
VisualPhishNet: Zero-Day Phishing Website Detection by
Visual Similarity

Sahar Abdelnabi
CISPA Helmholtz Center for

Information Security

Katharina Krombholz
CISPA Helmholtz Center for

Information Security

Mario Fritz
CISPA Helmholtz Center for

Information Security

ABSTRACT

Phishing websites are still a major threat in today’s Internet ecosys-

tem. Despite numerous previous efforts, similarity-based detection

methods do not offer sufficient protection for the trusted websites,

in particular against unseen phishing pages. This paper contributes

VisualPhishNet, a new similarity-based phishing detection frame-

work, based on a triplet Convolutional Neural Network (CNN).

VisualPhishNet learns profiles for websites in order to detect phish-

ing websites by a similarity metric that can generalize to pages with

new visual appearances. We furthermore present VisualPhish, the

largest dataset to date that facilitates visual phishing detection in an

ecologically valid manner. We show that our method outperforms

previous visual similarity phishing detection approaches by a large

margin while being robust against a range of evasion attacks.

CCS CONCEPTS

• Security and privacy→Phishing;Web application security;

• Computing methodologies→ Neural networks.

KEYWORDS

Phishing Detection; Visual Similarity; Triplet Networks

ACM Reference Format:

Sahar Abdelnabi, Katharina Krombholz, and Mario Fritz. 2020. VisualPhish-

Net: Zero-Day Phishing Website Detection by Visual Similarity. In Proceed-

ings of the 2020 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’20), November 9ś13, 2020, Virtual Event, USA. ACM, New York,

NY, USA, 18 pages. https://doi.org/10.1145/3372297.3417233

1 INTRODUCTION

Phishing pages impersonate legitimate websites without permis-

sion [49] to steal sensitive data from users causing major financial

losses and privacy violations [10, 19, 20, 47]. Phishing attacks have

increased due to the advances in creating phishing kits that en-

abled the deployment of phishing pages on larger scales [10, 37].

According to the Anti-Phishing Working Group (APWG) [2], an in-

ternational association aiming at fighting phishing attacks, 266,387

attempts have been reported in the third quarter of 2019, which is

a high level that has not been witnessed since 2016 [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’20, November 9ś13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417233

Other legitimate pages

Passed by URLTrusted
list

Phishing

Passed by visual
features (different)
Rejected by visual
features (similar)

Unseen pages

Figure 1: Trusted pages are granted based on their URLs.

The remaining pages are compared to the trusted pages by a

learnt visual similarity metric. Pages that that are too simi-

lar are rejected, which even allows detecting phishing pages

with new visual appearances.

There have been numerous attempts to combat the threats im-

posed by phishing attacks by automatically detecting phishing

pages. Modern browsers mostly rely on blocklisting [44] as a fun-

damentally reactive mechanism. However, in a recent empirical

study [36], the new phishing pages that used cloaking techniques

were found to be both harder and slower to get detected by block-

lists which motivates the development of proactive solutions. An

example of the latter is using heuristics that are based on monitored

phishing pages [20]. These heuristics can be extracted from URL

strings [4, 35, 55] or HTML [9, 26] to detect anomalies between the

claimed identity of a webpage and its features [38]. However, since

phishing attacks are continuously evolving, these heuristics are

subject to continuous change and might not be effective in detect-

ing future attacks [19, 54] (e.g. more than two-thirds of phishing

sites in 3Q 2019 used SSL protection [2], its absence formerly was

used as a feature to detect phishing pages [38]).

Since the key factor in deceiving users is the high visual similarity

between phishing pages and their corresponding legitimate ones,

detecting such similarity was used in many previous detection

studies [19]. In these methods, a list of commonly attacked pages

is maintained, (domain names and screenshots), to protect users

from the potential impersonation of such pages; whenever a user

visits a page that is not in the trusted-list, its content is compared

against the trusted ones. If a high visual similarity is detected, it

is then classified as a phishing page as it impersonates one of the

trusted pages. Similarity-based methods have the advantage of not

relying on heuristics that are likely to evolve and instead they rely

on the strong incentive of the adversary to design pages that are

similar to trustworthy websites. This makes them less prone to an

arms race between defenders and attackers.

https://doi.org/10.1145/3372297.3417233
https://doi.org/10.1145/3372297.3417233

These efforts still have limitations. First, their trusted-list are too

small in both the number of websites and pages per website (e.g. 4-

14 websites in [7, 11, 13, 32, 33], less than 10 pages in [14, 48, 53], 41

pages in [34]) which makes them able to detect attacks against these

few pages only. Second, existing approaches fall short in detect-

ing phishing pages that target the same trusted websites but with

new unseen visual appearances, as they perform a page-to-page

image matching between a previously found phishing page and its

legitimate counterpart [5, 14, 19, 25, 39]. Consequently, attackers

can bypass detection by using other pages from the targeted web-

sites or by crafting partially similar phishing pages with different

background pictures, advertisements, or layout [8, 14, 39].

Contribution. Our work targets the above limitations and fo-

cuses on improving and generalizing the image-based visual simi-

larity detection. First, we present VisualPhish1, the largest dataset

to date (155 trusted websites with 9363 pages), that we constructed

to mitigate the limitations of previously published datasets, fa-

cilitate visual phishing detection and improve the ecological

validity when evaluating phishing detection frameworks.

Second, we propose VisualPhishNet, a similarity-based detection

model that is the first to utilize a deep learning approach (in par-

ticular, triplet convolutional neural networks) to learn a robust

visual similaritymetric between any two same-website webpages’

screenshots, instead of relying on one-to-one matching, which out-

performs prior work by a largemargin. A conceptual overview

of our method is depicted in Figure 1; we show a trusted-list of

websites in a learnt feature space in which same-website pages have

higher proximity. Additionally, phishing webpages have high vi-

sual similarity and closer embeddings to the trusted-list, thus, they

would be classified as phishing. Contrarily, websites that are outside

the list have genuine identities and relatively different features.

2 PRELIMINARIES

In this section, we briefly summarize the related similarity-based

phishing detection approaches, then we introduce our threat model.

2.1 Related Work

2.1.1 Page-based similarity approaches. The similarity between

phishing and trusted pages can be inferred by comparing HTML

features; Huang et al. [18] extracted features that represent the text

content and style (e.g. most frequent words, font name and color,

etc.), which they used to compare pages against trusted identities.

Similarly, Zhang et al. [54] used TF-IDF to find lexical signatures

which they used to find the legitimate website domain by a search

engine. Besides, Liu et al. [28] segmented a webpage to blocks based

on HTML visual cues and compared the layout of two pages by

matching blocks. Also, Rosiello et al. [41] used Document Object

Model (DOM) comparison, and Mao et al. [33] used Cascading Style

Sheet (CSS) comparison. However, these methods fail if attackers

used images or embedded objects instead of HTML text [14]. They

are also vulnerable to code obfuscation techniques where a different

code produces similar rendered images [14, 25].

1https://s-abdelnabi.github.io/VisualPhishNet/

2.1.2 Image-based similarity approaches. Consequently, another

line of work (which we adopt) infers similarity directly from ren-

dered screenshots. As examples, Fu et al. [14] used Earth Mover’s

Distance (EMD) to compute the similarity between low-resolution

screenshots, which Zhang et al. [53] also used along with textual

features. However, this required the images to have the same aspect

ratio [25], which is a constraint we do not impose. Also, Lam et

al. [25] used layout similarity by matching the screenshots’ segmen-

tation blocks. However, the proposed segmentation approach is

limited when segmenting pages with complex backgrounds [5]. Our

approach does not suffer from these limitations since we use an end-

to-end framework to represent images rather than a heuristic-based

one. In addition, Chen et al. [8] approximated human perception

with Gestalt theory to determine the visual similarity of two web-

pages’ layouts with slight differences (e.g. an addition or removal

of a block). They evaluated their approach on only 12-16 legitimate

pages and their corresponding spoofed ones. In contrast to these

approaches, we generalize the similarity detection and show that

our method is not limited to phishing pages with a similar layout

to the corresponding trusted ones.

Discriminative keypoint features were often used in phishing

detection. As examples, Afroz et al. [1] used Scale-Invariant Fea-

ture Transform (SIFT) to match logos, while Rao et al. [39] used

Speeded-Up Robust Features (SURF) to match screenshots. Simi-

larly, Bozkir et al. [5] used Histogram of Oriented Gradients (HOG),

Chen et al. [7] used Contrast Context Histogram (CCH), and Malisa

et al. [31] used Oriented FAST and rotated BRIEF (ORB) to detect

mobile applications spoofing. Besides, Medvet et al. [34] used color

histograms and 2D Haar wavelet transform of screenshots. How-

ever, in recent years, CNNs were shown to significantly outperform

local and hand-crafted features in computer vision tasks [23, 43].

Thus, our work is the first to use deep learning in pixel-based

visual similarity phishing detection and to study the adversarial

perturbations against such models.

Chang et al. [6] and Dunlop et al. [13] used logo extraction to

determine a website’s identity and then used the Google search

engine to find corresponding domains. These approaches assumed

a fixed location for the website logo which could be bypassed. Con-

trary to these approaches, we use a learning-based identification of

the discriminating visual cues and study the performance against

shifts in location.

