
Practical Recommendations for Stronger, More Usable
Passwords Combining Minimum-strength, Minimum-length,

and Blocklist Requirements
Joshua Tan, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor

Carnegie Mellon University
{jstan,lbauer,nicolasc,lorrie}@cmu.edu

ABSTRACT
Multiple mechanisms exist to encourage users to create stronger
passwords, including minimum-length and character-class require-
ments, prohibiting blocklisted passwords, and giving feedback on
the strength of candidate passwords. Despite much research, there
is little de�nitive, scienti�c guidance on how these mechanisms
should be combined and con�gured to best e�ect. Through two
online experiments, we evaluated combinations of minimum-length
and character-class requirements, blocklists, and aminimum-strength
requirement that requires passwords to exceed a strength threshold
according to neural-network-driven password-strength estimates.

Our results lead to concrete recommendations for policy con�g-
urations that produce a good balance of security and usability. In
particular, for high-value user accounts we recommend policies that
combine minimum-strength and minimum-length requirements.
While we o�er recommendations for organizations required to use
blocklists, using blocklists does not provide further gains. Inter-
estingly, we also �nd that against expert attackers, character-class
requirements, traditionally associatedwith producing stronger pass-
words, in practice may provide very little improvement and may
even reduce e�ective security.

CCS CONCEPTS
• Security and privacy ! Authentication; Usability in secu-
rity and privacy.

KEYWORDS
password policies; neural networks; blocklists

ACM Reference Format:
Joshua Tan, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. 2020.
Practical Recommendations for Stronger, More Usable Passwords Combin-
ing Minimum-strength, Minimum-length, and Blocklist Requirements. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 20 pages. https://doi.org/10.1145/3372297.3417882

CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7089-9/20/11.
https://doi.org/10.1145/3372297.3417882

1 INTRODUCTION
To help users create stronger passwords, system administrators
often require passwords to exceed a certain length, contain at least
a speci�c number of character classes, or not appear on a block-
list [19]. Users are also often nudged to create stronger passwords
by password meters that give feedback on the strength of candidate
passwords and suggestions about how to improve them.

Early guidance for how to deploy these approaches relied mostly
on common sense and experts’ opinions [17, 18]. Over the past
decade, a scienti�c basis has emerged for what requirements are
most e�ective at encouraging users to create passwords that are
strong but still memorable. For example, research has shown that
increasing minimum length may increase password strength more
than relying just on character class requirements [26]; that pass-
word meters can very e�ectively nudge users to create stronger
passwords [28]; and that carefully con�gured blocklists can help
prevent users from picking easily guessed passwords [8].

These early e�orts shed light on which password requirements
were more or less e�ective, but stopped short of providing em-
pirically evaluated, de�nitive guidance for how to combine re-
quirements. In this paper, we seek to address this. Building on
previous �ndings, we empirically examine combinations of length,
character-class, blocklist, and password meter requirements—all of
which were previously individually studied—as well as minimum-
strength requirements, which have been less studied. We consider
practical implementions of minimum-strength requirements, us-
ing estimates from a neural network trained on leaked password
data. Our research questions examine and compare the security
and usability properties of di�erently con�gured blocklists and
minimum-strength requirements, with careful attention to how
the choice of underlying composition requirements a�ect these
properties.

Our results, derived through two successive experiments that
investigated a wide range of potential interactions between require-
ments, allow us to provide concrete, practical recommendations
for how to combine and con�gure these mechanisms. We �nd that
how users pick passwords has changed over time, and that this,
in combination with advances in password guessing, implies that
requiring passwords to have multiple character classes brings at
best minor bene�t to password strength. Although some blocklist
con�gurations are more e�ective than others at eliminating weak
passwords, policies that require passwords to have at least eight
characters and that simultaneously prohibit passwords that can be
guessed within 106 guesses perform better—in terms of encourag-
ing password strength—than the best-performing blocklist policies
we examine. Properly con�gured minimum-strength policies not

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1407

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3372297.3417882&domain=pdf&date_stamp=2020-11-02

only match our top tested blocklist policies in usability, but can
also provide better security, especially against o�ine attacks that
make up to 1014 guesses. For organizations that nevertheless require
blocklists, we recommend blocklist policies that impose a minimum
of eight characters and perform a fuzzy blocklist-matching check
against either a subset of the most popular passwords found in pass-
word leaks, or that perform a fullstring-matching check against a
very large database of publicly-leaked passwords.

A primary contribution of our work is to design, evaluate, and
recommend con�gurations for minimum-strength requirements.
These requirements build on the large body of password research
conducted over the past 15 years. Conceptually, minimum-strength
requirements represent the goal of other types of password-creation
requirements that have been proposed and tested: to reject weak,
easily-guessed passwords while permitting strong, hard-to-guess
passwords. In this study, we present a concrete (neural-network-
driven) implementation of minimum-strength requirements that
both faithfully achieves password-strength goals and achieves com-
parable usability to the best competing blocklist-based policies we
tested. Neural-network-driven minimum-strength requirements
are easy to deploy, �exibly con�gurable, and can be easily retrained
to re�ect changing patterns in passwords over time.

2 BACKGROUND AND RELATEDWORK
Here we discuss related work on password composition policies
and blocklists, and on measuring password strength, including to
implement data-driven minimum-strength requirements.

2.1 Composition policies
Password composition policies aim to help users createmore unique,
less predictable passwords. Composition policies can be used at
password-creation time to enforce a minimum number of character
classes—uppercase letters, lowercase letters, symbols, and digits—
and a minimum-length requirement.

Early work on composition policies focused on character-class re-
quirements to increase password strength [18]. In general, policies
that requiremore character classes have been found to produce over-
all stronger passwords [11, 13]. Later work explored policies that
emphasized length over character-class composition. Researchers
exploring length requirements have found that reducing the number
of required character classes while increasing the minimum-length
requirement could strengthen passwords without decreasing their
memorability or making themmore di�cult to create [11, 13, 25, 26].

Although researchers and, more recently, NIST advise to avoid
composition policies requiring a minimum number of character
classes, this type of policy is still often used in practice [4, 14]. We
include such policies in our studies to provide concrete recommen-
dations to organizations that may continue to rely on them.

2.2 Blocklists
Even if password requirements are generally e�ective at improving
strength, some users will ful�ll them predictably. Thus, character-
class and minimum-length rules are insu�cient to prevent very
weak passwords [25]. For example, 4class8 and 1class16 policies
allow extremely predictable passwords such as “Password1!” and

“passwordpassword.” A common mitigation is to combine composi-
tion requirements with a blocklist check. For instance, NIST 800-63B
recommends that passwords not be in a list of commonly-used, ex-
pected, or compromised values [19]. Properly con�gured blocklist
checks can reject predictable, or easy-to-guess passwords.

A blocklist requirement uses a wordlist and amatching algorithm
that checks whether a given password is prevented by that wordlist.
Wordlists can contain common sequences of characters, as well
as previously-leaked passwords. Matching algorithms range from
exact match (a candidate password should not be in the wordlist),
to more complicated rules—e.g., stripping symbols and digits from
the password, making it case-insensitive, and checking that the
resulting string does not match any wordlist entry.

Prior work found that blocklists used by major online service
providers vary in architecture, including client-side, server-side,
and hybrid approaches [4]. Blocklists di�ered in their wordlists
and matching algorithms, e.g., whether and how symbols or digits
were removed from passwords before matching. They also di�ered
in whether they forbid, warned, or decreased a password-strength
score if a blocklist check returned positive.

Initial password research focused on blocklists that forbid dictio-
nary words in passwords. For example, many studies have exam-
ined policies that perform blocklist checks against the OpenWall
wordlist [12]. These studies found that blocklist checks caused
more annoyance compared to policies without them. More recently,
blocklists based on ad-hoc cracking dictionaries were found to
produce weaker passwords than when relying on larger wordlists
gleaned from password leaks, such as the Xato password corpus [5].
Blocklists based on Xato were found to produce reasonably strong
passwords [8, 28]; we will use this wordlist here.

By analyzing large leaked sets of passwords, Weir et al. found
that larger blocklists strengthened passwords [33]. Kelley et al.
tested three blocklists varying in size and similarly found that larger
blocklists produced stronger passwords [11]. While blocklists might
be e�ective against online attacks, Florêncio et al. questioned their
practicality against o�ine attacks due to the required wordlist size
or potential negative usability impact [7].

Despite these studies, our understanding of blocklist usability
and security e�ects is incomplete, particularly for large blocklists
or string-matching algorithms that remove non-alphanumeric char-
acters. Prior work that uses retrospective policy analyses has lim-
itations, e.g., subsetting policy-allowed passwords retroactively
overestimates the impact of password policies on strength [14] and
cannot account for users who replace blocklisted passwords with
even weaker, but non-blocklisted ones. Retrospective studies also
cannot analyze many usability-related aspects of password policies.

Prior �ndings may also not apply to modern contexts. Conclu-
sions on blocklist usability derived from studies that lack real-time
feedback [11, 13] may lead to overly pessimistic usability results.
For example, the largest cause of policy compliance failure in prior
work was the dictionary check, which real-time feedback could
alleviate [25]. Additionally, blocklists may di�erently impact pass-
word strength and usability depending on interactions between
the wordlist, matching algorithm, and composition policy they
augment. For instance, prior work has examined digit-and-symbol-
stripping matching algorithms with 3class8 and 4class8 policies,

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1408

and wordlists based on the OpenWall dictionary, which was found
to be relatively ine�ective [12, 13].

2.3 Quantifying password strength
The strength of passwords produced under a particular password-
creation policy can be quanti�ed using guess numbers. Guess num-
bers can be computed by enumerating the passwords predicted by
a particular guessing model, in decreasing probability, or according
to the order that a commonly-con�gured password-cracking tool
would output guesses. A password’s guess number estimates the
number of guesses an attacker need make before guessing that
particular password. Guess numbers are parameterized by the par-
ticular tool used, as di�erent tools and models guess passwords in
di�erent orders. Prior work recommends taking the minimum guess
number across multiple automated guessing methods as a conser-
vative proxy for an expert attacker’s guessing capabilities [30].

The Password Guessability Service (PGS) [21] is a state-of-the-
art tool for estimating password strength. PGS supports the popular
password-cracking tools Hashcat and John the Ripper, as well as
tools based on password-modeling approaches such as Probabilis-
tic Context-Free Grammars (PCFG) and arti�cial neural networks.
PGS also providesmin-auto guess numbers, computed as the lowest
guess number among the set of supported password-guessing meth-
ods. For probabilistic models, Monte Carlo sampling methods allow
for estimation of guess numbers for low-probability passwords [5].
Probability-to-guess-number mappings can be precomputed, en-
abling client-side, real-time guess number estimates. We apply this
method in our study, using a meter based on prior work [28].

Guess numbers do not paint a complete picture. The number and
frequency of guesses an attacker can make depend on many factors,
including whether it is an online or o�ine attack, the extent to
which rate limiting is applied, and whether defenses such as iterated
hashing are deployed. Florêncio et al. discuss the “online-o�ine
chasm” between password-strength thresholds that may be relevant
in practice [7]. They argue that o�ine attacks may not always be a
threat, e.g., for service providers that reversibly encrypt passwords
or store passwords in plaintext. When o�ine attacks are applicable,
they argue that the user e�ort to create passwords that resist such
attacks is usually wasted unless passwords can withstand attacks
that make up to 1014 guesses.

2.4 Minimum-strength requirements
Minimum-strength password requirements have been explored
less than other types of policy requirements. Accurate strength
estimates for individual passwords are indeed di�cult to perform
in real-time. Password-strength heuristics can roughly estimate
password strength, but the accuracy of these estimates may be
insu�cient. Prior work evaluating password meters has found that
strength estimates from heuristic-based meters are often incon-
sistent [4] and contradict guess number estimations [16]. One of
the more accurate password-strength estimators, zxcvbn [34], uses
advanced heuristics to output quite reliable password strength es-
timates at low guess numbers typical of online attacks. Although
zxcvbn can be con�gured to meet minimum password-strength
thresholds, this has not been evaluated through user studies.

Recently, Melicher et al. designed a client-side recurrent neural
network for modeling password strength [16]. This development
has enabled minimum-strength requirements based on password-
strength estimates that are both accurate and data driven, rather
than heuristic driven. In our study, we explore minimum-strength
requirements expressed as a minimum guess number estimated by a
neural network. This is the �rst time we are aware of that this type
of requirement has been incorporated into a password-creation
policy and evaluated in a user study.

3 METHODOLOGY
Here we present our experimental factors and conditions; the de-
sign of the user studies we used to collect data; and the statistical
methods we applied to analyze that data. To limit the number of
interactions between policies that we would have to simultaneously
explore, we conducted two experiments (Experiment 1 and Exper-
iment 2), each involving independent data collection. Both were
identical in terms of methodology and implementation—only the
experimental conditions di�ered.

3.1 Experimental factors
Each of our user studies presented participants with password-
creation policies that di�ered based on assigned treatment. The
experimental factors consisted of three types of requirements that
can be enforced by a password-creation policy: composition, block-
list, and minimum-strength requirements.

We performed retrospective analyses on randomly-selected sub-
sets of leaked 000webhost passwords to help identify the parameters
to explore in our user study for each type of experimental factor.
This involved retroactively applying a password policy to a set of
leaked passwords and observing the proportions and strengths of
passwords that were allowed or rejected by that policy. Retrospec-
tive analyses and analyses relying on leaked data have inherent lim-
itations discussed in Section 2.2. The overall �ndings we present are
based on data collected from experimentally designed user studies,
which avoids these limitations. In addition, results from Experiment
1 informed the parameters explored in Experiment 2.

Composition requirements. All policies required passwords to be
at least eight characters long. In addition, some policies required
longer password lengths or required passwords to contain a min-
imum number of character classes. We abbreviate composition
requirements using a notation that lists the required number of
character classes followed by the minimum length, e.g., 3c12 cor-
responds to requirements that passwords contain at least three
character classes and at least twelve characters. In Experiment 1,
we tested 1c8, 1c16, 3c8, 3c12, and 4c8, each of which has been ex-
plored in prior work [11, 13, 15, 18, 26, 27]. In Experiment 2, we
explored additional longer-length one-class policies (1c10 and 1c12).

Blocklist requirements. We tested policies incorporating a block-
list requirement, which rejected any password that matched an
entry on a list of prohibited strings. We explored several wordlists
and matching algorithms. The majority of our blocklist con�gura-
tions followed previous work [8, 28, 34] in using the Xato wordlist,
consisting of 96,480 passwords that appeared four or more times in
the leaked Xato corpus of 10 million passwords [3]. We also used

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1409

a wordlist of 555 million unique passwords previously leaked in
data breaches that are accessed using the freely available Pwned
Passwords API [10].1 Last, we tested the wordlist (and matching
algorithm) used at Carnegie Mellon University (CMU), which con-
sisted of 630,034 English dictionary words [1, 20].

We tested four matching algorithms: case-insensitive full-string
(cifs); case-sensitive full-string (fs); stripping digits and symbols and
then performing a case-insensitive full-string comparison (strip-
cifs); and checking whether any length-5 substring of any wordlist
entry was a case-insensitive substring of the candidate password
(ciss). Each of these has been used in deployed password-creation
policies [4]. The ciss algorithm has been explored by prior work [25],
albeit with a much smaller wordlist than we considered.2

Minimum-strength requirements. In addition to composition and
blocklist requirements, we tested policies incorporating a minimum-
strength requirement, expressed as theminimumnumber of guesses
that passwords should withstand in a guessing attack. We used
password-strength estimates computed by a client-side, JavaScript-
based neural network, implemented and trained following the
approach of Melicher et al. [16] (see Appendix A). We de�ned
minimum-strength requirements in terms of a log-10 guess number
threshold. For example, NN6 required passwords to have password-
strength estimates no weaker than 106 guesses.

We tested four minimum-strength thresholds, ranging from 106
to 1012 guesses. In Experiment 1 we tested policies that included
NN6 and NN12 requirements. Results suggested that NN6 require-
ments may be too lenient for protecting high-value accounts and
that NN12 requirements can make password-creation annoying or
di�cult for some users. Hence, we tested NN8 and NN10 in Ex-
periment 2 to explore minimum-strength thresholds that might
produce a better balance of both security and usability.

3.2 Research questions
We designed our experimental conditions to answer speci�c re-
search questions. Some research questions explored the security
and usability impacts of policies di�ering in a single experimental
factor (e.g., blocklist con�guration). We also investigated whether
certain policy components impact password strength or usability
di�erently depending on the con�guration of other policy compo-
nents (e.g., the same blocklist con�guration used alongside di�erent
composition policies). Table 1 lists our research questions and the
experimental conditions and comparisons used to answer them.

3.2.1 Experiment 1. We tested 15 experimental conditions designed
to answer four high-level research questions. In order to both
quantify the impact of blocklists relative to policies that only re-
quired composition requirements (RQ1) and to �nd blocklist re-
quirements for use in 1c8 policies that performed well on both
security and usability dimensions (RQ2) we tested blocklist con�gu-
rations that were either commonly used or recommended by prior
work. Our third high-level research question focused on the im-
pact of character-class and minimum-length requirements on NN6

1This API employs privacy-protecting mechanisms to protect the con�dentiality of
submitted passwords: it only accepts SHA-1 hashes of passwords and utilizes a k-
anonymity range search to report matches [9].
2We use a computationally e�cient ciss implementation that performs multiple sub-
string searching via the Rabin-Karp algorithm [2].

Baseline Comparisons Exp.

RQ1: What is the impact of adding a blocklist to 1c8 and 3c8?

1c8 1c8+Pwned-fs, 1c8+Xato-cifs, 1
1c8+Xato-strip-cifs, 1c8+Xato-ciss

3c8 3c8+Xato-cifs 1

RQ2: What is the impact of varying blocklist reqs. on 1c8?

