing, i.e for all

(
u1,1, . . . ,u1,d

)
and

(
u2,1, . . . ,u2,d

)
in [0; 1]d with u1,i < u2,i for

all i, we have
2∑

i1=1
· · ·

2∑
id=1

(−1)
d∑
j=1

i j
C
(
ui1,1, . . . ,uid ,d

)
≥ 0.

Thus, copulas are d dimensional distribution functions such that each of their marginals are
uniformly distributed.

Due to Sklar’s theorem [57], ifX1, . . . ,Xd are continuous random variables defined on a common
probability space, with univariate marginal cdf’s FXi (xi ) and joint cdf FX1, ...,Xd (x1, . . . ,xd ), there
exists a unique copula functionCX1, ...,Xd (u1, . . . ,ud ) : [0; 1]d → [0; 1], such that by the substitution
ui = Fi (xi ) , i = 1, . . . ,d , we get

FX1, ...,Xd (x1, . . . ,xd ) = CX1, ...,Xd (F1 (x1) , . . . , Fd (xd )) , for all (x1, . . . ,xd )T ∈ Rd . (3)

This relation is of principal importance. It states that every multivariate joint distribution can be
fully reconstructed based on its marginals and its copula.

The density function fx1, ...,xd (x1, . . . ,xd ) can be expressed in the following way:

fx1, ...,xd (x1, . . . ,xd ) =
∂dF (x1, . . . ,xd )
∂x1 . . . ∂xd

=
∂dC(u1, . . . ,ud )
∂u1 . . . ∂ud

����
ui=F (xi )

d∏
i=1

∂F (xi )
∂xi

= c(F1 (x1) , . . . , Fd (xd ))
d∏
i=1

f (xi ),

(4)

where c(u1, . . . ,ud ) is the copula density function.
Modeling high-dimensional probability distributions by using only a single high-dimensional

copula to characterize all the underlying dependencies is possible, although rather restrictive,
as there is a high chance that none of the currently known copula families is flexible enough to
approximate the complex dependency structure of a real dataset with reasonable accuracy (as shown
in [1]). A new approach has been introduced by Joe [28], the so called pair-copula construction, that
makes possible to capture different kinds of dependencies between the pairs of the variables in
the same multivariate probability distribution. In this approach, a copula is expressed as a product
of different types of bivariate copulas and bivariate conditional copulas. A useful modeling tool,
following the same direction, is the so called R-vine structure, that was introduced by Bedford and
Cooke [6, 7] and described in more details by Kurowicka and Cooke [35]. The drawback of using
R-vine copulas in higher dimensions is that the number of parameters grows very fast with the
dimensions. To address this issue, a special kind of vine-copula was proposed, called truncated
vine-copula. This concept has been introduced by Brechmann [8] and a more general version has
been presented in [30, 31].
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We do not review the R-vine graph structures here, as we need only a special case of them, the
truncated vines [8, 9]. In our approach, we will use the so called truncated vine copula truncated at
level one, that is directly related to Chow Liu probability distributions (see Section 3). Let us denote
the bivariate probability distribution function of Xi , X j by Fi, j , the bivariate probability density
function by fi, j , and the bivariate copula density function corresponding to fi, j by ci, j , for i, j ∈ V .

Let us consider the approximation of the joint probability density function fX1, ...Xd (x) given by
the by a Chow-Liu type density function:

fCh_L (x) =
∏

e ∈T ,s ∈V

fj(e)k (e)
(
x j(e),xk (e)

)
fs (xs )vs−1 , (5)

where vs=the number of edges connected to vertex s (see (1) for the discrete case).
The probability density function fCh_L (x) can be expressed as follows by dividing andmultiplying

with the marginal probability densities of the bivariate densities in the numerator, and then by
applying (4) to the bivariate case:

fCh_L (x) =
d∏
i=1

f (xi )
∏
e ∈T

fj(e)k (e)
(
x j(e),xk (e)

)
f j (e )

(
x j(e)

)
· fk (e )

(
xk (e)

) =
=

d∏
i=1

f (xi )
∏
e ∈T

c j(e)k(e)
(
Fj(e)

(
x j(e)

)
, Fk (e)

(
xk (e)

) )
.

(6)

It is easy to see that from (4) and from (6) it follows that
∏
e ∈T

c j(e)k (e)
(
Fj(e)

(
x j(e)

)
, Fk (e)

(
xk(e)

) )
is

a valid copula density.
Observe that in (6) only pair-copulas are involved, this is the reason why these constructions

are also called pair-copula constructions. Formula (6) also shows that the univariate marginal
probability distributions and the bivariate copulas can be fitted separately.