Woodbridge et al. [50] used Siamese CNNs to detect visually

similar URLs by training on URLs rendered as images. In contrast,

we propose a visual similarity metric based on screenshots instead

of URL pairs, with further optimizations adapting to the harder

problem, which goes beyond homoglyph attacks.

Additionally, despite previous efforts, our work explores new

territory in similarity detection research with more generalization

and fewer constraints; previous methods aim to form a match be-

tween a found phishing attempt and its correspondent real page

assuming a highly similar layout and content. Therefore, a phishing

page targeting the same website but is different from the trusted

pages could go undetected. In addition, same-website pages show a

lot of variations in background pictures and colors which attackers

might exploit to continuously create new pages. Thus, our model

and dataset collection do not rely on page-to-page matching, but on

learning a similarity metric between any two same-website pages,

even with different contents, to proactively generalize to partially

similar, obfuscated, and unseen pages.

2.2 Threat Model

We consider phishing pages targeting the collected large list of

trusted websites. We assume that the attacker would be motivated

to target websites that are widely known and trusted, therefore,

high coverage of phishing pages could be achieved by the collected

trusted-list. We assume that the attacker could craft the phishing

page to be fully or partially similar to any page from the targeted

websites (not only to pages in the trusted-list), therefore, we relax

the page-to-page matching and test on phishing pages that were

not seen in the trusted websites’ training pages. We study other

evasion techniques (hand-crafted and white-box adversarial pertur-

bations) that introduce small imperceptible noise to the phishing

page to reduce the similarity to the targeted page that might be

contained in the trusted-list. For all these attempts, we assume that

the adversary has an incentive to create seemingly trusted pages

by not introducing very perceptible noise on the page that might

affect the perceived design quality or the website’s identity (e.g.

large changes to logos and color themes).

3 ANALYSES AND LIMITATIONS OF
PUBLISHED DATASETS

In this section, we discuss public datasets and their limitations

along with the contributions of the VisualPhish dataset.

Unfortunately, only a small number of datasets for the phish-

ing detection task using screenshots are publicly available. One of

these is DeltaPhish [10] for detecting phishing pages hosted within

compromised legitimate websites. The dataset consists of groups

having the same domain, where each group contains one phishing

page and a few other benign pages from the compromised hosting

website. Thus, the legitimate examples only cover the hosting web-

sites, not the websites spoofed by the phishing pages. Consequently,

this dataset is not suitable for similarity-based detection. Moreover,

we observed that a large percentage of phishing pages’ screenshots

in this dataset are duplicates since PhishTank2 reports do not neces-

sarily contain unique screenshots. We also found that the legitimate

and phishing examples had different designs as phishing examples

generally consisted of login forms with few page elements, while

legitimate examples contained more details. This could cause the

trained model to be biased to these design changes and, thus, could

fail when tested with legitimate pages with login forms.

The Phish-IRIS dataset [11] for similarity-based detection con-

sists of phishing pages collected from PhishTank targeting 14 web-

sites and an łotherž class collected from the Alexa top 300 websites3

representing legitimate examples outside the trusted-list. However,

this dataset has a limited number of trusted websites, and the screen-

shots of the trusted-list were taken only from phishing reports

which skews the dataset towards poorly designed phishing pages.

VisualPhish contributions. Based on the previously mentioned

limitations, we collected the VisualPhish dataset that facilitates

similarity-based detection approaches and closes the following

2https://www.phishtank.com/
3https://www.alexa.com

gaps: 1) we increased the size of the trusted-list to detect more

phishing attacks. 2) we collected a phishing webpage corpus with

removing duplicity in screenshots. 3) instead of only training on

phishing pages, we also collected legitimate pages of the targeted

websites with different page designs and views (i.e. training trusted-

list). 4) the dataset is not built on a page-to-page basis but on a

per-website basis; the trusted-list contains screenshots from the

whole website, phishing pages that target the trusted website are

considered even if their counterparts are not found in the trusted-

list. 5) we collected a legitimate test set of websites (i.e. different

from trusted domains) that limits bias as far as possible (e.g. login

forms should also be well represented in this test set).

Unlike previous work, we extend the visual similarity to phish-

ing pages that target the trusted websites but were not seen in the

training trusted-list. Thus, we checked that the collected phishing

pages are different in terms of simple pixel-wise similarity from

the targeted trusted websites’ pages. To denote pixel-wise similar-

ity, we used the distances between the pre-trained VGG16 visual

representation instead of naive pixel comparison. We computed

the minimum distances between the phishing pages and the corre-

sponding targeted website. As a reference, we compared them to

the distances between the legitimate test set (other websites) and

the trusted-list. If the phishing pages had similar counterparts in

the trusted-list, they would have considerably smaller distances

compared to other benign pages. However, as can be seen from

the two histograms in Figure 2, the distance ranges in both sets

are comparable with high overlap. Hence, the phishing pages are

different from the training trusted websites’ ones and can be used

to evaluate the performance on future unseen phishing pages.

4 THE VISUALPHISH DATASET

In this section, we show how we constructed VisualPhish.

Phishing pages. To collect the phishing examples, we crawled

and saved the screenshots of the active verified phishing pages from

PhishTank which yielded 10250 pages. We observed that the same

phishing screenshot design could be found with multiple URLs, so

we manually inspected the saved screenshots to remove duplicates

in addition to removing not found and broken URLs. Having non-

duplicated screenshots (i.e. unique visual appearance) is important

28 780 1532 2284 2961
Distance

0

1

2

3

4

5

6

7

Pe
rc

en
ta

ge
 (%

)

Phish
Legit

Figure 2: The distances histogram between the pre-trained

VGG16 features of the phishing test set and the targetedweb-

site in the training trusted-list (red), in comparison with the

ones between the benign test set and the trusted-list (blue).

to have an accurate error estimate and to have a disjoint and non-

overlapping training and test splits. After filtering, the phishing

set contained 1195 phishing pages targeting 155 websites. We ob-

served that phishing pages targeting one website have differences

in elements’ locations, colors, scales, text languages and designs

(including previous websites’ versions), therefore, the phishing set

can be used to test the model’s robustness to these variations. We

also found that some phishing pages are poorly designed with little

similarity to the overall design of the targeted website, in addition

to having templates that cannot be found in the website but in other

applications (e.g. Microsoft Word or Excel files). Such dissimilar ex-

amples were excluded from previous work (such as [33]), however,

we included all found pages for completeness and to provide a rich

dataset for future research. Examples of these variations are in Ap-

pendix B. Additionally, the majority of the crawled pages targeted a

small subset of the trusted websites (a histogram is in Appendix B),

therefore, even though similarity methods cannot detect attacks

against non-listed websites, high coverage of phishing pages could

be achieved by including a few websites in the trusted-list.

Targeted legitimate websites’ pages. Besides collecting phishing

webpages, we collected legitimate pages from those 155 targeted

websites to work as a visual trusted-list. Instead of only gathering

the legitimate counterparts of the found phishing pages as typically

done in previous work, we crawled all internal links that were

parsed from the HTML file of the homepage. As a result, not all

phishing pages have corresponding similar legitimate pages in this

trusted-list. We saved all webpages from the website to get different

page designs, possible login forms, and different languages to make

the similarity model trained with this dataset robust against these

differences. For these 155 websites, we collected 9363 screenshots,

where the number of collected screenshots for eachwebsite depends

on the number of hyperlinks found in the homepage.

Top-ranked legitimate websites’ pages. Furthermore, we queried

the top 500 ranked websites from Alexa, the top 100 websites from

SimilarWeb4, in addition to the top 100 websites in categories most

prone to phishing such as banking, finance, and governmental

services. In total, we collected a list of 400 websites from SimilarWeb.

From these lists, we excluded the 155 websites we collected from the

phishing pages’ targets, and then we downloaded the screenshots

of the top ≈60 websites (non-overlapping) from each list.

Training and test pages split. We have three data components: a

training trusted-list of legitimate pages, phishing pages targeting

the websites in the trusted-list, and legitimate/benign test examples

of websites outside the trusted-list (i.e. different domains). Our

objective is to differentiate the phishing pages from other benign

examples based on their similarity to the trusted-list.

To train the model, we used the first legitimate set that we built

from the phishing pages’ targets (155 websites) as a trusted-list that

is used only in training. We used a subset of the phishing examples

in training as a form of augmentation in order to learn to associate

the dissimilar examples to their targets. We do not train on any

other legitimate websites (i.e. domains) outside the trusted-list.

To test the model, we used the rest of the phishing set. In addition,

we constructed a legitimate test set of 683 benign examples from

4https://www.similarweb.com/

the top-ranked websites’ pages that we crawled (with domains dif-

ferent from the trusted-list); we selected 3-7 screenshots from each

website. In order not to have a biased dataset with inherent differ-

ences between the legitimate and phishing test sets that might give

optimistic or spurious results, we rigorously constructed the legiti-

mate test set such that it contains an adequate number of forms and

categories that are used in phishing attacks (e.g. banks, Software as

a Service (SaaS), and payment [2]). With a well-balanced test set,

we can accurately evaluate the similarity model performance and

whether it can find the website identity instead of relying on other

unrelated features such as the page layout (e.g. having forms). Ad-

ditionally, we included other categories (histogram in Appendix B)

to have high coverage of websites users might face.

