
Implementing the Exponential Mechanism with Base-2 Differential

Privacy

Christina Ilvento∗

Abstract

Despite excellent theoretical support, Differential Privacy (DP) can still be a challenge to
implement in practice. In part, this challenge is due to the concerns associated with translating
arbitrary- or infinite-precision theoretical mechanisms to the reality of floating point or fixed-
precision. Beginning with the troubling result of Mironov demonstrating the security issues of
using floating point for implementing the Laplace mechanism, there have been many reasonable
questions raised concerning the vulnerabilities of real-world implementations of DP.

In this work, we examine the practicalities of implementing the exponential mechanism of
McSherry and Talwar. We demonstrate that naive or malicious implementations can result in
catastrophic privacy failures. To address these problems, we show that the mechanism can be
implemented exactly for a rich set of values of the privacy parameter ε and utility functions
with limited practical overhead in running time and minimal code complexity.

How do we achieve this result? We employ a simple trick of switching from base e to base 2,
allowing us to perform precise base 2 arithmetic. A short, precise expression is always available
for ε, and the only approximation error we incur is the conversion of the base-2 privacy parameter
back to base e for reporting purposes. The core base 2 arithmetic of the mechanism can be simply
and efficiently implemented using open-source high precision arithmetic libraries. Furthermore,
the exact nature of the implementation lends itself to simple monitoring of correctness and
proofs of privacy.

1 Introduction

As ever more data is collected about individuals for research or business purposes, ensuring that
analyses of these data preserve individuals’ privacy becomes increasingly important. Differential
Privacy [7], a theoretically rigorous framework for evaluating the privacy properties of mechanisms
operating on private data, has emerged as the de facto standard for effective privacy protection.
Differential privacy (DP) requires that the output of any computations over private data should
be roughly indistinguishable from the output of those same computations if a single individual had
changed her private data. For example, suppose a private database contains information about
smoking behavior and demographic information for the patients in a particular health clinic. A dif-
ferentially private computation over these data would yield the same insights regardless of whether
any specific individual smoked. That is, the output of a DP computation over the true dataset
M(d) is roughly indistinguishable from the same computation over an adjacent database M(d′),
in which one individual’s smoking behavior was different. Informally, we say that a mechanismM
is ε−differentially private if for all outputs c, Pr[M(d)=c]

Pr[M(d′)=c] ≤ e
ε.

∗Harvard John A Paulson School of Engineering and Applied Science. This work was supported in part by the
Sloan Foundation.

1

ar
X

iv
:1

91
2.

04
22

2v
3 

 [
cs

.C
R

] 
 6

 A
ug

 2
02

0



The benefit of this type of definition is that every individual in the database is guaranteed that
their individual smoking behavior is not leaked by the outputs of the computation, but the compu-
tation can still gain valuable insights that hold in aggregate, e.g., whether a new smoking cessation
program is effective. Unlike other proposals, e.g., k-anonymity, DP gives a privacy guarantee which
is robust to subsequent post-processing and combination or composition with other private (or non-
private) mechanisms and makes no assumptions about an adversary’s computational powers or side
information. This makes DP a powerful tool for building privacy-preserving systems constructed
from many separate privacy-preserving components.

Unfortunately, the practicalities of building DP systems or mechanisms can be challenging.
Many mechanisms satisfy DP by first computing a statistic of the database f(d), and then adding
noise scaled to the sensitivity of the statistic, i.e., how much the statistic can change between
adjacent databases. Unfortunately, such mechanisms can be vulnerable to translation problems
between the mechanism specification and the reality of limited precision arithmetic (as well as
the complexities of timing and other side-channel problems). In particular, adding noise produced
from inexact computations over finite precision values may contain artefacts leaking significant
information about the original value (see [16, 10, 3]).

In this work, we examine the problem of implementing the popular and highly flexible exponen-
tial mechanism of [15]. Unlike additive noise mechanisms, the exponential mechanism samples from
a fixed set of publicly known outcomes O, choosing each outcome with probability proportional to
a utility u determined by the private data, i.e., Pr[M(d) = o] ∝ e−εu(d,o). One might initially think
that by revealing a result selected from a public list of possible outcomes (rather than the direct re-
sult of floating point computations) the exponential mechanism should be immune to attacks based
on floating point artefacts. However, we show two new classes of attacks on naive implementations
of the exponential mechanism based on inexact floating-point arithmetic which allow an adversary
to distinguish between two adjacent databases with high probability of success.

Our core conceptual contribution is to propose a new view of implementing DP in practice
with exact calculations by switching from base e to base 2. We show that this implementation
technique gives strong privacy guarantees with limited implementation overhead. Our primary
technical contributions are (1) demonstrating how to translate the exponential mechanism into
base-2; (2) giving simple methods for expressing a wide range of privacy parameters and utility
functions exactly; (3) specifying an exact implementation of the base-2 exponential mechanism; (4)
providing reference implementations of the base-2 exponential mechanism using the GNU Multiple
Precision Arithmetic Library and MPFR in Python (via the gmpy2 interface) and Rust (via the Rug
and gmp− mpfr− sys interfaces) [11, 9, 14, 19, 18].1 Our reference implementations demonstrate
the practical benefits of using exact arithmetic for auditing, monitoring correctness and giving
proofs of privacy on the implementation itself.

1.1 Differential Privacy Preliminaries

Differential Privacy [7] is a strong definition of privacy which requires that a mechanism operating
on private data is stable. That is, the output of the mechanism cannot change “too much” if a
single entry in the database is changed. A key strength of DP is that it doesn’t apply to a single
mechanism: any randomized mechanism satisfying the stability requirement is differentially private.

Definition 1.1 (Pure Differential Privacy). A randomized mechanismM is ε−differentially private

1Reference implementations can be found in the accompanying github repository at https://github.com/

cilvento/b2dp.

2

https://github.com/cilvento/b2dp
https://github.com/cilvento/b2dp
https://github.com/cilvento/b2dp
https://github.com/cilvento/b2dp


if for all adjacent databases d ∼ d′, i.e., databases which differ in a single entry,

Pr[M(d) ∈ C] ≤ eε Pr[M(d′) ∈ C]

where probability is taken over the randomness of M.

Suppose we wanted to construct a DP mechanism to release a statistic of the database, f(d).
Several core DP mechanisms follow the template of computing f(d)+ noise scaled based on the
sensitivity of f . The sensitivity of f captures how much f can change if a single entry of the
database is changed, and is defined ∆f := maxd∼d′ |f(d)− f(d′)|. Naturally, computing a counting
query, e.g. the number of individuals with a salary greater than x, has lower sensitivity than
computing an average of a field, e.g, the average salary of all individuals in the database. This
follows from observing that the number of individuals with a salary greater than x can change by
only 1 if a single individual’s value is changed. However, the average salary could change drastically
if a single individual’s salary is changed.2 The best-known of these “additive noise” mechanisms is
the Laplace Mechanism.

Mechanism 1 (The Laplace Mechanism). Given a function f : D → R with sensitivity ∆f :=
maxd∼d′∈D |f(d)−f(d′)|, a privacy parameter ε and a database d, release f(d)+τ where τ is drawn

from the sensitivity scaled Laplace distribution, given by probability density Lap(t|∆f
ε ) = ε

2∆f e
− ε|t|

∆f .
The Laplace Mechanism is ε−DP.

Notice that to implement this mechanism as written, one must sample from the Laplace distribu-
tion with arbitrary precision. This is problematic in practice as floating point cannot express every
possible value in the distribution. In particular, taking y = ln(x) for uniformly distributed random
floating point numbers x (as one would to sample from the Laplace distribution) will result in gaps
in the set of values for y.3 As shown by Mironov [16], this can be exploited by an adversary to
determine f(d) from f(d) + τ by examining the lowest order bits of the result. Roughly speaking,
this attack takes advantage of the fact that the supports, i.e., the sets of all possible outcomes, of
adjacent databases are different due to the differing artefacts of floating point computations. For-
tunately, this particular attack on the Laplace mechanism (and similar concerns with other releases
of noisy statistics under finite precision semantics) can be mitigated by careful implementation.

We briefly highlight several related works. First, Gazeau, Miller and Palamidessi study the
problem of bounding privacy loss due to finite-precision semantics [10]. Their approach is to use
fixed-precision computation, and to allow for bounded privacy degradation due to error in scaled
noise mechanism (e.g., Laplace). Balcer and Vadhan consider the question of efficiently constructing
differentially private histograms under finite precision semantics [3]. They exhibit efficient mecha-
nisms with accuracy competitive to the Laplace mechanism for counting queries and histograms.
However, these solutions do not directly address issues faced in implementing the exponential
mechanism. Third, Burke considers an extension of the attack technique of non-identical supports
demonstrated by Mironov to the exponential mechanism for digital goods auctions [5]. This work
demonstrates that implementation of the exponential mechanism based on inverse transform sam-
pling can yield differences in the outcome spaces for adjacent databases which can be exploited to
violate privacy guarantees. Finally, Andrysco, Kohlbrenner, Mowery, Jhala, Lerner and Shacham
demonstrate the vulnerabilities of floating point implementations of differentially private mech-
anisms to timing channels [2]. In this work, we are cognizant of timing channels due to logic

2e.g., the CEO of a company may make more than all other employees combined so adding or removing such an
individual could as much as double the average.

3See section 4.1, [17] and [16] for more discussion of inverse transform sampling and the particulars of sampling
from the Laplace distribution.

3



variation, but we do not address the timing differences in the floating point operations themselves;
this is an area for future work.

The Exponential Mechanism.

The exponential mechanism, proposed by McSherry and Talwar [15], is a general purpose DP
mechanism for releasing arbitrary strings, values or other outputs according to their private utility.
For example, suppose a company is trying to set a price for a new piece of software. To set the price,
they ask a market research firm to survey potential customers about their preferred price point.
The market research company knows that customers will only be honest about their preferred prices
if their preferences are kept private, so they decide to provide a differentially private estimate of
the optimal price. Unfortunately, computing the optimal price and then adding noise may result
in a price that zero buyers are willing to pay. For example, if all buyers are willing to pay at most
$10, setting a price of $10.01 will result in zero sales.4 Using the Laplace mechanism, there is a 50%
chance the company sets a price no buyers are willing to pay! The exponential mechanism solves
this problem in an elegant way: given a utility (potential profit) determined by the private database
(the customers’ maximum prices) for each potential outcome (each price in a pre-determined range),
the mechanism samples a single outcome with probability proportional to its utility. In this case,
the price of $10 would have the best utility and thus a high probability of selection, whereas any
price over $10 would have no utility and therefore low probability of selection.