Using the elements introduced above, the inference of the multivariate density function is boiled
down to the following steps (see also Figure 1):

• The selection of a specific tree-structure. For this purpose we use the maximum information
tree described in Section 3.

• The choice of pair-copulas involved in formula (6). For each edge in the maximum information
tree, thus for each variable pair, a pair-copula is constructed and its parameters are estimated.

• The modeling of the univariate marginals. For every vertex of the maximum information
tree, thus for every variable, the marginal distribution is estimated with an appropriately
chosen distribution family.

• Construction of the two-dimensional joint distributions. For every edge of the maximum
information tree, the joint distribution of the variable pair is reconstructed from the two
related marginals and the copula.

Let us consider i.i.d observations D =
{
x1, . . . , xN

}
, xm ∈ Rd . Now we fit a Chow-Liu density

function to the data. The expression of the loglikelihood function of Chow-Liu density function (6)
fitted to the data D is the following:

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Copula-based anomaly scoring and localization of high-dimensional data 1:9

lnL
(
fChL (D) ,αlm , β

)
=
∑
e ∈T

N∑
m=1

ln c j(e)k (e)
(
Fj(e)

(
xmj(e)

)
, Fk (e)

(
xmk (e )

)
,αe

)
+

+

N∑
m=1

ln f
(
xmi , β

)
,

(7)

where αe , β are the parameters of the pair copulas in the edges, and the marginal density functions
respectively. From (7) it follows that the loglikelihood of the Chow-Liu approximation can be
expressed as the sum of loglikelihoods of the pair-copulas and the sum of the loglikelihood of
the marginal pdf’s. This makes our fitting tractable, paralelizable and flexible to multiple kind of
dependencies.
The following three subsections provide solutions for the last three items, for the fitting of

pair-copulas, the univariate marginals, and the construction of the joint distribution.

4.2 Fitting the pair-copulas
For every variable pair in the maximum information tree, our procedure first extracts the empirical
copula. To do so, both variables need to be transformed to pseudo-observations, hence they are
replaced by the normalized ranked data. The pseudo-observations corresponding to N realizations
of a d-dimensional random vector xi = (xi1, . . . ,xid )T , i ∈ {1, . . . ,N } are defined by ui j =

ri j
N+1 ,

i ∈ {1, . . . ,N }, j ∈ {1, . . . ,d}, , where ri j denotes the rank of xi j among all xk j , k ∈ {1, . . . ,N } [55].
This way we get a two-dimensional data series where both variables are uniformly distributed
individually, and their joint values are the realizations of their copula distribution.
To find the appropriate copula model for the empirical copula, we consider a set of copula

families, perform fitting the observations with all of them, and select the one providing the highest
likelihood.

In our method the following copula families (and their rotations) are considered:
• Archimedean copulas, including the Gumbel, Clayton, Joe, Frank, BB1, BB6, BB7, BB8 copulas.
These copulas have a low number of parameters and an explicit copula density, that makes
the fitting process relatively efficient.

• Elliptical copulas [22], including the Gaussian and the Student-t copula. Contrary to the
Archimedean copulas the elliptical ones are symmetric. They do not have an explicit density,
hence their fitting does not scale very well with the amount of training data.

• Non-parametric copula: the TTL copula. It makes use of a local-likelihood transformation
kernel density estimation (see [25]). This method has a large number of parameters (900)
and yields a less smooth density; in the presented procedure it serves as a remedy when the
empirical copula is so asymmetric that the above listed copula families fail to fit it.

For this step of the procedure we were relying on the built-in copula fitting capabilities of the
vinecopulib package1.

4.3 Fitting the univariate marginal distributions
The concept of fitting the marginals for each variable (a vertex in the maximum information tree)
is the same as in case of copulas: having defined a wide set of distribution families we repeat the
fitting with all of them and choose the one that has the highest likelihood for the training data.

The following univariate distribution families were the candidates for fitting the marginals:

1https://github.com/vinecopulib/vinecopulib
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• Simple univariate distributions like the exponential, student-t, log-normal, and the Pareto
distributions. Finding the maximum likelihood estimation for these distributions is simple,
but they often do not have the flexibility to fit real-word dataset accurately enough.

• Gaussian mixture models. Gaussian mixture models are widely used for fitting real datasets.
With the expectation-maximization algorithm it is possible to find its optimal parameters
rather efficiently. However, the density function of Gaussian mixtures has a fast decay, they
are not the optimal choice for distributions having a heavier tail.