1c8+Xato-strip-cifs 1c8+Pwned-fs, 1c8+Xato-cifs, 1c8+Xato-ciss 1

1c8+Xato-strip-cifs 1c8+Pwned-fs 2

RQ3: What is the impact of varying char-class and min-length
reqs. on NN6?

3c8+NN6 1c8+NN6, 1c16+NN6, 2c12+NN6, 3c12+NN6 1

RQ4: How domin-strength reqs. compare with blocklists?

1c8+NN6 1c8+Pwned-fs, 1c8+Xato-cifs,
1c8+Xato-strip-cifs, 1c8+Xato-ciss 1

1c8+Pwned-fs 1c8+NN8, 1c8+NN10 2

1c8+Xato-strip-cifs 1c8+NN8, 1c8+NN10 2

RQ5: How domin-strength reqs. interact with min-length reqs.?

1c8+NN10 1c8+NN8, 1c10+NN10 2

1c10+NN8 1c8+NN8, 1c10+NN10 2

1c12+NN10 1c8+NN10, 1c10+NN10 2

RQ6: How do blocklist reqs. interact with char-class reqs.?

1c8+Xato-strip-cifs 4c8+Xato-strip-cifs 2

1c8+Pwned-fs 4c8+Pwned-fs 2

4c8+Xato-strip-cifs 4c8+Pwned-fs 2

Table 1: Research questions and planned comparisons.

minimum-strength policies (RQ3). The particular set of character-
class and minimum-length combinations we explored included com-
position policies explored in prior work. Our fourth research ques-
tion involved directly comparing blocklist and minimum-strength
policies on both security and usability dimensions (RQ4). In Ex-
periment 1, we explored this question by comparing a variety of
blocklists with a NN6 minimum-strength policy that we hypoth-
esized would provide adequate protection against online attacks,
withstanding at least 106 guesses (RQ4.A).

3.2.2 Experiment 2. The results of Experiment 1 raised additional
research questions that could not be answered with the experimen-
tal data that had already been collected. Therefore, we conducted
a second experiment, testing seven new conditions and re-testing
three conditions from Experiment 1.3 One goal of Experiment 2 was
to explore how speci�c minimum-length requirements interacted
with speci�c minimum-strength requirements to e�ect usability or
security (RQ5). In particular, we hypothesized that longer minimum-
length requirements could make minimum-strength requirements
easier to satisfy. We explored this question using strength thresh-
olds in-between those we tested in Experiment 1; results from
that experiment had suggested NN8 and NN10 requirements may
3We collected new data for each policy in Experiment 2, even if that policy had been
previously tested in Experiment 1.

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1410

provide the level of o�ine protection needed for high-value ac-
counts. Experiment 2 was also designed to test whether blocklist
requirements impact password strength or policy usability di�er-
ently depending on the particular character-class requirements they
are combined with, and vice versa (RQ6). We hypothesized that
fullstring blocklist checks against lists of leaked passwords might
be less useful for policies requiring many character classes, since
leaked passwords may be less likely to contain many character
classes. We also hypothesized that the strip-cifs matching algorithm
might be especially frustrating to users when combined with a 4c8
policy; compared to 1c8 passwords, 4c8 candidate passwords might
be more likely to incorporate digits and symbols in ways that would
be rejected by blocklist checks that �rst strip digits and symbols.
Lastly, we revisited RQ4 comparing top-performing blocklist poli-
cies from Experiment 1 with the additional NN10 and NN12 policies
tested in Experiment 2 (RQ4.B).

3.3 User-study protocol
For each experiment we ran a user study on Amazon Mechanical
Turk in which participants were tasked with creating and recalling
a password under a randomly assigned password policy. The design
of our user studies closely followed that of prior work [13, 26, 28].
In Part 1, participants were asked to role play, imagining that they
needed to create a new password because their main email account
provider had been breached. We emailed participants two days
later asking them to participate in Part 2, in which they were asked
to recall their password. We considered the data of only the par-
ticipants who completed Part 2 between two and �ve days after
Part 1. After each part, participants completed a survey that col-
lected demographic and usability-related data. The survey materials
are provided in Appendix E.

The password-creation task in Part 1 used a password meter de-
veloped in prior work, which incorporated real-time requirements
feedback, a password-strength bar, and text feedback on improving
password strength. Participants were shown feedback on improving
password strength only after all composition, minimum-strength,
and blocklist requirements were satis�ed. The password meter’s
con�guration was based on best practices empirically shown by
prior work [28]. We communicated unmet minimum-strength and
blocklist requirements as follows: for the Xato blocklist con�gu-
rations the meter reported that the password must “not be an ex-
tremely common password;” for the Pwned blocklist con�gurations
that the password must “not use a password found in previous se-
curity leaks;” and for the minimum-strength requirements that the
password must “not be similar to common passwords” (Figure 1).

We submitted the passwords created by participants to PGS [21],
which computed guess numbers for each PGS-supported guessing
approach using its recommended con�guration. We additionally
computed guess numbers using a set of neural networks (collec-
tively referred to as the PGS3 NN) that we trained ourselves, closely
following the design and implementation of password models in
prior work [16]. When computing min-auto guess numbers, we
selected each password’s lowest guess number among all guessing
approaches. For the NN guessing approach, we use PGS3 NN guess
numbers in place of PGS-reported NN guess numbers, given the
improved guessing performance of the PGS3 NN (see Appendix A).

Figure 1: Password-creation meter displaying unmet pass-
word policy requirements.

In addition to evaluating the strength and objective usability (e.g.,
memorability) of passwords created under each policy, we wanted
to understand their usability in terms of user di�culty or frustration
when creating or recalling passwords. Participants’ responses to
surveys shown after both Part 1 and Part 2 shed light on this. Our
surveys also asked questions such as whether participants reused a
previous password or wrote their password down after creating it.
In order to elicit truthful responses we told participants that they
would receive compensation regardless of their answers.

We instrumented our study to record password-creation and
recall keystrokes and whether participants copied and pasted their
password during recall tasks. When analyzing password recall, we
only analyze data for participants who: typed in their password
from memory (as self-reported in the survey); said they didn’t reuse
their study password (as self-reported); and didn’t copy and paste
their password during the Part 2 recall task, either manually from a
�le or using a passwordmanager/browser (based on keystroke data).
Study participants who become frustrated with password-creation
requirements may be more likely to drop out of our study. We
record and analyze dropout rates between experimental conditions
as potential evidence of usability issues for a given policy.

The full set of usability metrics we considered include both objec-
tive (creation/recall time, recall success, study dropout, copy/paste
from storage/password managers) and subjective data (creation
annoyance/di�culty, di�culty remembering).4 Each of these met-
rics have been used in prior work to measure usability impacts of
password-creation policies [24, 27, 28].

We recruited study participants from Mechanical Turk (MTurk).
Workers were required to be located in the United States, have had
at least 500 HITs approved, and have a HIT approval rate of 95% or
higher. Workers were not allowed to participate in our study more
than once. We paid 55 cents for Part 1 of our study and 70 cents
for Part 2. Our study protocol was approved by our institutional
review board and all participants completed online consent forms.

Experiment 1 participants were recruited in July and August 2019.
Their ages ranged from 18 to 81 years, with a median of 35. 53% of
participants were female and 47% male. Of the 5,099 participants
who started the study, 4,317 �nished Part 1 and 3,463 also �nished
Part 2. Most (81%) participants reported that they did not have a

4As we employ real-time feedback in our password meter, our study data do not include
the notion of a password-creation attempt. However, this concept is closely related to
creation time and creation annoyance/di�culty.

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1411

technical degree or work in an area related to computer science or
information technology. Experiment 2 participants were recruited
in October and November 2019. Their ages ranged from 18 to 90
years, with a median of 35. 56% of participants were female, 43%
male, 1% reported their gender as “Other,” and the remainder chose
not to answer. Of the 4,817 participants who started the study, 4,005
�nished Part 1 and 3,014 also �nished Part 2. Our password-recall
analysis includes data for 1,518 participants in Experiment 1 and
1,362 participants in Experiment 2, excluding those who reported
reusing a password or not entering their password from memory.

3.4 Statistical analysis
Before running each experiment, we identi�ed a set of hypothesis
tests we planned to conduct to answer our research questions. We
perform omnibus tests to compare three or more conditions as well
as pairwise tests.5 For each family of tests (the combination of test
type and research question), we chose the baseline condition to be
used in pairwise comparisons before collecting data.

To compare the overall strength of passwords created under
di�erent policies, we use an extension of the Log-rank test called
the Peto-Peto test (PP). This test, used in prior work [14], weighs
early-appearing di�erences in guess curves more heavily than later
di�erences, corresponding to heavier weight for strength di�er-
ences that resource-constrained or rate-limited attackers could
exploit. The Peto-Peto test is also appropriate when many data
points are censored. In our study, passwords with guess numbers
past our o�ine attack threshold of 1014 were censored prior to the
test (i.e., labeled as unguessed), as we wanted to compare password
guessability only up to the number of guesses that a typical attacker
could feasibly attempt in an o�ine attack.

To compare the vulnerability of passwords to guessing attacks
of di�erent magnitudes, we apply Chi-square tests of independence
and Fisher’s exact tests (FET) to the percent of passwords in each set
that an attacker would guess within 106 and within 1014 attempts.6
These thresholds have been used in prior work as estimates of
how many guesses an online and an o�ine attacker could make [7],
respectively. Unless otherwise noted, analyses that operate on guess
numbers are based on min-auto guess number estimates.

We examine usability through statistical tests of Part 1 and
Part 2 survey data (password-creation sentiment, post-creation
actions) and behavioral data collected by our study framework
(study dropout rates, password-creation time, Part 2 recall time,
and Part 2 recall success). We bin categorical and Likert data before
applying Chi-square tests and Fisher’s tests (e.g., Likert agreement
data is grouped into two bins: “Strongly agree” or “Agree” vs. oth-
erwise). For comparing count data, we use the non-parametric
Kruskal-Wallis (KW) and Mann-Whitney U (MWU) tests.

We record whether text entered into the password-creation �eld
failed to meet requirements, but the real-time nature of require-
ments feedback in our meter means that even if a blocklist or

5We tried a Cox regression model to measure guessability di�erences but opted for
pairwise hypothesis tests instead, due to poor �t of the linear model to our data.
6Our conservative assumption is that the attacker knows the password distribution and
makes guesses in order of decreasing probability. While we assume the attacker knows
the length and character-class requirements when making guesses, we do not assume
that the attacker knows which passwords would have been rejected by blocklist or
minimum-strength requirements in order to avoid guessing those passwords.

minimum-strength requirement was unsatis�ed at some point, the
participantmay not have intended to actually create that password—
they may have had a di�erent password in mind and hadn’t �nished
typing it. To shed light on whether participants actually encoun-
tered one of these unmet requirements for a password, our survey
asked “were any passwords you tried to create rejected for the
speci�c reason shown above?” We interpret a�rmative answers as
evidence that those participants changed their password at least
once due to the associated policy requirement.

Within each family of tests, we only perform pairwise tests
if the corresponding omnibus test is statistically signi�cant. We
use the Holm-Bonferroni method to correct for multiple pairwise
comparisons within each family and report adjusted p-values. All
hypothesis tests use a signi�cance level of 0.05. When comparing
two policies, we only attribute di�erences to a particular policy
dimension if all other dimensions in those policies are identical.

3.5 Limitations
Our study has limitations common to user studies conducted on
MTurk. Study participants may not have created passwords similar
to those they would have created for actual high-value accounts,
despite our role-playing instructions. However, prior work has
shown that MTurk passwords collected in this way are similar to
actual user passwords created for high-value accounts [6, 14].

Our password-policy results and recommendations rely on pass-
words being created under the speci�c password meter we used in
our study. This meter provided text feedback on how to improve
passwords, a strength bar, and real-time requirements feedback,
each of which was con�gured according to recommendations from
prior studies [25, 28, 29]. Based on survey responses, the major-
ity of participants found the meter to be informative, helpful, and
in�uential. For example, most participants reported that they im-
plemented changes suggested by text feedback and that it was
important to them that the colored bar rated their password highly.
Experiments using password meters with substantially di�erent
implementations may produce di�erent results.

It is worth noting that our analysis and recommendations con-
cerning blocklists do not apply to site-speci�c or user-speci�c block-
lists, which are useful for preventing passwords based on user-
associated data or contextual information that targeted guessing
attacks could leverage (e.g., user IDs, words related to the service).

4 RESULTS
The results we report here lead to our recommendation for password
policies that include both minimum-length and minimum-strength
requirements. In case an organization decides against minimum-
strength requirements, we recommend two policies incorporating
minimum-length and blocklist requirements. These policies provide
less protection than minimum-strength policies against o�ine at-
tacks, but provide adequate protection against online attacks while
remaining usable during password creation.

Our results from Experiment 1 show that blocklists may not
improve password strength substantially if the blocklist check uses
a strict matching algorithm with an insu�ciently large wordlist.
However, when properly con�gured, either blocklist requirements

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1412

or minimum-strength requirements can be combined with other re-
quirements to provide adequate protection against online guessing
attacks. In Experiment 2 we explore in more depth 1c8 minimum-
strength policies that provide strong protection against both online
and o�ine guessing attacks. We also extensively analyze interac-
tion e�ects between policy components. Experiment 2 results show
that NN8 and NN10 policies can be just as usable as the blocklist
policies we test, while also producing passwords more resistant to
o�ine attacks. In this section, we describe the results from both
experiments, organized by research question. P-values for each
statistical test can be found in Appendix F.1.

4.1 RQ1: Impact of blocklists
We compared each blocklist condition to its corresponding 1c8
or 3c8 baseline condition to quantify the impact of blocklists on
guessability and usability. We found blocklist con�gurations
1c8+Pwned-fs and 1c8+Xato-strip-cifs signi�cantly improved
password strength over their baseline without substantial
harm to usability.

As shown in Figure 2, passwords created under either 1c8+Xato-
cifs or 3c8+Xato-cifs were neither stronger overall nor less likely
to be guessed in online attacks than passwords created under the
baseline policies that only contained composition requirements.
While blocklist policies that use full-string matching can provide
adequate protection against online guessing attacks (as demon-
strated by 1c8+Pwned-fs), our results suggest that this requires a
much larger wordlist than the Xato wordlist we tested.

Of the policies with blocklists that improved password defense
against online attacks, two policies did so without also making
passwords substantially more di�cult or time-consuming to create.
Both 1c8+Pwned-fs and 1c8+Xato-strip-cifs passwords were much
less likely to be guessed in online attacks (within 106 guesses) than
1c8 passwords (FET: 0% and 1% guessed, resp., vs. 6% guessed). Yet,
participants did not �nd either policy substantially more annoying
or di�cult relative to a 1c8 policy (see Figure 10 in Appendix).

4.2 RQ2: Blocklist reqs. for 1c8 policies
We next compared 1c8 blocklist policies. All pairwise compar-
isons were made with respect to Xato-strip-cifs, which was rec-
ommended in prior work [8]. We found that case-sensitive, full-
string matching against very large blocklists of leaked pass-
words leads to similarly usable and secure passwords as fuzzy
matching against smaller blocklists of the most common
leaked passwords.

Prior work hypothesized that the strip-cifs algorithm would
produce strong passwords by preventing simple modi�cations to
blocklisted passwords that might pass the blocklist check without
improving password strength [8]. Our user study con�rms this.
As shown in Figure 2, passwords created under the 1c8+Xato-cifs
policy, which did not strip digits and symbols before performing
blocklist checks, were overall weaker and more susceptible to on-
line guessing than passwords created under the 1c8+Xato-strip-
cifs policy, which stripped digits and symbols (PP, FET: 5% vs. 1%
guessed). Furthermore, while the stricter matching algorithm used
in 1c8+Xato-strip-cifs led to slightly longer password-creation times

0%

20%

40%

3 4 5 6 7 8 9 10 11 12 13 14
log min�auto guess number

C
um

ul
at

ive
 %

 g
ue

ss
ed

1c8
3c8
4c8
1c8+Xato�cifs
1c8+Pwned�fs
1c8+Xato�strip�cifs
1c8+Xato�ciss
3c8+Xato�cifs
1c8+NN6

Figure 2: Min-auto guess numbers for Experiment 1 block-
list, composition-requirements-only, and 1c8+NN6 policies.

compared to 1c8+Xato-cifs (MWU: median of 93 s vs. 70 s), it did
not make password creation more challenging or annoying.

Among blocklist con�gurations using the same Xato wordlist,
only 1c8+Xato-ciss produced overall stronger passwords that were
more resistant to 1014 o�ine attacks than 1c8+Xato-strip-cifs (PP,
FET: 24% vs. 41% guessed). However, as shown in Figure 10 and
Table 2, severe password-creation usability issues associated with
1c8+Xato-ciss prevent us from recommending it in place of 1c8+Xato-
strip-cifs. Participants took longer to create passwords under 1c8+Xato-
ciss than under 1c8+Xato-strip-cifs (MWU: median of 139 s vs. 93
s) and reported more annoyance (FET: 47% vs. 35%) and di�culty
(FET: 49% vs. 27%). Compared to 1c8+Xato-strip-cifs participants,
1c8+Xato-ciss participants were also more likely to drop out before
�nishing Part 1 (FET: 26% vs. 12%) and to digitally store or write
down their password after creating it (FET: 65% vs. 53%). These
results lead us to conclude that while a ciss blocklist matching algo-
rithm can provide strong security against guessing attacks, it also
may severely harm password-creation usability if used alongside a
wordlist as large as or larger than the Xato wordlist.