Trusted-list analysis. In addition to the trusted-list we built from

PhishTank, we also examined other sources for building trusted-

lists without needing to crawl phishing data. This could help in

taking proactive steps to protect websites that might be attacked in

the future if the adversary decided to avoid detection by targeting

other websites than the ones which have been already known to be

vulnerable. In order for the attacks to succeed, attackers have an

incentive to target websites that are trusted and known for a large

percentage of users, therefore, we built our analysis on the top 500

websites from Alexa, and the top 400 websites from SimilarWeb in

categories most prone to phishing. To evaluate whether or not these

lists can represent the targets that might be susceptible to attacks,

we computed the intersection between them and the PhishTank

trusted-list. Figure 3 shows cumulative percentages of phishing

instances whose targets are included in ascending percentiles of

the Alexa, SimilarWeb, and the concatenation of both lists. We

found that including both lists covered around 88% of the phish-

ing instances we collected from PhishTank, which indicates that

the top-ranked websites are relevant for constructing trusted-lists.

Additionally, SimilarWeb list covered more instances than Alexa

list, we accounted that for the fact that the former was built from

categories such as banks, SaaS and payment, in addition to the gen-

eral top websites. We, therefore, conclude that this categorization

approach is more effective in forming potential trusted-lists since

important categories are less likely to change in future attacks.

5 VISUALPHISHNET

As we presented in Figure 1, similarity-based phishing detection is

based on whether there is a high visual similarity between a visited

0.2 0.4 0.6 0.8 1.0
Percentiles of lists

0.0

0.2

0.4

0.6

0.8

In
st

an
ce

s c
ov

er
ag

e
(%

)

Alexa
SimilarWeb
Both lists

Figure 3: Percentage of phishing instances whose targets are

covered by ascending percentiles of other lists.

All screenshots

Random
sampling Triplet

ConvNet

Triplets

First training stage

Query

FN

FN

FP

Query
FP

Form a database of hard examples

Second training stage
Embeddings space

Train on hard examples

Repeat

Train

Train on all examples
Training subset

Random
sampling Triplet

ConvNet

Triplets

Figure 4: An overview of VisualPhishNet. We utilize triplet networks with convolutional sub-networks to learn similarity

between same-website screenshots (same shaped symbols), and dissimilarity between different-website screenshots. Our net-

work has two training stages; first, training is performed with uniform random sampling from all trusted-list’s screenshots.

Second, training is performed by iteratively finding hard examples according to the model’s latest checkpoint.

webpage to any of the trusted websites, while having a different

domain. If the visited page was found to be not similar enough to the

trusted-list, it would be classified as a legitimate pagewith a genuine

identity. Therefore, our objective can be considered as a similarity

learning problem rather than a multi-class classification between

trusted-list’s websites and an łotherž class. Including a subset of

łotherž websites in training with a multi-class classification method

could cause the model to fail at test time when testing with new

websites. Additionally, instead of the typically used page-to-page

correspondence, we aim to learn the similarity between any two

same-website pages despite having different contents.

Motivated by these reasons, we treated the problem as a similar-

ity learning problem with deep learning using Siamese or triplet

networks which have been successfully used in applications such

as face verification [46], signature verification [12], and character

recognition [22]. In each of these applications, the identity of an

image is compared against a database and the model verifies if this

identity is matched with any of those in the database. They have

been also used in the tasks of few-shots learning or one-shot learn-

ing [22] by learning a good representation that encapsulates the

identity with few learning examples. These reasons make this deep

learning paradigm suitable for similarity-based phishing detection.

VisualPhishNet, adopts the triplet network paradigm with three

shared convolutional networks. We show an overview of the train-

ing of VisualPhishNet in Figure 4 which consists of two stages: in

the first stage, training is performed on all screenshots with a ran-

dom sampling of examples. The second training stage fine-tunes

the model weights by iteratively training on hard examples that

were wrongly classified by the model’s last checkpoint according

to the distance between the embeddings. By learning these deep

embeddings, we build a profile for each website that encapsulates

its identity, which would enable us to generalize to new webpages

that are not contained in the trusted-list database. The rest of this

section illustrates in more detail each aspect of the model.

5.1 Triplet Networks

The Siamese networks are two networks with shared weights

trained with the goal of learning a feature representation of the

input such that similar images have higher proximity in the new fea-

ture space than different images. The sub-networks shares weights

and parameters and the weight updates are mirrored for each of

them, the sub-networks are then joined with a loss function that

minimizes the distance of similar objects’ embeddings while maxi-

mizing the distance of dissimilar objects’ ones [12].

The triplet network, which we used in VisualPhishNet, extends

this approach; it was initially used in the FaceNet system [42] to

learn an embedding for the face verification task. This type of archi-

tectures performs the training on three images, an anchor image,

a positive image whose identity is the same as the anchor, and

a negative image with a different identity than the anchor. The

overall objective of the network is to learn a feature space in which

the distance between the positive and anchor images’ embeddings

is smaller than the distance between the anchor and negative im-

ages’ ones. This is achieved by minimizing the loss function that is

Loss =
𝑁∑
𝑖

max(∥f (𝑥𝑎
𝑖
) − 𝑓 (𝑥

𝑝

𝑖
)∥2

2
− ∥f (𝑥𝑎

𝑖
) − 𝑓 (𝑥𝑛

𝑖
)∥2

2
+ 𝛼, 0)

where: 𝑓 (𝑥) represents the embedding space (produced by a

shared network), (𝑥𝑎
𝑖
, 𝑥

𝑝

𝑖
, 𝑥𝑛

𝑖
) is a set of possible triplets (anchor,

positive, and negative), and 𝛼 is a margin that is enforced between

positive and negative pairs which achieves a relative distance con-

straint. The loss penalizes the triplet examples in which the distance

between the anchor and positive images is not smaller by at least

the margin 𝛼 than the distance between the anchor and negative

images. In our problem, the positive image is a screenshot of the

same website as the sampled anchor, and similarly, the negative

image is a screenshot of a website that is different from the anchor.

For the shared network, we used the VGG16 (as a standard ar-

chitecture) with ImageNet pre-training initialization [45]. We used

all layers excluding the top fully connected layers, we then added

a new convolution layer of size 5x5 with 512 filters, with ReLU

activations, and initialized randomly with HE initialization [16].

Instead of using a fully connected layer after the convolution layers,

we used a Global Max Pooling (GMP) layer that better fits the task

of detecting possible local discriminating patterns in patches such

as logos. To match the VGG image size, all screenshots were resized

to 224x224 with the RGB channels.

5.2 Triplet Sampling

Since there are a large number of possible combinations of triplets,

the training is usually done based on sampling or mining of triplets

instead of forming all combinations. However, random sampling

could produce a large number of triplets that easily satisfy the con-

dition due to having zero or small loss which would not contribute

to training. Therefore, mining of hard examples was previously

used in FaceNet to speed-up convergence [42].

Therefore, as we show in Figure 4, our training process has two

training stages. In the first stage, we used a uniform random sam-

pling of triplets to cover most combinations. After training the

network with random sampling, we then fine-tuned the model by

iteratively finding the hard examples to form a new training subset.

First, we randomly sample a query set representing one screen-

shot from each website, then with the latest model checkpoint, we

compute the L2 distance between the embeddings of the query set

and all the rest of training screenshots. In this feature space, the

distance between a query image and any screenshot from the same

website should ideally be closer than the distance from the same

query image to any image from different websites. Based on this,

we can find the examples that have the largest error in distance.

Hence, we retrieve the one example from the same website that

had the largest distance to the query (hard positive example), and

the one example from a different website that had the smallest

distance to the query (hard negative example). We then form a new

training subset by taking the hard examples along with the sampled

query set altogether, and we continue the training process with

triplet sampling on this new subset. For the same query set, we

repeat the process of finding a new subset of hard examples for

a defined number of iterations for further fine-tuning. Finally, to

avoid overfitting to a query set that might have outliers, we repeat

the overall process by sampling a new query set and selecting the

training subsets for this new query set accordingly.

This hard example mining framework can be considered as an

approximation to a training scheme where a query image is paired

with screenshots from all websites and a Softmin function is applied

on top of the pairwise distances with a supervised label, however,

this would not scale well with the number of websites in the trusted-

list, and therefore it is not tractable in our case as a single training

example would have 155 pairs (trusted websites).

5.3 Prediction

At test time, the closest screenshot in distance to a phishing test

page targeting a website should ideally be a screenshot of the same

website. Therefore, the decision is not done based on all triplets

comparison but it can be done by finding the screenshot with the

minimum distance to the query image. To this end, we use the

shared network to compute the embeddings then we compute the

L2 distance between the embeddings of the test screenshot and all

training screenshots. After computing the pairwise distances, the

test screenshot is assigned to the website of the screenshot that

has the minimum distance. This step could identify the website

targeted if the test page is a phishing page.

As depicted in Figure 1, if the minimum distance between a page

and the trusted-list is smaller than a defined threshold, the page

would be classified as a phishing page that tries to impersonate one

of the trusted websites by having a high visual similarity. On the

other hand, if the distance is not small enough, the page would be

classified as a legitimate page with a genuine identity. Therefore,

we apply a threshold on the minimum distance for classification.

6 EVALUATION

In this section, we first show the implementation details of Visual-

PhishNet and its performance, then we present further experiments

to evaluate the robustness of VisualPhishNet.

