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ABSTRACT
The task of person re-identification (ReID) has attracted growing
attention in recent years leading to improved performance, albeit
with little focus on real-world applications. Most SotA methods are
based on heavy pre-trained models, e.g. ResNet50 (∼25M parame-
ters), which makes them less practical and more tedious to explore
architecture modifications. In this study, we focus on a small-sized
randomly initialized model that enables us to easily introduce ar-
chitecture and training modifications suitable for person ReID. The
outcomes of our study are a compact network and a fitting training
regime. We show the robustness of the network by outperforming
the SotA on both Market1501 and DukeMTMC. Furthermore, we
show the representation power of our ReID network via SotA results
on a different task of multi-object tracking.
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Deep person ReID, multi-object tracking, compact network

1 INTRODUCTION
The objective in person re-identification (ReID) is to assign a sta-
ble ID to a person in multiple camera views. In this study we are
interested in the development of small sized models for ReID with
high accuracy for two main reasons. First, it is beneficial for practi-
cal deployment and productization of ReID solutions. Second, the
research for models that provide high accuracy requires exploration
of many architecture variations and training schemes. When the
backbone is heavy, re-training consumes both a lot of time and com-
puting resources which we wish to avoid. Our approach differs from
many state-of-the-art (SotA) methods, that rely on large pre-trained
backbone models, such as ResNet50, e.g. [11, 23, 25, 27].

We argue that a cost-effective ReID model should be computa-
tionally efficient, capable of running on low-res video input, and
robust to multiple camera setting. Hence, we propose an efficient
ReID model and training schemes that demonstrate state of the art
performance under these requirements. To reduce the computational
burden, we aim to decrease the number of parameters and use a
relatively small ReID model. Figure 1 shows the current state of
the art results [1, 2, 10, 11, 16, 21, 23, 25, 26, 28, 30–32, 38] and
the number of parameters compared to our proposed method on

*Both authors contributed equally to this research.

Figure 1: Performance comparison of our approach and SotA
ReID methods on Market1501 dataset. Top: rank-1 accuracy
vs. number of parameters. Bottom: mAP vs. number of param-
eters.

the popular Market1501 dataset [33] in terms of rank-1 accuracy
and mAP. For some methods, the number of parameters was not
known so we used an estimated lower bound. Using our proposed
training framework we achieve state of the art results with an order
of magnitude smaller model compared to the best existing ReID
CNN.
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The importance of training “tricks” for deep person ReID has been
discussed before in [11]. In this paper, we suggest training techniques
and architecture modifications that improve the harmonious attention
network HA-CNN of [10] to achieve similar or better results than
much larger and complicated models. The contribution of this paper
is thus three-fold:

• We propose a compact and robust deep person ReID model.
Our model achieves state of the art results on two popular
person ReID datasets (Market1501 and DukeMTMC ReID
[18]). This is despite having a small number of parameters,
small number of FLOPS, and low resolution input image, in
comparison to other leading methods.

• We study a variety of training schemes and network choices
that prove useful. While we have explored their affect only
for HA-CNN, we believe they could be of interest for others
to examine in other setups.

• We demonstrate the utility of the proposed person ReID
model also for other tasks, by improving multi-target multi-
camera tracking.

In the following section we describe the baseline ReID network
we started with. The training techniques and architecture modifi-
cations that were explored in this study are presented in section 3.
Next, the experimental results including an ablation study, additional
analysis, and comparison to state of the art are presented (section 4).
Finally, multi camera multi target tracking results are presented in
section 5.

2 BASELINE REID NETWORK - HA-CNN
Our goal is a compact model that gives high accuracy with low-
resolution input images, in order to reduce computational complex-
ity. Therefore, we chose as baseline the light-weight Harmonious
Attention CNN (HA-CNN) [10]. HA-CNN is sufficiently compact
to be trained from scratch thus obviating the need to pre-train on
additional data. Nonetheless, it provides good results taking into
consideration its small number of parameters (2.7M). In addition,
the input image size for this network is relatively small compared to
other person ReID networks.

HA-CNN is an attention network with several attention modules
including soft spatial and channel-wise attention and hard attention
to extract local regions. The network architecture holds two branches:
a global one, and a local one that uses the regions extracted based
on the hard attention. Finally, the output vectors of both branches
are concatenated for the final person image descriptor. Holding
two branches and multiple attention modules improves the network
perception, despite these features the HA-CNN keeps a small number
of parameters making it accurate and efficient. However, parts of the
architecture can still be optimized as well as the training scheme.
Optimizing it can further improve the HA-CNN and obtain a more
accurate model.