• Hyper-Erlang distributions. Hyper-Erlang distributions are the mixtures of Erlang distribu-
tions. Efficient expectation-maximization algorithm for the inference is available for these
distributions, too (see [60]). While the gamma distributions are more general than the Erlang
distributions, interestingly we got far better fitting results with hyper-Erlangs. In fact, they
turned out to be the most flexible choices for the majority of the variables in our use case in
Section 6.

• Mixture of beta distributions. To model distributions with finite support, the mixture of beta
distributions provide an appealing option. We have successfully applied the hybrid EM –
moment fitting method published in [56].

4.4 Construction of the joint density functions
Once the univariate marginals and the pair-copulas are available, the two-dimensional joint densitiy
functions can be reconstructed based on (4), yielding

fXi ,X j (xi ,x j ) = cXi ,X j (FXi (xi ), FX j (x j )) · fXi (xi ) · fX j (x j ), (8)

and the overall density of a d dimensional observation is given in product form by (6).

5 ANOMALY SCORES DERIVED FROM THE JOINT PROBABILITY DISTRIBUTION
Let us consider a d-dimensional random vector X = (X1, . . .Xd )T taking values in χ ⊂ Rd , with
a bounded probability density function denoted by f (x). The aim of this section is to define an
anomaly scoring function which is defined on the d-dimensional support of the random vector X
and takes values in the [0; 1] interval.

There are several distributions for which it is easy to obtain an anomaly score from the density
functions. In the case of a symmetrical probability distribution, such as the univariate Gaussian
distribution, it is known that the realizations which deviate from the mean value more than 2σ are
considered rare. The probability that a realization of a Gaussian random variable takes place in the
set AG

0.9545 = {x | |x − µ | < 2σ } is 0.9545. For non-symmetrical, uni-modal distributions, a plausible
set A0.9545 would contain values between the 2.275 and 97.725 percentiles.

For multivariate distributions with multimodal density functions, however, it is not obvious how
to define such an anomaly scoring function. Results related to this topic were developed in [19, 53],
based on the idea of splitting the feature space in two halves, and observations not falling into the
minimum volume set (see Definition 5 in [23]) are considered to be anomalous. In our approach we
do not only classify the realizations as normal or anomalous but we also assign anomaly scores to
them. Other recent work in this direction can be found in [16], where a so calledMass Volume Curve
(MV curve) is defined. The idea behind MV curves is to define an ordering on χ ⊂ Rd according to
which realizations of X can be ranked related to how rare they are.

In this paper we rely on theMass Volume Curve, too. In this section we review the main elements
of this approach and provide and algorithm to obtain the anomaly scores of any high-dimensional
observations based on the joint density function efficiently.

Let us start with the definition of the scoring function and the level set.
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Fig. 2. Mass and volume on a bi-modal density function

Definition 5.1 (from [16]). A scoring function is any measurable function s : χ → R+ that is
integrable with respect to the Lesbesque measure.
A level set corresponding to a scoring function s and a level t is given by At = {x ∈ χ | s(x) ≥

t}, t ∈ [0,∞] 2.

Note that the "scoring function" as defined above is not the same as our anomaly scoring function
defined later. It is easy to see that if t ≥ t ′ then At ⊂ At ′ . Next, we review the two most important
notions, the mass and the volume of a level set.

Definition 5.2. For a scoring function s and a level t , αs (t) = P (s (X) ≥ t) is called the mass of
the level set At .

Definition 5.3. For a scoring function s and a level t , λs (t) = λ ({x ∈ χ | s (x) ≥ t}) is called the
volume corresponding to a level t , with respect to the Lesbesque measure.

Based on [53], we consider the density function of X as a scoring function. In this case λf (t) is
the contour cluster of the density function f (x) at level t .
Mass, volume, and their relation with anomaly scoring can be interpreted easier though an

example. In Figure 2 there is a bi-modal univariate density function, and a level t . The mass
corresponding to level t is the integral of the density function where it is greater than level t , and
the volume covers the intervals on the x axis where the density function is above level t . Hence,
the volume covers the most dense part of the density function and the mass is the probability that
a realization falls into this part.
The problem of anomaly detection can be formulated via the so called minimum volume sets.

Minimum volume set is a concept introduced in [19, 53] as a solution of the following constrained
minimization problem

A∗
α = arg min

A⊂χ
λ(A), such that P(X ∈ A) ≥ α , (9)

thus, we are looking for the smallest possible volume yielding mass α . In [16] it is stated that if
the probability density function is bounded and has no flat parts, for any α ∈ ]0; 1[ there exists a
unique minimum volume set A∗

α whose mass is equal to α . The "rare realizations" are those that
belong to the complementary set, i.e., χ\A∗

α , when α is sufficiently large (close to 1).
After these preliminaries we can define the theoretical anomaly score as follows.