Besides Xato-based blocklists, we tested a blocklist con�guration
that used fs matching with the much larger Pwned wordlist. We
found that 1c8+Pwned-fs and 1c8+Xato-strip-cifs led to passwords
of similar strength, both in terms of overall password strength and
in terms of resistance to online and o�ine guessing attacks. Par-
ticipants also reported similar usability during password creation.
Although 1c8+Xato-strip-cifs participants were much more likely to
report noticing a password they wanted to create being rejected by
the blocklist requirement than 1c8+Pwned-fs participants (FET: 50%
vs. 23% noticed), they did not take substantially longer to create
their password nor report more di�culty or annoyance. Thus, we
conclude that blocklists that perform fs checking against the Pwned
wordlist can provide comparable protections against guessing at-
tacks and similar usability compared to blocklists that perform
strip-cifs checking against the Xato wordlist.

4.3 RQ3: Composition requirements for
min-strength policies

We examined whether certain combinations of minimum-strength
and composition requirements would lead to stronger or easier-to-
create passwords. As we had hypothesized that a NN6 requirement

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1413

Condition # in
Part 1

in
Part 2

Part 1
dropout

Creation
time

Creation
di�cult

Creation
annoying

Guessed
@ 106

Guessed
@ 1014

Noticed
reject

Stored
pwd

Recall
success

Recall
time

Experiment 1

CMU 290 228 14% 104 s 34% 42% 1.2% 36.3% 50% 57% 74% 26 s

3c8 284 235 15% 78 s 25% 37% 4.5% 44.8% - 52% 80% 24 s
4c8 297 237 10% 84 s 31% 35% 5.4% 48.4% - 44% 76% 27 s
1c8 318 250 13% 86 s 25% 28% 6.3% 48.2% - 53% 78% 21 s

3c8+NN6 264 213 15% 92 s 33% 38% 0.4% 41.3% 22% 56% 79% 21 s
1c8+NN12 261 213 14% 100 s 36% 44% 0.4% 13% 46% 56% 75% 28 s
1c8+NN6 288 229 10% 73 s 22% 33% 1% 48.3% 20% 50% 79% 21 s
3c12+NN6 257 212 15% 99 s 31% 37% 0% 27.6% 16% 53% 75% 25 s
1c16+NN6 276 209 11% 97 s 37% 45% 0.4% 15.2% 16% 50% 82% 25 s
2c12+NN6 294 231 13% 86 s 26% 33% 0% 29.6% 20% 50% 66% 23 s

3c8+Xato-cifs 337 256 10% 81 s 25% 34% 3.8% 51.4% 23% 48% 76% 20 s
1c8+Xato-cifs 287 241 14% 70 s 26% 32% 4.5% 46.6% 32% 54% 77% 19 s
1c8+Pwned-fs 292 242 13% 85 s 24% 28% 0% 41.9% 23% 52% 86% 23 s
1c8+Xato-strip-cifs 311 267 12% 93 s 27% 35% 1% 41% 50% 53% 79% 25 s
1c8+Xato-ciss 261 200 26% 139 s 49% 47% 0% 24.4% 78% 65% 67% 23 s

Experiment 2

CMU 429 333 13% 98 s 33% 42% 1.6% 37.9% - 56% 81% 24 s

1c8+NN8 381 291 11% 86 s 30% 35% 0.8% 40.2% 27% 50% 72% 24 s
1c8+NN10 385 293 13% 109 s 33% 38% 0.5% 31.7% 34% 52% 80% 24 s
1c10+NN8 381 286 11% 89 s 32% 40% 0.8% 31% 25% 51% 77% 23 s
1c10+NN10 401 303 12% 92 s 32% 41% 0% 25.2% 30% 49% 75% 27 s
1c12+NN10 378 273 14% 95 s 28% 38% 0.3% 19.8% 22% 58% 73% 22 s

1c8+Pwned-fs 435 322 16% 83 s 25% 33% 0.7% 43% - 47% 75% 25 s
1c8+Xato-strip-cifs 434 327 11% 97 s 29% 35% 2% 40.1% - 55% 76% 21 s
4c8+Pwned-fs 378 287 16% 90 s 29% 33% 3.1% 50.6% - 56% 71% 24 s
4c8+Xato-strip-cifs 403 299 14% 99 s 32% 41% 1.4% 41.7% - 51% 81% 25 s

Table 2: Descriptive statistics for Experiments 1 and 2. Recall time and success rates are for Part 2. Median creation and recall
times are shown. “Noticed reject” refers to rejection by a minimum-strength or blocklist requirement.

would provide su�cient protection against 106 online attacks, we
focused on NN6 policies and varied composition requirements. All
pairwise comparisons were made against the 3c8+NN6 baseline,
as our initial retrospective analyses suggested the 3c8+NN6 pol-
icy would produce overall stronger passwords than other NN6
policies. We �nd thatwhile minimum-strength policies can be
strengthened against o�line attacks by either increasing the
minimum required length or theminimum number of char-
acter classes, increasing the minimum length accomplishes
this at a lower usability cost, in terms of how long users need
to create a compliant password and how annoying or chal-
lenging they �nd that task.

As shown in Figure 3, combining a NN6 minimum-strength
requirement with di�erent additional requirements led to pass-
words that di�ered substantially in overall guessability (PP). We
did not �nd statistically signi�cant di�erences in the number of
NN6 passwords guessed for online attacks (i.e., up to 106 guesses).
However, against a 1014 o�ine attack, policies di�ered in their de-
fensive e�ectiveness. While 1c8+NN6 provided similar protection
to 3c8+NN6 (48% vs. 41% guessed, respectively), 1c16+NN6 (15%
guessed), 2c12+NN6 (30% guessed), and 3c12+NN6 (28% guessed) all
o�ered signi�cantly more protection than 3c8+NN6 (FET).

0%

20%

40%

3 4 5 6 7 8 9 10 11 12 13 14
log min�auto guess number

C
um

ul
at

ive
 %

 g
ue

ss
ed

1c8+NN6
1c16+NN6
2c12+NN6
3c8+NN6
3c12+NN6

Figure 3: Min-auto guess numbers for policies containing
NN6 requirements and varying composition requirements.

Most of the NN6 policies we tested showed similar usability prop-
erties relative to our 3c8+NN6 baseline; only 1c8+NN6 performed
better on two of our usability metrics. Compared to 3c8+NN6 par-
ticipants, 1c8+NN6 participants reported password-creation to be
less di�cult (FET: 22% vs. 33% found di�cult) and also took less
time (MWU: median of 73 s vs. 92 s).

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1414

Overall, our results show that, for policies enforcing a particu-
lar minimum-strength requirement, more complex composition
requirements can lead to passwords that are more resistant to
guessing attacks, particularly for o�ine attack scenarios. While
our results show that requiring more character classes or longer
passwords both make passwords stronger, we found evidence that
increasing the length requirement could produce larger security
bene�ts than increasing character-class-count requirements, while
also having less of a negative impact on password-creation usability
(e.g., 1c8+NN6 vs. 3c8+NN6, compared to 3c8+NN6 vs. 3c12+NN6).

4.4 RQ4: Blocklists vs. min-strength policies
A high-level goal for both experiments was to compare 1c8 poli-
cies that incorporated a blocklist requirement to those that instead
incorporated a minimum-strength requirement. In Experiment 1,
we found that a 1c8+NN6 minimum-strength policy can pro-
vide similar protection against online attacks and similar us-
ability compared to the two best-performing blocklist poli-
cies we tested. In Experiment 2, we compared those two blocklist
policies to two additional minimum-strength policies, 1c8+NN8
and 1c8+NN10. Both 1c8+NN8 and 1c8+NN10 led to overall
stronger passwords than the blocklist policies, while main-
taining comparable usability.

4.4.1 RQ4.A. As shown in Figure 2, neither 1c8+Xato-cifs nor
1c8+Xato-ciss resulted in passwords comparable in strength to
those created under 1c8+NN6. Compared to 1c8+NN6 passwords,
1c8+Xato-cifs passwords were overall signi�cantly weaker (PP).
1c8+Xato-ciss resulted in passwords that were signi�cantly stronger
than those created under 1c8+NN6 (PP), but at the expense of the
severe usability issues described in Section 4.2.

Two blocklist policies provided comparable security to 1c8+NN6,
in terms of general guessability as well as resistance to online guess-
ing attacks: 1c8+Pwned-fs and 1c8+Xato-strip-cifs. We did not �nd
any statistically signi�cant di�erences between either blocklist pol-
icy and 1c8+NN6 for any of the usability metrics we measured. Thus
these three policies appear to be suitable for preventing predictable
passwords that might be compromised in online attacks.

0%

20%

40%

3 4 5 6 7 8 9 10 11 12 13 14
log min−auto guess number

C
um

ul
at

ive
 %

 g
ue

ss
ed

CMU
1c8+Pwned−fs
1c8+Xato−strip−cifs
1c8+NN8
1c8+NN10
1c10+NN8
1c10+NN10
1c12+NN10

Figure 4: Min-auto guess numbers for Experiment 2 1c8 and
CMU policies.

4.4.2 RQ4.B. As shown in Figure 4, we found that both 1c8+NN8
and 1c8+NN10 policies produced passwords thatwere overall stronger

when compared to either of 1c8+Pwned-fs or 1c8+Xato-strip-cifs
passwords (PP). For attackers making 1014 guesses, 1c8+NN8 pass-
words would be guessed with similar success rates compared to
either 1c8+Pwned-fs or 1c8+Xato-strip-cifs passwords. In contrast,
1c8+NN10 passwords remained less likely to be guessed, even against
the number of guesses possible in o�ine attacks: 32% of 1c8+NN10
passwords would be guessed within 1014 attempts, compared to
40% of 1c8+Xato-strip-cifs passwords and 43% of 1c8+Pwned-fs pass-
words (FET). Across our usability measurements, we did not �nd
statistically signi�cant di�erences between 1c8+NN8 or 1c8+NN10
and either blocklist policy, except when comparing 1c8+Pwned-fs
to 1c8+NN10: 1c8+Pwned-fs participants took less time to create
their password than 1c8+NN10 participants (MWU: median of 83 s
vs. 109 s) and were less likely to report password-creation as being
di�cult (FET: 25% vs. 33% found di�cult).

Condition Peto-
Peto

percent
@ 106

percent
@ 1014

Creation
time

Creation
di�cult

RQ4.B
1c8+Pwned-fs 0.7% 43% 83 s 25%
1c8+NN8 p<.001 0.8% 40.2% 86 s 30%
1c8+NN10 p<.001 0.5% 31.7% 109 s 33%
1c8+Xato-strip-cifs 2% 40.1% 97 s 29%
1c8+NN8 p=.009 0.8% 40.2% 86 s 30%
1c8+NN10 p<.001 0.5% 31.7% 109 s 33%

RQ5
1c10+NN8 0.8% 31% 89 s 32%
1c8+NN8 p=.628 0.8% 40.2% 86 s 30%
1c10+NN10 p=.002 0% 25.2% 92 s 32%
1c12+NN10 p=.925 0.3% 19.8% 95 s 28%
1c10+NN10 0% 25.2% 92 s 32%
1c8+NN10 0.5% 31.7% 109 s 33%
1c8+NN10 0.5% 31.7% 109 s 33%
1c10+NN10 p=.752 0% 25.2% 92 s 32%
1c8+NN8 p<.001 0.8% 40.2% 86 s 30%

Color key
Baseline for pairwise comparisons
Pairwise test statistically signi�cant (better than baseline)
Pairwise test statistically signi�cant (worse than baseline)
Pairwise test not stat. sig. Omnibus test not stat. sig.

Table 3: RQ4.B and RQ5 strength/usability comparison. Pair-
wise comparisons for non-baseline policies are for the base-
line policy listed immediately above.

These results demonstrate the value of minimum-strength re-
quirements. While both blocklist and minimum-strength require-
ments can prevent users from picking common passwords that
attackers are likely to try �rst, minimum-strength requirements
can do so while also making passwords harder to guess for more
determined attackers (see top half of Table 3).

4.5 RQ5: Min-strength and min-length
requirement interactions

We tested additional minimum-strength policies with the goal of
identifying con�gurations with more positive password-creation
usability properties yet similarly strong o�ine attack protections

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1415

as minimum-strength policies we had tested in Experiment 1. We
focused our exploration of policies on those that only enforced
minimum-strength and minimum-length requirements, without
any character-class requirements. Our results ultimately show
that NN10 requirements can provide stronger protection ag-
ainst o�line attacks than NN8 requirements without intro-
ducing substantial usability harm, and that combiningNN10
requirements with a minimum length of 10 characters can
help users create passwords more quickly.

Unsurprisingly, increasing the minimum-strength requirement
while �xing the minimum password length was e�ective at in-
creasing overall password strength (PP: 1c8+NN8 vs. 1c8+NN10,
1c10+NN8 vs. 1c10+NN10). We �nd evidence that increasing a pol-
icy’s minimum-strength threshold from NN8 to NN10 also strength-
ened o�ine attack defenses, as shown in Figure 4. For example, 40%
of 1c8+NN8 passwords would be guessed in a 1014 attacks compared
to only 32% of 1c8+NN10 passwords, a di�erence which was statisti-
cally signi�cant (FET). More interestingly, for the min-length-8 and
min-length-10 policies we explored, participants did not �nd pass-
words substantially more di�cult or annoying to create regardless
of whether their policy included a NN8 or NN10 requirement. The
only statistically signi�cant usability di�erence we found between
NN8 and NN10 policies was with respect to password-creation time:
1c8+NN8 passwords took slightly less time to create than 1c8+NN10
passwords (MWU: median of 86 s vs. 109 s).

We performed similar comparisons between minimum-strength
policies with the same required strength threshold but varying
minimum-length requirements. For policies enforcing the same
minimum-strength requirement, increasing the minimum-length
requirement tended to produce stronger passwords. As shown in
Figure 4, for policies containing NN8 or NN10 minimum-strength
requirements, passwords were less likely to be guessed in a 1014
o�ine attack if that policy imposed 1c10 rather than 1c8 require-
ments (FET). We did not �nd large di�erences in reported password-
creation annoyance or di�culty between NN8 and NN10 policies
depending on whether those policies required passwords to be at
least 10 or 12 characters. While we �nd some support for our initial
hypothesis that minimum-length requirements canmakeminimum-
strength requirements easier to satisfy, the improvements were
small (e.g., 1c10+NN10 passwords were created in 17 fewer sec-
onds than 1c8+NN10 passwords, on average). Interestingly, only
22% of participants assigned to the 1c12+NN10 policy reported
noticing a password they wanted to create being rejected by the
minimum-strength requirement, a signi�cantly lower percentage
than we found for participants assigned to either 1c10+NN10 (FET:
30% noticed) or 1c8+NN10 (FET: 34% noticed). However, di�erences
in proportions of participants who noticed a minimum-strength
rejection did not translate to statistically signi�cant di�erences
in reported password-creation annoyance or di�culty (Figure 11).
Table 3 (bottom half) summarizes these results.

Overall, we found little reason to prefer NN8 policies over the
stronger and similarly usable NN10 policies. Among NN10 poli-
cies, 1c12+NN10 appeared particularly attractive. Compared to
1c8+NN10 and 1c10+NN10, 1c12+NN10 led to participants encounter-
ingminimum-strength rejections less often and improved resistance
to o�ine guessing attacks.

4.6 RQ6: Blocklist and composition
requirement interactions

We compared 1c8+Xato-strip-cifs, 1c8+Pwned-fs, 4c8+Xato-strip-cifs,
and 4c8+Pwned-fs with each other in order to understand how
blocklist requirements interacted with character-class requirements.
Our results con�rm that the choice of blocklist can impact usabil-
ity and security di�erently depending on whether it is included
in a 1c8 or 4c8 policy. While the choice of 1c8 or 4c8 compo-
sition requirements to combine with a given blocklist did
not signi�cantly impact usability, we found evidence that
4c8 requirements could negatively impact security relative
to 1c8 requirements if combined with a very large blocklist
and full-string matching.

0%

20%

40%

3 4 5 6 7 8 9 10 11 12 13 14
log min�auto guess number

C
um

ul
at

ive
 %

 g
ue

ss
ed

1c8
4c8
1c8+Xato�strip�cifs
4c8+Xato�strip�cifs
1c8+Pwned�fs
4c8+Pwned�fs

Figure 5: Blocklist/composition policy interaction e�ects.
1c8 and 4c8 curves are based on data collected from Experi-
ment 1 and are shown only for reference.

As in Experiment 1, passwords created under 1c8+Pwned-fs were
not statistically signi�cantly di�erent in their guess-number dis-
tribution than those created under 1c8+Xato-strip-cifs. However,
we did �nd usability di�erences: 1c8+Pwned-fs participants were
more likely to drop out of our study before creating their password
than 1c8+Xato-strip-cifs participants (FET: 16% vs. 11% dropped out)
and those who did not drop out took slightly longer to create their
passwords (MWU: median of 97 s vs. 83 s).

We performed similar comparisons between our 4c8+Pwned-fs
and 4c8+Xato-strip-cifs conditions. Unlike the case for 1c8 require-
ments, we found that 4c8+Pwned-fs passwords were overall weaker
than 4c8+Xato-strip-cifs passwords (PP). Although this only trans-
lated to substantially higher likelihood of passwords being guessed
for 1014 o�ine attacks (FET: 51% vs 42%) and not 106 online at-
tacks, Figure 5 suggests 4c8+Xato-strip-cifs also may be preferable
to 4c8+Pwned-fs for online attack scenarios. In terms of usabil-
ity, we found that—unlike for 1c8 policies—a higher proportion
of participants were annoyed by 4c8+Xato-strip-cifs compared to
4c8+Pwned-fs (FET: 41% vs 33% annoyed).