6.1 VisualPhishNet: Final Model

Evaluation metrics. Since our method is based on the visual simi-

larity of a phishing page to websites in the trusted-list, we computed

the percentage of correct matches between a phishing page and

its targeted website. We also calculated the overall accuracy of

the binary classification between legitimate test pages and phish-

ing pages at different distance thresholds to calculate the Receiver

Operating Characteristic (ROC) curve area.

Implementation details. To train the network, we used Adam

optimizer [21] with momentum values of 𝛽1 = 0.9, 𝛽2 = 0.999 and a

learning rate of 0.00002 with a decay of 1% every 300 mini-batches

where we used a batch size of 32 triplets. We set the margin (𝛼)

in the triplet loss to 2.2. The first stage of triplet sampling had

21,000 mini-batches, followed by hard examples fine-tuning, which

had 18,000 mini-batches divided as follows: we sampled 75 random

query sets, for each, we find a training subset which will be used

for 30 minibatches, then we repeat this step 8 times. We used 40%

of the phishing examples in training (added to the targeted website

pages and used normally in triplet sampling) and used the other

60% for the test set. We used the same training/test split in the two

phases of training. We tested the model with the legitimate test

set consisting of 683 screenshots; these domains were only used

in testing since we train the model on trusted domains only (and

partially their spoofed pages).

Performance. Using VisualPhishNet, 81% of the phishing test

pages were matched to their correct website using the top-1 closest

screenshot, while the top-5 match is 88.6%. After computing the cor-

rect matches, we computed the false positive and true positive rates

at different thresholds (where the positive class is phishing) which

yielded a ROC curve area of 0.9879 (at a cut-off of 1% false positives,

the partial ROC area is 0.0087) outperforming the examined models

and re-implemented visual similarity approaches which we show

in the following sections.

6.2 Ablation Study

Given the results of VisualPhishNet, this sub-section investigates

the effects of different parameters in the model, we summarize our

experiments in Table 1 which shows the top-1 match and the ROC

area for each model in comparison with the final one (see Appen-

dix A for the ROC curves). We first evaluated the triplet network by

experimenting with Siamese network as an alternative. We used a

similar architecture to the one used in [22] with two convolutional

networks and a supervised label of 1 if the two sampled screenshots

are from the same website, and 0 otherwise. The network was then

trained with binary cross-entropy loss. We also examined both L1

and L2 as the distance function used in the triplet loss. Besides, we

inspected different architecture’s parameters regarding the shared

sub-network including the added convolution layer, and the final

layer that is used as the embedding vector where we experimented

with Global Average Pooling (GAP) [27], fully connected layer, and

taking all spatial locations by flattening the final feature map. In

addition to VGG16, we evaluated ResNet50 as well [17]. We also

studied the effect of the second training phase of hard examples

training by comparing it with a model that was only trained by

random sampling. As can be seen from Table 1, the triplet net-

work outperformed the Siamese network. Also, the second training

phase of hard examples improved the performance, which indicates

the importance of this step to reach convergence as previously

reported in [42]. We also show that the used parameters in Visu-

alPhishNet outperform the other studied parameters. Since some

phishing pages had poor quality designs and were different from

their targeted websites (see Appendix B for examples), we studied

the robustness of VisualPhishNet to the ratio of phishing examples

seen in training. We, thus, reduced the training phishing set to only

20% and tested with the other 80%, which slightly decreased the

top-1 match (mostly on these different examples).

6.3 Trusted-list Expansion

In addition to the PhishTank list gathered from phishing reports,

we studied other sources of trusted-lists as per the analysis pre-

sented earlier in our dataset collection procedure. We then studied

the robustness of VisualPhishNet’s performance when adding new

websites to the training trusted-list. To that end, we categorized the

training websites to three lists (as shown in Figure 5), the PhishTank

list, a subset containing 32 websites from SimilarWeb top 400 list

(418 screenshots), a subset containing 38 websites (576 screenshots)

from Alexa top 500 list. Since we have phishing pages for the web-

sites in the PhishTank list only, the other two lists can be used in

training as distractors to the performance on the phishing exam-

ples. When training on one of these additional lists, we remove its

websites from the legitimate test set yielding test sets of 562 and

573 screenshots in the case of adding SimilarWeb and Alexa lists

respectively.

As shown in Table 2, when adding new websites to the training

trusted-list, the performance of the classification (indicated by the

ROC area and the top-1 match) decreased. However, this decrease

Su
b
-n
et
w
o
rk

A
d
d
ed

L
ay
er

L
as
t
L
ay
er

N
et
w
o
rk

ty
p
e

D
is
ta
n
ce

Sa
m
p
li
n
g

%
P
h
is
h
in
g

T
o
p
-1

M
at
ch

R
O
C
A
re
a

VGG16 Conv 5x5(512) GMP Triplet L2 2 stages 40% 81.03% 0.9879

Siamese 75.31% 0.8871

FC (1024) Siamese L1 64.8% 0.655

L1 73.91% 0.9739

GAP 68.61% 0.6449

FC (1024) 78.94% 0.8517

Flattening 80.05% 0.8721

Conv 3x3(512) 80.19% 0.9174

No new layer 79.91% 0.8703

ResNet50 No new layer 78.52% 0.8526

Random 75.3% 0.9477

20% 74.37% 0.9899

Table 1: A summary of the ablation study. Row 1 is the fi-

nally usedmodel, cells indicated by " " denotes the same cell

value of row 1 (VisualPhishNet).

in performance was relatively slight, which indicates the robustness

of VisualPhishNet to adding a few more websites to training.

6.4 Comparison with Prior Work and Baselines

Furthermore, we compared VisualPhishNet with alternative ap-

proaches that we re-implemented on the VisualPhish dataset. In

recent years, deep learning and CNNs have been demonstrated to

achieve a breakthrough over local and hand-crafted features (used

in previous work) on many benchmarks [23]. Moreover, off-the-

shelf pre-trained CNNs features (even without fine-tuning) have

been shown to outperform local features in many tasks [29, 43, 52].

Therefore, we first compare VisualPhishNet’s embeddings to the

embeddings of two off-the-shelf CNNs: VGG16 and ResNet50. Also,

since our work is the first to utilize deep learning, the pre-trained

CNNs provide a baseline for deep learning approaches. As we show

in Table 3, VisualPhishNet outperforms these two baselines with a

significant performance gain.

To provide additional evidence, we re-implemented the methods

of phishing detection using SURF matching from [39], HOG match-

ing from [5], and ORB matching from [31] which reported that ORB

is more suited for the logo detection task than SIFT. Unlike previous

work, our approach and dataset do not rely on page-to-page match-

ing, thus, not all phishing pages have legitimate counterparts in the

PhishTank
List

Alexa: top 500

SimilarWeb: top 400

Subset
1

Subset
2

38 websites

32 websites

155 websites

Figure 5: The three main lists used in training, the list col-

lected from PhishTank, a subset of Alexa list, and a subset

of SimilarWeb list.

Experiment Top-1 Match ROC Area

PhishTank list (155 websites) 81.03% 0.9879

Add SimilarWeb list (32+155 websites) 78.3% 0.9764

Add Alexa list (38+155 websites) 78.1% 0.9681

Table 2: A summary of our experiments when adding more

websites from Alexa and SimilarWeb lists to training.

Method Top-1 Match ROC Area

VisualPhishNet 81.03% 0.9879

VGG16 51.32% 0.8134

ResNet50 32.21% 0.7008

ORB 24.9% 0.6922

HOG 27.61% 0.58

SURF 6.55% 0.488

Table 3: Our experiments to compare VisualPhishNet’s per-

formance against prior methods and alternative baselines.

(a) VisualPhishNet (b) VisualPhishNet

(c) VGG16 (d) VGG16

Figure 6: t-SNE visualizations of VisualPhishNet’s embeddings compared with the pre-trained VGG16 ones as a baseline. Fig-

ures (a) and (c) show the trusted webpages color-coded by websites. Figures (b) and (d) show the trusted webpages (blue) and

their phishing pages (red and orange) in comparison with legitimate test pages outside the trusted-lists (green).

training list. This limits the applicability of methods that are based

on layout segmentation and explicit block matching (such as [25]).

Nevertheless, HOG descriptors, which we compare to, were used to

represent the page layout in [5]. As shown in Table 3, the use of pre-

trained CNNs (in particular VGG16) does indeed outperform the

other baselines. In all of our experiments, similar to VisualPhishNet

training for a fair comparison, 40% of the phishing set was added

to the training list.

This analysis demonstrates that previous image matching meth-

ods are not efficient on our dataset containing phishing pages whose

contents and visual appearances were not seen in the trusted-list

(as shown later in subsection 7.1). Additionally, it shows that pre-

trained CNNs are not adequate and further optimization to find the

discriminating cues, as done in VisualPhishNet, is needed.

6.5 Embeddings Visualization

VisualPhishNet produces a feature vector (dimensions: 512) for each

screenshot that represents an encoding that resulted from mini-

mizing the triplet loss. In this learned feature space, same-website

screenshots should be in closer proximity compared with screen-

shots from different websites. To verify this, we used t-Distributed

Stochastic Neighbor Embedding (t-SNE) [30] to reduce the dimen-

sions of the embeddings vectors to a two-dimensional set. We show

the visualization’s results in Figure 6 in which we compare the

embeddings of VisualPhishNet with pre-trained VGG16 ones (as the

best performing baseline). We first visualized the embeddings of the

training trusted-list’s webpages categorized by websites as demon-

strated in Figure 6a and Figure 6c for VisualPhishNet and VGG16

respectively. As can be observed, the learned embeddings show

higher inter-class separation between websites in the case of Visu-

alPhishNet when compared with VGG16. Additionally, Figure 6b

and Figure 6d show the training trusted-list’s pages in compari-

son with phishing and legitimate test ones for VisualPhishNet and

VGG16 respectively. For successful phishing detection, phishing

pages should have smaller distances to trusted-list’s pages than

legitimate test pages, which is more satisfied in the case of Visual-

PhishNet than VGG16.