Definition 5.4. The theoretical anomaly score of a realization x is defined by
A(x) = inf{α : x ∈ A∗

α }. (10)
2In [16] t ∈ [−∞, ∞]
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Fig. 3. Obtaining anomaly score based on the pdf, in case of a 2-dimensional Gaussian mixture distribution.
Left-most: the density, in the middle: Ḡ(t), right-most: the anomaly scores of the two-dimensional realizations

It is easy to see thatA (x) ∈ [0; 1], and the larger the value ofA (x) is the more rare the realization
x is. The main problem is, however, the numerical computation of A∗

α involving the solution of (9).
To overcome this problem we will now define an approximate anomaly score. To do so we

generate i.i.d. random samples from f (x), denoted by x̃i , i = 1, . . . ,m, wherem is the sample size.
To each vector x̃i we assign its density f (x̃i ). This way we get a univariate discrete random variable
τ , which takes values f (x̃i ) with probability pi = 1

m . Then, the anomaly score is approximated by
the complementary distribution function of this random variable (denoted by Ḡ(t) = P(τ > t)) at
t = f (x̃i ) .

Definition 5.5. The approximated anomaly score of any realization x is defined by

Â(x) = Ḡ(f (x)) = 1
m

∑
1{τ >f (x)} . (11)

It is clear that the approximated anomaly score takes values in [0; 1], and has the property to be
large for the rare events. An example for the anomaly score corresponding to a two-dimensional
Gaussian mixture is illustrated in Figure 3.

This procedure can be used to identify anomalous cases based on some of the bivariate projections
of the multivariate pdf, and also enables the localization of the anomaly, by highlighting those
variables whose relation is unusual.

Whenever we have an incomplete realizations, i.e. the observed vector contains missing values,
some links of the tree are missing, but all the others can be interpreted as in the case without the
missing values. Hence, we can still obtain anomaly scores based on the unusual relation of the
existing values.

6 APPLICATION OF THE NEW ANOMALY SCORING METHOD TO REAL MOBILE
NETWORK DATA

In this section we illustrate the applicability of the proposed procedure on a real dataset originating
from the live commercial LTE network of a Western European mobile operator. Mobile networks
are complex systems with many parameters, where discovering that the system performance is
sub-optimal is difficult for a human operator.
For decades, telecommunication operators have relied on network domain experts to report

problems that affect the network performance and customer experience, with the aim of performance
monitoring tools. The conventional approach of the tools is to pre-select a set of Key Performance
Indicators (KPIs), based on human knowledge and experience of the domain experts. The trending
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of these KPIs are closely monitored, based on pre-defined single-value or multi-value thresholds,
and/or pre-built single variate or multivariate time series profiles. If the KPI values exceed the
thresholds/profiles, then alarms will be raised to trigger investigation, mitigation and on-site
support. The experts also try to derive Root Causes Analysis (RCA) on these problems to fix as
early as they can. All the processes are manual or semi-auto with limited support of tools. The
traditional tools are mainly based on human knowledge, and that the complex and hidden rules in
the telecommunication network are not easy to fully detect, capture and utilize.
Thus there is a strong need to revolutionize network management with AI/machine learning

technology. This is essential as today’s communication networks are extremely complex systems
consisting of hundreds of thousands network elements organized in cooperating, coexisting and
overlapping technology layers. The network elements generate huge amounts of versatile data for
performancemonitoring, optimization and troubleshooting purposes. It is already quite cumbersome
to tackle these tasks with traditional approaches and the effects will be even more emphasized
in case of 5G. Automated solutions are needed that are capable to analyze the raw data and draw
conclusions, generate actionable insights using AI technology. One important area in this field is
the predictive detection of anomaly patterns that appear in the data.
Our dataset comprises a large number of performance counters collected at thousands of base

stations, recorded in every hour. The original set of counters has been filtered based on data quality
requirements, which resulted in 54 counters and 1, 500, 000 observations. These counters represent
a wide variety of measurements: related to the PDCP (Packet Data Convergence Protocol), RLC
(Radio Link Control), MAC (Media Access Control) and PHY (Physical) layers, to the handovers, the
activity of the schedulers, the UL (upload) and DL (download) throughput , delay, UL interference
etc. As mentioned earlier in the paper, anomaly detection for such high dimensional data is a
challenging problem. In the following subsections we present how our new method performs with
this mobile network dataset.