We found support for our hypothesis that blocklists of large
password leaks are more e�ective when combined with 1c8 re-
quirements than with 4c8 requirements. Passwords created under
4c8+Pwned-fswere statistically signi�cantlyweaker than 1c8+Pwned-
fs passwords, both overall (PP) and in terms of resistance to 106 (FET:
3.1% vs. 0.7% guessed) and 1014 guessing attacks (FET: 50.6% vs. 43%

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1416

guessed). We found less support for our hypothesis that Xato-strip-
cifs makes password creation a more frustrating experience when
combined with 4c8 requirements than with 1c8 requirements.

5 DISCUSSION
5.1 Character-class requirements
Although prior work has repeatedly found that requiring more char-
acter classes decreases guessability [11, 16], researchers have shown
that character-class requirements lead to frustration and di�culty
for users [13, 23, 31]. Since other requirements, e.g., minimum-
length or blocklist requirements, can strengthen passwords with
less negative impact on usability research has advocated retiring
character-class requirements [7, 26]. These recommendations have
been standardized in recent NIST password-policy guidance [19].

Our experimental results provide the �rst concrete evidence
that character-class requirements should be avoided not only be-
cause users tend to �nd them annoying, but also because they don’t
provide substantial bene�t against attackers using state-of-the-art
password-cracking tools: an expert attacker can guess 1c8, 3c8,
and 4c8 passwords with equal success rates.7 Experiment 2 also
suggests that character-class requirements should be avoided for
password-creation policies that include a blocklist or minimum-
strength requirement. We �nd evidence that policies requiring all
four character classes and a large blocklist check produce pass-
words that are, at best, as strong as passwords created under a
policy that performed the same blocklist check without character-
class requirements. Although Experiment 2 does show that a policy
requiring more character classes does tend to produce stronger
passwords under a minimum-strength requirement, it also shows
that this strength improvement is much lower than the improve-
ment that results from increasing either length requirements or
minimum-strength threshold requirements.

Our new �ndings on character-class requirements seem to be
caused by two factors. First, users tend to create passwords that are
longer and contain more character classes than required; this was
more pronounced in our experiments than in previous studies. In
Appendix C, we examine passwords from studies conducted from
2010 to 2019 and observe that in more recent studies, and in those
with a password meter, users were more likely to exceed length
and character-class requirements. Second, password guessing has
improved over time, and more so for passwords containing three
or four character classes than for passwords containing one or two
classes. We describe this in more detail in Appendix D.

5.2 Blocklist requirements
Blocklists can be useful, but only if carefully con�gured. Both the
wordlist and matching algorithm can signi�cantly a�ect password
strength and usability. Our experiments show that some blocklist
con�gurations are much more likely than others to make password
creation a frustrating and time-consuming experience. Given a
blocklist composed of passwords that appear at least four times
in public password leaks, a blocklist policy con�gured to reject
passwords that contain a �ve-character substring of any blocklisted
password will strengthen resulting passwords, but with a severe
7We assume passwords are created with feedback that includes a strength meter and
text feedback, similar to our study.

impact on usability. We also �nd blocklist con�gurations that do not
o�er su�cient strength protections. Full-string matching against a
list of roughly 105 commonly leaked passwords leads to a negligible
improvement in defense against guessing attacks. However, a more
fuzzy matching algorithm such as one that performs the same check
ignoring non-alphabetic characters can improve password strength
without requiring a larger set of leaked passwords to check against.

We recommend that policies containing blocklist requirements
should not additionally require passwords to contain a minimum
number of character classes, especially if the blocklist check is
based on rejecting any password exactly matching one that has
been previously compromised in a public leak. Although further
research is needed to con�rm this, our results suggests that pass-
words subjected to such a blocklist check may actually be weaker if
additionally required to contain all four character classes. One ex-
planation for this is that easily-guessed 4c8 passwords may be less
likely to appear in public leaks than easily-guessed 1c8 passwords
and so are less likely to be included in blocklists.

Two 1c8 blocklist con�gurations we tested performed well with
respect to both security and usability: the Xato wordlist combined
with strip-cifs matching and the Pwned blocklist combined with fs
matching. The Pwned-fs blocklist con�guration may be stronger
against online attacks than the Xato-strip-cifs blocklist. Although
the two con�gurations have similar usability in general, the higher
dropout rate in Experiment 2 for 1c8+Pwned-fs suggests that that
policy may be more frustrating for some users. Unlike the easily-
embedded Xato-strip-cifs blocklist, the Pwned-fs blocklist is less
useful for fully client-side password checking.

System administrators incorporating a blocklist check should
check for password-policy compliance remotely on the server, since
clients collecting passwords can misbehave or lie. Password checks
against externally controlled databases of leaked passwords in-
volve some security risk, even if mitigated by transmitting partial
password hashes. Concerned organizations can perform leaked-
password checks locally, either against a large set of leaked pass-
words (30 GB uncompressed for a comprehensive set [10]) or against
a Bloom �lter, which substantially reduce storage space require-
ments at the expense of false positives (1.1 GB for a Bloom �lter
with a false positive rate of 0.1% for the same set). If using a large
blocklist with a Bloom �lter or a smaller blocklist with a strip-cifs
matching, it may be useful to also check for policy compliance lo-
cally to facilitate real-time requirements feedback without network
latency introduced by remote checks.

5.3 Minimum-strength requirements
Our results con�rm that minimum-strength requirements can e�ec-
tively guide users toward stronger passwords without signi�cantly
inhibiting password memorability or ease of password creation.
The choice of minimum-strength threshold depends on security
requirements; too low a threshold may not provide enough defense
(particularly against online attacks) and too high a threshold may
unacceptably inhibit usability.

When online attacks are a concern, we recommend setting the
minimum-strength threshold to at least 106. We recommend us-
ing minimum-strength requirements alongside minimum-length

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1417

requirements, but without blocklists or character-class require-
ments. While our results suggest that, when combined with a
minimum-strength requirement, policies that require multiple char-
acter classes improve resistance against o�ine attacks, similar im-
provement can be achieved with less impact on password-creation
usability by increasing the minimum-strength threshold or the
minimum required length. For example, 1c8+NN12 had similar us-
ability to 3c8+NN6 but led to much stronger passwords (post-hoc
comparison, see Table 6 in Appendix).

Increasing the minimum-strength threshold improves the se-
curity of passwords, but too high a threshold can make creating
passwords di�cult and annoying. For example, for online services
that prioritize a seamless user experience, usability impacts from a
1c8+NN12 policy may be unacceptable.

One might question why minimum-strength thresholds above
106 guesses but below 1014 guesses are useful; a 106 threshold will
help avoid the most predictable passwords that might be guessed in
an online attack, and in scenarios where attackers can make more
than 106 guesses, any threshold below 1014 will not be enough
to prevent account compromise in an o�ine guessing attack on a
hashed and salted database of passwords [7]. Although resistance
to guessing attacks between feasible online (106) and extensive
o�ine (1014) attacks may not always prevent account compromise,
we note that policies with minimum-strength thresholds between
106 and 1014 resulted in signi�cantly higher resistance to o�ine
guessing attacks at a 1014 cuto�; a NN8 minimum-strength policy
not only prevents the most predictable 108 passwords, but also
increases the proportion of created passwords with guess numbers
above 1014 relative a NN6 policy. In addition, the use of tunable,
slow hashing algorithms and increased computational resources
for guessing attacks over time means that guessing thresholds
other than 106 and 1014 (including 108 and 1010) can be relevant to
protect against. As demonstrated in Experiment 2, by combining
minimum-strength requirements with speci�c minimum-length
requirements, we can achieve this bene�t of increased resistance
to o�ine guessing without incurring substantial negative impact
on the ease of password creation.

In general, increasing length requirements for a given minimum-
strength policy strengthened passwords produced under that policy
against o�ine attacks, while maintaining strength against online
attacks. Since we didn’t �nd any signi�cant usability di�erences
between length variants of the 1c8 and 1c10 minimum-strength
policies that we tested, this suggests that the longer-length ver-
sions of these policies should be preferred for their security bene�ts.
However, we note that longer minimum-length requirements for a
given minimum-strength requirement do not always come without
a usability hit; in Experiment 1, 1c16+NN6 led to noticeably higher
levels of reported annoyance and di�culty during password cre-
ation than did 1c8+NN6. This illustrates the importance of testing
speci�c combinations of minimum-length and minimum-strength
requirements before their deployment in a password policy.

Synthesizing these results, we recommend a password policy
of 1c12+NN10 for security settings that need protection against
o�ine attacks while still providing reasonable usability. Similar
to blocklists, system administrators using a minimum-strength
requirement should check that the requirement is met at both the
client and at the remote server.

5.4 Blocklists vs. minimum-strength policies
A main goal of our study was to compare blocklist and minimum-
strength policies while considering both security and usability.
We �nd that both types of policies can protect well against 106
online attacks without unduly harming usability: both the 1c8+Xato-
strip-cifs and 1c8+Pwned-fs blocklist policies achieve these goals,
as does the minimum-strength 1c8+NN6 policy. However, we also
�nd that minimum-strength policies can provide better protection
than top-performing blocklist policies against o�ine attacks, while
improving usability.

Why use minimum-strength policies if blocklists are adequate
as a defense against online attacks and easy to deploy? Prior work
has also suggested that protecting against guessing attacks beyond
the threshold of e�ort possible in online attacks may be wasted
e�ort, e.g., users su�er through a more painful password-creation
process for no practical security gain [7]. We believe minimum-
strength policies are a good alternative, for a few reasons. First,
we believe minimum-strength policies can be deployed just as
easily—if not more easily—than blocklist policies, particularly as
the smaller blocklists we tested were not adequately e�ective. Our
results are based on a client-side NN model that could be pre-
trained and distributed to system administrators. Second, users
often reuse passwords, including between high-value and low-value
accounts [22, 32]. Even if an organization is not concerned about of-
�ine attacks, e.g., due to sophisticated hashing, its users may reuse
their passwords on less secure systems. In this case, resistance to
o�ine attacks would still be relevant. Third, we showed that using
minimum-strength policies can increase password strength without
noticeable negative impact on user experience.

6 CONCLUSION
We explored in depth three types of requirements enforced in pass-
word policies: composition requirements, blocklists, and neural-
network-driven minimum-strength requirements. Using two large-
scale, experimentally designed user studies, we examined the se-
curity and usability of each type of requirement, and their combi-
nations, when deployed in a modern password meter. Our results
lead to concrete recommendations for con�guring blocklist require-
ments. We recommend that blocklist requirements either check
candidate passwords against a list of about 105 commonly leaked
passwords using a fuzzymatching algorithm or perform a full-string
check against a large list consisting of all known leaked passwords.
Password policies incorporating blocklist requirements should not
impose character-class requirements. We also �nd that minimum-
strength policies, which we believe our work to be the �rst to
closely investigate in a user study, can improve upon blocklist poli-
cies by increasing resilience to o�ine attacks without degrading
usability. We recommend a 1c12+NN10 minimum-strength policy
for organizations that wish to protect high-value accounts without
a substantial negative usability impact.

ACKNOWLEDGMENTS
The authors thank Billy Melicher, Blase Ur, Maggie Oates, Hana
Habib, Kentrell Owens, our shepherd Daniel Zappala, and the
anonymous reviewers. This project was funded in part by gifts
from Microsoft Research, Google, and NVIDIA.

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1418

A NEURAL NETWORK TRAINING
Here we present additional tables and plots related to the training
and evaluation of the PGS3 NN models used in our user studies.

Prior to conducting our user study, we trained neural network
models for predicting password strength. Our models were created
using code based on prior work by Melicher et al. [16]. Similar
to their work, we trained a large Tensor�ow-based Keras model
containing three recurrent layers and two densely connected layers.
Each recurrent layer contained 512 LSTM units and each dense
layer contained 1,000 units. Our models used a vocabulary of 96
characters, including lowercase, uppercase, digits, and symbols.
The minimum and maximum lengths of passwords predicted by
our model were 8 and 30 characters, and the context length was
10 characters wide. We did not apply rare character or lettercase
optimizations, nor dropout. Our base 1c8 model was trained using
two NVIDIA Tesla P100 GPUs and a batch size of 1024 samples for
20 epochs over a period of 11 days. For each large Keras model,
we also trained a smaller version containing 200 units in both the
LSTM and dense network layers. We then created a model that
could be included in a client-side password meter by converting
the smaller Keras model into a Tensor�owJS model. While the size
of the large NN models were around 100MB, each Tensor�owJS
NN model was approximately 4.7MB uncompressed, including the
precomputed probability-to-guess-number mapping �le.

Policy PGS++ (old) PGS3 (new)

1c8 73.4 million 32.8 million
1c16 2.5 million 1.5 million
2c12 13.3 million 5.4 million
3c8 13.6 million 5.7 million
3c12 4.1 million 1.8 million
4c8 311 thousand 599 thousand

Table 4: Training data used for PGS3 and PGS++ [16] NN
models. Each PGS3 model other than the 1c8 model was
trained using transfer learning, initialized according to
model weights for a superset policy (e.g., the 3c8 model was
trained starting from the trained 1c8 model).

We experimented with transfer learning in order to train policy-
speci�c NN models, which prior work had found improved 1c16
guessing performance, particularly for large guess numbers [16].8

A primary di�erence between the PGS++ NN models used in
prior work [16] and our PGS3 models is that our models contained
a character-level embedding layer. The embedding size was set
to eight dimensions. Another di�erence between the prior PGS++
models and our PGS3 models is the training data used for each set
of models, which consisted of of PGS-compliant passwords in the
LinkedIn, Mate1, RockYou, and 000webhost datasets. As shown in
Table 4, our training data contains many fewer 1c8 passwords, but
slightly more 4c8 passwords.

We compared the guessing e�ectiveness of our PGS3 NN models
and the prior PGS++ model for 1c8, 3c8, and 4c8 passwords collected
in Experiment 1. As demonstrated in Figure 6, the PGS3 models
guessed passwords from each of these policies more e�ectively than
8We only trained composition-requirements-speci�c NN models for Experiment 1.
These models were also used for Experiment 2.

0%

20%

40%

3 4 5 6 7 8 9 10 11 12 13 14
log neural guess number

C
um

ul
at

ive
 %

 g
ue

ss
ed

3c8, PGS3
4c8, PGS3
1c8, PGS3
3c8, PGS++
4c8, PGS++
1c8, PGS++

Figure 6: Guessing performance of the PGS++ and PGS3 NN
models for passwords collected in Experiment 1. In contrast
to the previous PGS++ model, the PGS3 model guesses 1c8,
3c8, and 4c8 passwords at similar rates.

the PGS++ model. Furthermore, we �nd that the improvement in
guessing performance is largest for 4c8, followed by 3c8, and then
by 1c8. While we do notice a small increase in guessing performance
for 1c8 passwords, this increase was not statistically signi�cant. For
3c8 and 4c8 passwords, the increase was statistically signi�cant (PP;
3c8: �=11.9, p=.001; 4c8: �=18.2, p<.001). We experimented with
many model variations in order to understand which di�erences
between the PGS3 and PGS++ models led to these results. We found
that the majority of the guessing improvement of PGS3 over PGS++
could be attributed to the inclusion of the embedding layer in the
PGS3 model. On the other hand, the PGS3 training data and the
application of policy-speci�c transfer learning produced only slight
improvements in guessing performance.

B MINIMUM-STRENGTH-REQUIREMENT
ATTACKERS

For a minimum-strength policy, the underlying NN used to estimate
password strength and allow or reject passwords can be leveraged
by attackers to improve guessing e�ectiveness. As a rough analysis
of how much bene�t this kind of attacker knowledge provides, we
plot and compare guess curves for both situations. To simplify anal-
ysis, we plot the password guessability under each policy according
to browser-NN guess numbers. These guess numbers are similar to
PGS3-NN guess numbers that we primarily report, modulo artifacts
introduced during NN compression.

As illustrated in Figure 7, a minimum-strength-aware attacker
does gain a noticeable increase in guessing e�ectiveness, equivalent
to those passwords able to be guessed in the head start a�orded by
skipping minimum-strength-rejected passwords (e.g., skipping 106
passwords for a NN6 policy). However, this bene�t quickly fades
within an order of magnitude or fewer guesses.

C HOWHAVE PASSWORDS CHANGED?
Results from our experiments related to the impact of character-
class requirements on password guessability di�ered from those
reported in prior work. Prior work has found that policies requir-
ing more character classes tend to produce overall stronger pass-
words. In contrast, in our study participants assigned to 1c8, 3c8,

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1419

0%

20%

40%

60%

4 5 6 7 8 9 10 11 12 13 14
log neural guess number

C
um

ul
at

ive
 %

 g
ue

ss
ed

3c8+NN6
1c8+NN8
1c8+NN10
1c8+NN12
3c8+NN6, NN�aware
1c8+NN8, NN�aware
1c8+NN10, NN�aware
1c8+NN12, NN�aware

Figure 7: Password guessability against minimum-strength-
aware and minimum-strength-oblivious attackers. Both
types of attackers order password guesses from most
probable to least probable. The minimum-strength-aware
attacker additionally avoids making guesses that the
minimum-strength requirement would have rejected. The
NN8 and NN10 conditions are from Experiment 2. This plot
shows browser-NN guess numbers.

and 4c8 policies created passwords that did not signi�cantly di�er
in strength. As noted in Section 5.1, this change appeared to be in
part due to the fact that participants in our study were more likely
to exceed composition requirements than participants from prior
work. To investigate further, we compared how password lengths
and character-class compositions have changed across both prior
work and in our study.

We focused our comparisons to passwords collected in three sep-
arate studies under a 1c8 policy with no other restrictions, which
used a similar methodology to ours (i.e., Mechanical Turk partic-
ipants and use of role playing to create an email account pass-
word) [11, 28, 29]. Although these passwords were collected un-
der similar methods to ours, some di�erences exist. We identi�ed
primary di�erences that could have potentially impacted partici-
pants’ passwords, which included when data was collected and the
password-creation interface that participants created passwords
under. We attempted to understand how these di�erences related
to our new �ndings by comparing the character-class composition
and length of passwords collected in each study.