3 METHODS
It is well known that the performance of deep learning models is
highly dependent on both the choice of architecture and the training
scheme. Specifically, recent work has shown that training procedure
refinements can significantly improve ReID results [11]. In the fol-
lowing we explore training schemes (Section 3.1) and architecture

modifications (section 3.2) that lead to better ReID performance of
HA-CNN. To make our survey more complete we further mention
several modifications that did not improve the model performance
(Section 3.3).

3.1 Training techniques
The following training techniques were found useful by our study:

Weighted triplet loss with Soft margin. The triplet loss is widely
used to train Person ReID models, as well as other computer vision
tasks such as Face Recognition and Few-Shot Learning. The original
triplet loss was proposed by Schroff et al. [20]. We denote an anchor
sample by xa , positive samples as xp ∈ P(a) and negative samples
as xn ∈ N (a), then the triplet loss can be written as:

L1 =
[
m + d(xa ,xp ) − d(xa ,xn )

]
+

(1)

wherem is the given inter-class separation margin,d denotes distance
of appearance, and [·]+ =max(0, ·).

Hermans et al. [6] proposed the batch-hard triplet loss that selects
only the most difficult positive and negative samples:

L2 =

[
m +max

xp ∈P (a)
d(xa ,xp ) −min

xn ∈N (a)
d(xa ,xn )

]
+

(2)

In contrast to the original triplet loss, the batch-hard triplet loss
emphasizes hard examples. However, it is sensitive to outlier samples
and may discard useful information due to its hard selective approach.
To deal with these problems, Ristani et al. proposed the batch-soft
triplet loss:

L3 =

m +
∑

xp ∈P (a)
wpd(xa ,xp ) −

∑
xn ∈N (a)

wnd(xa ,xn )
+

wp =
ed (xa,xp )∑

x ∈P (a)
ed (xa,x )

, wn =
e−d (xa,xn )∑

x ∈N (a)
e−d (xa,x )

(3)

Observe, that the hyper-parameter m, which denotes the mar-
gin, exists in all of these triplet loss variations. Tuning this hyper-
parameter manually is not easy, therefore, we next propose an alter-
native triplet loss that eliminates it.

Our key idea is to replace the hard cutoff max function with an
exponential decay So f tplus(·) = ln(1 + exp(·)) as follows:

L4 = So f tplus
©­«
∑
xp

wpd(xa ,xp ) −
∑
xn

wnd(xa ,xn )
ª®¬ (4)

The soft margin eliminates the margin parameter.
Figure 3 illustrates one of the benefits of the soft margin over

the hard margin. Using a hard margin value, when the separation
between the negative samples and the positive samples becomes
larger than the hard margin, the loss is zero and therefore further
minimization will not push the positive samples closer or the negative
samples farther away from the anchor. This is illustrated in the
examples in (a) and (b) that will both obtain a loss value of zero
since both answer the assumption of the hard margin. Conversely,
the soft margin encourages a continuous reduction of the positive
distance to the anchor while increasing the negative distance. This
is illustrated in (c), that shows the the computed loss will continue



Figure 2: The Softplus function (ln(1 + exp(·))) compared to
max(0, ·).

Figure 3: Example of hard margin vs soft margin. The scenario
in (b) is more desirable than (a) because the positive sample is
closer to the anchor and the negative sample is farther away.
This, however, will not be captured by the hard margin triplet
loss because both cases correspond to a loss value of zero. (c)
Differently, when using a soft margin the loss will continue to
pull the positive sample closer to the anchor while pushing the
negative sample away and will encourage going from (a) to (b).

to push the positive sample closer to the anchor while pushing the
negative sample away.

L2 normalization. The normalization of the feature vectors can
be important when using two different loss functions such as cross-
entropy and triplet loss which are optimized using different distance
measures. [11] tackled the normalization problem by adding a batch
normalization layer after the feature vectors, right before the fully
connected layer. In our empirical studies we found that simply using
L2 normalization for each feature vector (global and local) during
training achieves an even better performance. Figure 4 shows the
additional L2 normalization used during training and inference.