Mechanism 2 (Exponential Mechanism). Given a privacy parameter ε, an outcome set O and a
utility function u : D × O → R which maps (database, outcome) pairs to a real-valued utility, the
exponential mechanism samples a single element from O based on the probability distribution

p(o) :=
e−εu(d,o)∑
o∈O e

−εu(d,o)

If the sensitivity of u, ∆u := maxd∼d′,o∈O |u(d, o)− u(d′, o)| ≤ α, then the exponential mechanism
is 2αε-DP.

By convention, the utility function is negated, and lower utility corresponds to higher probability.
The exponential mechanism is useful in many settings in which the space of possible outcomes

(e.g., integer values in a range, preset error strings, synthetic datasets, etc.) is known a priori or
the usefulness of a statistic is highly sensitive to noise (e.g., optimal price) but the sensitivity of
utility (e.g., profit) is small. In fact, any DP mechanism can be expressed as an instance of the
exponential mechanism by choosing the appropriate utility function and outcome space (although it
may not be the most computationally efficient method) [15]. For example, the Laplace mechanism
is simply the exponential mechanism with utility function u(f(d), o) = |f(d)−o| for outcome space
O = R.

An initial examination of the exponential mechanism might lead the reader to imagine that it
is immune to the floating point issues of the Laplace mechanism, as no floating point calculation
is released directly and the calculations of ex shouldn’t have “too much” error. However, in the
next section we will see that naive implementations of the exponential mechanism are vulnerable
to floating-point based attacks.

4Please see Section 3.4 of [8] for a more complete auction-related example.

4



2 Subverting the Exponential Mechanism

To understand how a naive implementation of the exponential mechanism can be subverted, we
first recall that a floating point number is represented as m ∗ 2σx, where m, the mantissa, σ, a sign
bit, and x, the exponent, are all binary integers. (For the purposes of our examples, we assume 5
bits of precision for the mantissa and a maximum (minimum) exponent of ±`.) Our attacks rely
on two properties of floating point arithmetic. First, values which are too small to be expressed in
the available bits of precision, i.e., smaller than 2−`, are rounded to zero. So it’s possible that the
outcome of a multiplication of two positive numbers is zero:

00001 ∗ 2−` × 00001 ∗ 2−` = 0 ∗ 20 (1)

Second, adding two floating point numbers of different magnitudes can result in truncated values.

11111 ∗2+`

+ 00001 ∗2−`
11111 ∗2+`

(2)

Notice that the larger number 11111 ∗ 2+` needs all five bits of precision to express its value, so
adding any value smaller than 1∗2+` cannot be accounted for. Thus even though a positive number
(1 ∗ 2−`) was added, the result is equivalent to the original value.

We now translate these two observations into two attacks on a naive Python implementation
of the exponential mechanism, outlined in Figure 1. This naive implementation first computes the
weight of each element using np.exp(x) to calculate ex. It then computes the total weight T , and

normalized cumulative weights, that is ci =
∑

j≤i wj

T . To sample from the exponential mechanism
distribution, it samples a random value index ∼ [0, 1], and chooses the first index i with normalized
cumulative weight larger than index. This corresponds to sampling each element with probability
(c weights[i]− c weights[i− 1])/T ≈ wi/T . We assume that all utility functions are pre-screened
to ensure that they satisfy sensitivity constraints, and our malicious utility functions will have
sensitivity ≤ 1. In fact, the range of utilities for our attack utility functions is 1, and as such these
functions would legitimately pass any audit of utility sensitivity. By convention [n] indicates the set
of integers {1, 2, . . . , n}. For outcome spaces, we index the elements of O as oi∈[|O|]. We somewhat
abuse notation by using u(oi>1) and similar to denote utilities oi for i ∈ [n]\{1}. Expressions
np.exp, etc indicate the evaluation of a particular implementation, whereas expressions ex indicate
infinite precision unless otherwise noted.

Attack 1 (Zero-rounding). Suppose the attacker wishes to know if Alice is in the database. The
attacker chooses an outcome space O = [k] and a utility function such that if Alice is in the database
u(o1) = x and u(oi>1) = x + 1. If Alice is not in the database u(oi) = x for all i ∈ [k]. Notice
that the sensitivity of u is 1 regardless of the choice of x. The attacker then sets x such that
np.exp(−(eps/2) ∗ x) > 0 but np.exp(−(eps/2) ∗ (x + 1)) = 0. If Alice is in the database, the only
viable outcome is o1, but if she is not in the database, all elements have equal (and positive) weight,
so a uniformly random element will be selected. Thus, the attacker has distinguishing probability
k−1
k on a single run of the mechanism.

To mitigate Attack 1, one might suggest that we add an assertion that each weight is positive.
However, this fix can also be subverted by taking advantage of truncated addition.

5



1 # The naive exponential mechanism

2 import numpy as np

3 # Inputs:

4 # eps: the privacy parameter

5 # u: the utility function

6 # O: the set of outputs

7 # Returns: an element in O

8 def naive_exp_mech(eps , u, O):

9 # compute the weight of each element

10 weights = [np.exp(-(eps /2.0)*u(o)) for o in O]

11 T = sum(weights)

12 # cumulative weights

13 c_weights = [sum(weights [0:i]/T)\

14 for i in range(1, len(O)+1)]

15 index = np.random.rand() # uniform sample from [0,1]

16 # return element corresponding to the random index

17 for i in range(0, len(O)):

18 if c_weights[i] >= index:

19 return O[i]

Figure 1: Naive reference implementation of the exponential mechanism in Python.

Attack 2 (Truncated addition). The adversary determines two values xl and xs and an outcome
space O = [k] such that

np.exp(−(eps/2) ∗ xl) =np.exp(−(eps/2) ∗ xl) +
∑
i∈[k]

np.exp(−(eps/2) ∗ (xs + 1)) (3)

and

2 ∗ np.exp(−(eps/2) ∗ (xl + 1)) ≈ np.exp(−(eps/2) ∗ (xl + 1)) +
∑
i∈[k]

np.exp(−(eps/2) ∗ (xs))

(4)

Notice that Equation 3 results from truncated addition, as np.exp(−(eps/2) ∗ (xs + 1)) is cho-
sen to be small enough that its addition to np.exp(−(eps/2) ∗ xl) is truncated and effectively a
no-op. On the other hand, np.exp(−(eps/2) ∗ (xs)) is chosen to be large enough that its sum
is not truncated, and k is chosen large enough that the summation is approximately equal to
np.exp(−(eps/2) ∗ (xl + 1)).

The attacker then chooses a utility function u(o1) = xl+1 and u(oi>1) = xs if Alice is not in the
database and u(o1) = xl and u(oi>1) = xs + 1 if Alice is in the database. As before, the sensitivity
of u is 1 regardless of the choice of xs and xl. Notice that if Alice is in the database, the only viable
outcome is o1. This is because the the cumulative weight c weights[o1] will be equivalent to 1,
and o1 is the the first index with cumulative weight greater than or equal to any sample in [0, 1]
that will be encountered (Lines 17-19). However, if Alice is not in the database, then o1 is chosen
only about half of the time, as the other k outcomes can still claim the region ≈ (1

2 , 1].

The troubling property of Attack 2 is that all weights are positive, and the attack can be adapted
to ensure that all weights exceed some minimum positive value. (Please see the accompanying
github repository for practical demonstrations of these attacks.) Indeed, one would need to monitor
the outcome of each addition in the mechanism to ensure that values are not excessively truncated

6

https://github.com/cilvento/b2dp


to try to catch such subversion. However, such monitoring is non-trivial as the additions are not
expected to be exactly correct as ex cannot be expressed exactly in a finite number of bits.

One approach to mitigate these attacks is to clamp the allowed utilities to a range in which
additions of the smallest and largest possible weights can be computed safely. But how do we decide
on such a range, and what is the impact of the inexact computations on privacy (given the vagaries
of floating point division as well as addition and approximate computations of np.exp)? The key
problem with declaring a certain range of utilities to be safe is the difficulty of characterizing the
privacy loss due to inexact arithmetic. For example, suppose that a range was chosen which has
a maximum error on the order of 2−k. If each individual weight and the total weights are on the
order of 20, this error may be negligible from a privacy perspective, but if each individual weight
is on the order of 2−k, it is not. Thus any general guarantee we might give on the privacy loss
of the implementation must be pessimistic. Furthermore, the more involved and complete the
defenses for such attacks become, the more complicated and difficult to audit the code becomes,
increasing the likelihood of errors and those errors being missed under audit. A second approach
is to limit analyses to a set of previously vetted utility functions or gadgets. Unfortunately even
simple gadgets with well-understood sensitivity properties, e.g., scalar multiplication or addition,
can be used to construct the attacks outlined above.

Furthermore, more nuanced applications of the exponential mechanism may explicitly rely on
sampling from the exact exponential mechanism distribution. For example, suppose that the out-
come set is modified based on private information and the proof of privacy relies on the fact that the
distributions of the exponential mechanism over these outcome spaces are close, i.e., the difference
in the supports has very low weight. Significant error or clamping of small values may break the
proof of privacy, as the difference between the distributions may be increased significantly by in-
creasing the relative weight of low probability values. The concept of δ−negligibility introduced by
Blocki, Datta and Bonneau in [4] is a practical example of a use of the exponential mechanism which
relies on the exact decay in probabilities of low utility elements, and the efficient approximate-DP
min-cut technique presented by Gupta, Ligett, McSherry, Roth and Talwar in [12] uses a similar
argument.

Unfortunately, these more nuanced applications of the exponential mechanism rule out using
noisy max with Gumbel noise (see [1]) to implement the exponential mechanism. For example, the
method proposed by Blocki et al. for efficient weight computation does not directly compute the
utility of any integer partition and instead uses cumulative weights for completions of a prefix, which
doesn’t translate to noisy max.5 In upcoming work, we also present issues with naive translation
of bounded noise implementations for the sparse vector technique, which are also relevant to noisy
max with Gumbel noise [13].

3 Implementing the Exponential Mechanism Exactly

Given these difficulties, we devote the remainder of this work to describing a simple, exact im-
plementation of the exponential mechanism. The primary technical observation motivating our
solution is that base-2 exponentiation and arithmetic is much easier than base e for computers. Of
course, there is more subtlety to the solution than simply performing calculations in base-2, and
there are four technical contributions underpinning our results:

1. Base-2 DP: we define base-2 DP and show the simple relationship between base-2 DP and
standard base-e DP. We prove that the base-2 exponential mechanism gives an exact privacy

5An implementation of the method of Blocki et al. based on the exact implementation given in this work is
included in the accompanying github repository.