Without meter With meter

2010 2012 2016 2016 2019

One class 38% 14% 11% 7% 4%
Two classes 46% 20% 39% 26% 18%
Three classes 12% 49% 32% 35% 30%
Four classes 4% 16% 19% 32% 48%

Table 5: Number of character classes contained in 1c8 pass-
words collected in studies that were conducted in 2010 [13],
2012 [29], 2016 [28], and 2019 (our study).

We �nd that more passwords contain multiple character classes
over time. Part of this appears to be due to the password meter
used to collect passwords in each study. Comparing 2016 study
passwords collected without a meter to passwords from the same

study collected using a meter (similar to ours), we see a 13% jump
in the percentage of passwords containing four classes. We also
�nd increases in the number of character classes contained in pass-
words over time that are not attributable to use of a meter. As
shown in Table 5, 2016 passwords collected without a meter had
27% fewer passwords containing exactly one class and 15% more
passwords containing four classes compared to 2010 passwords
collected without a meter. Similarly, 1c8 passwords collected in
our study contained 16% more passwords containing four classes
compared to passwords collected in 2016 using the same meter.

Figure 8: Length distribution for 1c8 passwords collected in
studies over time.

Besides containing more character classes, we �nd that pass-
words have become longer over time. As illustrated in Figure 8, both
the year of the study and the use of a password meter appear to be
associated with this change. For example, 1c8 passwords collected
without a meter in 2016 had roughly 15% fewer passwords that were
exactly eight characters long compared to passwords collected with-
out a meter in 2010. We also see evidence that the password meter
played a role in lengthening passwords; 2016 passwords collected
with a meter had approximately 10% fewer passwords that were ex-
actly eight characters long compared to passwords collected in the
same study without a meter. We observe similar password-length
distributions for passwords collected in 2016 and 2019 using the
same password meter.

D CHARACTER CLASSES AND
GUESSABILITY

In our study we �nd that character-class requirements are not only
annoying, but provide little security bene�t in terms of defending
against guessing attacks. As mentioned in Appendix C, this result
applies to character-class requirements in a policy deployed using
a password meter similar to the one we use. Here we show sup-
port that a rough relationship still exists between the number of
character classes actually contained in a password and password
guessability, for passwords collected via a 1c8 policy.

In Figure 9 we plot guess curves for passwords containing an ex-
act number of character classes.9 We see that the PGS3 NN guesses
9We chose to subset passwords created under di�erent policies, rather than subset
only 1c8 passwords, in order to focus on passwords created by participants who may
tend to satisfy minimum requirements only. If we had performed a similar analysis on
only 1c8 passwords, then comparisons between passwords containing exactly one class
versus four classes might also implicitly compare passwords created by participants
who naturally put di�erent levels of e�ort into creating strong passwords.

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1420

0%

20%

40%

60%

3 4 5 6 7 8 9 10 11 12 13 14
log neural guess number

C
um

ul
at

ive
 %

 g
ue

ss
ed

4 classes
3 classes
2 classes
1 class

Figure 9: PGS3 NN guess numbers for passwords containing
exactly one, two, three, and four class(es), subsetted from
passwords created under 1c8, 3c8, and 4c8 policies in Experi-
ment 1. Each of these sets contains di�ering number of pass-
words; we plot con�dence intervals to re�ect how this im-
pacts guess curve estimations. The 95% con�dence interval
for passwords containing exactly one class is large due to the
small number of 1c8 passwords that contained exactly one
class.

passwords containing exactly three characters or four characters
at around the same rate, but guesses passwords containing exactly
one or two classes at a much faster rate. In other words, we �nd
evidence that passwords containing three or four character classes
tend to be stronger than those containing one or two classes. Simi-
larly, in Experiment 1 we found that character-class requirements,
when combined with minimum-strength requirements, do impact
resulting password guessability.

Nonetheless, we still recommend avoiding character-class re-
quirements. Users tend to �nd these requirements annoying and,
given an e�ectively designed password meter, many will incorpo-
rate multiple classes anyway of their own accord. Other types of
policy requirements, including minimum-strength and minimum-
length requirements, annoy users less, have a larger potential e�ect
on resulting password guessability, and can be con�gured more
granularly to achieve a desired security level.

E STUDY INSTRUCTIONS AND SURVEY
PROTOCOLS

E.1 User study instructions
f0. MTurk HIT instructions
Please visit the study link below to continue this HIT. After completing the study, you will be provided a completion
code, which will be required in order to receive payment.Make sure to leave this window open as you complete the study.
When you are �nished, return to this page to paste the completion code into the box.
[text box for completion code]

1. Participant consent
[consent form]

2. Part 1 instructions
In this study you will be asked to create a password and �ll out a 3-minute survey for a 55 cent payment. We will contact
you to come back a few days later to try to use your password to log in again and �ll out another survey for a 70 cent
bonus payment.
Imagine that an online account that you care a lot about, such as your main email account, is requiring that all users
change their passwords. We will ask you to use this password in a few days to log in again, so it is important that you
remember your new password. Please take the steps you would normally take to create and remember your important
passwords, and protect this password as you normally would protect your important passwords. Please behave as you
would if this was your real password! NOTE: This password is only being used for the purpose of this study and you should
not use a password that you use for your actual email account.

3. Password-creation task
[password meter used to create password]

4. Part 1 password-recall task
[password entry form]

5. Part 1 survey
[see Appendix E.2]

6. Instructions after completing Part 1 survey
Thank you! You have �nished Part 1 of the study. Please enter the following completion code on MTurk: [study com-
pletion code]
Please expect an email a few days from now to return for Part 2 of the study, for which you will receive an additional
70 cent bonus payment.

7. Part 2 password-recall task
[password entry form]

8. Part 2 survey
[see Appendix E.3]

9. Instructions after completing Part 2 survey
Thank you! You have �nished Part 2 of this study about the memorability and security of passwords. Please expect a 70
cent bonus payment on Mechanical Turk within the next few days.

E.2 Part 1 survey
Thank you for creating a password. Next, we would like you to answer some survey questions.

Creating a password during this study was annoying# [Strongly disagree to Strongly agree] (5-point scale)

Creating a password during this study was fun# [Strongly disagree to Strongly agree] (5-point scale)

Creating a password during this study was di�cult# [Strongly disagree to Strongly agree] (5-point scale)

Please explain why creating a password during this study was/was not di�cult.
[text box input]

Which of the following best describes your approach to creating your password in this study?# I reused a password that I currently use, or previously have used, for a di�erent account.# I modi�ed a password that I currently use, or previously have used, for a di�erent account.# I created an entirely new password, but I used the same general approach that I normally do.# I created an entirely new password, and I used a di�erent approach than I normally do.

In general, I am con�dent in my ability to create strong passwords.# [Strongly disagree to Strongly agree] (5-point scale)

The following questions refer only to the colored bar that measures the strength of your password (highlighted inside pink
box).

The colored bar helped me create a stronger password.# [Strongly disagree to Strongly agree] (5-point scale)

The colored bar was informative.# [Strongly disagree to Strongly agree] (5-point scale)

Because of the colored bar, I created a di�erent password than I would have otherwise.# [Strongly disagree to Strongly agree] (5-point scale)

It’s important to me that the colored bar gives my password a high score.# [Strongly disagree to Strongly agree] (5-point scale)

What is your opinion of the accuracy of the colored bar’s rating?# The colored bar’s rating accurately re�ected the strength of my password.# The colored bar’s rating did not accurately re�ect the strength of my password; the colored bar gave my password
a lower score than it deserved.# The colored bar’s rating did not accurately re�ect the strength of my password; the colored bar gave my password
a higher score than it deserved.# I don’t remember how the colored bar rated my password.

Do you have any other thoughts about the colored bar?
[text box input]

The following questions refer only to the text feedback that measures the strength of your password (highlighted inside green
box).

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1421

The text feedback helped me create a stronger password.# [Strongly disagree to Strongly agree] (5-point scale)

The text feedback was informative.# [Strongly disagree to Strongly agree] (5-point scale)

Because of the text feedback, I created a di�erent password than I would have otherwise.# [Strongly disagree to Strongly agree] (5-point scale)

It’s important to me that I follow the suggested changes to my password provided by the text feedback.# [Strongly disagree to Strongly agree] (5-point scale)

What is your opinion of the appropriateness of the text feedback?# The text feedback was appropriate for my password; the suggested changes improved the strength of my password.# The text feedback was not appropriate for my password; the suggested changes had no e�ect on the strength of my
password.# The text feedback was not appropriate for my password; the suggested changes weakened the strength of my pass-
word.# I don’t remember whether the text feedback was appropriate for my password.

Do you have any other thoughts about the text feedback?
[text box input]

[if assigned to a minimum-strength condition]
The following feedback was shown if you attempted to create a common password:

[if assigned to a Xato-based blocklist condition]
The following feedback was shown if you attempted to create a common password:

[if assigned to the Pwned blocklist condition]
The following feedback was shown if you attempted to create a password found in previous security leaks:

[if assigned to a minimum-strength or blocklist condition]
Were any passwords you tried to create rejected for the speci�c reason shown above (highlighted in orange)?# Yes, I remember these passwords were rejected for that speci�c reason (list rejected passwords in box)

[optional text box input]# Yes, but I don’t remember which passwords were rejected / # No / # I don’t remember

With what gender do you identify?# Male / # Female / # Other / # I prefer not to answer

How old are you?
[numeric text box input]

Are youmajoring in or do you have a degree or job in computer science, computer engineering, information
technology, or a related �eld?# Yes / # No / # I prefer not to answer

E.3 Part 2 survey
Which of the following statements best re�ects how you entered your password on the previous screen?# My password was automatically entered for me by a password manager or by my browser# I typed my password in entirely from memory# I had written my password down on paper, and I typed it in after looking it up# I had saved my password electronically (e.g., in a �le or on my phone), and I typed it in after looking it up# I had written down or electronically stored a hint (not the password itself) to help me remember my password for
this study, and I typed the password in after looking at the hint

Other [text box input]

It was di�cult for me to remember the password I entered on the previous screen# [Strongly disagree to Strongly agree] (5-point scale) / # I did not recall the password from memory

Which of the following statements re�ect how you normally enter passwords in your daily life? (Choose all
that apply)2 My passwords are automatically entered for me by a password manager or by my browser2 I type my passwords in entirely from memory2 I write my passwords down on paper, and I type them in after looking them up2 I save my passwords electronically (e.g., in a �le or on my phone), and I type them in after looking them up2 I write down or electronically store hints to help me remember my passwords, and I type my passwords in after
looking at those hints2 Other

[text box input]

Regardless of how you entered your password on the previous screen, did you do any of the following after
you created your password? (Choose all that apply)2 I stored my password for this study in a password manager or in my browser2 I wrote my password for this study down on paper2 I took steps to memorize my password2 I stored my password for this study electronically (e.g., in a �le or on my phone)2 I wrote down or electronically stored hints to help me remember my password for this study, but not my password
itself2 I did not do any of the above2 Other [text box input]

What would you have done di�erently in creating, protecting, and remembering your password if this pass-
word were used for an account you use outside this study?
[text box input]

Do you use the password you created for this study for any other account?# Yes / # No / # I prefer not to answer

F ADDITIONAL DETAILS OF EXPERIMENTAL
RESULTS

Figures 10 and 11 show participants’ annoyance with and perceived di�culty of password-creation.

Strongly agree Agree Neutral Disagree Strongly disagree

Creating a password
[...] was annoying.

Creating a password
[...] was dif�cult.

0% 50% 100% 0% 50% 100%

1c8+Xato-ciss
1c8+Xato-strip-cifs

1c8+Pwned-fs
1c8+Xato-cifs
3c8+Xato-cifs

2c12+NN6
1c16+NN6
3c12+NN6

1c8+NN6
1c8+NN12

3c8+NN6
1c8
4c8
3c8

CMU

Figure 10: Experiment 1: Participants’ level of agreement with the statement above each chart.

1c12+NN10
1c10+NN10
1c10+NN8
1c8+NN10
1c8+NN8

4c8+Xato-strip-cifs
4c8+Pwned-fs

1c8+Xato-strip-cifs
1c8+Pwned-fs

Creating a password
[...] was annoying.

Creating a password
[...] was dif�cult.

Strongly agree Agree Neutral Disagree Strongly disagree
0% 50% 100% 0% 50% 100%

CMU

Figure 11: Experiment 2: Participants’ level of agreement with the statement above each chart.

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1422

F.1 Strength/usability summary tables
Tables 6 and 7 show the results of omnibus and pairwise statistical tests for both experiments. Table 3 explains how to read these tables. We report Holm-Bonferroni-adjusted p-values. See Table 2 for descriptive statistics explaining e�ect sizes.

Condition Peto-
Peto

percent
@ 106

percent
@ 1014

Noticed
rejec-
tion

Creation
time

Creation
di�cult

Creation
annoy-
ing

Stored
pass-
word

Part 1
dropout

Part 2
dropout

Recall
time

Recall
success

Rem-
ember
di�cult

Impact of blocklists
3c8
3c8+Xato-cifs p=.842 p=.835 p=.114 N/A p=.895 p=.926 p=.449 p=.941 p=.07 p=.047 p=.101 p=.524 p=.176
1c8 p=.076
1c8+Xato-cifs p=.54 p=.46 p=.737 N/A p=.114 p>.999 p=.574 p>.999 p>.999 p=.29 p=.57 p>.999
1c8+Pwned-fs p=.54 p<.001 p=.267 N/A p=.722 p>.999 p>.999 p>.999 p>.999 p=.436 p=.418 p=.645
1c8+Xato-strip-cifs p=.54 p=.001 p=.25 N/A p=.558 p>.999 p=.215 p>.999 p>.999 p=.086 p=.29 p>.999
1c8+Xato-ciss p=.002 p<.001 p<.001 N/A p<.001 p<.001 p<.001 p=.038 p<.001 p=.616 p=.57 p=.931

Blocklist requirements for 1c8 policies
1c8+Xato-strip-cifs p=.064
1c8+Xato-cifs p=.017 p=.048 p=.399 p=.051 p=.003 p=.808 p=.544 p>.999 p=.988 p=.738 p=.016 p=.745
1c8+Xato-ciss p=.013 p=.498 p<.001 p<.001 p<.001 p<.001 p=.011 p=.031 p<.001 p=.015 p>.999 p=.31
1c8+Pwned-fs p=.8 p=.498 p=.865 p<.001 p=.142 p=.808 p=.161 p>.999 p=.988 p=.738 p>.999 p=.332

Composition requirements for minimum-strength policies
3c8+NN6 p=.224 p=.436 p=.705 p=.272 p=.385 p=.084 p=.071 p=.163
1c8+NN6 p=.586 p=.104 p=.021 p=.022 p=.636
1c16+NN6 p=.586 p<.001 p=.38 p=.643 p=.467
2c12+NN6 p=.119 p=.009 p=.38 p=.281 p=.636
3c12+NN6 p=.061 p=.004 p=.212 p=.643 p=.928

Blocklists vs minimum-strength policies
1c8+NN6 p=.074 p=.156
1c8+Xato-cifs p=.007 p=.065 p=.734 N/A p=.609 p=.66 p>.999 p>.999 p=.45 p=.585 p=.279
1c8+Pwned-fs p>.999 p=.747 p=.747 N/A p=.609 p=.66 p=.724 p>.999 p=.654 p=.678 p=.683
1c8+Xato-strip-cifs p>.999 p>.999 p=.282 N/A p=.054 p=.47 p>.999 p>.999 p=.654 p=.203 p=.658
1c8+Xato-ciss p=.005 p=.747 p<.001 N/A p<.001 p<.001 p=.003 p=.01 p<.001 p=.678 p=.683

Policies enforcing composition requirements only
3c8 p=.558 p=.639 p=.635 p=.891 p=.124 p=.157 p=.174 p=.414 p=.102 p=.711 p=.103
4c8 N/A p=.604
1c8 N/A p=.037

3c8+NN6 vs 1c8+NN12 (post-hoc comparison)
3c8+NN6
1c8+NN12 p=.001 p=.343 p<.001 p<.001 p=.036 p=.464 p=.184 p=.821 p=.37 p=.426 p=.076 p=.125 p=.052

Table 6: Experiment 1 policy comparisons

Condition Peto-
Peto

percent
@ 106

percent
@ 1014

Noticed
rejec-
tion

Creation
time

Creation
di�cult

Creation
annoy-
ing

Stored
pass-
word

Part 1
dropout

Part 2
dropout

Recall
time

Recall
success

Rem-
ember
di�cult

Blocklists vs. minimum-strength policies
1c8+Pwned-fs p=.89 p=.223 p=.987 p=.062 p=.689 p=.629 p=.257 p=.7
1c8+NN8 p<.001 p=.427 N/A p=.648 p=.136
1c8+NN10 p<.001 p=.002 N/A p<.001 p=.027
1c8+Xato-strip-cifs p=.107 p=.409 p=.551 p>.999 p=.247 p=.937 p=.3 p=.261 p=.25
1c8+NN8 p=.009 p>.999 N/A p=.122
1c8+NN10 p<.001 p=.034 N/A p=.066

Minimum-strength and minimum-length requirement interactions
1c10+NN8 p=.205 p=.318 p=.197 p=.827 p=.26 p=.865 p=.68 p=.913 p=.319 p=.644 p=.756
1c8+NN8 p=.628 p=.02
1c10+NN10 p=.002 p=.08
1c12+NN10 p=.925 p=.356 p=.1 p=.234 p=.66 p=.213 p=.67 p=.41 p=.285 p=.349 p=.982
1c10+NN10 p=.086 p=.009
1c8+NN10 p<.001 p<.001
1c8+NN10 p=.229 p=.076 p=.659 p=.323 p>.999 p=.38 p=.963 p=.46 p=.262 p=.829
1c10+NN10 p=.752 p=.048 p=.045
1c8+NN8 p<.001 p=.032 p=.001

Blocklist and composition requirement interactions
1c8+Xato-strip-cifs
4c8+Xato-strip-cifs p=.855 p=.582 p=.66 N/A p=.301 p=.452 p=.064 p=.758 p=.094 p=.75 p=.131 p=.459 p=.054
1c8+Pwned-fs
4c8+Pwned-fs p=.039 p=.027 p=.042 N/A p=.206 p=.268 p=.94 p=.069 p=.93 p=.57 p=.775 p=.505 p=.699
1c8+Pwned-fs
1c8+Xato-strip-cifs p=.067 p=.141 p=.431 N/A p=.04 p=.223 p=.474 p=.1 p=.015 p=.697 p=.263 p=.786 p=.061
4c8+Pwned-fs
4c8+Xato-strip-cifs p=.003 p=.135 p=.018 N/A p=.062 p=.436 p=.018 p=.564 p=.408 p=.62 p=.898 p=.085 p=.789

Table 7: Experiment 2 policy comparisons

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1423

F.2 Details of statistical tests
Tables 8-11 contain the detailed results of each statistical test. For Fisher’s exact tests, the odds ratio estimate (OR) and its

95% con�dence interval are listed. For Mann-Whitney U tests, the µ location parameter estimate and its 95% con�dence

interval are listed.