Figure 4: Our ReID architecture shows the proposed modifica-
tions over the original HA-CNN: L2 normalization during train-
ing, GeM instead of average pooling, and soft triplet loss.

SWAG [13]. A common technique to further boost the perfor-
mance of a model is via ensembles. A common approach is to use an
ensemble of models in test time for the final prediction, however, this
requires high computing resources. A more efficient approach is Sto-
chastic weight averaging (SWA) [8], that forms an ensemble during
training and outputs a single model for inference. SWA essentially
conducts a uniform average over several model weights traversed by
SGD during training to achieve a wider region of the loss minima.
In order to use SWA a learning rate scheduler is required.

We have made two modifications over HA-CNN ensemble scheme.
First, we follow [13] and use SWA-Gaussian (SWAG). SWAG fits
a Gaussian distribution using the SWA solution and diagonal co-
variance forming an approximate posterior distribution over neural
network weights. Next, SWAG performs a Bayesian model aver-
aging based on the Gaussian distribution. Second, we have found
empirically that the original learning rate scheduler of [8] can be
improved. We suggest using the cosine annealing learning rate sched-
uler with cycles = 15 of 35 epochs and cycle decay factor of 0.7
after each cycle. At the end of each cycle we average the weights of
the current model with the previous models taken from the end of
each cycle.

Other training techniques. The random erasing augmentation
(REA) [36] that randomly erases a rectangle in an image has shown
to improve the model generalization ability. We used REA with the
following parameters: probability for random erasing an image of
0.5, area ratio of erasing a region in the range of 0.02 < Se < 0.4,
and with aspect ratio in the range of 0.3 < r < 3.3.

Warmup [4] - used to bootstrap the network for better perfor-
mance. Starting with a smaller learning rate has shown to improve
the training process stability, especially when using a randomly ini-
tialized model. Using warmup we start the training with a small
learning rate and then gradually increase it. We used the following



Figure 5: The shuffle blocks used in this study to replace the
original HA-CNN inception blocks.

learning rate scheme:

lr (t) =


3 × 10−2 × t

10 if t ≤ 10
3 × 10−2 if 10 < t ≤ 150
3 × 10−3 if 150 < t ≤ 225
3 × 10−4 if 225 < t ≤ 350

(5)

Label smoothing [24] - widely used for classification problems
by encouraging the model to be less confident during training and
prevent over-fitting. We used label smoothing in a similar way as
proposed in [11].

3.2 Architecture modifications
In addition to the training techniques listed above, we further suggest
the following architecture modifications to HA-CNN.

Shuffle blocks [12]. Our goal was to improve the network accu-
racy while maintaining a small number of parameters. To do this,
we examined replacing the inception blocks with the shuffle blocks
presented in Figure 5.

Shuffle-A is more efficient than the original inception block since
it splits the input features into two equal branches, the first branch
remains as is while three convolution operators are applied to the
second branch. In addition, one of the convolution operators is depth-
wise convolution. The Shuffle-A block can be used in a repeated
sequence and still maintain the same number of parameters as the
original inception block. Hence, we were able to build a deeper
network with a similar number of parameters. The Shuffle-B block
is similar to Shuffle-A but can be used for spatial down-sampling or
channel expansion. These characteristics require convolution oper-
ators to be applied also to the first branch. Table 1 summarizes the
repeated sequences of Shuffle blocks used in our proposed architec-
ture.

Generalized Mean (GeM) [17]. In the original HA-CNN global
average pooling was used just before the fully connected layer. Re-
placing it with global max pooling gave undecicive results, sometime
better and sometimes worse. Therefore, we suggest using the train-
able Generalized Mean (GeM) pooling, which generalizes both max
and average pooling. The GeM operator for a single feature map fk
can be written as:

GeM(fk = [x0,x1, ...,xn ]) =
[
1
n

n∑
i=1

xi
pk

] 1
pk

(6)

We initialized the parameter pk = 3. Figure 4 shows where is it used
during training and inference.

Deeper and wider. We further study empirically the impact of
using a deeper and wider version of the architecture by modifying the
number of shuffle blocks as well as the number of output channels
in each stage. Table 1 presents these modifications in bold.