6.1 Selecting the relevant KPI pairs
According to Section 3, the anomaly analysis of the high-dimensional problem is decomposed to
many computationally tractable two-dimensional problems which can be treated separately. The
first step of the procedure is the selection of the appropriate two-dimensional KPI pairs. For this
purpose we create a graph where the vertices are the KPIs and the edges are weighted by the mutual
information between them. Those KPI pairs are selected, which are lying on the maximum weight
spanning tree of the graph. For the particular dataset considered in this example the maximum
weighted spanning tree (referred to as the maximum information tree) is depicted in Figure 4.

The two-dimensional behavior of the selected KPI pairs is then modeled by two-dimensional
distributions, using bivariate copula families. The copula based approach enables the separation
of the fitting problem of the marginal distributions and the fitting problem of the dependence
structure between them.

6.2 Fitting distributions to univariate marginals
As described in Section 4.3, we defined various distribution families, and fitted the data of the
various KPIs by maximizing the likelihood. Among the candidate distributions the one having the
highest likelihood has been selected. From the total number of 54 KPIs the log-normal distribution
gave the best likelihood in 1 case, the student distribution in 2 cases, the beta mixture in 6 cases. The
hyper-Erlang and the Gaussian mixture distributions turned out to be the most versatile, providing
the best fit in 35 and 10 cases, respectively. The node color in Figure 4 reflects the distribution
family that fits the corresponding KPI the best.
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Fig. 4. Maximum information tree of the KPI pairs

A few examples for the marginal distribution fitting are shown in Figure 5 for some KPIs (these
KPIs will be used later to demonstrate the copula and the joint distribution fitting). The results
are excellent, the mixture distributions are flexible enough to capture not only the body, but also
the tail of the empirical distributions. These examples represent the typical fitting accuracy, there
are some better, and some worse results, too, but we managed to fit the majority of the marginal
distributions with high accuracy.

6.3 Fitting bivariate copulas
To enable the separate fitting of the marginal distributions and the dependence structure, the two-
dimensional subsets of the selected KPI pairs have been transformed to pseudo-observations. The
resulting two-dimensional data has uniformly distributedmarginals over [0, 1]. The two dimensional
pdf obtained this way enables to infer the dependence structure of the two random variables.

To the transformed two-dimensional data several copula families are fitted (as detailed in Section
4.2), and the one leading to the highest likelihood is selected. Out of the candidate copula families
the Gumbel copula turned out to be the best in 3 cases, the BB1 and the BB6 in 5 cases each, the
Student copula in 15 cases, and the non-parametric TLL copula in 25 cases. The copula families
associated with the pairs of variables linked by the edges of the maximum information tree are
also available in Figure 4.
Figure 6 shows 3 examples for 3 copula families comparing the transformed observations with

simulated samples of the fitted copulas. In the top row the BB1 copula, in the middle the Student
copula, and in the bottom row the TLL copula provides the best fit. According to the examples
in the Figure (that represent typical cases), the empirical copulas occurring in our dataset can be
approximated with the considered copula families with high accuracy.

6.4 The bivariate joint distributions
Finally, we put together the bivariate copula and the marginal probability distributions for each
KPI pair, reconstructing the bivariate joint probability distributions.
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Fig. 5. The marginal distributions fitting KPIs UL_Cell_Throughput, Average_Power_Limited_UEs and pmR-
rcConnEstabSucc

The joint distributions corresponding to Figure 6 are depicted in Figure 7. In the figure, the
original data points are shown in the left plot and random points simulated from the modelled joint
distribution are given in the right side. The purpose of the contour lines is to make the comparison
easier, they are generated from the probabilistic model and are the same for both the left and right
hand side plots. The color of the points reflect the anomaly score (computed according to Section
5), light shades correspond to more rare (hence, more anomalous), dark shades to more typical
observations. Observe that the joint distributions in these examples are very far from a bivariate
Gaussian distribution, and are in fact difficult to fit with a mixture of bivariate Gaussians, too.
However, based on the figures it is clear that the the copula-based modeling of the relevant variable
pairs can be applied to this dataset successfully.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:16 Gábor Horváth, Edith Kovács, Roland Molontay, and Szabolcs Nováczki