7

https://github.com/cilvento/b2dp


guarantee when implemented correctly, i.e., that there is no privacy penalty due to the specifics
of the implementation.

2. Choosing privacy parameters and handling non-integer utility functions: we show how to choose
a rich set of privacy parameters η ∝ ε such that 2−η can be computed exactly with limited
precision. We demonstrate how to handle utility functions with arbitrary precision if 2−ηu

cannot be computed exactly, e.g., u = 1
3 , via randomized rounding. The key insight is that

randomized rounding incurs no privacy penalty from inexact implementation as the proof of
privacy follows from worst-case rounding behavior.

3. Sampling from normalized probabilities without division: we show how to sample from normal-
ized probabilities without using division. This allows us to sample from the exact distribution
of the exponential mechanism with limited randomness.

4. Implementation: we give simple and efficient reference implementations of the base-2 exponential
mechanism in Python and Rust.

3.1 Base-2 differential privacy

The motivation for base-2 differential privacy follows from a simple observation: computers are
very good at exact binary arithmetic. Instead of computing eε, we will compute 2η for appropri-
ately chosen η to achieve the same result from a privacy perspective while still being able to take
advantage of exact floating point arithmetic. We now formally define base-2 differential privacy.

Definition 3.1 (|2 Differential Privacy). A randomized mechanismM is η|2−differentially private
if for all adjacent databases d ∼ d′,

Pr[M(d) ∈ C] ≤ 2η Pr[M(d′) ∈ C]

where probability is taken over the randomness of M.

A very simple change of base proves the relationship between base-2 and base-e.

Lemma 3.2. Any mechanism which is η|2-differentially private is ln(2)η−differentially private.

Proof. Pr[M(d) ∈ C] ≤ 2η Pr[M(d′) ∈ C]; 2η = eln(2)η, thus Pr[M(d) ∈ C] ≤ eln(2)η Pr[M(d′) ∈
C].

We can also re-state the exponential mechanism in base-2.

Mechanism 3 (|2 Exponential Mechanism). Given a privacy parameter η, an outcome set O and
a utility function u : D×O → R which maps (database, outcome) pairs to a real-valued utility, the
|2 exponential mechanism samples a single element from O based on the probability distribution

p(o) :=
2−ηu(d,o)∑
o∈O 2−ηu(d,o)

If ∆u ≤ α, then the base-2 exponential mechanism is 2αη|2-DP.

If η and u(d, o) are integers, the base-2 exponential mechanism can be implemented exactly in
floating point so long as the floating point computations have sufficient bits to store the entirety
of the intermediate results.6 Thus, if we were willing to use privacy parameters ε = 2c ln(2) for
positive integers c, and restricted ourselves to integer utility functions, implementation is as simple
as choosing a good arbitrary-precision floating point library. In the next section, we show how to
support smaller privacy parameters and use non-integer utility functions.

6This is not entirely trivial for division, but the workaround is addressed in Section 3.3.

8



3.2 Non-integer privacy parameters and utilities

We first address selection of privacy parameters assuming integer utilities, and then we extend to
non-integer utilities. Throughout this section, we use dxe to indicate rounding x up to the nearest
integer, bxc to indicate rounding down and bx to indicate the number of bits required to represent
a number x exactly in binary (assuming x can be written exactly in binary).

3.2.1 Expressive privacy parameters

Recall that to run the base-2 exponential mechanism, we need to compute values of 2−ηu. Notice
that if 2−η can be computed exactly, then (2−η)u can be computed exactly by repeated squaring
for integer u. First, we characterize a large set of η for which 2−η can be computed exactly, and
then we show that the number of bits of precision needed to express 2−η is not too large in this
set. These two ingredients are sufficient to show that we can compute the weights for the base-2
exponential mechanism exactly for a wide range of privacy parameters with reasonable precision
(for integer utility functions).

Consider privacy parameters of the form

η = −z log2(
x

2y
)

for positive integer x, y and z such that x
2y ≤ 1. Notice that 2−η = ( x2y )z. Both the integer x and

2−y can clearly be written exactly in binary. To compute (x2−y)z for integer z we can perform
exponentiation by repeated squaring. Notice that even for z = 1, for small values of y, we can still
achieve a large set of ε. For example, − log2(15/24) ≈ 0.06, − log2(31/25) ≈ 0.03, etc.7

The primary consideration for the choice of x, y, and z is the bits of precision required to
write 2−η. Given a binary number q and an integer n, qn can be written with max(1, bq|n|) bits of
precision. Thus to write 2−η we require at most z(y + bx) bits, and for any integer u, computing
(2−η)u will require at most max(1, |u|z(y + bx)) bits of precision.8 As shown above, setting z = 1
and choosing small y still allows for a wide range of η, so in practice the magnitude of u is the
primary concern.

Thus, the main consideration for controlling precision is the range of utilities. Controlling the
magnitude of u is straightforward given a pre-determined range of acceptable u and clamping any
observed utilities to this range. As long as the range is determined independent of the private
database, clamping to the range has no impact on the privacy guarantee. The following simple
proposition states that clamped utility functions have sensitivity no larger than their unclamped
counterparts:

Proposition 3.3. Given a utility function u such that ∆u ≤ α, clamp(u,A,B) where

clamp(u,A,B)(x, o) := min(max(A, u(x, o)), B)

has sensitivity ∆clamp(u,A,B) ≤ ∆u.

The proof of the proposition follows from observing that clamping values cannot increase the
difference in utility of adjacent databases.9

7Balcer and Vadhan use a similar technique in setting a privacy parameter ε′ which is close to their desired
parameter ε, but behaves well in the exponent in order to do efficient inverse transform sampling. Please see Theorem
4.7 and Algorithm 4.8 of [3].

8Any number that can be written as a binary string with p bits of precision requires at most p bits of precision in
the mantissa or significant of a floating point number. In many cases, fewer bits are needed, e.g., 5∗27 can be written
as a binary string 1010000000 (10 bits) or in floating point as 101 ∗ 2111 (3 bits mantissa and 3 bits exponent).

9Note that settings in which outcome spaces of the mechanism are not equivalent for adjacent databases, e.g.

9



Determining the minimum precision

As we will see in the next section, we need precision sufficient to compute any combination (subset
sum) of the weights 2−ηu(d,o) for any set of utilities within the specified clamping bounds in order
to sample from the desired distribution. There are two general approaches for determining the
minimum precision: (1) run the mechanism at a given precision, and repeat the mechanism at higher
precision if inexact arithmetic is performed or (2) determine the minimum precision before running
the mechanism using the publicly specified bounds on the allowed utility values and outcome space
size. The first approach is prone to timing channels, and so we prefer the second approach.

There are two methods for determining minimum precision before executing the mechanism: a
worst-case theoretical analysis or worst-case empirical procedure. We first discuss the theoretical
worst-case. The following Lemma gives a worst-case bound on the precision required for computing
weight combinations.

Lemma 3.4. Given a range of utilities umin to umax, a maximum number of outcomes omax and a
privacy parameter η = −z log2( x2y ) such that x, y, z are positive integers and x

2y ≤ 1, the sum of any
subset of at most omax weights of the form 2−ηu computed from integer utilities within the range
[umin, umax] requires at most (max(1, |umin|) + max(1, |umax|))z(y + bx) + omax bits of precision.

The proof of Lemma 3.4 appears in the Appendix. The downside of this theoretical worst-case
is that it ignores any possible cancellation or efficiency in floating point representation (rather than
binary strings).

The worst-case empirical procedure instead computes every hypothetical worst case, and reports
the required precision. More concretely, given a bound on the number of outcomes (omax) and
a range of utilities ([umin, umax]) with maximum weight wmax = 2−ηumin , it suffices to ensure
that we have sufficient precision to calculate (1) each weight independently, i.e., 2−ηu for integer
u ∈ [umin, umax] and (2) the maximum possible sum of the weights plus the weight with highest
fractional precision (w∗), i.e. domaxwmaxe + w∗. (Note that w∗ is not necessarily the smallest
weight.) This follows from observing that the maximum number of bits required for the mantissa
will be dictated by the largest possible sum of weights and the highest fractional precision needed to
express any individual weight. Thus if the precision is sufficient to express wi and domaxwmaxe+wi
for all i ∈ [umin, umax], then it is sufficient to compute the sum of any valid subset of weights. We
implement a simple iterative procedure which attempts to compute this set of sums and increases
the working precision if any computations are inexact, terminating once all computations can be
performed exactly. Algorithm 1 outlines the procedure in detail.

The benefit of the empirical procedure is that it may result in lower, but still safe, working
precision compared with the theoretical worst-case. However, it does come at an increased com-
putational cost, as it iterates over all utilities in the range (potentially) several times. We discuss
this trade-off in more detail in Section 4.

3.2.2 Non-integer utilities

Many applications of the exponential mechanism are amenable to integer utility functions, e.g.
converting decimal dollar values to cent values. However, there may be cases where the utility
function provided (for example, by a third party) cannot be modified directly, or we wish to
simulate a distribution (such as the discrete Laplace distribution). We now consider the case of a
utility function which provides arbitrary precision non-integer utilities.

[4, 12], that this clamping argument does not hold, and the full range of u specified by the mechanism must be
supported at the cost of increased precision.

10



Algorithm 1 Minimum precision determination

Inputs: umin, the minimum utility, umax, the maximum utility, omax the maximum number of
outcomes, the privacy parameter η
Outputs: p, a sufficient precision no more than twice the size of the minimum precision to
successfully run the base-2 exponential mechanism.

1: procedure ComputePrecision(umin, umax, omax, η)
2: p← 1
3: while CheckPrecision(umin, umax, omax, η, p) fails do
4: p← 2p . 2p can be changed to a fixed increment if preferred.

5: return p

6: function CheckPrecision(umin, umax, omax, base, p)
7: Set the precision to p
8: return failure on inexact arithmetic for:
9: maxsum←

∑
i∈[omax] 2−ηumin

10: for u ∈ [umin, umax] do
11: combinedsum← 2−ηu + dmaxsume

The simple solution to non-integer utilities is to use randomized rounding, i.e. rounding up
or down to the nearest integer with probabilities proportional to how close the value is to each.
Our basic strategy is to show that randomized rounding incurs no privacy penalty from inexact
implementation.

Mechanism 4 (Randomized Rounding Exponential Mechanism). Given a privacy parameter ε, an
outcome set O and a utility function u : D × O → R which maps (database, outcome) pairs to a
real-valued utility, the randomized rounding exponential mechanism first assigns an integer proxy
utility

ρ(u(d, o)) :=

{
bu(d, o)c with probability |u(d, o)− du(d, o)e|
du(d, o)e with probability |u(d, o)− bu(d, o)c|

and then samples a single element from O based on the probability distribution

p(o) :=
e−ερ(u(d,o))∑
o∈O e

−ερ(u(d,o))

We now consider the privacy of randomized rounding in the exponential mechanism. The
argument follows from considering the worst possible set of rounding choices, and arguing that
privacy loss is no worse than in that case.