3.3 Additional tricks we tried
For completeness, we list here training options that have been intro-
duced by prior work and our experiments found to deteriorate the
results:

(1) As mentioned before, max and average pooling provide differ-
ent results so one way to benefit from both pooling methods is
by concatenation of their output. Basically we tried to replace
the global average pooling used in the original HA-CNN
architecture with these two pooling methods and concatena-
tions. It resulted in a similar accuracy with more parameters
in the final model.

(2) The batch norm suggested by [11] provided inferior results
when compared to the simple L2 normalization.

(3) Hard triplet loss instead of the soft version was too sensitive
to outliers.

(4) Shuffle blocks without L2 normalization or soft margin in the
triplet loss didn’t improve the performance.

(5) Training for more epochs didn’t improve the performance.
The only way it did lead to an improvement was using the
Cyclic LR scheme.

(6) Cyclic LR scheme didn’t improve the results when used from
scratch from the beginning of the training. It only worked
when used in additional training epochs after the the model
converged.

4 EXPERIMENTAL RESULTS
In the following we evaluate our models on Market1501 and DukeMTMC
ReID datasets based on rank-1 accuracy and mAP. Next, the perfor-
mance boost by each methods presented in section 3 is evaluated.

Implementation details. All person images are resized to 160 ×
64. We used SGD for optimization with a linear warm-up as in
Equation (5) for a total of 350 epochs. When using SWAG we train
for 15 cycles of 35 epochs which sums up to 525 additional epochs.
We randomly sample 8 identities and 4 images per person in each
training batch.



Local Branch Global Branch Layer Input Stride
1× 2×

Repeat Output Ch. Repeat Output Ch.
Conv1 Conv 3x3 160×64 2 1 32 1 36

Stage1
Shuffle-B
Shuffle-A
Shuffle-B

80×32
1
1
2

1
7
1 128

1
8
1 240

Soft-Attn1 HA-Block 40×16 1 1 1
Hard-Attn1 Shuffle-B 4×(24×28) 1 1 1

Stage2
Shuffle-B
Shuffle-A
Shuffle-B

40×16
1
1
2

1
10
1 256

1
11
1 320

Soft-Attn2 HA-Block 20×8 1 1 1
Hard-Attn2 Shuffle-B 4×(12×14) 1 1 1

Stage3
Shuffle-B
Shuffle-A
Shuffle-B

20×8
1
1
2

1
7
1

384

1
8
1

480Soft-Attn3 HA-Block 10×4 1 1 1
Hard-Attn3 Shuffle-B 4×(6×7) 1 1 1

Pooling GeM 10×4 1 1 1
Pooling GeM 4×(3×4) 1 1 1

FC Global Linear 1×1 1 1
512

1 960
FC Local Linear 1×1 1 1 1
FLOPs 0.72B 1.68B
# of Params. 2.9M 6.4M

Table 1: Overall architecture of our model, for 2 different levels of complexities. Since our architecture uses a low-resolution input of
160x64, we down-scale the feature maps by applying strided convolution only in the last layer of each stage and not in the beginning.
This way the network can leverage a higher spatial resolution in most of the network.

4.1 Comparison to state of the arts
We compare our models performance to several state of the art
methods (Table 2). Our best model achieves state of the art results
in terms of rank-1 accuracy and mAP on Market1501 (96.2, 89.7)
and DukeMTMC (89.8, 80.3) with only 6.4M parameters. To our
best knowledge, our model achieves the best performance on these
public datasets. It should be noted that the smaller version of our
model (2.9M parameters) also achieves state of the art results on
both datasets.

In terms of FLOPS our final network has 1.7B FLOPS while the
ResNet 50 used in Luo et al. [11] implementation has 4.1B FLOPS.
We did not apply re-ranking for clear comparison and since it is
currently not relevant for real world practice.

4.2 Ablation study
To evaluate the different training techniques explored in this study
we set several experiments in an ablation study. Table 3 shows the
different modifications starting from the original HA-CNN archi-
tecture. The first row indicates using some of the tricks from [11]
that showed an improvement when tested on Market1501 using the
HA-CNN architecture. These include warm-up, random erasing, and
no-bias in the fully connected layers. These tricks alone (experiment
a) provided an improvement of 2% in rank-1 accuracy and 6.3% in
mean average precision compared to the original HA-CNN paper
result (i.e. our baseline).