Comparison Family Details Adj. p
Tests on guessability curves (Peto-Peto)
Experiment 1
3c8 v. 3c8+Xato-cifs Impact of bl. (3c8) � ˆ2=0, df=1 0.842
1c8 v. 1c8+Xato-cifs Impact of bl. (1c8) � ˆ2=1.8, df=1 0.54
1c8 v. 1c8+Pwned-fs Impact of bl. (1c8) � ˆ2=1.8, df=1 0.54
1c8 v. 1c8+Xato-scifs Impact of bl. (1c8) � ˆ2=1.2, df=1 0.54
1c8 v. 1c8+Xato-ciss Impact of bl. (1c8) � ˆ2=12, df=1 0.002
1c8+Xato-scifs v. 1c8+Xato-cifs Bl. reqs. for 1c8 � ˆ2=6.9, df=1 0.017
1c8+Xato-scifs v. 1c8+Xato-ciss Bl. reqs. for 1c8 � ˆ2=8.2, df=1 0.013
1c8+Xato-scifs v. 1c8+Pwned-fs Bl. reqs. for 1c8 � ˆ2=0.1, df=1 0.8
3c8+NN6 v. 1c8+NN6 Comp. reqs. for min-str. � ˆ2=1.1, df=1 0.586
3c8+NN6 v. 1c16+NN6 Comp. reqs. for min-str. � ˆ2=0.9, df=1 0.586
3c8+NN6 v. 2c12+NN6 Comp. reqs. for min-str. � ˆ2=4.2, df=1 0.119
3c8+NN6 v. 3c12+NN6 Comp. reqs. for min-str. � ˆ2=5.9, df=1 0.061
1c8+NN6 v. 1c8+Xato-cifs Bl. v. min-str. � ˆ2=9.2, df=1 0.007
1c8+NN6 v. 1c8+Xato-scifs Bl. v. min-str. � ˆ2=0, df=1 >.999
1c8+NN6 v. 1c8+Xato-ciss Bl. v. min-str. � ˆ2=10.3, df=1 0.005
1c8+NN6 v. 1c8+Pwned-fs Bl. v. min-str. � ˆ2=0, df=1 >.999
3c8 (PGS3 NN) v. 3c8 (PGS++ NN) PGS3 NN v. PGS++ NN � ˆ2=11.9, df=1 0.001
4c8 (PGS3 NN) v. 4c8 (PGS++ NN) PGS3 NN v. PGS++ NN � ˆ2=18.2, df=1 <.001
1c8 (PGS3 NN) v. 1c8 (PGS++ NN) PGS3 NN v. PGS++ NN � ˆ2=0.3, df=1 0.56
Omnibus Comp. reqs. only � ˆ2=1.2, df=2 0.558
3c8NN6 vs 1c8NN12 Comp. reqs. for min-str. (post-hoc) � ˆ2=10.8, df=1 0.001
Experiment 2
1c8+Pwned-fs v. 1c8+NN8 Bl. v. min-str. (Pwned) � ˆ2=24.1, df=1 <.001
1c8+Pwned-fs v. 1c8+NN10 Bl. v. min-str. (Pwned) � ˆ2=64.6, df=1 <.001
1c8+Xato-scifs v. 1c8+NN8 Bl. v. min-str. (Xato) � ˆ2=6.8, df=1 0.009
1c8+Xato-scifs v. 1c8+NN10 Bl. v. min-str. (Xato) � ˆ2=40.7, df=1 <.001
1c10+NN8 v. 1c8+NN8 Min-str./len. req. ia. (1c10) � ˆ2=0.2, df=1 0.628
1c10+NN8 v. 1c10+NN10 Min-str./len. req. ia. (1c10) � ˆ2=11.1, df=1 0.002
Omnibus Min-str./len. req. ias. (1c12) � ˆ2=0.2, df=2 0.925
1c8+NN10 v. 1c10+NN10 Min-str./len. req. ias. (1c8) � ˆ2=0.1, df=1 0.752
1c8+NN8 v. 1c8+NN10 Min-str./len. req. ias. (1c8) � ˆ2=24.8, df=1 <.001
1c8+Xato-scifs v. 4c8+Xato-scifs Bl./comp. req. ias. (Xato) � ˆ2=0, df=1 0.855
1c8+Pwned-fs v. 4c8+Pwned-fs Bl./comp. req. ias. (Pwned) � ˆ2=4.3, df=1 0.039
1c8+Pwned-fs v. 1c8+Xato-scifs Bl./comp. req. ias. (1c8) � ˆ2=3.4, df=1 0.067
4c8+Pwned-fs v. 4c8+Xato-scifs Bl./comp. req. ias. (4c8) � ˆ2=9.1, df=1 0.003
Tests on the proportions of password guessed at 10ˆ6 guess cuto� (Chi-square, FET)
Experiment 1
3c8 v. 3c8+Xato-cifs Impact of bl. (3c8) OR=1.18 ([0.47, 2.92]) 0.835
1c8 v. 1c8+Xato-cifs Impact of bl. (1c8) OR=0.71 ([0.31, 1.57]) 0.46
1c8 v. 1c8+Pwned-fs Impact of bl. (1c8) OR=0 ([0.00, 0.22]) <.001
1c8 v. 1c8+Xato-scifs Impact of bl. (1c8) OR=0.16 ([0.03, 0.54]) 0.001
1c8 v. 1c8+Xato-ciss Impact of bl. (1c8) OR=0 ([0.00, 0.25]) <.001
1c8+Xato-scifs v. 1c8+Xato-cifs Bl. reqs. for 1c8 OR=4.51 ([1.20, 25.17]) 0.048
1c8+Xato-scifs v. 1c8+Xato-ciss Bl. reqs. for 1c8 OR=Inf ([0.35, Inf]) 0.498
1c8+Xato-scifs v. 1c8+Pwned-fs Bl. reqs. for 1c8 OR=0 ([0.00, 2.53]) 0.498
Omnibus Comp. reqs. for min-str. � ˆ2=5.7, df=4 0.224
1c8+NN6 v. 1c8+Xato-cifs Bl. v. min-str. OR=4.48 ([1.19, 25.00]) 0.065
1c8+NN6 v. 1c8+Xato-scifs Bl. v. min-str. OR=0.99 ([0.13, 7.48]) >.999
1c8+NN6 v. 1c8+Xato-ciss Bl. v. min-str. OR=0 ([0.00, 2.83]) 0.747
1c8+NN6 v. 1c8+Pwned-fs Bl. v. min-str. OR=0 ([0.00, 2.51]) 0.747
Omnibus Comp. reqs. only � ˆ2=0.9, df=2 0.639
Omnibus Comp. reqs. for min-str. (post-hoc) � ˆ2=5.6, df=5 0.343
Experiment 2
Omnibus Bl. v. min-str. (Pwned) � ˆ2=0.2, df=2 0.89
Omnibus Bl. v. min-str. (Xato) � ˆ2=4.5, df=2 0.107
Omnibus Min-str./len. req. ia. (1c10) � ˆ2=3.2, df=2 0.205
Omnibus Min-str./len. req. ias. (1c12) � ˆ2=2.1, df=2 0.356
Omnibus Min-str./len. req. ias. (1c8) � ˆ2=3, df=2 0.229
1c8+Xato-scifs v. 4c8+Xato-scifs Bl./comp. req. ias. (Xato) OR=1.49 ([0.42, 5.84]) 0.582
1c8+Pwned-fs v. 4c8+Pwned-fs Bl./comp. req. ias. (Pwned) OR=0.24 ([0.04, 0.91]) 0.027
1c8+Pwned-fs v. 1c8+Xato-scifs Bl./comp. req. ias. (1c8) OR=0.37 ([0.06, 1.54]) 0.141
4c8+Pwned-fs v. 4c8+Xato-scifs Bl./comp. req. ias. (4c8) OR=2.29 ([0.73, 8.50]) 0.135
Tests on the proportions of participants that noticed bl./min-str. rejection (Chi-square, FET)
Experiment 1
1c8+Xato-scifs v. 1c8+Xato-cifs Bl. reqs. for 1c8 OR=0.48 ([0.21, 1.05]) 0.051
1c8+Xato-scifs v. 1c8+Xato-ciss Bl. reqs. for 1c8 OR=0.28 ([0.15, 0.50]) <.001
1c8+Xato-scifs v. 1c8+Pwned-fs Bl. reqs. for 1c8 OR=0.31 ([0.16, 0.59]) <.001
Omnibus Comp. reqs. for min-str. � ˆ2=3.8, df=4 0.436
3c8NN6 vs 1c8NN12 Comp. reqs. for min-str. (post-hoc) OR=0.33 ([0.21, 0.50]) <.001
Experiment 2
Omnibus Min-str./len. req. ia. (1c10) � ˆ2=2.3, df=2 0.318
1c12+NN10 v. 1c10+NN10 Min-str./len. req. ias. (1c12) OR=1.54 ([1.10, 2.16]) 0.009
1c12+NN10 v. 1c8+NN10 Min-str./len. req. ias. (1c12) OR=1.88 ([1.35, 2.64]) <.001
Omnibus Min-str./len. req. ias. (1c8) � ˆ2=5.2, df=2 0.076

Table 8: Detailed statistical test results (1)

Comparison Family Details Adj. p
Tests on the proportions of password guessed at 10ˆ14 guess cuto� (Chi-square, FET)
Experiment 1
3c8 v. 3c8+Xato-cifs Impact of bl. (3c8) OR=0.77 ([0.54, 1.08]) 0.114
1c8 v. 1c8+Xato-cifs Impact of bl. (1c8) OR=0.94 ([0.67, 1.32]) 0.737
1c8 v. 1c8+Pwned-fs Impact of bl. (1c8) OR=0.78 ([0.55, 1.09]) 0.267
1c8 v. 1c8+Xato-scifs Impact of bl. (1c8) OR=0.75 ([0.53, 1.05]) 0.25
1c8 v. 1c8+Xato-ciss Impact of bl. (1c8) OR=0.35 ([0.24, 0.51]) <.001
1c8+Xato-scifs v. 1c8+Xato-cifs Bl. reqs. for 1c8 OR=1.25 ([0.88, 1.78]) 0.399
1c8+Xato-scifs v. 1c8+Xato-ciss Bl. reqs. for 1c8 OR=2.15 ([1.46, 3.20]) <.001
1c8+Xato-scifs v. 1c8+Pwned-fs Bl. reqs. for 1c8 OR=1.04 ([0.73, 1.47]) 0.865
3c8+NN6 v. 1c8+NN6 Comp. reqs. for min-str. OR=0.75 ([0.53, 1.07]) 0.104
3c8+NN6 v. 1c16+NN6 Comp. reqs. for min-str. OR=3.91 ([2.56, 6.05]) <.001
3c8+NN6 v. 2c12+NN6 Comp. reqs. for min-str. OR=1.67 ([1.16, 2.41]) 0.009
3c8+NN6 v. 3c12+NN6 Comp. reqs. for min-str. OR=1.84 ([1.26, 2.71]) 0.004
1c8+NN6 v. 1c8+Xato-cifs Bl. v. min-str. OR=0.94 ([0.66, 1.33]) 0.734
1c8+NN6 v. 1c8+Xato-scifs Bl. v. min-str. OR=0.75 ([0.53, 1.05]) 0.282
1c8+NN6 v. 1c8+Xato-ciss Bl. v. min-str. OR=0.35 ([0.23, 0.51]) <.001
1c8+NN6 v. 1c8+Pwned-fs Bl. v. min-str. OR=0.77 ([0.55, 1.09]) 0.282
Omnibus Comp. reqs. only � ˆ2=0.9, df=2 0.635
3c8NN6 vs 1c8NN12 Comp. reqs. for min-str. (post-hoc) OR=4.68 ([2.98, 7.49]) <.001

Experiment 2
1c8+Pwned-fs v. 1c8+NN8 Bl. v. min-str. (Pwned) OR=1.12 ([0.84, 1.51]) 0.427
1c8+Pwned-fs v. 1c8+NN10 Bl. v. min-str. (Pwned) OR=1.62 ([1.2, 2.2]) 0.002
1c8+Xato-scifs v. 1c8+NN8 Bl. v. min-str. (Xato) OR=1 ([0.74, 1.34]) >.999
1c8+Xato-scifs v. 1c8+NN10 Bl. v. min-str. (Xato) OR=1.44 ([1.06, 1.96]) 0.034
1c10+NN8 v. 1c8+NN8 Min-str./len. req. ia. (1c10) OR=1.49 ([1.10, 2.04]) 0.02
1c10+NN8 v. 1c10+NN10 Min-str./len. req. ia. (1c10) OR=1.33 ([0.96, 1.85]) 0.08
1c12+NN10 v. 1c10+NN10 Min-str./len. req. ias. (1c12) OR=1.36 ([0.96, 1.94]) 0.086
1c12+NN10 v. 1c8+NN10 Min-str./len. req. ias. (1c12) OR=1.87 ([1.33, 2.65]) <.001
1c8+NN10 v. 1c10+NN10 Min-str./len. req. ias. (1c8) OR=1.38 ([1.00, 1.91]) 0.048
1c8+NN8 v. 1c8+NN10 Min-str./len. req. ias. (1c8) OR=1.45 ([1.06, 1.97]) 0.032
1c8+Xato-scifs v. 4c8+Xato-scifs Bl./comp. req. ias. (Xato) OR=0.93 ([0.69, 1.26]) 0.66
1c8+Pwned-fs v. 4c8+Pwned-fs Bl./comp. req. ias. (Pwned) OR=0.74 ([0.55, 0.99]) 0.042
1c8+Pwned-fs v. 1c8+Xato-scifs Bl./comp. req. ias. (1c8) OR=1.12 ([0.84, 1.50]) 0.431
4c8+Pwned-fs v. 4c8+Xato-scifs Bl./comp. req. ias. (4c8) OR=1.43 ([1.05, 1.93]) 0.018

Tests on password-creation time (KW, MWU)
Experiment 1
3c8 v. 3c8+Xato-cifs Impact of bl. (3c8) W =48150, µ=0.6 ([-7.8, 9.2]) 0.895
1c8 v. 1c8+Xato-cifs Impact of bl. (1c8) W =50088, µ=9.2 ([0.5, 18.2]) 0.114
1c8 v. 1c8+Pwned-fs Impact of bl. (1c8) W =47202, µ=1.5 ([-7.4, 10.8]) 0.722
1c8 v. 1c8+Xato-scifs Impact of bl. (1c8) W =46983, µ=-5.1 ([-15.1, 4.3]) 0.558
1c8 v. 1c8+Xato-ciss Impact of bl. (1c8) W =28044, µ=-46.3 ([-61.5, -32.1]) <.001
1c8+Xato-scifs v. 1c8+Xato-cifs Bl. reqs. for 1c8 W =37932, µ=-15.2 ([-25.1, -5.7]) 0.003
1c8+Xato-scifs v. 1c8+Xato-ciss Bl. reqs. for 1c8 W =29159, µ=-41.0 ([-56.4, -26.9]) <.001
1c8+Xato-scifs v. 1c8+Pwned-fs Bl. reqs. for 1c8 W =42266, µ=-7.4 ([-17.0, 2.2]) 0.142
3c8+NN6 v. 1c8+NN6 Comp. reqs. for min-str. W =43247, µ=13.2 ([3.9, 22.5]) 0.021
3c8+NN6 v. 1c16+NN6 Comp. reqs. for min-str. W =34605, µ=-4.9 ([-14.3, 4.5]) 0.38
3c8+NN6 v. 2c12+NN6 Comp. reqs. for min-str. W =41301, µ=6.2 ([-3.1, 15.6]) 0.38
3c8+NN6 v. 3c12+NN6 Comp. reqs. for min-str. W =30818, µ=-9.2 ([-19.5, 0.8]) 0.212
1c8+NN6 v. 1c8+Xato-cifs Bl. v. min-str. W =43028, µ=3.4 ([-4.5, 11.6]) 0.609
1c8+NN6 v. 1c8+Xato-scifs Bl. v. min-str. W =39777, µ=-11.6 ([-21.7, -2.0]) 0.054
1c8+NN6 v. 1c8+Xato-ciss Bl. v. min-str. W =23233, µ=-52.5 ([-67.8, -38.6]) <.001
1c8+NN6 v. 1c8+Pwned-fs Bl. v. min-str. W =39974, µ=-4.6 ([-13.5, 4.2]) 0.609
Omnibus Comp. reqs. only � ˆ2=0.231, df=2 0.891
3c8NN6 vs 1c8NN12 Comp. reqs. for min-str. (post-hoc) W =30801, µ=-11.6 ([-23.1, -0.8]) 0.036