6.6 Distance Threshold Selection

To determine a suitable distance/similarity threshold for the binary

classification between phishing and legitimate test sets, we split

the phishing and legitimate hold-out sets to validation and test

sets. We computed the minimum distances of both of them to the

training trusted-list. Figure 7a shows the two density histograms

and the fitted Gaussian Probability Density Functions (PDF) of

the minimum distance for the validation sets of both classes. The

vertical line (at ≈8) represents a threshold value with an equal

error rate. Additionally, Figure 7b shows the true and false positive

rates of the test sets over different thresholds where the indicated

threshold is the same one deduced from Figure 7a, which achieves

≈93% true positive rate at ≈4% false positive rate.

6.7 Robustness and Security Evaluation

To test the robustness of VisualPhishNet, we define two models for

evasion attacks. First, we study how susceptible VisualPhishNet is to

small changes in the input (e.g. change of color, noise, and position).

Second, we assume a white-box attack where the adversary has full

access to the target model and the dataset used in training (including

the closest point to the phishing page). In both models, we assume

that the attacker’s goal is to violate the target model’s integrity (in

our case: similarity detection to the targeted website) by crafting

phishing pages that show differences from their corresponding

original pages that might be included in the trusted-list. However,

we assume that the adversary is motivated to not introduce very

perceivable degradation in the design quality for his phishing page

to seem trusted and succeed in luring users.

Performance against hand-crafted perturbations. We studied 7

types of perturbations [51] that we applied to the phishing test set

(without retraining or data augmentation): blurring, brightening,

darkening, Gaussian noise, salt and pepper noise, occlusion by

insertion of boxes, and shifting. Table 4 demonstrates an example

of each of these changes along with the corresponding relative

decrease in performance. Our findings revealed that the matching

accuracy and the ROC area dropped slightly (by up to ≈4.3% and

≈1.8% respectively) for the imperceptible noise, while it dropped

by up to ≈6.7% and ≈5% respectively for the stronger noise that we

assume that it is less likely to be used. Further improvement could

be achieved with data augmentation during training.

Adversarial perturbations. Another direction for evasion attacks

is crafting adversarial perturbations with imperceptible noise that

would change the model decision when added to the input test

points [24]. There is a lot of work towards fixing the evasion prob-

lem [3], however, adversarial perturbations are well-known for

classification models. In contrast, VisualPhishNet is based on a met-

ric learning approach that, at test time, is used to compute distances

to the training points. We are not aware of any prior adversarial

0 5 10 15 20
Distance

0.00

0.05

0.10

0.15

0.20

De
ns

ity

Phish Val.
Legit Val.

(a)

0 2 4 6 8 10
Distance

100

101

102

Pe
rc

en
ta

ge
 (%

)

Test FPs rate
Test TPs rate

(b)

Figure 7: Distance threshold selection. (a) shows a density

histogram of the minimum distances between the phish-

ing (red) and legitimate (blue) validation sets to the training

trusted-list. (b) shows the true and false positive rates of the

test sets over thresholds, the vertical green line marks the

threshold from (a).

perturbation methods on similarity-based networks and therefore

we propose and investigate an adaptation of the adversarial exam-

ple generation methods to our problem by using the Fast Gradient

Sign Method (FGSM) [15] defined as:

𝑥 = 𝑥 + 𝜖 sign(∇𝑥 𝐽 (𝜃, 𝑥,𝑦))

where 𝑥 is the adversarial example, 𝑥 is the original example, 𝑦 is

the example’s target (0 in the triplet loss), 𝜃 denotes the model’s

parameters and 𝐽 is the cost function used in training (triplet loss in

VisualPhishNet). Adapting this to our system, we used the phishing

test example as the anchor image, sampled an image from the same

website as the positive image (from the training trusted-list), and an

image from a different website as the negative image. We then com-

puted the gradient with respect to the anchor image (the phishing

test image) to produce the adversarial example. We experimented

with two values for the noise magnitude (𝜖): 0.005 and 0.01. The

0.01 noise value is no longer imperceptible and causes noticeable

noise in the input (as shown in Figure 8). We also examined differ-

ent triplet sampling approaches when generating the adversarial

examples, in the first one, we select the positive image randomly

from the website’s images. However, since the matching decision is

based on the closest distance, in the second approach, we select the

closest point as the positive. We demonstrate our results in Table 5

where we show the relative decrease in the top-1 matching accu-

racy and the ROC AUC for each case averaged over 5 trials as we

randomly sample triplets for each example. Our results showed that

the matching accuracy and the AUC dropped by ≈10.5% and ≈6.5%

for the 0.005 noise and by ≈22.8% and ≈12.4% for the higher 0.01

noise. Also, targeting the closest example was similar to sampling

a random positive image. Besides, we tested an iterative approach

of adding a smaller magnitude of noise to the closest point at each

step (0.002 noise magnitude for 5 steps) which was comparable to

adding noise with a larger magnitude (0.01) at only one step.

We then performed adversarial training by fine-tuning the trained

VisualPhishNet for 3000 mini-batches. In each mini-batch, half of

the triplets were adversarial examples generated with FGSM with

an epsilon value that is randomly generated from a range of 0.003

and 0.01. After training, we again applied FGSM on the phishing

test set using the tuned model. As shown in the last two columns

of Table 5, the performance improved to reach a comparable per-

formance to the original set in the case of the 0.005 noise. These

Blurring Darkening Brightening Gaussian noise Salt and Pepper Occlusion Shift

Sigma=1.5 Gamma=1.3 Gamma=0.8 Var=0.01 Noise=5% Last quarter (-30,-30) pixels

Matching drop 1.38% 4.31% 1.72% 1.9% 2.07% 1.2% 3.09%
ROC AUC drop 0.17% 1.56% 0.36% 1.47% 1.79% 0.12% 0.86%

Sigma=3.5 Gamma=1.5 Gamma=0.5 Var=0.1 Noise=15% Second quarter (-50,-50) pixels

Matching drop 4.13% 5.68% 6.36% 6.71% 6.54% 5.34% 6.54%
ROC AUC drop 1.17% 2.65% 3.35% 2.65% 3.04% 4.99% 1.65%

Table 4: The studied hand-crafted perturbations applied to the phishing test set. The table shows the relative decrease in the

top-1 matching accuracy and ROC AUC with respect to the performance on the original phishing set.

(a) (b)

Figure 8: Adversarial examples generated with FGSM on the

triplet loss with 𝜖 = 0.01 (a) and 𝜖 = 0.005 (b).

results demonstrate that VisualPhishNet, after retraining, is robust

against adversarial attacks with slightly added noise.

Evaluating different browsers. We studied the effect of the changes

caused by other browsers than the one we used to build the dataset

(Firefox) as an example of one of the factors that could be different

when deploying the system. Thus, we created a subset of 50 URLs

from 14 websites, and we used Firefox, Opera, Google Chrome,

Microsoft Edge, and Vivaldi browsers to take screenshots of these

pages of which we computed the VisualPhishNet’s embeddings.

In Table 6, we quantify the browsers’ changes by comparing the

L2 differences between Firefox’s embeddings (to match the dataset)

and other browsers’ ones, which we found smaller by at least ≈6.6𝑥

than the differences caused by the slight hand-crafted perturbations

(applied on Firefox screenshots) we previously showed in the first

row of Table 4 and demonstrated that they already had a small

effect on the performance. Additionally, some of these browser

differences were due to advertisement or color differences which

are already included in the constructed dataset (see Appendix B).

6.8 Testing with New Crawled Data

Zero-day pages. To provide additional evidence for the efficacy

of VisualPhishNet in detecting zero-day pages, we crawled recent

Model Epsilon (𝜖) Sampling Matching drop ROC AUC drop

Original

0.005 random 10.5% 6.47%

0.005 closest point 10.11% 6.07%

0.01 random 22.81% 12.35%

0.002 iterative 20.8% 12.05%

Retrained
0.005 random 2.54% 0.07%

0.01 random 9.78% 3.61%

Table 5: The relative performance decrease (with respect to

the original test set) of the FGSM adversarial examples.

Browser Chrome Edge Opera Vivaldi

0.278±0.54 0.23±0.75 0.271±0.21 0.41±0.57

Noise Blurring Gaussian Salt and Pepper Shift

4.92±2.71 2.73±1.02 6.80±2.24 5.43±2.36

Table 6: The L2 difference between Firefox screenshots’ em-

beddings and other browsers’ ones, compared to the L2 dif-

ference due to the studied slight perturbations.

955 PhishTank pages targeting the trusted-list (examples in Ap-

pendix B). These are new pages that were created and captured

after dataset collection, training, and evaluating the model with all

previous experiments, and therefore, they are future pages with

temporal separation with respect to the model. Additionally, We

used a different browser, machine, and screen size from the ones

used to collect the dataset to further test against possible variations.