Next, to test the influence of some of our modifications we re-
port the performance after disabling them. The most significant
decrease in results compared to column i was caused by disabling
the weighted triplet loss and soft margin (using the original triplet
loss as in equation (1) instead) with a drop of 1.6% in rank-1 accu-
racy and 2.8% in mAP (column b). Cancelling the L2 normalization
caused a decrease of 1.2% in rank-1 accuracy and 2.4% in mAP
(column c). Reduction of other modifications such as shuffle blocks,
soft margin, GeM, and deeper and wider network caused a decrease
in the performance as well indicating the benefit of using it.

Finally, we used the SWAG in two experiments: experiment h
and the final Compact-ReID. Continuing the training with SWAG
provided an improvement in both rank-1 and mAP in both experi-
ments. The SWAG is used in this study as a post process for models
that already achieve high accuracy to show its contribution on top of
that.

4.3 Exploring SWAG
Our empirical experiments showed that the SWAG method con-
sistently improved our model performance. However, it requires
additional training time and uses a custom made cosine annealing
learning scheme with a decay factor. Therefore, we wanted to further
explore the SWAG contribution by analyzing some of our experi-
mental results. Table 4 shows the results when testing the learning
rate scheme with and without SWAG for three different setups. In
the first setup we used our proposed architecture minus three main



Market1501 DukeMTMC
Type Method r = 1 mAP r = 1 mAP
Mask-
guided

SPReID [9] 92.5 81.3 84.4 71.0
MaskReID [14] 90.0 75.3 78.8 61.9

Stripe-
based

AlignedReID [29] 90.6 77.7 81.2 67.4
SCPNet [5] 91.2 75.2 80.3 62.6

LocalCNN [28] 91.5 77.7 82.2 66.0
Pyramid[32] 92.8 82.1 - -

PCB [23] 93.8 81.6 83.3 69.2
BFE[3] 94.5 85.0 88.7 75.8

MGN [26] 95.7 86.9 88.7 78.4
Pyramid[32] 95.7 88.2 89.0 79.0

LocalCNN (MG) [28] 95.9 87.4 - -
Dense-

semantics
DSA [30] 95.7 87.6 86.2 74.3

GAN-
based

Camstyle [37] 88.1 68.7 75.3 53.5
PN-GAN [15] 89.4 72.6 73.6 53.2
DG-Net [34] 94.8 86.0 86.6 74.8

Global
feature

IDE [35] 79.5 59.9 - -
SVDNet [22] 82.3 62.1 76.7 56.8

TriNet[6] 84.9 69.1 - -
AWTL[19] 89.5 75.7 79.8 63.4

OS-Net [38] 94.8 84.9 88.6 73.5
BagOfTricks [11] 94.5 85.9 86.4 76.4

NAS Auto-ReID [16] 94.5 85.1 88.5 75.1

Attention-
based

HA-CNN [10] 91.2 75.7 80.5 63.8
DuATM [21] 91.4 76.6 81.2 62.3
Mancs [25] 93.1 82.3 84.9 71.8

ABD [2] 95.6 88.3 89.0 78.6
RGA-SC [31] 95.8 88.1 86.1 74.9
Ours (2.9M) 95.8 88.7 88.8 78.9
Ours (6.4M) 96.2 89.7 89.8 80.3

Table 2: Comparison of state-or-the-arts methods.

modifications: GeM, Shuffle blocks, and deeper and wider. The sec-
ond and third setups are experiments g and i in Table 3 respectively.
Evidently, adding the LR scheme provided a nice improvement,
and adding the SWAG performed even better. The most significant
improvements were in terms of mAP.

Figure 6 presents the average over five experiments comparing
SWAG and standard SGD in terms of Rank1 accuracy and mAP on
Market1501 dataset. Using SWAG the accuracy trend seems more
consistent compared to standard SGD. In addition, it is significantly
better in terms of mAP.

5 APPLICATION TO MULTI OBJECT
TRACKING

Although the public datasets used in this study for person ReID
are valuable for comparison between different architectures and
models, we wanted to evaluate the model’s applicability by using it
to improve multi target multi camera tracking. Testing the model in
a real world setting such as tracking is much more challenging. A
wrong ReID assignment can affect the assignment of other persons
since we only compare each query image to tracks that are not active
(not present in the room at the time of the query). In addition, for
each query we need to decide if we open a new track or assign it
to an existing track (ReID), meaning that in some cases the gallery
does not include images of the person found in the query.