0.0 0.2 0.4 0.6 0.8 1.0
pmErabLevSum

0.0

0.2

0.4

0.6

0.8

1.0

pm
Rr

cC
on

nE
st

ab
Su

cc

Empirical

0.0 0.2 0.4 0.6 0.8 1.0
pmErabLevSum

0.0

0.2

0.4

0.6

0.8

1.0

pm
Rr

cC
on

nE
st

ab
Su

cc

BB1 Copula

0.0 0.2 0.4 0.6 0.8 1.0
Average_Power_Limited_UEs

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e_

PU
SC

H_
SI

NR

Empirical

0.0 0.2 0.4 0.6 0.8 1.0
Average_Power_Limited_UEs

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e_
PU

SC
H_

SI
NR

Student Copula

0.0 0.2 0.4 0.6 0.8 1.0
UL_Cell_Throughput

0.0

0.2

0.4

0.6

0.8

1.0

UL
_U

E_
Th

ro
ug

hp
ut

Empirical

0.0 0.2 0.4 0.6 0.8 1.0
UL_Cell_Throughput

0.0

0.2

0.4

0.6

0.8

1.0

UL
_U

E_
Th

ro
ug

hp
ut

TLL Copula

Fig. 6. Examples for copula fitting. Left: empirical copula. Right: simulated copula.

6.5 Anomaly tree
To visualize the current state of the network element (i.e., an LTE cell, in our case) we introduce
anomaly trees. The structure of the anomaly tree is given by the maximum information tree, and
the weights of the edges are given by the anomaly scores calculated from the two dimensional
marginal probability distributions. If the weights of the edges are visualized with different colors,
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Fig. 7. Reconstructing the joint distributions. Left: original data points. Right: random points simulated from
the model.

the anomaly trees provide a useful tool for the human operators to get an overview on the current
state of the network element. Form engineering point of view the anomaly tree can be considered
as a high level summary of the actual anomaly state of the monitored network element. The high
weight edges identify the functional part(s) of the network element that are affected by the actual
anomaly.
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Fig. 8. Anomaly trees, example 1

Anomaly trees are illustrated in Figures 8 and 9. In these figures, the color indicates the severity
of the anomaly. For example, the red color of a link means that the anomaly score is above 0.996.
Orange shades mean lower anomaly score, and blue shades are assigned to non-anomalous relations.
Interpreting these anomaly trees requires deep domain specific knowledge, the detailed discussion
of the possible reasons and the solutions is out of scope of this paper.
In Figure 8 we can see that the number of PRBs (Physical Resource Blocks) is extremely

low, compared to the number of times a user equipment is selected for transmission (affecting
pmSchedActivityCellDl - Num_PRBs_used_by_PDSCH relations). Given the transport block size
(pmRadioTbsPwrUnrestricted), the high usage of the 16-qam modulation scheme (pmMacHarq-
UlSucc16qam) and the large number of negative acknowledgements in case of the 64-qam mod-
ulation scheme (pmMacHarqDlNack64qam) implies that there could be something wrong with the
radio channel, possibly with the antenna.
Figure 9 depicts an other kind of problem. In this case the channel quality is high enough,

yet the user throughput is too low (according to the Average_CQI - DL_UE_Throughput relation).
Considering the number of e-RABs (evolved radio access bearer), the number of RRC connection
establishments is high (pmErabLevSum - pmRrcConnEstabSucc), and the signalling traffic is unusu-
ally high in upload direction (UL_Int_PUCCH - UL_Int_PUSCH), which means that the reason for
the bad user experience is not the quality of the channel, but the sub-optimal setting of the RRC
level parameters in the cell.

The manufacturer of the base station hardware has released guidelines for performance manage-
ment and optimization, and also a troubleshooting guide, that the operators can use in order to
resolve the problems detected by the presented anomaly detection algorithm.

6.6 Comparison with alternative methods
In this section we demonstrate how well the presented method performs in comparison with some
standard and recent anomaly detection methods.
First we ignore the most appealing capability of the presented method, that is, the anomaly

localization, and extract one overall anomaly score from the the whole anomaly tree. For an
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Fig. 9. Anomaly trees, example 2

observation x this overall anomaly score is obtained by

Ã(x) = 1
d − 1

∑
e ∈T

− log(1 − Â(xe)), (12)

where xe is the two-dimensional sample containing only those two components of x that correspond
to edge e of the tree T . The role of the logarithm is to adjust the scale of the anomaly score such
that only really rare observations will get high scores. Hence, after the logarithm re-scaling, we
take the average anomaly scores of the anomaly tree.