Lemma 3.5 (Privacy of arbitrary precision randomized rounding). Given an implementation of a
utility function u : D ×O → R which guarantees that for any pair of adjacent databases |u(d′, o)−
u(d, o)| ≤ α for integer α as implemented10, the exponential mechanism with a randomized rounding
function of arbitrary precision is 2αε−DP.

The proof of Lemma 3.5 appears in the appendix. The primary benefit of Lemma 3.5 is that
implementing randomized rounding does not require high precision to maintain privacy. Although
randomized rounding does not incur a privacy penalty for low precision implementation, it’s not

10By “as implemented” we mean that the implementation of u has sensitivity ≤ α. If inexact implementation of u
results in increased sensitivity, then this must be taken into account.

11



immediately obvious how well the exponential mechanism with randomized rounding approximates
the original non-integer utilities. Randomized rounding is a monotone transformation (see Lemma
A.1) and as such the relative ordering of probabilities is preserved, and the following simple bound
gives some indication that randomized rounding doesn’t change probabilities “too much”:

Proposition 3.6. Take po to be the probability that an outcome o is chosen by the exponential
mechanism, and p′o to be the probability that o is chosen by the randomized rounding exponential
mechanism. For any o, poe

−2ε ≤ p′o ≤ poe2ε.

In Section 4.1, we evaluate the error of randomized rounding empirically, and demonstrate
that the bounds are reasonably good for applications like simulating Laplace noise. If tighter error
bounds are needed in a given setting, we derive a tighter (but more complicated) bound on the error
compared with the unrounded mechanism in the appendix. Informally, we derive this bound by
lower-bounding the probability that the randomized rounding mechanism outputs a particular value
o. As the mechanism is guaranteed to output one value from O, we can determine the maximum
error of the lower bound by comparing the sum of the lower-bounds for each value o ∈ O with 1.
We then assume the worst case distribution of this error, namely that it is concentrated on a single
value. This yields an upper bound on the probability the mechanism outputs any particular o. We
can then determine a maximum pointwise error between the rounded and unrounded mechanisms by
computing the maximum difference between the bounds and the unrounded mechanism probability.
This method is simple to implement for reporting purposes, and we give an example set of bounds
in the appendix.

3.3 Normalized sampling without division

The final ingredient required to implement the exponential mechanism with exact arithmetic in
base-2 is to demonstrate how to sample an outcome, i.e., how to normalize the weights. The
challenge with division is that even if numerator and denominator can be expressed in a small
number of bits, their quotient may not be easily expressed (e.g., 11

7 ).
We compute the total weight t and assign each element a contiguous region in [0, t) with length

equivalent to its weight, (i.e., the first element is assigned [0, w1) the second [w1, w1 + w2) and so
on). The sampling method follows from the observation that sampling a value uniformly at random
in [0, t) is identical to sampling from the normalized distribution. To sample uniformly from [0, t),
we construct a string of random bits with maximum precision in [0, 2g) where 2g is the smallest
power of 2 greater than or equal to t. If the sample exceeds t, then we discard it and try again.
We then compute the cumulative weights ci :=

∑
j≤iwi, and each element is assigned the region

[ci−1, ci). Given the sample s ∼ [0, t), we select the corresponding element index by performing
a binary search on the range [0, t) which discards elements “ruled out” by each bit of s, stopping
when only one valid element remains.

Why not simply iterate through the values and output the smallest i such that ci > s? If
the precision provided is correct, there is no difference between these two approaches. However,
if the precision provided is somehow incorrect, (e.g., because a bug was introduced in precision
determination, the weights do not actually conform to the bounds used to compute the precision,
the inexact arithmetic monitoring fails, etc.), the “binary search” style method identifies if the
precision used for sampling was insufficient to correctly sample from the desired distribution, as
more than one element will remain in this case. Algorithm 2 outlines this procedure in detail.

12



Algorithm 2 Normalized weighted sampling

Inputs: W , a set of weights, p, the precision and k, a timing channel mitigation parameter.
Outputs: i, an index sampled according to p(i) := wi∑

wj∈W
wj

.

1: procedure NormalizedSample(W,p, k)
2: t←

∑
w∈W w . The total weight.

3: for i ∈ {1, . . . , |W |} do . Compute the cumulative weights.
4: ci ←

∑i
j=1wj . Each element assigned [ci−1, ci).

5: s← 0
6: j ← 0
7: g ← arg ming{2g ≥ t}
8: R← [|W |] . the remaining elements
9: s∗ ← GetRandomValue(p, t)

10: while |R| > 1 do
11: s← s+ s∗g−j2

g−j . Add the jth bit of s∗ to s.
12: for i ∈ R do
13: if ci ≤ s then . s cannot be in [ci−1, ci), even if all remaining bits of s∗ are 0.
14: R← R\{i}
15: if i > 0 and ci−1 ≥ s+ 2g−j then . s cannot be in [ci−1, ci), even if all remaining

bits of s∗ are 1.
16: R← R\{i}
17: j ← j + 1
18: if |R| > 1 and j > p then . Precision was insufficient
19: return error
20: return l

Inputs: the number of bits of precision p, the upper bound of the range [0, t) from which to
sample, and k, a timing channel mitigation parameter.
Output: a number sampled uniformly at random from [0, t).

21: function GetRandomValue(p, t, k)
22: g ← arg ming{2g ≥ t}
23: Initialize s←∞, s∗ ←∞, c← 0
24: while s ≥ t and c < k do . Reject s if it falls outside [0, t) or fewer than k iterations.
25: for i ∈ {0, . . . , p} do
26: ri ∼ Unif(0, 1)

27: s←
∑p

i=0 ri2
g−i

28: if s∗ =∞ and s < t then
29: s∗ ← s . update s∗ if s is in range.

30: c← c+ 1

31: return s∗

13



Lemma 3.7. Given a set of weights W with total weight t and sufficient precision p such that the
addition of any combination of weights in W can be expressed exactly with precision p, Algorithm 2
outputs the index of an element in W with probability distribution identical to that of the exponential
mechanism and the procedure uses at most O(p) random bits with high probability. If p is not
sufficient to sample correctly from the distribution, an error is returned.

The proof of Lemma 3.7 appears in the appendix.

Timing Channels

Although it is subtle, Algorithm 2 has a timing channel, driven by the difference in rejection
probability (Line 24). For example, if the total weight is 2` for database d, but for d′ the total
weight is 2` − 1, the sampling procedure for d may take longer than the sampling procedure for
d′. This follows from observing that the probability of s ≥ t is zero for d′, but near 1

2 for d. The
failure probability always ranges from [0, 1

2 ], so it cannot be arbitrarily different even for very large
differences in the total weight. The severity of this timing channel depends on how quickly random
bits can be sampled and how easily an adversary can distinguish between different numbers of
rejections. (We demonstrate a practical exploit of this timing channel in Section 4.)

For example, suppose that for d, the rejection probability is 1
2 and for d′ the rejection probability

is 0. With probability greater than 0.999, d will reject fewer than 10 times, so if generating the
random value 10 times versus one time is indistinguishable by the adversary, then the timing
channel will not be useful. However, if the adversary has access to fine-grained timing information
(e.g., if the adversary is able to make randomness scarce and thus increase the time it takes to
sample random bits) or the number of random bits used, this channel could be problematic.11

Furthermore, it’s worth noting that this timing channel is not dependent on the privacy parameter,
so the adversary may repeat the procedure many times with small budget in order to observe timing
information.

Fortunately, we can mitigate this timing channel by forcing the rejection loop to run at least k
times, even if a suitable s has already been identified. By running the loop a fixed minimum number
of times, the timing channel is not completely removed, but the probability of observing more than
k failures, and thus that any difference in timing can be observed, can be driven arbitrarily low by
increasing the size of k.

Proposition 3.8. Fixing p, for any t, the probability that GetRandomValue executes its while
loop more than k times is bounded by 2−k, thus with probability at least 1−2−k, GetRandomValue
has the same running time regardless of the underlying database. Thus for any adversary that can
observe fine-grained timing information or the number of random bits used, the probability that an
adversary observes useful timing information from GetRandomValue is at most 2−k.

It is critical to note that the timing channel mitigated is due to differences in logic, not differences
in the underlying timing of floating point arithmetic operations, which could still be a source of
timing discrepancy, (e.g., [2]).

A second potential source of timing channel is the concentration of weight, i.e., how many
elements can be eliminated in each iteration of the loop in Line 10. Fortunately, the implementation
of Algorithm 2 can be modified to use all of the bits of s∗ in the first iteration, and make a
single complete pass through the cumulative weights. More concretely, this modification consists of

11Recall that p is set independent of the database, so we are not concerned if the adversary learns the number of
bits of precision required for each iteration of the loop, rather we are concerned about the adversary learning the
number of times the loop is executed.

14



replacing Line 11 with s ← s∗, and setting the initial value of j ← p in Line 6. This modification
ensures that the amount of work done by the implementation is the same, even if the concentration of
the weights is different. This procedure can be optimized by terminating the scan of the cumulative
weights early, at the cost of re-introducing the weight concentration timing channel.

Optimization

Although timing channels are problematic in many cases, if the procedure is run in a batch mode
or a setting in which no fine-grained timing or randomness use information can be accessed by an
adversary, it is possible to optimize the sampling procedure at the cost of a more significant timing
channel. Simply put, one need not draw all p bits of randomness at once, and can instead draw one
bit at a time and terminate once a single value has been identified. Algorithm 4 in the appendix
outlines this optimization in detail.

3.4 Putting it all together

We now have all of the ingredients to specify the implementation of the exponential mechanism.
Algorithm 3 outlines the procedure. We leave the error handling logic in the case that inexact
arithmetic occurs unspecified. Depending on timing channel concerns, the database curator could
choose to retry at higher precision or to take some other action to debug what went wrong. As
specified, inexact arithmetic or errors should only occur if there are bugs in the implementation.

Algorithm 3 Base-2 exponential mechanism

Inputs: data independent parameters umin, umax, η(x, y, z), omax, data dependent parameters
u a utility function, O the set of outcomes and k a timing channel mitigation parameter.
Outputs: o ∈ O sampled according to the probability distribution of the base-2 exponential
mechanism or an error.