We then tested the trained model with this new set (without retrain-

ing), and 93.25% were correctly matched (top-5: 96%), compared to

81% (top-5: 88%) on the harder and more dissimilar dataset’s phish-

ing pages (see Appendix A for matching examples). Additionally, as

a baseline, the VGG-16 matching accuracy of this new set is 65.8%.

Alexa top-10K. To further test the false positives, we crawled the

Alexa top 10K websites (excluding the trust-list’s domains) to use

as a benign test set. Using the same trained model, the ROC AUC

of classifying this new benign set against the original phishing set

is 0.974, while the partial ROC AUC at 1% false positives is 0.0079

(compared to 0.987 and 0.0087, respectively, on the smaller benign

subset). Similarly, the corresponding VGG-16 ROC AUC is 0.781.

7 DISCUSSION

We discuss the implications of the efficacy of VisualPhishNet by

showcasing phishing examples that were correctly detected, and

failure modes with both false positive and false negative examples.

7.1 Evaluating Successful Cases

We categorize the successfully classified phishing pages into three

main categories. The first one is the easily classified ones consisting

of exact or very close copying of a corresponding legitimate web-

page from the training trusted-list. However, our model still showed

robustness to small variations such as the text language of login

forms (which shows an advantage over text-similarity methods),

small advertisements’ images changes, the addition or removal of

elements in the page, and changes in their locations. We observed

that these pages have approximately a minimum distance in the

range of 0-2 to the training set (as shown in the distances’ histogram

in Figure 7) and constitute around 25% of the correct matches. The

second category, which is relatively harder than the first one, is the

phishing webpages that look similar in style (e.g. location of ele-

ments and layout of the page) to training pages, however, they are

P
h
is
h
in
g
te
st

C
lo
se
st
m
at
ch

Figure 9: Test phishing pages (first row) that were correctly

matched to the targeted websites (closest match from the

training set in the second row) with the closest pages having

a relatively similar layout but different colors and content.

highly different in content (e.g. images, colors, and text). We show

examples of this second category in Figure 9. Similarly, these pages

correspond approximately to the distance range of 2-4 in Figure 7

and constitute around 35% of the correct matches.

Finally, the hardest category is the phishing pages showing dis-

parities in designwhen compared to the training examples as shown

in Figure 10. These pages had distances to the training set which

were higher than 4 and increased according to their differences and

they constitute around 40% of the correct matches. For example,

the first three columns show a match between pages with different

designs and elements’ locations. Also, the fourth phishing page has

a pop-up window that partially occludes information and changes

the page’s colors. The fifth phishing page is challenging as it does

not show the company logo, yet it was correctly matched to the

targeted website due to having other similar features. This suggests

that VisualPhishNet captures the look and feel of websites, which

makes it have an advantage over previous matching methods that

relied only on logo matching such as [1, 13]. The last two pages are

highly dissimilar to the matched page except for having the same

logo and other similar colors. Even though these examples could

arguably be easily recognized as phishing pages by users, they are

more challenging to be detected based on similarity and therefore

they were excluded in previous studies such as [33], however, we

included them for completeness. This analysis shows the ability of

VisualPhishNet to detect the similarity of phishing pages that are

partially copied or created with poor quality in addition to unseen

phishing pages with no counterparts in the training trusted-list,

which all are possible attempts to evade detection in addition to the

ones we previously discussed. We also show in Appendix A phish-

ing examples targeting different websites that have highly similar

colors but they were correctly distinguished from each other.

Since these successful matches suggest that the logo of a page

plays an important factor in the matching decision, possible false

matches could happen if a benign page contains another website

logo. To evaluate this, we collected a benign subset of 125 pages

(see Appendix B) that contain the logos of one or more of 9 trusted

websites. These pages are articles about a website, or login pages

with other websites’ sign-in or sharing options. However, only 3.07%

of these pages were matched to the website whose logo appears in

the screenshot which indicates that the learnt profiles incorporate

more visual cues than logos only.

7.2 Evaluating Failure Modes

We also analysed the failure modes of the model including wrong

websites matches and false positives. We found that the highest mis-

matches are for phishing examples belonging to Facebook, Dropbox,

Microsoft one drive, Microsoft Office, and Adobe. We found that

these websites have many phishing pages with dissimilar appear-

ances (and poor designs) compared to the targeted websites, such

as the first three phishing pages targeting Facebook and Microsoft

Excel in Figure 11 (see also Appendix B for more examples). On

the other hand, phishing pages targeting banks had higher qual-

ity in copying and appeared plausible and similar to the targeted

websites making them have fewer mismatches (see Appendix A for

a histogram of wrong matches). To analyse how successful these

dissimilar pages in fooling users, we conducted an online study

where users were shown dissimilar and relatively similar phishing

pages and were asked to evaluate how trustworthy they seem based

only on their appearance. Only 3.02% said that they would trust the

dissimilar examples as opposed to 65.3% in the case of the relatively

similar ones (see Appendix B for examples used in the study).

We also found some phishing pages that used outdated designs

or earlier versions of certain login forms such as the fourth example

in Figure 11 (that is now changed entirely in Microsoft website)

and were, therefore, matched to a wrong website. This could be

improved by including earlier versions of websites in the training

data. Moreover, the last three examples in Figure 11 show some of

the main limitations. Since our training trust-list contains a large

number of screenshots per website, we have many distractors of

potentially similar pages to the query screenshot, such as the fifth

and sixth examples in Figure 11 that were matched to similar screen-

shots from different websites. We also found that some phishing

pages have pop-up windows that completely covered the logo and

the page’s colors and structure, and were then matched to pages

with darker colors such as the last example in Figure 11. The wrong

matches had generally higher distances than the correct matches

which could make them falsely classified as legitimate examples.

We also show false positive examples (benign test pages) that

had high similarity to pages from the training set in Figure 12 and

would be falsely classified as phishing pages based on the threshold

in Figure 7. We observed that pages with forms were harder to

identify as dissimilar to other pages with forms in the trust-list es-

pecially when having similar colors and layout, since they contain

few distinguishable and salient elements and they are otherwise

P
h
is
h
in
g
te
st

C
lo
se
st
m
at
ch

Figure 10: Examples of test phishing webpages that were correctly matched to the targeted websites despite having large

differences in layout and content.

P
h
is
h
in
g
te
st

C
lo
se
st
m
at
ch

Figure 11: Examples of test phishing webpages that were matched to the wrong website from the training set.

similar. We believe that using the screenshot’s text (possibly ex-

tracted by OCR), or more incorporation of the logo features along

with other visual cues by region-based convolution [40] could be

future possible model optimization directions to help reduce the

false positives and also improve the matching of hard examples.

Additionally, tackling the phishing problem has many orthogonal

aspects; while we focus on visual similarity to detect zero-day and

unseen pages and achieve a significant leap in performance, our ap-

proach could still be used along with other allow-listing of trusted

domains to further reduce the false positives.

7.3 Deployment Considerations

We here discuss practical considerations for the deployment of

our system. First, regarding the required storage space and com-

putation time, our system does not require storing all screenshots

of the trusted-list, as it suffices to store the embedding vectors of

screenshots (512-dimensional vectors). Also, the system is compu-

tationally feasible since the training trusted-list embeddings can be

pre-computed, which at test time only leaves the relatively smaller

computations of the query image embedding and the L2 distances.

On a typical computer with 8 GByte RAM and Intel Core i7-8565U

1.80GHz processor, the average time for prediction was 1.1±0.7 sec-

onds which decreased to 0.46±0.25 seconds on a NVIDIA Tesla K80

GPU. If further speeding up is needed, the search for the closest

point could be optimized. Besides, the decision could only be com-

puted when the user attempts to submit information. We also show

in our analysis of possible perturbations that the learned similarity

is robust against partial removal of parts of the page, which sug-

gests that a page could be detected even if it was partially loaded.

Other deployment issues are the browser window size variations at

test time which could be solved by fixing the size of the captured

screenshot. Another issue is the maintenance of the domain names

of the trusted-list in case a website has changed its domain, which

L
eg
it
im

at
e
te
st

C
lo
se
st
m
at
ch

Figure 12: False positive examples of the top closest legiti-

mate test pages to the training list.

could be solved by rolling updates of the trusted-list without the

need to retrain. Additionally, we observed that VisualPhishNet is

robust against small changes or updates in the website logo’s fonts

or colors (e.g. see Yahoo examples with different versions that were

still correctly detected in Appendix A). Larger or more significant

changes (that usually happen on long time intervals) might require

retraining and updating. Moreover, the current system and dataset

are focusing on Desktop browsers, however, the concept can be

extended to other devices (e.g. smartphones) which may require

re-training. Furthermore, our visual similarity model can either

be used as a standalone phishing detection model or, as the last

defense mechanism for unseen pages along with other (potentially

faster) listing or heuristics approaches. Regarding the VisualPhish

dataset, we point out that the manual work in curating the dataset

was mainly for constructing unbiased and non-duplicated test sets,

however, it is less needed in collecting the training trusted-list of

trusted websites. This enables the automatic update of the trusted-

list to add new websites when needed. Nevertheless, detecting du-

plicity can be automated by finding the closest pages to the newly

added one based on pixel-wise features (such as VGG features).