Experiment 2
1c8+Pwned-fs v. 1c8+NN8 Bl. v. min-str. (Pwned) W =81334, µ=-1.8 ([-9.4, 5.8]) 0.648
1c8+Pwned-fs v. 1c8+NN10 Bl. v. min-str. (Pwned) W =69655, µ=-18.4 ([-27.7, -9.6]) <.001
1c8+Xato-scifs v. 1c8+NN8 Bl. v. min-str. (Xato) W =87868, µ=6.5 ([-1.8, 15.2]) 0.122
1c8+Xato-scifs v. 1c8+NN10 Bl. v. min-str. (Xato) W =76348, µ=-10.1 ([-19.5, -0.8]) 0.066
Omnibus Min-str./len. req. ia. (1c10) � ˆ2=3.25, df=2 0.197
Omnibus Min-str./len. req. ias. (1c12) � ˆ2=4.61, df=2 0.1
1c8+NN10 v. 1c10+NN10 Min-str./len. req. ias. (1c8) W =83571, µ=9.4 ([0.2, 18.8]) 0.045
1c8+NN8 v. 1c8+NN10 Min-str./len. req. ias. (1c8) W =62294, µ=-16.6 ([-26.4, -7.5]) 0.001
1c8+Xato-scifs v. 4c8+Xato-scifs Bl./comp. req. ias. (Xato) W =83838, µ=-4.7 ([-13.7, 4.2]) 0.301
1c8+Pwned-fs v. 4c8+Pwned-fs Bl./comp. req. ias. (Pwned) W =77992, µ=-5.0 ([-12.8, 2.9]) 0.206
1c8+Pwned-fs v. 1c8+Xato-scifs Bl./comp. req. ias. (1c8) W =86778, µ=-8.4 ([-16.7, -0.4]) 0.04
4c8+Pwned-fs v. 4c8+Xato-scifs Bl./comp. req. ias. (4c8) W =70276, µ=-8.3 ([-17.4, 0.4]) 0.062

Tests on password-creation di�culty (Chi-square, FET)
Experiment 1
3c8 v. 3c8+Xato-cifs Impact of bl. (3c8) OR=1.02 ([0.7, 1.5]) 0.926
1c8 v. 1c8+Xato-cifs Impact of bl. (1c8) OR=0.94 ([0.64, 1.38]) >.999
1c8 v. 1c8+Pwned-fs Impact of bl. (1c8) OR=1.01 ([0.69, 1.49]) >.999
1c8 v. 1c8+Xato-scifs Impact of bl. (1c8) OR=0.86 ([0.59, 1.25]) >.999
1c8 v. 1c8+Xato-ciss Impact of bl. (1c8) OR=0.34 ([0.23, 0.49]) <.001
1c8+Xato-scifs v. 1c8+Xato-cifs Bl. reqs. for 1c8 OR=0.92 ([0.63, 1.35]) 0.808
1c8+Xato-scifs v. 1c8+Xato-ciss Bl. reqs. for 1c8 OR=0.39 ([0.27, 0.56]) <.001
1c8+Xato-scifs v. 1c8+Pwned-fs Bl. reqs. for 1c8 OR=0.85 ([0.58, 1.25]) 0.808
3c8+NN6 v. 1c8+NN6 Comp. reqs. for min-str. OR=1.72 ([1.16, 2.56]) 0.022
3c8+NN6 v. 1c16+NN6 Comp. reqs. for min-str. OR=0.83 ([0.57, 1.19]) 0.643
3c8+NN6 v. 2c12+NN6 Comp. reqs. for min-str. OR=1.38 ([0.95, 2.03]) 0.281
3c8+NN6 v. 3c12+NN6 Comp. reqs. for min-str. OR=1.11 ([0.75, 1.63]) 0.643
1c8+NN6 v. 1c8+Xato-cifs Bl. v. min-str. OR=0.82 ([0.55, 1.23]) 0.66
1c8+NN6 v. 1c8+Xato-scifs Bl. v. min-str. OR=0.76 ([0.51, 1.12]) 0.47
1c8+NN6 v. 1c8+Xato-ciss Bl. v. min-str. OR=0.3 ([0.20, 0.44]) <.001
1c8+NN6 v. 1c8+Pwned-fs Bl. v. min-str. OR=0.89 ([0.59, 1.33]) 0.66
Omnibus Comp. reqs. only � ˆ2=4.2, df=2 0.124
3c8NN6 vs 1c8NN12 Comp. reqs. for min-str. (post-hoc) OR=0.87 ([0.60, 1.27]) 0.464

Experiment 2
1c8+Pwned-fs v. 1c8+NN8 Bl. v. min-str. (Pwned) OR=0.78 ([0.57, 1.08]) 0.136
1c8+Pwned-fs v. 1c8+NN10 Bl. v. min-str. (Pwned) OR=0.68 ([0.50, 0.93]) 0.027
Omnibus Bl. v. min-str. (Xato) � ˆ2=1.8, df=2 0.409
Omnibus Min-str./len. req. ia. (1c10) � ˆ2=0.4, df=2 0.827
Omnibus Min-str./len. req. ias. (1c12) � ˆ2=2.9, df=2 0.234
Omnibus Min-str./len. req. ias. (1c8) � ˆ2=0.8, df=2 0.659
1c8+Xato-scifs v. 4c8+Xato-scifs Bl./comp. req. ias. (Xato) OR=0.89 ([0.65, 1.21]) 0.452
1c8+Pwned-fs v. 4c8+Pwned-fs Bl./comp. req. ias. (Pwned) OR=0.84 ([0.61, 1.15]) 0.268
1c8+Pwned-fs v. 1c8+Xato-scifs Bl./comp. req. ias. (1c8) OR=0.83 ([0.61, 1.13]) 0.223
4c8+Pwned-fs v. 4c8+Xato-scifs Bl./comp. req. ias. (4c8) OR=0.88 ([0.64, 1.21]) 0.436

Table 9: Detailed statistical test results (2)

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1424

Comparison Family Details Adj. p
Tests on password-creation annoyance (Chi-square, FET)
Experiment 1
3c8 v. 3c8+Xato-cifs Impact of bl. (3c8) OR=1.15 ([0.82, 1.62]) 0.449
1c8 v. 1c8+Xato-cifs Impact of bl. (1c8) OR=0.82 ([0.57, 1.19]) 0.574
1c8 v. 1c8+Pwned-fs Impact of bl. (1c8) OR=1 ([0.69, 1.44]) >.999
1c8 v. 1c8+Xato-scifs Impact of bl. (1c8) OR=0.73 ([0.51, 1.04]) 0.215
1c8 v. 1c8+Xato-ciss Impact of bl. (1c8) OR=0.44 ([0.31, 0.63]) <.001
1c8+Xato-scifs v. 1c8+Xato-cifs Bl. reqs. for 1c8 OR=0.89 ([0.62, 1.26]) 0.544
1c8+Xato-scifs v. 1c8+Xato-ciss Bl. reqs. for 1c8 OR=0.61 ([0.43, 0.86]) 0.011
1c8+Xato-scifs v. 1c8+Pwned-fs Bl. reqs. for 1c8 OR=0.73 ([0.51, 1.05]) 0.161
3c8+NN6 v. 1c8+NN6 Comp. reqs. for min-str. OR=1.26 ([0.87, 1.81]) 0.636
3c8+NN6 v. 1c16+NN6 Comp. reqs. for min-str. OR=0.76 ([0.53, 1.09]) 0.467
3c8+NN6 v. 2c12+NN6 Comp. reqs. for min-str. OR=1.24 ([0.86, 1.78]) 0.636
3c8+NN6 v. 3c12+NN6 Comp. reqs. for min-str. OR=1.02 ([0.71, 1.48]) 0.928
1c8+NN6 v. 1c8+Xato-cifs Bl. v. min-str. OR=1.03 ([0.71, 1.48]) >.999
1c8+NN6 v. 1c8+Xato-scifs Bl. v. min-str. OR=0.91 ([0.64, 1.30]) >.999
1c8+NN6 v. 1c8+Xato-ciss Bl. v. min-str. OR=0.55 ([0.38, 0.79]) 0.003
1c8+NN6 v. 1c8+Pwned-fs Bl. v. min-str. OR=1.24 ([0.86, 1.80]) 0.724
3c8 v. 4c8 Comp. reqs. only OR=1.1 ([0.78, 1.57]) 0.604
3c8 v. 1c8 Comp. reqs. only OR=1.53 ([1.07, 2.19]) 0.037
3c8NN6 vs 1c8NN12 Comp. reqs. for min-str. (post-hoc) OR=0.79 ([0.55, 1.13]) 0.184

Experiment 2
Omnibus Bl. v. min-str. (Pwned) � ˆ2=3, df=2 0.223
Omnibus Bl. v. min-str. (Xato) � ˆ2=1.2, df=2 0.551
Omnibus Min-str./len. req. ia. (1c10) � ˆ2=2.7, df=2 0.26
Omnibus Min-str./len. req. ias. (1c12) � ˆ2=0.8, df=2 0.66
Omnibus Min-str./len. req. ias. (1c8) � ˆ2=2.3, df=2 0.323
1c8+Xato-scifs v. 4c8+Xato-scifs Bl./comp. req. ias. (Xato) OR=0.76 ([0.57, 1.02]) 0.064
1c8+Pwned-fs v. 4c8+Pwned-fs Bl./comp. req. ias. (Pwned) OR=0.98 ([0.72, 1.33]) 0.94
1c8+Pwned-fs v. 1c8+Xato-scifs Bl./comp. req. ias. (1c8) OR=0.9 ([0.67, 1.20]) 0.474
4c8+Pwned-fs v. 4c8+Xato-scifs Bl./comp. req. ias. (4c8) OR=0.7 ([0.52, 0.94]) 0.018

Tests on password storage after creation (Chi-square, FET)
Experiment 1
3c8 v. 3c8+Xato-cifs Impact of bl. (3c8) OR=1.15 ([0.79, 1.66]) 0.941
Omnibus Impact of bl. (1c8) � ˆ2=10.4, df=4 0.07
1c8 v. 1c8+Xato-cifs Impact of bl. (1c8) OR=0.97 ([0.67, 1.41]) >.999
1c8 v. 1c8+Pwned-fs Impact of bl. (1c8) OR=1.05 ([0.72, 1.52]) >.999
1c8 v. 1c8+Xato-scifs Impact of bl. (1c8) OR=1 ([0.70, 1.43]) >.999
1c8 v. 1c8+Xato-ciss Impact of bl. (1c8) OR=0.6 ([0.4, 0.9]) 0.038
1c8+Xato-scifs v. 1c8+Xato-cifs Bl. reqs. for 1c8 OR=1.03 ([0.72, 1.48]) >.999
1c8+Xato-scifs v. 1c8+Xato-ciss Bl. reqs. for 1c8 OR=0.6 ([0.41, 0.89]) 0.031
1c8+Xato-scifs v. 1c8+Pwned-fs Bl. reqs. for 1c8 OR=0.95 ([0.66, 1.37]) >.999
Omnibus Comp. reqs. for min-str. � ˆ2=2.2, df=4 0.705
1c8+NN6 v. 1c8+Xato-cifs Bl. v. min-str. OR=0.88 ([0.60, 1.28]) >.999
1c8+NN6 v. 1c8+Xato-scifs Bl. v. min-str. OR=0.9 ([0.62, 1.30]) >.999
1c8+NN6 v. 1c8+Xato-ciss Bl. v. min-str. OR=0.54 ([0.36, 0.82]) 0.01
1c8+NN6 v. 1c8+Pwned-fs Bl. v. min-str. OR=0.94 ([0.65, 1.38]) >.999
Omnibus Comp. reqs. only � ˆ2=5.1, df=2 0.157
Omnibus Comp. reqs. for min-str. (post-hoc) � ˆ2=3.6, df=5 0.821

Experiment 2
Omnibus Bl. v. min-str. (Pwned) � ˆ2=1.4, df=2 0.987
Omnibus Bl. v. min-str. (Xato) � ˆ2=1.4, df=2 >.999
Omnibus Min-str./len. req. ia. (1c10) � ˆ2=0.3, df=2 0.865
Omnibus Min-str./len. req. ias. (1c12) � ˆ2=4.5, df=2 0.213
Omnibus Min-str./len. req. ias. (1c8) � ˆ2=0.4, df=2 >.999
1c8+Xato-scifs v. 4c8+Xato-scifs Bl./comp. req. ias. (Xato) OR=1.15 ([0.83, 1.60]) 0.758
1c8+Pwned-fs v. 4c8+Pwned-fs Bl./comp. req. ias. (Pwned) OR=0.7 ([0.50, 0.98]) 0.069
1c8+Pwned-fs v. 1c8+Xato-scifs Bl./comp. req. ias. (1c8) OR=0.73 ([0.53, 1.01]) 0.1
4c8+Pwned-fs v. 4c8+Xato-scifs Bl./comp. req. ias. (4c8) OR=1.2 ([0.86, 1.69]) 0.564

Tests on Part 1 participant dropout rate (Chi-square, FET)
Experiment 1
3c8 v. 3c8+Xato-cifs Impact of bl. (3c8) OR=1.52 ([0.95, 2.45]) 0.07
1c8+Xato-scifs v. 1c8+Xato-cifs Bl. reqs. for 1c8 OR=1.19 ([0.74, 1.91]) 0.988
1c8+Xato-scifs v. 1c8+Xato-ciss Bl. reqs. for 1c8 OR=0.38 ([0.25, 0.58]) <.001
1c8+Xato-scifs v. 1c8+Pwned-fs Bl. reqs. for 1c8 OR=1.06 ([0.66, 1.73]) 0.988
Omnibus Comp. reqs. for min-str. � ˆ2=5.1, df=4 0.272
1c8+NN6 v. 1c8+Xato-cifs Bl. v. min-str. OR=0.69 ([0.41, 1.14]) 0.45
1c8+NN6 v. 1c8+Xato-scifs Bl. v. min-str. OR=0.82 ([0.49, 1.36]) 0.654
1c8+NN6 v. 1c8+Xato-ciss Bl. v. min-str. OR=0.31 ([0.20, 0.49]) <.001
1c8+NN6 v. 1c8+Pwned-fs Bl. v. min-str. OR=0.77 ([0.46, 1.28]) 0.654
Omnibus Comp. reqs. only � ˆ2=3.5, df=2 0.174
Omnibus Comp. reqs. for min-str. (post-hoc) � ˆ2=5.4, df=5 0.37

Experiment 2
Omnibus Bl. v. min-str. (Pwned) � ˆ2=5.6, df=2 0.062
Omnibus Bl. v. min-str. (Xato) � ˆ2=2.8, df=2 0.247
Omnibus Min-str./len. req. ia. (1c10) � ˆ2=0.8, df=2 0.68
Omnibus Min-str./len. req. ias. (1c12) � ˆ2=0.8, df=2 0.67
Omnibus Min-str./len. req. ias. (1c8) � ˆ2=1.9, df=2 0.38
1c8+Xato-scifs v. 4c8+Xato-scifs Bl./comp. req. ias. (Xato) OR=0.71 ([0.47, 1.07]) 0.094
1c8+Pwned-fs v. 4c8+Pwned-fs Bl./comp. req. ias. (Pwned) OR=0.97 ([0.68, 1.40]) 0.93
1c8+Pwned-fs v. 1c8+Xato-scifs Bl./comp. req. ias. (1c8) OR=1.59 ([1.08, 2.36]) 0.015
4c8+Pwned-fs v. 4c8+Xato-scifs Bl./comp. req. ias. (4c8) OR=1.17 ([0.8, 1.7]) 0.408

Table 10: Detailed statistical test results (3)

Comparison Family Details Adj. p
Tests on Part 2 participant dropout rate (Chi-square, FET)
Experiment 1
3c8 v. 3c8+Xato-cifs Impact of bl. (3c8) OR=0.66 ([0.43, 1.00]) 0.047
1c8 v. 1c8+Xato-cifs Impact of bl. (1c8) OR=1.42 ([0.92, 2.21]) 0.290
1c8 v. 1c8+Pwned-fs Impact of bl. (1c8) OR=1.32 ([0.86, 2.02]) 0.436
1c8 v. 1c8+Xato-scifs Impact of bl. (1c8) OR=1.65 ([1.07, 2.57]) 0.086
1c8 v. 1c8+Xato-ciss Impact of bl. (1c8) OR=0.89 ([0.59, 1.35]) 0.616
1c8+Xato-scifs v. 1c8+Xato-cifs Bl. reqs. for 1c8 OR=1.16 ([0.72, 1.86]) 0.738
1c8+Xato-scifs v. 1c8+Xato-ciss Bl. reqs. for 1c8 OR=0.54 ([0.34, 0.85]) 0.015
1c8+Xato-scifs v. 1c8+Pwned-fs Bl. reqs. for 1c8 OR=1.25 ([0.79, 2.00]) 0.738
Omnibus Comp. reqs. for min-str. � ˆ2=4.2, df=4 0.385
1c8+NN6 v. 1c8+Xato-cifs Bl. v. min-str. OR=1.35 ([0.86, 2.12]) 0.585
1c8+NN6 v. 1c8+Xato-scifs Bl. v. min-str. OR=1.56 ([1.00, 2.46]) 0.203
1c8+NN6 v. 1c8+Xato-ciss Bl. v. min-str. OR=0.84 ([0.55, 1.29]) 0.678
1c8+NN6 v. 1c8+Pwned-fs Bl. v. min-str. OR=1.25 ([0.80, 1.94]) 0.678
Omnibus Comp. reqs. only � ˆ2=1.8, df=2 0.414
Omnibus Comp. reqs. for min-str. (post-hoc) � ˆ2=4.9, df=5 0.426