1: procedure B2ExponentialMechanism(umin, umax, omax, η(x, y, z), u, O, k)
2: Check that η(x, y, z) is a valid parameter choice
3: p← (max(1, |umin|) + max(1, |umax|))z(y + bx) + omax
4: Initialize an empty utility list U
5: for o ∈ O do
6: Append clamp(u(o), umin, umax) to U

7: Begin monitoring inexact arithmetic
8: b← 2−η

9: Initialize an empty weight list W
10: for i ∈ |O| do
11: wo ← bU [i]

12: Append wo to W

13: i∗ ← NormalizedSample(W,p, k)
14: if inexact arithmetic or i∗ is error then
15: (Error handling logic)

16: o∗ ← O[i∗]
17: return o∗

We state the following proposition to formally characterize the behavior of Algorithm 3:

Proposition 3.9. Given parameters umin, umax, omax, η, O, k and u determined independently of
the database such that ∆u ≤ 1, B2ExponentialMechanism either (1) outputs an element from O

15



sampled according to the probability of the Exponential Mechanism on the utility function clamp(u,
umin, umax) or (2) outputs an error if the precision is insufficient or inexact arithmetic occurs.
Furthermore, except with probability 2−k, the mechanism does not provide a useful timing or ran-
domness side channel if precision is sufficient and no inexact arithmetic occurs.

4 Implementation

Reference implementations in Python and Rust are included in the accompanying github repository.
Please see the repository for detailed code structure and additional documentation.

Exact Arithmetic

The goal of our implementation is to ensure that all arithmetic is exact. To that end, we use
the GNU Multiple Precision Arithmetic (GMP) and the GNU MPFR libraries for high precision
integer and floating point arithmetic [11, 9]. We access these libraries via the gmpy2 interface for
Python and the gmp− mpfr− sys and Rug crates for Rust [14, 19, 18]. MPFR provides a helpful
set of flags indicating when operations are inexact, or result in overflow, underflow, truncation,
etc. We use these extensively to ensure that our implementations are correct and exact. Under
normal operation, we do not expect any exceptions to be raised due to inexact arithmetic. These
libraries also provide methods for determining the maximum precision achievable on a given system
at run-time, preventing any errors due to exceeding any system-specific thresholds and making the
code easier to audit. In the case of an exception, the system designer can either choose to retry
with higher precision, or take the failure as an indication that debugging is needed. We note that
the problem of errors and exceptions being used as a side channel in DP is well known, and other
techniques such as subsample and aggregate can help provide privacy-preserving error handling for
these cases. The critical point is that the exception raised is the appropriate signal to the database
administrator that an error has been exploited either intentionally or unintentionally.

Separation of data independent and dependent logic

We have prioritized minimizing and clearly documenting side channels and our implementations
endeavor to separate logic that should be data independent from data dependent logic. In particular,
we require the caller to specify maximum and minimum utility bounds (umin and umax) and a limit
on the size of the outcome space (omax), which allows us to determine the working precision before
computing any utilities or examining private data. This ensures that the working precision, which
influences running time significantly, does not introduce a side channel. We also use these bounds
to enforce limits on the size of the outcome space and to clamp outputs of the provided utility
function to a prespecified range. Note, we do not attempt to verify the sensitivity of any provided
utility function, and it is up to the caller to ensure appropriate sensitivity.

Specifying privacy parameters

Privacy parameters are expressed as a set {x, y, z} to ensure that 2η for η = −z log( x2y ) can be
computed exactly.

Source of randomness

Our implementations permit significant flexibility in the source of randomness used for sampling.
In Python, the random number generator is passed in as a function pointer and is expected to

16

https://github.com/cilvento/b2dp


produce individual random bits. In Rust, we use the ThreadRandGen trait defined by Rug, which
requires a gen function producing a random u32. This allows the user to write simple wrappers for
any desired randomness source.

Logic

The logic of our implementations is nearly identical to the naive exponential mechanism, but
includes randomized rounding of the utility function, utility clamping (i.e., clamping utilities to the
pre-specified range) as well as additional monitoring of exact arithmetic.

Language-specific Details

We provide reference implementations written in Rust and Python. (See Figures 2 and 3.) Although
the logic of the implementations is for the most part identical, there are several differences worth
noting. In Python we implement the exponential mechanism as a class with associated sampling
and initialization functions. The intent of the implementation is to explicitly demonstrate the
separation between data dependent and independent logic. For example, the caller first initializes
an instance of the ExpMech class with the utility bounds, privacy parameter and maximum outcomes
space size and then sets the utility function (which accesses private data) in a subsequent call,
before sampling from the mechanism. The Python mechanism also does not implement the timing
channel or insufficient precision logic exactly specified in Algorithm 2, although it does include
optimized sampling as specified in Algorithm 4. The Python implementation is sufficiently close to
the pseudocode given in Algorithm 2 to be suitable for comparison with the Rust implementation
which faithfully reproduces the algorithms as specified.

1 # Example Python usage

2 from exponential_mechanism.expmech import *

3 import numpy as np

4

5 # Initialize outcomes and utility

6 u = lambda x : abs(0 - x)

7 # outcome space [-8, 8] in 0.3125 increments

8 gamma = 2**( -5)

9 k = 256

10 O = [i*gamma for i in range(-k,k+1)]

11 # random bit generator using numpy randomness

12 rng = lambda : np.random.randint (0,2)

13

14 # Initialize the mechanism with eta = -log_2 (1/2)

15 # and utility bounds

16 e = ExpMech(rng ,eta_x=1,eta_y=1, eta_z=1,\

17 u_min=0, u_max=16, max_o=len(O))

18 # set the utility function after initialization of precision , etc.

19 e.set_utility(u)

20 # run the mechanism

21 result = e.exact_exp_mech(O)

Figure 2: Example usage of Python mechanism to sample from the range [−8, 8] in increments of
2−5 for the utility function u(o) = |0.0− o|.

17



1 // Example Rust usage

2 use b2dp ::{ exponential_mechanism , Eta , GeneratorOpenSSL };

3

4 // Define a utility function

5 fn util_fn (x: &u32) -> f64 {

6 return (*x as f64).abs();

7 }

8 // Construct a privacy parameter eta = -log_2 (1/2)

9 let eta = Eta::new(1,1,1).unwrap ();

10 // Set bounds on the utility and outcomes

11 let utility_min = 0;

12 let utility_max = 10;

13 let max_outcomes = 10;

14 let rng = GeneratorOpenSSL {}; // use OpenSSL for randomness

15 let outcomes: Vec <u32 > = (0.. max_outcomes).collect ();

16 let sample = exponential_mechanism(eta ,

17 &outcomes , util_fn , utility_min ,

18 utility_max , max_outcomes , rng ,

19 Default :: default ())

20 .unwrap ();

Figure 3: Example usage of Rust mechanism with utility function u(o) = |o| and O = {0, . . . , 10}
and default options for optimization and timing channel protections.

The Rust implementation prioritizes performance in addition to readability and simplicity of the
code, and is intended for longer-term development. It separates functionality like normalized sam-
pling and exact arithmetic monitoring from the implementation of the exponential mechanism itself
in order to make extensions to other applications easier in the future. The Rust implementation
includes the minimum retry and insufficient precision logic outlined in Algorithm 2.

As we discuss below, each language has different overheads, and the performance characteristics
of the sampling procedures vary between the implementations. Furthermore, each language relies on
different interfaces to the underlying high precision arithmetic libraries, and use slightly different
strategies for enforcing exact arithmetic. In Python, we configure the high precision arithmetic
libraries to raise an exception if inexact arithmetic is performed. In Rust, we instead access the
inexact arithmetic flags directly, and enforce exact arithmetic only at the end of the procedure.

4.1 Performance and Applications

All timing tests were run using the Criterion crate for Rust and a custom timing script for
Python on a Linux virtual machine with 2 cores and 2GB of RAM. We used randomness generated
by OpenSSL in the Rust configurations, and numpy randomness in Python. In general, Rust far
outperformed Python, but the times presented are not strictly comparable, given the differences in
benchmarking. However, the times presented are indicative of performance on low-end consumer
hardware. We tested several configurations, outlined in Table 1. Unless otherwise noted, we chose
the retry parameter k = 1 for timing channel mitigation.

Interestingly, optimized sampling (Algorithm 4) showed degraded performance compared with
Algorithm 2 in Rust. This is likely due to the increased overhead of the binary search loop in
comparison with sampling additional bits of randomness in Rust. As such, we sample all random-
ness at once, and we use the early termination optimization for Algorithm 2 in our optimized Rust
configuration.

We consider the following application test cases to illustrate different properties of the base-2

18



PythonNaive naive base-e Python implementation

Python base-2 Python.

PythonOpt base-2 Python using Algorithm 4 for weighted sampling.

PythonEmp Python using empirical precision (Algorithm 1).

RustNaive naive base-e Rust implementation

Rust base-2 Rust.

RustOpt base-2 Rust using Algorithm 2 with early termination for weighted sampling.

RustEmp Rust using empirical precision (Algorithm 1).

Table 1: Testing configurations

(a) Rust: O = [n] with u(o) = o. (b) Python: O = [n] with u(o) = o.

Figure 4

exponential mechanism implementations.

Outcome Space Sizes

The simplest test we consider is choosing an outcome set O = [n] with a utility function u(o) = o. As
the instance size n increases, both the utility range and the outcome space size increase. Figures 4a
and 4b illustrate the results for Python and Rust. Although Python and PythonOpt are competitive
with PythonNaive, RustNaive is orders of magnitude faster than Rust and RustOpt. (We omit
RustNaive and PythonNaive from later figures with the exception of the Laplace test case, as
the conclusions are not significantly different in other test cases.) This test demonstrates that
the mechanism (particularly in Rust) is practical for large instance sizes, as even in a low-end
configuration, instance sizes of 75k can be completed in about 10 seconds.

Precision Determination Method

We repeated the outcome space size tests for RustEmp and PythonEmp, to demonstrate the difference
in performance due to the relative trade-off between the computational overhead of the empirical
precision determination versus the reduction in precision. Figures 5a and 5b outline the results.
PythonEmp significantly outperforms PythonTher as the instance size increases, indicating that the
computational overhead of the precision determination is outweighed by the improved sampling
performance. In contrast, RustEmp performs significantly worse, indicating that the precision de-
termination overhead is not outweighed by the reduced precision. (The Laplace use case, below, has

19



(a) Rust: O = [n] with u(o) = o. (b) Python: O = [n] with u(o) = o.

Figure 5

different behavior depending on the precision determination method, but no noticeable difference
is observed for the Utility Ranges test.)