8 CONCLUSION

As visual similarity is a key factor in detecting zero-day phish-

ing pages, in this work, we proposed a new framework for visual

similarity phishing detection. We presented a new dataset (Visual-

Phish: 155 websites with 9363 screenshots) that covers the largest

trusted-list so far and overcomes the observed previous limitation.

Unlike previous work, instead of only matching a phishing page

to its legitimate counterpart, we generalize visual similarity to de-

tect unseen pages targeting the trusted websites. To that end, we

proposed VisualPhishNet that learns a visual profile of websites by

learning a similarity metric between any two same-website pages

despite having different contents. Based on the qualitative analysis

of the successful cases, our network identified easy phishing pages

(highly similar to pages in training), and importantly, phishing

pages that were partially copied, obfuscated, or unseen. Visual-

PhishNet is robust against the range of possible evasion attacks and

perturbations that we studied, which makes our model less prone

to the fierce arms race between attackers and defenders.

In conclusion, our work introduces important contributions to

phishing detection research to learn a robust and proactive visual

similarity metric that demonstrates a leap in performance over

prior visual similarity approaches by 56 percent points in matching

accuracy and 30 in the classification ROC area under the curve.

REFERENCES
[1] Sadia Afroz and Rachel Greenstadt. 2011. Phishzoo: Detecting phishing websites

by looking at them. In Proceedings of the IEEE International Conference on Semantic
Computing.

[2] APWG. 2019. Anti Phishing Working Group report. https://www.antiphishing.
org/resources/apwg-reports/.

[3] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition 84 (2018), 317ś331.

[4] Aaron Blum, Brad Wardman, Thamar Solorio, and Gary Warner. 2010. Lexical
feature based phishing URL detection using online learning. In Proceedings of the
ACM Workshop on Artificial Intelligence and Security.

[5] Ahmet Selman Bozkir and Ebru Akcapinar Sezer. 2016. Use of HOG descriptors in
phishing detection. In Proceedings of the IEEE International Symposium on Digital
Forensic and Security (ISDFS).

[6] Ee Hung Chang, Kang Leng Chiew,Wei King Tiong, et al. 2013. Phishing detection
via identification of website identity. In Proceedings of the IEEE International
Conference on IT Convergence and Security (ICITCS).

[7] Kuan-Ta Chen, Jau-Yuan Chen, Chun-Rong Huang, and Chu-Song Chen. 2009.
Fighting phishing with discriminative keypoint features. IEEE Internet Computing
13, 3 (2009), 56ś63.

[8] Teh-Chung Chen, Scott Dick, and James Miller. 2010. Detecting visually similar
web pages: Application to phishing detection. ACM Transactions on Internet
Technology (TOIT) 10, 2 (2010), 5.

[9] Neil Chou, Robert Ledesma, Yuka Teraguchi, Dan Boneh, and John C. Mitchell.
2004. Client-side defense against web-based identity theft. In Proceedings of the
Network and Distributed System Security Symposium (NDSS).

[10] Igino Corona, Battista Biggio, Matteo Contini, Luca Piras, Roberto Corda, Mauro
Mereu, Guido Mureddu, Davide Ariu, and Fabio Roli. 2017. Deltaphish: Detect-
ing phishing webpages in compromised websites. In Proceedings of European
Symposium on Research in Computer Security (ESORICS). Springer.

[11] Firat Coskun Dalgic, Ahmet Selman Bozkir, and Murat Aydos. 2018. Phish-IRIS:
A New Approach for Vision Based Brand Prediction of Phishing Web Pages via
Compact Visual Descriptors. In Proceedings of the IEEE International Symposium
on Multidisciplinary Studies and Innovative Technologies (ISMSIT).

[12] Sounak Dey, Anjan Dutta, J Ignacio Toledo, Suman K Ghosh, Josep Lladós, and
Umapada Pal. 2017. Signet: Convolutional siamese network for writer indepen-
dent offline signature verification. arXiv preprint arXiv:1707.02131 (2017).

[13] MatthewDunlop, StephenGroat, andDavid Shelly. 2010. Goldphish: Using images
for content-based phishing analysis. In Proceedings of the IEEE International
Conference on Internet Monitoring and Protection.

[14] Anthony Y Fu, Liu Wenyin, and Xiaotie Deng. 2006. Detecting phishing web
pages with visual similarity assessment based on earth mover’s distance (EMD).
IEEE Transactions on Dependable and Secure Computing 3, 4 (2006), 301ś311.

[15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and harnessing adversarial examples. In International Conference on Learning
Representations (ICLR).

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV).

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[18] Chun-Ying Huang, Shang-Pin Ma, Wei-Lin Yeh, Chia-Yi Lin, and Chien-Tsung
Liu. 2010. Mitigate web phishing using site signatures. In Proceedings of the IEEE
Region 10 Conference (TENCON).

[19] Ankit Kumar Jain and B Brij Gupta. 2017. Phishing detection: analysis of visual
similarity based approaches. Security and Communication Networks (2017).

[20] Mahmoud Khonji, Youssef Iraqi, and Andrew Jones. 2013. Phishing detection: a
literature survey. IEEE Communications Surveys & Tutorials 15, 4 (2013), 2091ś
2121.

[21] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representations (ICLR).

[22] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural
networks for one-shot image recognition. In International Conference on Machine
Learning (ICML) Deep Learning Workshop.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in Neural Information
Processing Systems.

[24] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial machine
learning at scale. In International Conference on Learning Representations (ICLR).

[25] Ieng-Fat Lam, Wei-Cheng Xiao, Szu-Chi Wang, and Kuan-Ta Chen. 2009. Coun-
teracting phishing page polymorphism: An image layout analysis approach. In
Proceedings of the International Conference and Workshops on Advances in Infor-
mation Security and Assurance. Springer.

[26] Yukun Li, Zhenguo Yang, Xu Chen, Huaping Yuan, and Wenyin Liu. 2019. A
stacking model using URL and HTML features for phishing webpage detection.
Future Generation Computer Systems 94 (2019), 27ś39.

[27] Min Lin, Qiang Chen, and Shuicheng Yan. 2014. Network in network. In Interna-
tional Conference on Learning Representations (ICLR).

[28] Wenyin Liu, Xiaotie Deng, Guanglin Huang, and Anthony Y Fu. 2006. An an-
tiphishing strategy based on visual similarity assessment. IEEE Internet Computing
10, 2 (2006), 58ś65.

[29] Jonathan L Long, Ning Zhang, and Trevor Darrell. 2014. Do convnets learn
correspondence?. In Advances in Neural Information Processing Systems.

[30] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, Nov (2008), 2579ś2605.

[31] Luka Malisa, Kari Kostiainen, and Srdjan Capkun. 2017. Detecting mobile ap-
plication spoofing attacks by leveraging user visual similarity perception. In
Proceedings of the ACM on Conference on Data and Application Security and Pri-
vacy.

[32] Jian Mao, Pei Li, Kun Li, Tao Wei, and Zhenkai Liang. 2013. BaitAlarm: detecting
phishing sites using similarity in fundamental visual features. In Proceedings
of the IEEE International Conference on Intelligent Networking and Collaborative
Systems.

[33] Jian Mao, Wenqian Tian, Pei Li, Tao Wei, and Zhenkai Liang. 2017. Phishing-
alarm: robust and efficient phishing detection via page component similarity.
IEEE Access 5 (2017), 17020ś17030.

[34] Eric Medvet, Engin Kirda, and Christopher Kruegel. 2008. Visual-similarity-based
phishing detection. In Proceedings of the 4th international conference on Security
and privacy in communication netowrks.

[35] Luong Anh Tuan Nguyen, Ba Lam To, Huu Khuong Nguyen, and Minh Hoang
Nguyen. 2014. A novel approach for phishing detection using URL-based heuristic.
In Proceedings of the IEEE International Conference on Computing, Management
and Telecommunications (ComManTel).

[36] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Kevin Tyers. 2019. PhishFarm: A Scalable Framework for Measuring the Effective-
ness of Evasion Techniques Against Browser Phishing Blacklists. In Proceedings
of the IEEE Symposium on Security and Privacy (SP).

[37] Adam Oest, Yeganeh Safei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Gary Warner. 2018. Inside a phisher’s mind: Understanding the anti-phishing
ecosystem through phishing kit analysis. In APWG Symposium on Electronic
Crime Research (eCrime).

[38] Ying Pan and Xuhua Ding. 2006. Anomaly based web phishing page detection.
In Proceedings of the IEEE Annual Computer Security Applications Conference
(ACSAC).

[39] Routhu Srinivasa Rao and Syed Taqi Ali. 2015. A computer vision technique to
detect phishing attacks. In Proceedings of the IEEE International Conference on
Communication Systems and Network Technologies.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances
in Neural Information Processing Systems.

[41] Angelo PE Rosiello, Engin Kirda, Fabrizio Ferrandi, et al. 2007. A layout-similarity-
based approach for detecting phishing pages. In Proceedings of the IEEE Interna-
tional Conference on Security and Privacy in Communications Networks and the
Workshops (SecureComm).

[42] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[43] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
2014. CNN features off-the-shelf: an astounding baseline for recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) workshops.

[44] Steve Sheng, Brad Wardman, Gary Warner, Lorrie Faith Cranor, Jason Hong, and
Chengshan Zhang. 2009. An empirical analysis of phishing blacklists. In the Sixth
Conference on Email and Anti-Spam (CEAS).