Experiment 2
Omnibus Bl. v. min-str. (Pwned) � ˆ2=0.7, df=2 0.689
Omnibus Bl. v. min-str. (Xato) � ˆ2=0.1, df=2 0.937
Omnibus Min-str./len. req. ia. (1c10) � ˆ2=0.2, df=2 0.913
Omnibus Min-str./len. req. ias. (1c12) � ˆ2=1.8, df=2 0.41
Omnibus Min-str./len. req. ias. (1c8) � ˆ2=0.1, df=2 0.963
1c8+Xato-scifs v. 4c8+Xato-scifs Bl./comp. req. ias. (Xato) OR=0.94 ([0.68, 1.30]) 0.75
1c8+Pwned-fs v. 4c8+Pwned-fs Bl./comp. req. ias. (Pwned) OR=1.11 ([0.80, 1.54]) 0.570
1c8+Pwned-fs v. 1c8+Xato-scifs Bl./comp. req. ias. (1c8) OR=1.07 ([0.78, 1.47]) 0.697
4c8+Pwned-fs v. 4c8+Xato-scifs Bl./comp. req. ias. (4c8) OR=0.91 ([0.65, 1.28]) 0.62

Tests on password-recall time in Part 2 (KW, MWU)
Experiment 1
3c8 v. 3c8+Xato-cifs Impact of bl. (3c8) W =4512, µ=3.3 ([-0.8, 7.3]) 0.101
1c8 v. 1c8+Xato-cifs Impact of bl. (1c8) W =3703, µ=1.8 ([-1.9, 5.5]) 0.570
1c8 v. 1c8+Pwned-fs Impact of bl. (1c8) W =3655, µ=-2.8 ([-6.8, 0.9]) 0.418
1c8 v. 1c8+Xato-scifs Impact of bl. (1c8) W =3541, µ=-4.0 ([-8.5, 0.3]) 0.290
1c8 v. 1c8+Xato-ciss Impact of bl. (1c8) W =1629, µ=-2.8 ([-8.3, 2.2]) 0.570
1c8+Xato-scifs v. 1c8+Xato-cifs Bl. reqs. for 1c8 W =2649, µ=-5.7 ([-10.4, -1.6]) 0.016
1c8+Xato-scifs v. 1c8+Xato-ciss Bl. reqs. for 1c8 W =1957, µ=0.8 ([-4.6, 6.5]) >.999
1c8+Xato-scifs v. 1c8+Pwned-fs Bl. reqs. for 1c8 W =4194, µ=-0.7 ([-5.3, 3.3]) >.999
Omnibus Comp. reqs. for min-str. � ˆ2=8.23, df=4 0.084
1c8+NN6 v. 1c8+Xato-cifs Bl. v. min-str. W =3809, µ=3.0 ([-0.2, 6.4]) 0.279
1c8+NN6 v. 1c8+Xato-scifs Bl. v. min-str. W =3573, µ=-2.6 ([-7.1, 1.4]) 0.658
1c8+NN6 v. 1c8+Xato-ciss Bl. v. min-str. W =1629, µ=-1.6 ([-6.6, 3.1]) 0.683
1c8+NN6 v. 1c8+Pwned-fs Bl. v. min-str. W =3669, µ=-1.7 ([-5.4, 2.0]) 0.683
Omnibus Comp. reqs. only � ˆ2=4.57, df=2 0.102
Omnibus Comp. reqs. for min-str. (post-hoc) � ˆ2=9.98, df=5 0.076
Experiment 2
Omnibus Bl. v. min-str. (Pwned) � ˆ2=0.927, df=2 0.629
Omnibus Bl. v. min-str. (Xato) � ˆ2=2.41, df=2 0.3
Omnibus Min-str./len. req. ia. (1c10) � ˆ2=2.28, df=2 0.319
Omnibus Min-str./len. req. ias. (1c12) � ˆ2=2.51, df=2 0.285
Omnibus Min-str./len. req. ias. (1c8) � ˆ2=1.55, df=2 0.46
1c8+Xato-scifs v. 4c8+Xato-scifs Bl./comp. req. ias. (Xato) W =4798, µ=-3.0 ([-7.1, 0.9]) 0.131
1c8+Pwned-fs v. 4c8+Pwned-fs Bl./comp. req. ias. (Pwned) W =5188, µ=-0.6 ([-5.0, 4.1]) 0.775
1c8+Pwned-fs v. 1c8+Xato-scifs Bl./comp. req. ias. (1c8) W =6514, µ=2.4 ([-1.5, 6.9]) 0.263
4c8+Pwned-fs v. 4c8+Xato-scifs Bl./comp. req. ias. (4c8) W =4790, µ=-0.3 ([-4.7, 4.2]) 0.898

Tests on recall success in Part 2 (Chi-square, FET)
Experiment 1
3c8 v. 3c8+Xato-cifs Impact of bl. (3c8) OR=1.28 ([0.65, 2.54]) 0.524
Omnibus Impact of bl. (1c8) � ˆ2=8.5, df=4 0.076
1c8+Xato-scifs v. 1c8+Xato-cifs Bl. reqs. for 1c8 OR=0.89 ([0.44, 1.78]) 0.745
1c8+Xato-scifs v. 1c8+Xato-ciss Bl. reqs. for 1c8 OR=1.81 ([0.85, 3.83]) 0.31
1c8+Xato-scifs v. 1c8+Pwned-fs Bl. reqs. for 1c8 OR=1.66 ([0.79, 3.63]) 0.332
Omnibus Comp. reqs. for min-str. � ˆ2=8.6, df=4 0.071
Omnibus Bl. v. min-str. � ˆ2=8.5, df=4 0.074
Omnibus Comp. reqs. only � ˆ2=0.7, df=2 0.711
Omnibus Comp. reqs. for min-str. (post-hoc) � ˆ2=8.6, df=5 0.125

Experiment 2
Omnibus Bl. v. min-str. (Pwned) � ˆ2=2.7, df=2 0.257
Omnibus Bl. v. min-str. (Xato) � ˆ2=2.7, df=2 0.261
Omnibus Min-str./len. req. ia. (1c10) � ˆ2=0.9, df=2 0.644
Omnibus Min-str./len. req. ias. (1c12) � ˆ2=2.1, df=2 0.349
Omnibus Min-str./len. req. ias. (1c8) � ˆ2=2.7, df=2 0.262
1c8+Xato-scifs v. 4c8+Xato-scifs Bl./comp. req. ias. (Xato) OR=0.78 ([0.41, 1.46]) 0.459
1c8+Pwned-fs v. 4c8+Pwned-fs Bl./comp. req. ias. (Pwned) OR=1.2 ([0.69, 2.11]) 0.505
1c8+Pwned-fs v. 1c8+Xato-scifs Bl./comp. req. ias. (1c8) OR=0.93 ([0.52, 1.64]) 0.786
4c8+Pwned-fs v. 4c8+Xato-scifs Bl./comp. req. ias. (4c8) OR=0.6 ([0.32, 1.11]) 0.085

Tests on password-remembrance di�culty (Chi-square, FET)
Experiment 1
3c8 v. 3c8+Xato-cifs Impact of bl. (3c8) OR=0.65 ([0.34, 1.25]) 0.176
Omnibus Impact of bl. (1c8) � ˆ2=6.3, df=4 0.179
Omnibus Bl. reqs. for 1c8 � ˆ2=5.5, df=2 0.064
Omnibus Comp. reqs. for min-str. � ˆ2=6.5, df=4 0.163
Omnibus Bl. v. min-str. � ˆ2=6.6, df=4 0.156
Omnibus Comp. reqs. only � ˆ2=4.5, df=2 0.103
Omnibus Comp. reqs. for min-str. (post-hoc) � ˆ2=10.9, df=5 0.052

Experiment 2
Omnibus Bl. v. min-str. (Pwned) � ˆ2=0.7, df=2 0.7
Omnibus Bl. v. min-str. (Xato) � ˆ2=2.8, df=2 0.25
Omnibus Min-str./len. req. ia. (1c10) � ˆ2=0.6, df=2 0.756
Omnibus Min-str./len. req. ias. (1c12) � ˆ2=0, df=2 0.982
Omnibus Min-str./len. req. ias. (1c8) � ˆ2=0.4, df=2 0.829
1c8+Xato-scifs v. 4c8+Xato-scifs Bl./comp. req. ias. (Xato) OR=0.580 ([0.32, 1.03]) 0.054
1c8+Pwned-fs v. 4c8+Pwned-fs Bl./comp. req. ias. (Pwned) OR=0.9 ([0.53, 1.55]) 0.699
1c8+Pwned-fs v. 1c8+Xato-scifs Bl./comp. req. ias. (1c8) OR=1.72 ([0.98, 3.05]) 0.061
4c8+Pwned-fs v. 4c8+Xato-scifs Bl./comp. req. ias. (4c8) OR=1.1 ([0.63, 1.92]) 0.789

Table 11: Detailed statistical test results (4)

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1425

REFERENCES
[1] andr0id. 2004. Word lists. http://www.outpost9.com/�les/WordLists.html.
[2] bbondy. 2015. bloom-�lter-js. https://github.com/bbondy/bloom-�lter-js.
[3] Mark Burnett. 2015. Today I am releasing ten million passwords. https://xato.

net/today-i-am-releasing-ten-million-passwords-b6278bbe7495.
[4] Xavier De Carné De Carnavalet and Mohammad Mannan. 2014. From Very Weak

to Very Strong: Analyzing Password-Strength Meters. In NDSS. 23–26.
[5] Matteo Dell’Amico and Maurizio Filippone. 2015. Monte Carlo strength evalua-

tion: Fast and reliable password checking. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 158–169.

[6] Sascha Fahl, Marian Harbach, Yasemin Acar, and Matthew Smith. 2013. On the
Ecological Validity of a Password Study. In Proceedings of the Ninth Symposium on
Usable Privacy and Security (Newcastle, United Kingdom) (SOUPS ’13). ACM, New
York, NY, USA, Article 13, 13 pages. https://doi.org/10.1145/2501604.2501617

[7] Dinei Florêncio, Cormac Herley, and Paul C van Oorschot. 2014. An Adminis-
trator’s Guide to Internet Password Research. In 28th Large Installation System
Administration Conference (LISA14). USENIX Association, Seattle, WA, 44–61.

[8] Hana Habib, Jessica Colnago, William Melicher, Blase Ur, Sean Segreti, Lujo
Bauer, Nicolas Christin, and Lorrie Cranor. 2017. Password creation in the
presence of blacklists. In Proceedings of Usable Security (USEC) 2017. Internet
Society. https://doi.org/10.14722/usec.2017.23043

[9] Troy Hunt. 2018. Enhancing Pwned Passwords Privacy by Exclusively Supporting
Anonymity. https://www.troyhunt.com/enhancing-pwned-passwords-privacy-
by-exclusively-supporting-anonymity.

[10] Troy Hunt. 2019. Pwned Passwords API. https://haveibeenpwned.com/
Passwords.

[11] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer, N. Christin,
L. F. Cranor, and J. Lopez. 2012. Guess Again (and Again and Again): Measuring
Password Strength by Simulating Password-Cracking Algorithms. In 2012 IEEE
Symposium on Security and Privacy. 523–537. https://doi.org/10.1109/SP.2012.38

[12] Saranga Komanduri, Richard Shay, Lorrie Faith Cranor, Cormac Herley, and
Stuart Schechter. 2014. Telepathwords: Preventing Weak Passwords by Reading
Users’ Minds. In 23rd USENIX Security Symposium (USENIX Security 14). USENIX
Association, San Diego, CA, 591–606.

[13] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L Mazurek,
Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Serge Egelman. 2011. Of
Passwords and People: Measuring the E�ect of Password-Composition Policies.
In CHI ’11: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2595–2604.

[14] Michelle L. Mazurek, Saranga Komanduri, Timothy Vidas, Lujo Bauer, Nicolas
Christin, Lorrie Faith Cranor, Patrick Gage Kelley, Richard Shay, and Blase Ur.
2013. Measuring Password Guessability for an Entire University. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security
(Berlin, Germany) (CCS ’13). ACM, New York, NY, USA, 173–186. https://doi.
org/10.1145/2508859.2516726

[15] William Melicher, Darya Kurilova, Sean M. Segreti, Pranshu Kalvani, Richard
Shay, Blase Ur, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Michelle L.
Mazurek. 2016. Usability and Security of Text Passwords on Mobile Devices. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(San Jose, California, USA) (CHI ’16). ACM, New York, NY, USA, 527–539. https:
//doi.org/10.1145/2858036.2858384

[16] William Melicher, Blase Ur, Sean M Segreti, Saranga Komanduri, Lujo Bauer,
Nicolas Christin, and Lorrie Faith Cranor. 2016. Fast, lean, and accurate: Modeling
password guessability using neural networks. In Proceedings of the 25th USENIX
Security Symposium.

[17] Randall Munroe. 2011. Password strength. https://xkcd.com/936/.
[18] National Institute of Standards and Technology (NIST). 2004. SP 800-63 Ver. 1.0:

Electronic Authentication Guideline. https://csrc.nist.gov/publications/detail/sp/
800-63/ver-10/archive/2004-06-30.

[19] National Institute of Standards and Technology (NIST). 2017. SP 800-63B: Digital
Identity Guidelines: Authentication and Lifecycle Management. https://doi.org/

10.6028/NIST.SP.800-63-3. Updated Dec 2017.
[20] Openwall. 2003. Openwall �le archive. http://download.openwall.net/pub/

wordlists/languages/English/4-extra/lower.gz.
[21] Password Research Team at Carnegie Mellon University. 2019. Password Guess-

ability Service. https://pgs.ece.cmu.edu.
[22] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini, Hana Habib, Lujo Bauer,

Nicolas Christin, Lorrie Faith Cranor, Serge Egelman, and Alain Forget. 2017.
Let’s go in for a closer look: Observing passwords in their natural habitat. In
CCS.

[23] Robert W Proctor, Mei-Ching Lien, Kim-Phuong L Vu, E Eugene Schultz, and
Gavriel Salvendy. 2002. Improving computer security for authentication of
users: In�uence of proactive password restrictions. Behavior Research Methods,
Instruments, & Computers 34, 2 (2002), 163–169.

[24] Sean M Segreti, William Melicher, Saranga Komanduri, Darya Melicher, Richard
Shay, Blase Ur, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Michelle L
Mazurek. 2017. Diversify to survive: Making passwords stronger with adaptive
policies. In SOUPS ’17: Proceedings of the 13th Symposium on Usable Privacy and
Security. USENIX.

[25] Richard Shay, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Alain Forget,
Saranga Komanduri, Michelle L Mazurek, William Melicher, Sean M Segreti, and
Blase Ur. 2015. A Spoonful of Sugar?: The Impact of Guidance and Feedback on
Password-Creation Behavior. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems. ACM, New York, NY, USA, 2903–2912.

[26] Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh,
Michelle L. Mazurek, Sean M. Segreti, Blase Ur, Lujo Bauer, Nicolas Christin,
and Lorrie Faith Cranor. 2014. Can Long Passwords Be Secure and Usable?. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Toronto, Ontario, Canada) (CHI ’14). ACM, New York, NY, USA, 2927–2936.
https://doi.org/10.1145/2556288.2557377

[27] Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh,
Michelle L. Mazurek, Sean M. Segreti, Blase Ur, Lujo Bauer, Nicolas Christin,
and Lorrie Faith Cranor. 2016. Designing Password Policies for Strength and
Usability. ACM Trans. Inf. Syst. Secur. 18, 4, Article 13 (May 2016), 34 pages.
https://doi.org/10.1145/2891411

[28] Blase Ur, Felicia Al�eri, Maung Aung, Lujo Bauer, Nicolas Christin, Jessica Col-
nago, Lorrie Faith Cranor, Harold Dixon, Pardis Emami Naeini, Hana Habib, Noah
Johnson, and William Melicher. 2017. Design and evaluation of a data-driven
password meter. In CHI’17: 35th Annual ACM Conference on Human Factors in
Computing Systems. ACM, 3775–3786.

[29] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass,
Michelle L Mazurek, Timothy Passaro, Richard Shay, Timothy Vidas, Lujo Bauer,
Nicolas Christin, and Lorrie Faith Cranor. 2012. How does your passwordmeasure
up? The e�ect of strength meters on password creation. In Proceedings of the 21st
USENIX Security Symposium. USENIX Association.

[30] Blase Ur, Sean M Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor,
Saranga Komanduri, Darya Kurilova, Michelle L Mazurek, William Melicher, and
Richard Shay. 2015. Measuring Real-World Accuracies and Biases in Modeling
Password Guessability. In Proceedings of the 24th USENIX Security Symposium.
USENIX.

[31] Kim-Phuong L Vu, Robert W Proctor, Abhilasha Bhargav-Spantzel, Bik-Lam Belin
Tai, Joshua Cook, and E Eugene Schultz. 2007. Improving password security and
memorability to protect personal and organizational information. International
Journal of Human-Computer Studies 65, 8 (2007), 744–757.

[32] Rick Wash, Emilee Rader, Ruthie Berman, and Zac Wellmer. 2016. Understanding
password choices: How frequently entered paswords are re-used across websites.
In Twelfth Symposium on Usable Privacy and Security SOUPS.

[33] Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. 2010. Testing met-
rics for password creation policies by attacking large sets of revealed passwords.
In CCS.

[34] Daniel Lowe Wheeler. 2016. zxcvbn: Low-Budget Password Strength Estimation.
In 25th USENIX Security Symposium (USENIX Security 16). USENIX Association,
Austin, TX, 157–173.

Session 5A: User Authentication CCS '20, November 9–13, 2020, Virtual Event, USA

1426