Utility Ranges

Given a fixed outcome space size |O| = k + 1 = 1000, we test how increasing the range of utilities
[0, 1000 + n] impacts performance. We take O = {0} ∪ {i + n | i ∈ [k]} and assign u(o) = o.
Figures 6a and 6b illustrate the outcomes of the test for the optimized and non-optimized Rust
and Python implementations. As expected, the growth curve is linear, as the only increase in cost
as the instance size (n) increases is the cost of using increased precision for computation. This test
shows the benefit of optimized sampling in Python, and the performance of PythonOpt diverges
from the performance of Python as the instance size increases.

(a) Rust: k = 1000, O = {0} ∪ {i + n |i ∈ [k]},
u(o) = o.

(b) Python: k = 1000, O = {0} ∪ {i+ n|i ∈ [k]},
u(o) = o.

Figure 6

20



(a) Comparison of PyNaive, Python and Rust for
O = {BL + γi | BL + γi ≤ BU}, u(o) = |0.0− o|.

(b) Comparison of PythonEmp, Python, RustEmp
and Rust for O = {BL + γi | BL + γi ≤ BU},
u(o) = |0.0− o|.

Figure 7

Laplace

Recall that the Laplace mechanism (Mechanism 1) computes a function f of the database and
then adds noise drawn from the Laplace distribution, described by probability density function

Lap(t|∆f
ε ) = ε

2∆f e
− ε|t|

∆f . Notice that the range of possible noise values is infinite - although the
probability of observing a sample ≥ 14 is less than one in a million for ε = 1. The standard method
for sampling from the Laplace distribution is to use inverse transform sampling, i.e., to sample a
uniform value in U ∈ [0, 1] and solve for CDF (t) = U , where CDF refers to the cumulative density
function of the Laplace distribution.12 In a simple implementation, this amounts to computing
τ = ε

2∆f ln(1− U) for a uniformly random values U ∈ [0, 1).13

As discussed extensively in [16], the danger of implementing this mechanism using standard
(even highly accurate) implementations of ln is that there are certain gaps in the low order bits of
the values produced by ln(x) for x ∈ [0, 1] even when x is drawn at regular intervals. These gaps
result in differences in the support (possible outcomes) of the mechanism on adjacent databases,
which can then be used to distinguish possible values of the original output of f . By “snapping”
f + τ to a fixed set of intervals, these low order bits are safely eradicated. (Further details on
implementing the snapping mechanism can be found in [6].)

However, the Laplace mechanism can also be simulated via the exponential mechanism by
setting the utility function to be u(d, o) = |f(d)−o|, although there is some subtlety in the selection
of O. We implement the clamped discrete Laplace mechanism, which takes in a lower bound (BL),
an upper bound (BU ) and a granularity (γ) and sets O = {BL + γi | BL + γi ≤ BU}. By setting
this outcome space before the target value f(d) is observed, we maintain the independence of the
outcome set and the utility function. For our tests, we chose B = 10, and varied the size of γ.
Figure 7a compares the results of comparing Rust with and Python with PythonNaive. In this
case, Python actually outperforms PythonNaive, likely due to the improved performance of high
precision arithmetic in MPFR/gmpy2 versus built-in types. Furthermore, as illustrated in Figure

12Recall that the cumulative density function is the integral of the probability density function from −∞ to t, and
in the case of Laplace is very simple to compute.

13See [16] for a longer discussion of this technique for the Laplace mechanism in the context of DP and [17] for a
more general discussion of sampling from the Laplace distribution.

21



Figure 8: A comparison of the outputs of the randomized rounding base-2 exponential mechanism
with the unmodified exponential mechanism (the naive mechanism) for sampling from the Laplace
distribution for n = 6000 trials. (ε = 2 ln(2), γ = 2−4, O = {γi,−γi | i ∈ [100]}.)

7b, PythonEmp outperforms Python and Rust. Interestingly, RustEmp performs extremely well.
This is likely due to the limited outcome space sizes (which reduces the overhead of the empirical
precision computation). Given the differences in the benchmarking setup, we don’t read too much
into the exact timing comparison, but it is interesting to note that this is the only testing scenario
in which Python approaches the performance of Rust. This test has a very limited utility range
and outcome space size (< 7k), and as such the benefits of the Rust implementation seem to be
outweighed by the basic overheads of running the mechanism.

Other than performance, a critical concern with using the base-2 exponential mechanism for
Laplace is how much the use of randomized rounding impacts the accuracy of the mechanism.
In brief, randomized rounding has a limited impact and the rounded mechanism behaves very
similarly to the unmodified, inexact mechanism in the case of simulating the Laplace distribution.
Furthermore, a small outcome set size (< 1, 000) is sufficient to closely approximate the true Laplace
distribution.

Figure 8 illustrates the distribution of outputs simulating the Laplace distribution for the ran-
domized rounding mechanism and the naive mechanism. The distributions are nearly identical,
and Kolmogorov-Smirnov test statistic for the pair of distributions is also small (0.02), indicating
that there isn’t sufficient evidence to conclude that the distributions are different. In the Appendix,
Figures 10 and 11 illustrate how closely the lower and upper bounds given by Lemma A.2 bound
the target probability of the naive mechanism. In particular, the width of the bound is closely
related to the granularity of the outcome space, and as granularity increases, the width of the
bound decreases, giving smaller point-wise error bounds.

Timing channel protections

To demonstrate the impact of minimum retry logic on timing channels, we constructed two utility
functions u1 such that u1(o) = 1 and u0 such that u0(o1) = 0 and u0(oi>1) = 1 and ran them on
an outcome space of size 256 with η = − log2(1

2). This results in a total weight of 128.5 for u0

and a total weight of 128 for u1. Thus, u1 will always succeed in choosing a sample in [0, 128),
but u0 will have rejection probability near 1

2 . Figure 9 illustrates the difference in timing for these
two utility functions with varying k dictating the minimum number of retries. As we would expect
from Proposition 3.8, although there is a noticeable timing difference when k = 1, as k increases,
the timing converges. This both demonstrates the potential for a malicious adversary to exploit

22



Figure 9: Rust: Comparison of timing differences of utility functions u0(o) = 0 for all o ∈ O and
u1(oi>1 = 0), u1(o1) = 1 with privacy parameter set such that the total weight for u1 = 128.5
and for u0 = 128. u0 always successfully samples within the required range, whereas u1 has near
maximal rejection probability. With no retries, u1 is consistently about 1.5× slower, but as the
number of minimum retries increases, the times converge.

the timing channel (if protections are not in place), and that the minimum rejection method does
provide empirically validated protection.

5 Discussion and future work

Floating-point issues in implementations of the Laplace mechanism are well-known. In this work,
we have demonstrated new floating point issues which arise in the exponential mechanism even
when the floating point computations themselves are not revealed. To address these issues, we
have specified an alternative view of DP using base-2 instead of base e exponentiation. Base-2 DP
has the benefit of allowing exact implementation of the exponential mechanism, without diverging
from the logic of the original base-e mechanism. By using exact computations, monitoring of
correctness, which yields privacy, is more straightforward, and the mechanism is much harder
to subvert as it is not vulnerable to attacks exploiting inexact arithmetic. We have also shown
that exact implementation permits a rich set of privacy parameters and both integer and non-
integer utility functions. The base-2 mechanism is reasonably efficient. Even on low-end consumer
hardware, our reference implementation can handle instance sizes on the order of 100k in seconds.

This work is a step towards a programming paradigm of exact arithmetic for DP. Ongoing
developments (available in the accompanying github repository) include: implementation of the
integer partition mechanism (and extension to pure-DP) of [4] and extensions of floating point
attacks to the sparse vector technique and mitigation via exact implementation of clamped discrete
Laplace and noisy threshold. Future directions include: integration with open-source DP libraries,
e.g. OpenDP [20], to more easily construct bounded-sensitivity utility functions, more robust
timing channel mitigation strategies, additional methods for converting between and composing
base-2 and base-e privacy parameters.

23

https://github.com/cilvento/b2dp


References

[1] R. Adams. The gumbel-max trick for discrete distributions, 2013. URL https://lips.cs.

princeton.edu/the-gumbel-max-trick-for-discrete-distributions/.

[2] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham. On subnormal
floating point and abnormal timing. In 2015 IEEE Symposium on Security and Privacy, pages
623–639. IEEE, 2015.

[3] V. Balcer and S. Vadhan. Differential privacy on finite computers. arXiv preprint
arXiv:1709.05396, 2017.

[4] J. Blocki, A. Datta, and J. Bonneau. Differentially private password frequency lists. In NDSS,
volume 16, page 153, 2016.

[5] M. Burke. Vulnerability in floating point implementation of exponential mechanism, 2017.
Poster, Theory and Practice of Differential Privacy Workshop.

[6] C. Covington. Snapping Mechanism, 2019. URL https://github.com/ctcovington/

floating_point.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of cryptography conference, pages 265–284. Springer, 2006.

[8] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends R© in Theoretical Computer Science, 9(3–4):211–407, 2014.

[9] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. Mpfr: A multiple-precision
binary floating-point library with correct rounding. ACM Transactions on Mathematical Soft-
ware (TOMS), 33(2):13–es, 2007.

[10] I. Gazeau, D. Miller, and C. Palamidessi. Preserving differential privacy under finite-precision
semantics. Theoretical Computer Science, 655:92–108, 2016.

[11] T. Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arith-
metic Library, 6.1.2 edition, 2019. URL http://gmplib.org/.

[12] A. Gupta, K. Ligett, F. McSherry, A. Roth, and K. Talwar. Differentially private approxima-
tion algorithms. CoRR, abs/0903.4510, 2009. URL http://arxiv.org/abs/0903.4510.

[13] C. Ilvento. Working Paper. Implementing the sparse vector technique and variants: vulnera-
bilities and mitigation via exact implementation, 2020.

[14] A. Martelli and the gmpy2 contributors. General Multi-Precision arithmetic for Python, 2.1
edition, 2019. URL https://gmpy2.readthedocs.io/en/latest/.

[15] F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, volume 7,
pages 94–103, 2007.

[16] I. Mironov. On significance of the least significant bits for differential privacy. In Proceedings
of the 2012 ACM conference on Computer and communications security, pages 650–661. ACM,
2012.

24

https://lips.cs.princeton.edu/the-gumbel-max-trick-for-discrete-distributions/
https://lips.cs.princeton.edu/the-gumbel-max-trick-for-discrete-distributions/
https://github.com/ctcovington/floating_point
https://github.com/ctcovington/floating_point
http://gmplib.org/
http://arxiv.org/abs/0903.4510
https://gmpy2.readthedocs.io/en/latest/


[17] M. S. Ridout. Generating random numbers from a distribution specified by its laplace trans-
form. Statistics and Computing, 19(4):439, 2009.