[45] K. Simonyan and A. Zisserman. 2015. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In International Conference on Learning Represen-
tations (ICLR).

[46] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. Deepface:
Closing the gap to human-level performance in face verification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi, Yarik
Markov, Oxana Comanescu, Vijay Eranti, Angelika Moscicki, et al. 2017. Data
breaches, phishing, or malware?: Understanding the risks of stolen credentials.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security.

[48] Liu Wenyin, Guanglin Huang, Liu Xiaoyue, Zhang Min, and Xiaotie Deng. 2005.
Detection of phishing webpages based on visual similarity. In Special interest
tracks and posters of the 14th international conference on World Wide Web.

[49] Colin Whittaker, Brian Ryner, and Marria Nazif. 2010. Large-Scale Automatic
Classification of Phishing Pages. In Proceedings of the Network and Distributed
System Security Symposium (NDSS).

[50] JonathanWoodbridge, Hyrum S Anderson, Anjum Ahuja, and Daniel Grant. 2018.
Detecting Homoglyph Attacks with a Siamese Neural Network. In Proceedings of
the IEEE Security and Privacy Workshops.

https://www.antiphishing.org/resources/apwg-reports/
https://www.antiphishing.org/resources/apwg-reports/

[51] Ning Yu, Larry Davis, and Mario Fritz. 2019. Attributing fake images to GANs:
learning and analyzing GAN fingerprints. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

[52] Joe Yue-Hei Ng, Fan Yang, and Larry S Davis. 2015. Exploiting local features
from deep networks for image retrieval. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) workshops.

[53] Haijun Zhang, Gang Liu, Tommy WS Chow, and Wenyin Liu. 2011. Textual and
visual content-based anti-phishing: a Bayesian approach. IEEE Transactions on
Neural Networks 22, 10 (2011), 1532ś1546.

[54] Yue Zhang, Jason I Hong, and Lorrie F Cranor. 2007. Cantina: a content-based
approach to detecting phishing web sites. In Proceedings of the 16th international
conference on World Wide Web.

[55] Mouad Zouina and Benaceur Outtaj. 2017. A novel lightweight URL phishing
detection system using SVM and similarity index. Human-centric Computing and
Information Sciences 7, 1 (2017), 98.

A EXTRA EVALUATION AND QUALITATIVE
RESULTS

We here show supplementary results. In Figure 13, we present the

ROC curves of the binary classification task for each experiment

in the ablation study (discussed in subsection 6.2). In Figure 14, we

show a histogram of the phishing pages false matches per website

(subsection 7.2). In Figure 15, we show successful matching exam-

ples of the new crawled phishing pages (subsection 6.8). Moreover,

in Figure 16, we show correct matches across different websites

with similar colors that were still correctly distinguished from each

other (subsection 7.1). Finally, in Figure 17, we show successful

examples where the website logo’s colors and fonts were different

than the trusted-list to test versions changes (subsection 7.3).

0 20 40 60 80 100
False Positives (%)

0

20

40

60

80

100

Tr
ue

 p
os

iti
ve

s (
%

) VisualPhishNet
Siamese - global Max pooling
Siamese - FC
L1
Global Avg. pool
FC
Flattened feature map
Conv 3x3
Only VGG16 layers
ResNet
Only Random Sampling
Train with 20% of Phish
Chance level

Figure 13: ROC curves for the ablation study in Table 1. The

legend follows the same order of rows in Table 1.

Fa
ce

bo
ok

Pa
yP

al
Ya

ho
o

M
icr

os
of

t
BO

A
Al

ib
ab

a
DH

L
W

el
ls

Fa
rg

o
Dr

op
bo

x
M

S
On

eD
riv

e
Ad

ob
e

M
S

Of
fic

e
Ch

as
e

Ap
pl

e
M

S
Ou

tlo
ok

Lin
ke

dI
n

Am
az

on
Go

og
le

Go
og

le
 D

riv
e0

10

20

30

40

50

60

70

In
st

an
ce

s c
ou

nt

Total number in test set
Wrong matches number

Figure 14: Histogram of the wrong matches of phishing

pages to their targeted website. The most frequent 19 web-

sites are shown.

N
ew

p
ag
es

C
lo
se
st
m
at
ch

Figure 15: Examples of the newly crawled phishing pages

(row 1) that were correctly matched to the targeted website

where the closest trusted-list screenshots are in row 2.

P
h
is
h
in
g
te
st

C
lo
se
st
m
at
ch

Figure 16: Examples of websites with similar colors (Wells

Fargo vs. CIBC, Alibaba vs. Banco Itaú) that were correctly

distinguished from each other.

P
h
is
h
in
g
te
st

C
lo
se
st
m
at
ch

Figure 17: Examples of successfullymatched phishing pages

where the website logo’s fonts and colors are slightly dif-

ferent than the trusted-list. The first two examples contain

an older version’s logo, while the third example contains a

newer version’s logo (from the newly crawled data).

B MORE DATASET DETAILS AND EXAMPLES

We show here more details about the VisualPhish dataset. In Fig-

ure 18, we show a histogram of the most targeted websites by the

crawled phishing pages (section 4). Figure 19 shows the categories in

the benign test set that we constructed to reduce bias by having sim-

ilar categories to the trusted websites (section 4). Figure 20 shows

examples of the test set used to test browser differences (subsec-

tion 6.7). Figure 21 shows examples of the test set used to test false

positives when trusted logos are found in the page (subsection 7.1).

Examples of the variations (e.g. designs, colors and layout) of the

dataset’s phishing pages targeting one website are demonstrated

in Figure 22. Examples of the poorly designed (i.e. dissimilar to their

targets) phishing pages are in Figure 23. Also, Figure 24 shows ex-

amples of the screenshots used in the online user study to evaluate

dissimilar examples (discussed in subsection 7.2). Finally, Figure 25

shows examples of the newly crawled phishing pages to test the

performance against zero-day pages (subsection 6.8).

Fa
ce

bo
ok

Pa
yP

al
M

icr
os

of
t

Ya
ho

o
Al

ib
ab

a
DH

L
BO

A
Ap

pl
e

Ch
as

e
Dr

op
bo

x
Go

og
le

W
el

ls
Fa

rg
o

Ad
ob

e
M

S
Of

fic
e

Am
az

on
Lin

ke
dI

n
IR

S
Or

an
ge

AT
&T Ita

u
US

AA
Ab

sa
Al

le
gr

o0

20

40

60

80

100

120

Ph
ish

in
g

In
st

an
ce

s C
ou

nt

Figure 18: A histogram of the 23most frequent websites that

were found in the unique phishing set.

Fo
rm

s
Ba

nk
s

Sa
aS

Sh
op

pi
ng

Tr
av

el
Ne

ws
Ed

uc
at

io
n

Pa
ym

en
t

Go
v.

Bl
og

s
Ga

m
es

Te
le

co
m

St
or

ag
e

Ot
he

r0
5

10
15
20
25
30
35
40

Pe
rc

en
ta

ge
 (%

)

Figure 19: The categories in the legitimate test set.

B
ro
w
se
r
1

B
ro
w
se
r
2

Figure 20: Examples of the differences found between differ-

ent browsers from the 50 pages used to evaluate the effect of

browsers differences.

(a)

(b)

(c)

(d)

Figure 21: Examples of the test set (consisting of 125 pages)

used to evaluate the possiblewrongmatching to a trust-list’s

website whose logo appears in other benign pages (such as

articles and login pages).

(a)

(b)

(c)

(d)

(e)

Figure 22: Examples of the variations in the VisualPhish

dataset of phishing examples targeting one website with no

counterparts in the crawled legitimate examples (training

list) of the same website.

(a)

(b)

(c)

(d)

(e)

Figure 23: Examples of phishing pages in the dataset that are

not similar enough (either in colors or design) to the legiti-

mate website which causes an increase in the mismatches

when not partially train with a part of the phishing set.

(a) (b)

(c) (d)

(e) (f)

(g)
(h)

(i) (j)

(k) (l)

Figure 24: Examples of the phishing pages used in the online studywhere participantswere asked if they think the appearances

of these pages are trustworthy. The first column screenshots are the dissimilar examples. Only 3.02% of users (averaged on

all screenshots) considered them trustworthy. The second column screenshots are the relatively more similar examples (with

subtle differences) where 65.3% of users considered them trustworthy.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 25: Examples of the newly crawled phishing pages

from PhishTank that are used to test zero-day pages. Addi-

tionally, all of these pages do not have counterparts in the

targeted website’s screenshots in the trusted-list and were

not seen in training.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Related Work
	2.2 Threat Model

	3 Analyses and Limitations of Published Datasets
	4 The VisualPhish Dataset
	5 VisualPhishNet
	5.1 Triplet Networks
	5.2 Triplet Sampling
	5.3 Prediction

	6 Evaluation
	6.1 VisualPhishNet: Final Model
	6.2 Ablation Study
	6.3 Trusted-list Expansion
	6.4 Comparison with Prior Work and Baselines
	6.5 Embeddings Visualization
	6.6 Distance Threshold Selection
	6.7 Robustness and Security Evaluation
	6.8 Testing with New Crawled Data

	7 Discussion
	7.1 Evaluating Successful Cases
	7.2 Evaluating Failure Modes
	7.3 Deployment Considerations

	8 Conclusion
	References
	A Extra Evaluation and Qualitative Results
	B More Dataset Details and Examples