Then, we compare this overall anomaly score to anomaly scores obtained by alternative methods.
It is important to note that all the alternative methods we tested work on complete data only, and
the LTE network data set contains only 66, 000 complete samples out of the 1, 500, 000 observations.
Thus, in the rest of this section all comparisons are based on this very restricted, but complete data
set.
To obtain anomaly scores from alternative procedures we have used the Python Toolbox for

Scalable Outlier Detection (PyOD, [64]). Several procedures failed to provide a result in a reasonable
time, or gave constant zero anomaly score for all samples (including the angle-based method [34]).
For a comparison, Figure 10 shows the outlier scores of the presented methods against the scores
of all the procedures that returned valid result, namely PCA-based outlier score [58], Isolation
forest [40], Local Outlier Factor [10], Clustering-based LOF [27] and Autoencoder based outlier
score [3]. For this study we have used the implementation available at https://github.com/yzhao062/
pyod with the default parameters, as listed by Table 1.

From Figure 10 it can be seen that our method assigns high anomaly score to those observations
that are found anomalous by alternative methods as well. Additionally, our method can provide
information on the location of the anomaly and can operate with missing data as well. The fact
that in a real data set missing data occurs frequently (possibly due to unreliable sensors) justifies
the need for anomaly detection procedures that tolerate missing data.
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Fig. 10. Comparison with alternative anomaly scoring methods
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Anomaly detection method Parameters
PCA based method use all components
Isolation forest n_estimators=100

Local Outlier Factor n_neighbors=20
Clustering-based LOF n_clusters=8, α = 0.9, β = 5

Autoencoder based method neurons=[64, 32, 32, 64], activation=relu, epochs=20
Table 1. Parameters of the methods involved in the comparison

7 EVALUATION OF THE METHOD ON A SYNTHETIC DATA SET
We have prepared an other numerical study to compare the presented copula based method to
alternative anomaly detection methods published in the literature.
In this study we generate one million samples from a known distribution, and investigate how

the anomaly scores correlate with the probability densities. For this purpose, we have defined a
mixture of 5-dimensional normal distribution consisting of 4 components. The exact parameters of
the distribution are provided in Appendix A. This choice may seem to be unfair, since our method
is able to capture its marginals with high accuracy, but it turns out that this distribution has a
very complicated correlation structure, that is equally difficult for all procedures involved in the
comparison. As shown in Figure 11, a bi-variate joint distribution is multi-modal, our model can
still capture its characteristic rather well.
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Fig. 11. One of the bi-variate joint distributions in the synthetic example. Left: original data points. Right:
random points simulated from the model.

The procedures involved in the comparison are the same as in Section 6.6, namely the PCA
based, the isolation forest based, the Local Outlier Factor based, the Clustering-based LOF and the
Autoencoder based methods. Since the samples are generated from a know distribution, we can
calculate the Kendall rank correlation coefficient between the anomaly scores returned by these
methods and the values of the probability density function. The results are summarized in Table 2.
The correlations are negative, since higher anomaly scores are assigned to observations having
lower densities. According to the results, the presented copula based method performs the best for
this particular data set.
We emphasize again, that this does not mean that the copula based method is always better

than other methods, it just means that for data sets consisting of a high number of continuous
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Anomaly detection method Kendall’s tau
PCA based scoring -0.337
Isolation forest -0.526

Local Outlier Factor -0.4194
Clustering-based LOF -0.5892

Autoencoder based method -0.3815
Presented method -0.6275

Table 2. The correlation between the anomaly scores and the probability densities

variables it performs favorably. The alternative methods still have their strengths, when the data
set is smaller, has categorical features and probability masses.
For completeness, we include the plots depicting the correlation between the copula based

anomaly scores and the anomaly scores of the alternative methods, see Figure 12.

8 CONCLUSION AND DISCUSSION
In this paper, we presented a novel copula-based anomaly detection technique for high-dimensional
data that does not only assign an anomaly score to the observations but it also localizes the reason
of the anomaly. The proposed approach relies on the modeling of the multivariate probability distri-
bution associated with the instances. Our procedure is able to handle large-scale, high-dimensional
data since the intractable high-dimensional problem is broken into smaller tractable ones by using
two dimensional projections (bivariate marginal distributions) of the joint probability distribution
in such a way that it retains maximum information and reduces redundancy. Since rare events
occur in the tails of the probability distribution, copulas were used to model the bivariate marginals.
Another advantage of the copula approach that the univariate marginal probability distributions
and the bivariate copulas can be fitted separately.
Besides an overall anomaly score, our approach also reports individual anomaly scores for the