[18] T. Spiteri and gmp-mpfr-sys contributors. gmp-mpfr-sys: Rust low-level bindings for GMP,
MPFR and MPC, 1.2.2 edition, 2020. URL https://docs.rs/gmp-mpfr-sys/1.2.2/gmp_

mpfr_sys/.

[19] T. Spiteri and Rug contributors. Rug: Arbitrary-precision numbers, 1.8.0 edition, 2020. URL
https://docs.rs/rug/1.8.0/rug/.

[20] The OpenDP Team. The OpenDP whitepaper, 2020. URL https://projects.iq.harvard.

edu/files/opendp/files/opendp_white_paper_11may2020.pdf.

A Appendix

A.1 Additional Proofs

Minimum precision

Proof of Lemma 3.4.

Proof. Writing 2−ηu requires no more than max(1, |u|)z(y+ bx) bits of precision. Thus to write the
largest weight, corresponding to umin, we require no more than max(1, |umin|)z(y + bx) bits. The
largest possible value any combination of weights could take on is omax2−ηumin , and adding 2−ηumin

to itself omax times requires an extra omax bits of precision, as each addition increases the precision
by at most one bit. Thus, the largest possible combination requires omax + max(1, |umin|)z(y+ bx)
bits. This corresponds to the largest possible number of bits needed before the decimal. To
compute the largest possible number of bits needed after the decimal, we consider the smallest
possible weight, 2−ηumax , which will require |umax|z(y + bx) bits. Thus in the worst case, we
require maximum precision on both sides of the decimal, yielding the desired maximum bound of
(max(1, |umin|) + max(1, |umax|))z(y + bx) + omax.

Privacy of Randomized Rounding. Proof of Lemma 3.5

Proof. Suppose to implement randomized rounding that we draw a number s uniformly at random
from [0, 1), and round up if s ≤ |u(d, o)− bu(d, o)c| (and otherwise round down). Fix a particular
choice of s. Consider a pair of adjacent databases d and d′ such that u(d′, o) > u(d, o). Notice that
it is impossible for the rounding procedure to result in a difference in composed utility of more
than α. This follows from observing that there are two cases: either bu(d′, o)c − bu(d, o)c < α, in
which case any rounding results in difference at most α, or bu(d′, o)c − bu(d, o)c = α.

If bu(d′, o)c − bu(d, o)c = α, then bu(d′, o)c − bu(d, o)c ≥ u(d′, o) − u(d, o), and thus u(d′, o) −
bu(d′, o)c ≤ u(d, o)− bu(d, o)c. Therefore s is in one of three regions:

1. s ∈ [0, u(d′, o)− bu(d′, o)c], which results in both values rounded up,

2. s ∈ (u(d′, o) − bu(d′, o)c, u(d, o) − bu(d, o)c], which results in u(d′, o) rounded down and u(d, o)
rounded up, or

3. s ∈ (u(d, o)− bu(d, o)c, 1), which results in both rounded down.

25

https://docs.rs/gmp-mpfr-sys/1.2.2/gmp_mpfr_sys/
https://docs.rs/gmp-mpfr-sys/1.2.2/gmp_mpfr_sys/
https://docs.rs/rug/1.8.0/rug/
https://projects.iq.harvard.edu/files/opendp/files/opendp_white_paper_11may2020.pdf
https://projects.iq.harvard.edu/files/opendp/files/opendp_white_paper_11may2020.pdf


Thus, for any s rounding never results in a difference between u(d, o) and u(d′, o) greater than α.
(The symmetric argument follows for any o such that u(d, o) > u(d′, o).) Take the utility function
uS := ρ(u(d, o)) to be the utility function with fixed randomness S, i.e., the set of s used for
each rounding decision. From the above, ∆uS ≤ α. Thus, the exponential mechanism with utility
function uS is 2αε−DP. Write pS(o) for the probability that the exponential mechanism with utility
function uS outputs the element o. Taking p(o) to be the probability that the randomized rounding
exponential mechanism outputs o, we can therefore write

p(o) =
∑

S∼[0,1)|O|

Pr[S]pS(o)

and for any adjacent database, we can write

p′(o) =
∑

S∼[0,1)|O|

Pr[S]p′S(o)

where S ∼ [0, 1)|O| indicates the set of all possible random values s ∈ [0, 1) used for sampling.

Because ∆uS ≤ α, we have that pS(o)
p′S(o)

≤ e−2αε, so

p(o)

p′(o)
=

∑
S∼[0,1)|O| Pr[S]pS(o)∑
S∼[0,1)|O| Pr[S]p′S(o)

≤
∑

S∼[0,1)|O| Pr[S]e2αεp′S(o)∑
S∼[0,1)|O| Pr[S]p′S(o)

= e2αε

Monotonicity of Randomized Rounding.

Lemma A.1. The randomized rounding exponential mechanism is monotone. That is, for o1, o2 ∈
O if Pr[M(d) = o1] ≥ Pr[M(d) = o2] then Pr[M′(d) = o1] ≥ Pr[M(d) = o2], where M is the
unmodified exponential mechanism, and M′ is the randomized rounding exponential mechanism
(Mechanism 4).

Proof. Fix any set of rounding decisions for oi/∈{1,2}, and take S =
∑

i/∈{1,2} e
−εu(d,o).

Notice that if |u(d, o1) − u(d, o2)| ≥ 1, then rounding the utilities cannot change the relative
ordering of the utilities. Thus, we only consider cases where |u(d, o2)− u(d, o1)| ≤ 1.

For conciseness, write p⊥i := |u(d, oi)−du(d, oi)e|, i.e., the probability that the utility is rounded
down, and p>i := 1 − p⊥i , i.e., the probability that the utility is rounded up. We can write the

26



probability that M′ outputs o1 or o2 as

Pr[M′(d) = o1] =p⊥1 ∗ p⊥2
e−εbu(d(o1)c

S + e−εbu(d(o1)c + e−εbu(d(o2)c

+ p⊥1 ∗ p>2
e−εbu(d(o1)c

S + e−εbu(d(o1)c + e−εdu(d(o2)e

+ p>1 ∗ p⊥2
e−εdu(d(o1)e

S + e−εdu(d(o1)e + e−εbu(d(o2)c

+ p>1 ∗ p>2
e−εdu(d(o1)e

S + e−εdu(d(o1)e + e−εdu(d(o2)e

Pr[M′(d) = o2] =p⊥1 ∗ p⊥2
e−εbu(d(o2)c

S + e−εbu(d(o1)c + e−εbu(d(o2)c

+ p⊥1 ∗ p>2
e−εdu(d(o2)e

S + e−εbu(d(o1)c + e−εdu(d(o2)e

+ p>1 ∗ p⊥2
e−εbu(d(o2)c

S + e−εdu(d(o1)e + e−εbu(d(o2)c

+ p>1 ∗ p>2
e−εdu(d(o2)e

S + e−εdu(d(o1)e + e−εdu(d(o2)e

To show monotonicity, it suffices to show that if e−εu(d,o1) ≥ e−εu(d,o2), then Pr[M′(d) = o1]−
Pr[M′(d) = o2] ≥ 0.

Pr[M′(d) = o1]− Pr[M′(d) = o2]

=p⊥1 ∗ p⊥2
e−εbu(d(o1)c − e−εbu(d(o2)c

S + e−εbu(d(o1)c + e−εbu(d(o2)c

+ p⊥1 ∗ p>2
e−εbu(d(o1)c − e−εdu(d(o2)e

S + e−εbu(d(o1)c + e−εdu(d(o2)e

+ p>1 ∗ p⊥2
e−εdu(d(o1)e − e−εbu(d(o2)c

S + e−εdu(d(o1)e + e−εbu(d(o2)c

+ p>1 ∗ p>2
e−εdu(d(o1)e − e−εdu(d(o2)e

S + e−εdu(d(o1)e + e−εdu(d(o2)e

As e−εdu(d(o2)e ≤ e−εdu(d(o1)e and e−εbu(d(o2)c ≤ e−εbu(d(o1)c,

Pr[M′(d) = o1]− Pr[M′(d) = o2]

≥ p⊥1 ∗ p>2
e−εbu(d(o1)c − e−εdu(d(o2)e

S + e−εbu(d(o1)c + e−εdu(d(o2)e

+ p>1 ∗ p⊥2
e−εdu(d(o1)e − e−εbu(d(o2)c

S + e−εdu(d(o1)e + e−εbu(d(o2)c

Recall that e−εu(d,o1) ≥ ee
−εu(d,o2)

and we only consider the case in which |u(d, o1) − u(d, o2)| ≤ 1.
Thus, either bu(d, o1)c = bu(d, o2)c or bu(d, o1)c+ 1 = bu(d, o2)c.

We now consider each case:

1. Suppose bu(d, o1)c = bu(d, o2)c = x.

27



Given bu(d, o1)c = bu(d, o2)c and e−εu(d,o1) ≥ ee
−εu(d,o2)

, u(d, o1) − bu(d, o1)c ≤ u(d, o2) −
bu(d, o2)c, and thus p>1 ≤ p>2 .

Then

Pr[M′(d) = o1]− Pr[M′(d) = o2]

≥p⊥1 ∗ p>2
e−εx − e−ε(x+1)

S + e−εx + e−ε(x+1)

+ p>1 ∗ p⊥2
e−ε(x+1) − e−εx

S + e−εx + e−ε(x+1)

=v(p⊥1 ∗ p>2 − p>1 ∗ p⊥2 )

=v(p>2 − p>1 )

≥0

where v = e−εx−e−ε(x+1)

S+e−εx+e−ε(x+1) > 0.

2. Suppose bu(d, o1)c+ 1 = bu(d, o2)c = x+ 1. Then

Pr[M′(d) = o1]− Pr[M′(d) = o2]

≥p⊥1 ∗ p>2
e−εx − e−ε(x+2)

S + e−εx + e−ε(x+2)

+ p>1 ∗ p⊥2
e−ε(x+1) − e−ε(x+1)

S + e−ε(x+1) + e−ε(x+1)

=p⊥1 ∗ p>2
e−εx − e−ε(x+2)

S + e−εx + e−ε(x+2)

≥0

We state the bounds more formally in the lemma below:

Lemma A.2. Given a privacy parameter ε, a utility function u and an outcome set O, the difference
in the probability of outputting an outcome o∗ ∈ O between the randomized rounding exponential
mechanism and the original exponential mechanism is upper-bounded by A+ |B| where

pu(d,o) = |u(d, o)− du(d, o)e| (5)

qu(d,o) =
pu(d,o)e

−εbu(d,o)c

e−εbu(d,o)c + E[
∑

o′∈O\{o} e
−ερ(u(d,o′))]

+ (6)

(1− pu(d,o))e
−εdu(d,o)e

e−εdu(d,o)e + E[
∑

o′∈O\{o} e
−ερ(u(d,o′))]

(7)

A = 1−
∑
o∈O

qu(d,o) (8)

B =
e−εu(d,o∗)∑
o∈O e

−εu(d,o)
− qu(d,o∗) (9)

28



A complete proof of the Lemma is included in the Appendix. To build intuition, we give the
following informal explanation of each part.

pu(d,o) is the probability that u(d, o) is rounded down.

qu(d,o) is a lower bound on the probability that the randomized rounding mechanism outputs o. The
first term is a lower bound on the probability conditioned on rounding down, and the second
is conditioned on rounding up.

