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ABSTRACT
Deep neural networks have boosted the convergence of multimedia
data analytics in a unified framework shared by practitioners in
natural language, vision and speech. Image captioning, lip reading
or video sonorization are some of the first applications of a new and
exciting field of research exploiting the generalization properties of
deep neural representation. This tutorial will firstly review the basic
neural architectures to encode and decode vision, text and audio,
to later review the those models that have successfully translated
information across modalities.

CCS CONCEPTS
• Computing methodologies→Neural networks; Natural lan-
guage processing; Computer vision; Multi-task learning; • Informa-
tion systems→ Multimedia and multimodal retrieval.
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1 MOTIVATION
Research in multimedia has experienced major changes during the
recent years thanks to the advances in applied deep learning. Deep
neural networks have achieved outstanding performance in the field
of feature learning by optimizing the parameters of their millions
of basic units: perceptrons. While machine learning had already
been broadly used before the adoption of deep neural networks, the
general adoption of such machinery has also facilitated the inter-
action between multimedia researchers with diverse backgrounds.
From one side, novel neural layers or optimization schemes pro-
posed initially for a certain modality, are often ported to other
modalities, boosting the exchange of ideas and interactions among
the community.On the other side, the adoption of common neural
representations and development frameworks has also facilitated
the development of cross-modal applications at a very fast pace.
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The encoding and decoding of pixels, phonemes or characters with
the same tools allows combining them in multiple and imaginative
ways.

This tutorial presents the most common neural layers for multi-
media encoding and decoding, and provides a review of how they
have been combined to build cross-modal applications. It targets
a technical audience who is already familiar with the learning
mechanisms of deep neural networks, but whose expertise may be
currently focused in a specific modality. At the end of the tutorial,
attendees will have a broader view of the opportunities that deep
learning offers to the multimedia community, by facilitating the
interaction between both data and scientists.

2 COURSE DESCRIPTION
2.1 Multimedia Encoding and Decoding
The broad interest in deep learning is related in many cases by the
unprecedented success of the AlexNet [17] in the task of image clas-
sification. The work showed how convolutional neural networks
(CNN) [18] could be trained with backpropagation [24] to provide
an end-to-end solution between raw pixels and one-hot encoding
of the classes. On the other hand, another part of the multimedia
community discovered the potential of deep learning when applied
to machine translation. In its most basic set up, text encoded with
recurrent neural networks (RNNs) [16] could be decoded into an-
other language [9, 29], or even be used to synthesize speech [20, 21].
Attention mechanisms have been added on top of of both visual
[32], textual [8] or spoken [7] representations learned by CNN
and/or RNN, but also directly over the data [30].

2.2 Cross-Modal Architectures
The broad adoption of neural representations for both encoding
and decoding multimedia data has boosted the research in cross-
modal applications that translate data from one modality into an-
other. In its most basic set up, a cross-modal architecture takes
data from a source modality that must be converted into another
modality. The task is addressed by encoding the source data into an
intermediate representation, which is later decoded into the target
modality.Image captioning [31] is one of the most representatives
examples of such approach, in which pixels are encoded with a
CNN and the words in the captions are decoded with an RNN,
similarly how a basic neural machine translation pipeline works.
Other well known applications from one modality into another
are automatic speech recognition [14], speech synthesis [21], lip
reading [27], image synthesis [23], speech reconstruction [12] or
face hallucination [11].
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More complex pipelines would consider multiple inputs or out-
puts. In the case of multiple inputs, a separate encoder learns single-
modal features to be fused at a deeper layer of the network, before
being decoded into the output modality. This would be the case of
visual question answering [3], visual speech separation[2], speech
recognition enhanced with video [1, 22], or visual re-dubbing [10].
In the case of multiple outputs, the multi-task learning paradigm is
adopted, but normally the interest is in the primary task, while the
secondary task is added to help into the training of the model. This
would be the case of image captioning with visual grounding [19],
or sign language translation predicting both the natural language
and sign glosses transcriptions [6].

2.3 Joint Feature Learning
Features learned with deep neural networks are not always used
as a proxy from one modality into another, but also as final and
rich representations by themselves. Neural encoders for different
modalities can be trained with pairs of data samples to learn joint
multimodal embeddings. The first works combined language mod-
els with image labels to learn a feature space capable that may be
exploited for zero-shot learning [13, 26]. This learning paradigm has
been broadly exploited to learn features for multimodal retrieval,
allowing search images to/from text [5, 25] or videos to/from their
audio track [28]. Similarly, the alignment between the audio and
visual tracks in video files has facilitated multiple self-supervised
learning approaches that could tackle sound source localization [4]
or the discovery of spoken words from pixels [15].
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