We used the LAB sequence which is a part of the Task-Decomposition
database [7] of multi-view sequences for people tracking. The LAB

Figure 6: Performance evaluation of SWAG compared to SGD
using the cosine annealing learning scheme on Market1501
dataset showing the average of 5 runs. Top: rank-1 accuracy
vs. epoch. Bottom: mAP vs. epoch.

sequence is about 12.5 minutes long1, the tracking domain is about
5*6 meters in dimension, and the images were captured at 15 Hz
with a resolution of 640*480 pixels, where four cameras are installed
at the corners of the room. Through the sequence, people enter, walk
around, sit down and exit the room randomly, causing frequent occlu-
sions. The maximum number of people in the scene at the same time
is 7. We first used an internal software for global people tracking
which uses the calibration provided for each camera and report the
results we got with and without using the model for ReID in terms
of MOTA and IDF1. We used ReID each time a person enters the
room by comparing it to several images per person that is currently
not tracked inside the room.

Table 5 shows the results obtained using different models includ-
ing: the original HA-CNN and our proposed model. Our model
performed better than the original HA-CNN in terms of IDF1 using
Market1501 or DukeMTMC for training. Due to the original res-
olution of the videos, the size of the bounding box of each query
and gallery image can get very small in size. Our model showed
robustness to the low-res images since it was trained on small sized
input.

6 CONCLUSIONS
This paper explores several training techniques and architecture mod-
ifications focusing on a small-sized randomly initialized attention
network for person ReID. Each training technique is tested as well

1Information in the database website mentions 3.5 minutes but the downloaded videos
are actually 12.5 minutes long.



HA-CNN [10] a b c d e f g h i Compact-ReID
BagOfTricks [11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Soft triplet ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
L2 normalization ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Shuffle blocks ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Soft margin ✓ ✓ ✓ ✓ ✓ ✓ ✓

GeM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Deeper & wider ✓ ✓ ✓ ✓ ✓ ✓ ✓

SWAG ✓ ✓

Market1501 Rank1 91.2 93.2 94.1 94.5 94.9 95.1 95.3 95.4 95.8 95.7 96.2
mAP 75.7 82.0 85.3 85.7 86.6 87.1 87.9 87.3 88.7 88.1 89.7

Table 3: Ablation study on Market1501. The first column indicates the different training techniques and architecture modifications
we tried including some of the tricks mentioned in BagOfTricks [11]: warmup, random erase, label smoothing, and no bias in the
classification layers. The baseline we started with, i.e. the original HA-CNN implementation, is presented in the second column for
comparison. The last column shows the results of our proposed Compact-ReID network including all of the training techniques and
architecture modifications proposed in this study. Columns a-i demonstrates the impact of each modification by turning it off.

Setup Update
Market1501
r = 1 mAP

1
- 93.8 83.6

+LR Scheme 94.3 84.8
+SWAG 94.5 85.3

2
- 95.4 87.3

+LR Scheme 95.8 88.2
+SWAG 95.8 88.7

3
- 95.7 88.1

+LR Scheme 95.7 88.9
+SWAG 96.2 89.7

Table 4: Performance evaluation on Market1501 for SWAG
with cosine annealing with decay factor learning scheme.

Model Trained Dataset MOTA IDF1
Compact-ReID DukeMTMC 96.1 89.1
Compact-ReID Market1501 96.1 79.6

HA-CNN DukeMTMC 96.1 78.9
HA-CNN Market1501 96.1 65.7
No ReID - 96.1 57.1

Table 5: Multi camera multi target tracking results on LAB
dataset using our proposed Compact-ReID model compared to
the original HA-CNN.

as some of the tricks presented in other prior works. Using the pro-
posed training scheme and network modifications we were able to
outperform SotA works achieving 96.2% rank1 accuracy and 89.7%
mAP on Market1501 and 89.8% rank1 accuracy and 80.3% mAP
on DukeMTMC with only 6.4M parameters. In addition, we show
that even for a smaller version (2.9M parameters) we achieve state
of the art results. Finally, we show the applicability of our proposed
model by utilizing it to improve existing methods for multi object
tracking on a public dataset. Future work entails more experiments
using other deep ReID networks as our baseline, as well as tackling
the cross-domain challenges in person ReID.
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