A is the cumulative estimation error of the lower bound for all elements and therefore an upper
bound on the estimation error for qu(d,o) for any single element. Why? Each element’s
probability is lower bounded by qu(d,o), so the sum

∑
o∈O qu(d,o) would be 1 if the estimates

were exact. The maximum error on any given element’s probability is therefore given by
subtracting the sum of the lower bounds from 1.

B is the difference between the lower bound probability for the randomized rounding mechanism
and the probability given by the original mechanism for outputting o∗.

A+ |B| is the sum of the error on the lower bound and the difference between the lower bound and the
original unrounded mechanism probability. It is therefore the maximum difference between
the probabilities of outputting o∗ in the original unrounded mechanism and the randomized
rounding mechanism.

The tightness of the error bound is directly related to the size of A, and as we see in Section 4.1,
the Lemma gives a tight estimate of the error in the important setting of implementing Laplace
noise.

Proof of Lemma A.2

Proof. We break the proof of the lemma into several parts for easier reading. In part 1, we will show
that qu(d,o) is indeed a lower bound for the probability that the randomized rounding exponential
mechanism outputs o. In part 2, we will show that A + |B| is an upper bound on the difference
in probability that o∗ is output by the randomized rounding exponential mechanism versus the
original exponential mechanism.

Part 1. Given a constant a and a set of random variables Xi, notice that E[ a
a+

∑
iXi

] ≥ a
a+

∑
i E[Xi]

.

This follows from observing that for a random variable Y , E[Y ] ≤ 1
E[ 1

Y
]

from Jensen’s inequality,

and that E[a∗Y ] = a∗E[Y ] and E[a+Y ] = a+E[Y ] and E[Y1 +Y2] = E[Y1]+E[Y2] for independent
random variables Y1 and Y2 by linearity of expectation.

The next step is to translate these observations to our scenario. Consider the expression for the
expected value of the probability of selecting o in the randomized rounding exponential mechanism:

Pr[M(u, d) = o] = E[
e−ερ(u(d,o))∑
o∈O e

−ερ(u(d,o))
]

Notice that, as written, we cannot exactly translate the above using our previous observations
as eερ((u(d,o)) is not a constant - it is a random variable. To get around this, we condition on u(d, o)

29



being rounded either up or down:

Pr[M(u, d) = o] =pu(d,o) Pr[M(u, d) = o| round down]+

(1− pu(d,o)) Pr[M(u, d) = o| round up]

=pu(d,o)E[
e−εbu(d,o))c

e−εbu(d,o))c +
∑

o′∈O\{o} e
−ερ(u(d,o′))

]+

(1− pu(d,o))E[
e−εdu(d,o))e

e−εdu(d,o))e +
∑

o′∈O\{o} e
−ερ(u(d,o′))

]

Now we have two terms with constant numerators, identical to E[ a
a+

∑
iXi

] where

Xi = e−ερ(u(d,oi)) and a = e−εdu(d,o))e or e−εbu(d,o))c. Thus,

Pr[M(u, d) = o] ≥
pu(d,o)e

−εbu(d,o))c

e−εbu(d,o))c +
∑

o′∈O\{o} E[e−ερ(u(d,o′))]
+

(1− pu(d,o))e
−εdu(d,o))e

e−εdu(d,o))e +
∑

o′∈O\{o} E[e−ερ(u(d,o′))]

Pr[M(u, d) = o] ≥qu(d,o)

Part 2. Call the probability that the randomized rounding mechanism outputs o so. The differ-
ence in probability on any given element of the randomized rounding mechanism versus the original

mechanism is |so− e−εu(d,o)∑
o∈O e−εu(d,o) |. Taking the lower bound qu(d,o) as an approximation for so, notice

that so− qu(d,o) ≤ 1−
∑

o∈O qu(d,o). This follows from observing that qu(d,o) is a lower bound for so
for all o ∈ O, and thus the sum of the lower bounds is a lower bound on the sum, which is known
to be 1. Thus the maximum error qu(d,o) may have on any o ∈ O is A = 1 −

∑
o∈O qu(d,o). Using

qu(d,o) as an approximation, the maximum error on max{A−B,B} ≤ A+ |B|.

Figures 10 and 11 illustrate the consequences of Lemma A.2 for the Laplace application. Figure
10 shows that the maximum point-wise error between the randomized rounding and unrounded
mechanisms is small, and decreases as the granularity γ of the outcome space decreases. Intuitively,
the smaller γ is and the more outcomes are included, the closer E[ 1

X ] should approximate 1
E[X] , as

X concentrates with more samples. Figure 11 illustrates how the lower and upper bounds compare
to the naive probabilities, and also shows that the lower bound error is small. How should we
interpret these results? Loosely speaking, applying the lemma to a particular application gives us
a worst-case bound on how different the probabilities of the randomized rounding mechanism will
be from the unrounded mechanism. As we see in the case of Laplace, these errors are not too large,
even in the worst case.

Normalized Sampling

Proof of Lemma 3.7 for Algorithm 2.

Proof. The proof consists of three parts: first, correctness of the distribution assuming sufficient
precision; second, sufficiency of precision and bounding the number of random bits required; third,
identification of error conditions.

Correctness. Notice that (assuming infinite precision) this procedure amounts to partitioning
the range [0, t), where t is the total weight, between the elements of W according to their weight,

30



Figure 10: The maximum possible point-wise difference between the output probabilities of the
unrounded naive mechanism and the randomized rounding exponential mechanism at varying gran-
ularities. Notice that as granularity increases, the error decreases.

Figure 11: Accuracy bounds for randomized rounding versus the probability assigned by the naive
mechanism.

31



sampling a value s in [0, t) and choosing an element in W based on which partition s lands in. To
see the correctness of the sampling procedure, observe that in each iteration of the while loop,
any elements “ruled out” by the bits of s we have seen so far are removed. That is, any element
that has been assigned a range strictly smaller than s or strictly larger than s + 2j−1 is removed.
This leaves the set of elements which still could be reached by the remaining bits of s, namely
elements that have some portion of the range [s, s+ 2j). The probability that any given element is
sampled is equivalent to the probability that a random value s ∈ [0, t) falls into its assigned range
of [0, t), thus, each element is sampled with probability wi

t , which is equivalent to the exponential
mechanism.

Randomness required. Notice that each iteration of the while loop at Line 23 requires p random
bits. Thus it suffices to show that the loop only resets (i.e., the s is rejected) a constant number
of times with high probability. Notice that s can only be greater than or equal to t if the first
random value selected is 1, as t requires at least g bits to write. 14 The probability that k samples
all have 1 as their first bit is 2−k. Thus, with probability at least 1 − 2−k, k iterations will result
in a successful sample.

Sufficient precision. Notice that p bits are sufficient to express any ci for i ∈ [|W |]. Imagine that
an oracle agrees to read out a random value in [0, t) with infinite bits of precision. After hearing p
bits, we have sufficient information to choose a single value in W , and hearing any more bits cannot
change our choice. The sum in Line 27 is equivalent to taking the first p bits from the oracle and
writing them as a value in [0, 1) scaled by 2g. This follows from observing that at most one element
can “claim” any range [a2−p, (a + 1)2−p) as all combinations of W can be expressed in p bits of
precision. Thus, p bits of precision are sufficient to simulate the infinite precision procedure.

Error conditions. Suppose again that the procedure has access to infinite bits of randomness
(i.e., that the procedure can continue by sampling additional randomness if j < 0 in Line 17).
In this case, the procedure correctly samples from the distribution. Now, suppose that sufficient
precision is not available. There are two possible cases, either (1) the value sampled covered a
region containing [s, s+s∗g−p2

g−p), and hearing any more bits of s∗ wouldn’t change the outcome or
(2) an error is returned. Thus, either the sample is the sample that would have been drawn given
infinite precision, or an error is returned.

Optimized Sampling

14Strictly speaking, s will also need at least one additional lower bit to be 1, but we give the simpler version as it’s
sufficient for our purposes.

32



Algorithm 4 The optimized normalized weighted sampling algorithm

Inputs: W , a set of weights.
Outputs: i, an index sampled according to p(i) := wi∑

wj∈W
wj

.

1: procedure NormalizedSample(W )
2: t←

∑
w∈W w . The total weight.

3: for i ∈ {1, . . . , |W |} do . Compute the cumulative weights.
4: ci ←

∑i
j=1wj . Each element assigned [ci−1, ci).

5: k ← arg mink{2k ≥ t} . The smallest power of two ≥ t.
6: if 2k > t then
7: W ←W ∪ {⊥} . Add element ⊥ with weight 2k − t.
8: c|W | ← 2k − t . Total weight is now 2k.

9: s← 0
10: j ← k − 1
11: R← [|W |] . the remaining elements
12: while |R| > 1 do
13: rj ∼ Unif(0, 1)
14: s← s+ rj2

j

15: for i ∈ R do
16: if ci ≤ s then . s cannot be in [ci−1, ci), even if all draws are 0.
17: R← R\{i}
18: if i > 0 and ci−1 ≥ s+ 2j then . s cannot be in [ci−1, ci), even if maximum value

added.
19: R← R\{i}
20: j ← j − 1
21: if |R| = 1 and ⊥ ∈ R then . Restart if dummy value.
22: s← 0
23: j ← k − 1
24: R← [|W |]
25: return l

33


	1 Introduction
	1.1 Differential Privacy Preliminaries

	2 Subverting the Exponential Mechanism
	3 Implementing the Exponential Mechanism Exactly
	3.1 Base-2 differential privacy
	3.2 Non-integer privacy parameters and utilities
	3.2.1 Expressive privacy parameters
	3.2.2 Non-integer utilities

	3.3 Normalized sampling without division
	3.4 Putting it all together

	4 Implementation
	4.1 Performance and Applications

	5 Discussion and future work
	A Appendix
	A.1 Additional Proofs