selected variable pairs that can be illustrated on an anomaly tree that enables the users to get an
overview on the current state of the system, and to observe it evolving in time. We also illustrated
our method on a real-world telecommunication problem. Our findings were reconfirmed by real
network operators. Moreover, we compared the anomaly score of the proposed approach with other
standard anomaly detection methods. We can conclude that the overall anomaly score returned by
our approach is similar to the scores returned by other methods. On the other hand, our method
also provides support to localize the anomaly, can be parallelized, can cope with a large number of
high-dimensional observations and is also capable of handling missing data.
Although our proposed technique complements the existing approaches in several aspects, it

also has its limitations. The most important limitation of the proposed approach is that it only
works well with large scale continuous data. Categorical or discrete variables must be omitted
since our method is not able to handle them (because the transformation to pseudo-observations
does not result in a uniform distribution). This limitation also makes it troublesome to carry out a
comprehensive comparison of the performance of our proposed approach with other alternative
methods. Therefore, the method introduced in this paper supplements and does not substitute the
existing techniques.
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Fig. 12. Comparison with alternative anomaly scoring methods on the synthetic data set
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A THE PARAMETERS OF THE DISTRIBUTION USED IN SECTION 7
To generate the syntetic data set for Section 7 we have defined a mixture of 5-dimensional normal
distribution with 4 components, having density function

f (x) =
4∑
i=1

pi
1√

(2π )5 |Σi |
e−(x−µi )

T Σi
−1(x−µi )/2.

The mean values of the components are given by

µ1 =
[
2.9 4.3 0.6 4.0 4.4

]T
,µ2 =

[
4.0 1.5 2.7 0.7 4.5

]T
,

µ3 =
[
3.8 1.1 0.5 2.8 0.4

]T
,µ4 =

[
3.7 2.5 2.5 2.0 0.7

]T
,

and the mixing probabilities are p1 = 0.4,p2 = 0.2,p3 = 0.1,p4 = 0.3.
Obtaining the covariance matrices is a bit more involved. Our goal is to define the eigenvalues of

the covariance matrices, and rotate them in a random way with unitary matrices. The eigenvalues
of the covariance matrices i = 1, . . . , 4, denoted by vi , are given by

v1 =
[
0.25 0.5 1 2 4

]
,v2 =

[
0.15 0.25 0.35 0.5 1

]
,

v3 =
[
1 2 3 4 5

]
, v4 =

[
0.15 0.25 1 4 5

]
.
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Before providing the covariance matrices, let us introduce the following auxiliary matrices:

W1 =


0.6 0.1 0.9 0.9 0.4
0.8 0.7 0.2 0.8 0.6
0.8 0.1 0.5 0.3 0.4
0.8 0.6 0.7 0.7 0.8
0.6 0.6 0.8 0.7 0.7


,W2 =


0.2 0.4 0.5 0.6 0.1
0.8 0.7 0.5 0.0 0.8
0.9 0.2 0.2 0.8 0.8
0.3 0.2 0.5 0.3 0.7
0.8 0.8 0.8 0.3 0.5


,

W3 =


0.1 0.3 0.0 0.9 0.8
0.5 0.7 0.5 0.6 0.1
0.0 0.3 0.2 0.3 0.2
0.5 0.7 0.8 0.5 0.6
0.3 0.1 0.9 0.6 0.1


,W4 =


0.4 0.4 0.3 0.2 0.5
0.7 0.4 0.3 0.4 0.6
0.0 0.8 0.3 0.9 0.8
0.9 0.9 0.1 0.8 0.1
0.1 0.3 0.3 0.9 0.1


.

Applying QR decomposition on matrices Wi , i = 1, . . . , 4 gives orthogonal matrices Qi , i =
1, . . . , 4, from which the covariance matrices are obtained by Ci = Qi diag(vi )QT

i .

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: January 2019.


	Abstract
	1 Introduction
	2 Outline of the procedure
	3 Decomposition of the high dimensional space 
	4 Copula-based modeling of pairs of variables
	4.1 A short overview on copulas
	4.2 Fitting the pair-copulas
	4.3 Fitting the univariate marginal distributions
	4.4 Construction of the joint density functions

	5 Anomaly scores derived from the joint probability distribution
	6 Application of the new anomaly scoring method to real mobile network data
	6.1 Selecting the relevant KPI pairs
	6.2 Fitting distributions to univariate marginals
	6.3 Fitting bivariate copulas
	6.4 The bivariate joint distributions
	6.5 Anomaly tree
	6.6 Comparison with alternative methods

	7 Evaluation of the method on a synthetic data set
	8 Conclusion and discussion
	Acknowledgments
	References
	A The parameters of the distribution used in Section ??

