
GetMobile June 2019 | Volume 23, Issue 216

[(ALMOST) UNPUBLISHABLE RESULTS]

Mikhail Fomichev, Max Maass and Matthias Hollick
Secure Mobile Networking Lab, Technische Universität Darmstadt, Darmstadt, Germany

ZERO-INTERACTION
SECURITY—TOWARDS SOUND
EXPERIMENTAL VALIDATION

Editors: Aruna Balasubramanian and Lin Zhong

Ill
us

tr
at

io
n,

 is
to

ck
ph

ot
o.

co
m

This is the author’s version of the work. It is posted here
for your personal use. Not for redistribution.
The definitive Version of Record was published in
ACM GetMobile, Vol. 23 Issue 2 (June 2019)
DOI: 10.1145/3372300.3372304
Layout and Design by Jo McHardy

17June 2019 | Volume 23, Issue 2 GetMobile

[(ALMOST) UNPUBLISHABLE RESULTS]

Zero-interaction security (ZIS) allows pairing
or authenticating Internet of Things (IoT)
devices without user involvement using sensor
readings of their ambient environment. The
rationale behind ZIS is that colocated devices,
residing in the same physical space such as a
room will observe similar events happening in
their environment via on-board sensors (e.g.,
door opening, people speaking, etc.). Using
similarity of their sensor readings, devices can
either establish a shared secret key (pairing) or
one device can prove its proximity to another
device (authentication). The main advantages
of ZIS are high usability as no human
interaction is required, as well as scalability
and deployability as most IoT devices are
equipped with sensors. However, existing
ZIS schemes were evaluated on different
and sometimes unrealistic datasets (e.g.,
collected with few devices in a controlled
environment), making them impossible
to compare and calling their real-world
utility and security into question.

In our study [1], we reproduced and
compared five ZIS schemes, requiring us
to collect seven different sensor modalities:
audio, temperature, humidity, pressure,
luminosity, Wi-Fi, and Bluetooth beacons.
To evaluate the security of the schemes
under realistic conditions, we collected
sensor data from three real-world scenarios
(car, office and mobile) using a represen-
tative number of heterogeneous sensing
devices (up to 25) distributed to reflect
potential IoT functionality (e.g., on a display,
under the ceiling, etc.), running from several
hours to multiple days, which is typical in
the IoT. Our results showed that four out of
the five schemes experienced significantly
degraded security on our datasets [2].

Reproducing the work of others,
collecting data and releasing it with the
codebase were the main contributions of
our study [1], which are often considered
“not challenging” or “not novel” enough
by reviewers, and hence, fall largely into

the category of (almost) unpublishable
results per se. In this article, we want to
illustrate the difficulties we faced in our
study by first describing the challenges
encountered when reproducing five ZIS
schemes such as the absence of the source
code and documentation, ambiguities,
and unspecified parameters. Second, we
elaborate on challenges faced in the data
collection starting from building a realistic
setup to issues hindering reliable data
collection such as power, connectivity,
and fault tolerance. Third, we describe our
experience in processing collected data such
as ensuring its quality (e.g., identifying
erroneous data) and working with large
datasets. Finally, we outline best practices
we followed for data release.

REPRODUCING PUBLISHED
ALGORITHMS
Researchers commonly differentiate
between reproducibility (being able to
rerun the same code on the same data and
obtain the same results) and replicability
(being able to write a new implementation
of the proposed algorithm from scratch,
running it on the same data, and obtaining
the same results) [3]. In our study, we
found both to be impossible, as none of
the papers had published their source code
or data, which is common in computer
science research [4]. After requesting access
to code and data via e-mail, one team of
authors provided us with their code (but
no data), and another team provided us
with their data. In the latter case, we were
still unable to reproduce their results
using the machine learning tool Weka that
the authors had employed, likely due to
different default parameters of machine
learning algorithms in different versions of
Weka, a problem anticipated by Benureau
and Rougier [3]. The other authors did not
respond to our requests or denied us access
to the code and data due to intellectual
property and privacy concerns.

Reproducibility and realistic datasets are crucial for advancing
research. Unfortunately, they are often neglected as valid
scientific contributions in many young disciplines, with
computer science being no exception. In this article, we show
the challenges encountered when reproducing the work of

others, collecting realistic data in the wild, and ensuring that our own
work is reproducible in turn. The presented findings are based on our
study investigating the limits of zero-interaction security (ZIS) —a novel
concept, leveraging sensor data collected by Internet of Things (IoT)
devices to pair or authenticate devices. In particular, we share our
experiences in reproducing five state-of-the-art ZIS schemes, collecting
a comprehensive dataset of sensor data from the real world, evaluating
these schemes on the collected data, and releasing the data, code, and
documentation to facilitate reproducibility of our results.

In our discussion, we outline general considerations when conducting
similar studies and give specific examples of technical and methodological
issues that we experienced. We hope that our findings will raise awareness
about the importance of reproducibility and realistic datasets in computer
science and inform future research.

GetMobile June 2019 | Volume 23, Issue 218

FIGURE 1. Sensing devices deployed:
(a) Pi+Tag+Mic on a wall powered over PoE
(b) Samsung S6 on top of a robot vacuum
cleaner (c) RuuviTag on the upper arm.

[(ALMOST) UNPUBLISHABLE RESULTS]

This left us with the task of re-imple-
menting all five schemes from scratch,
based on the information given in the
publication. This effort was hampered by
ambiguous descriptions of parts of the
algorithms, underspecified behavior for
edge cases and, in some cases, missing
values for system parameters (e.g., threshold
values, sampling rates). We resolved these
issues and validated our interpretations of
the algorithms in communication with the
original authors. However, due to the lack of
original datasets, we were unable to replicate
the results from the original papers.

To allow for a fair comparison between
the five schemes, we decided to collect our
own dataset, which will be described in the
next section.

DATA COLLECTION,
PROCESSING AND RELEASE
In this section, we first describe our experi-
ences in building a reliable data collection
platform, highlighting major issues we faced
when deploying it in realistic environments.
We then elaborate on challenges when
processing our large dataset and, finally, we
summarize the main points to consider when
releasing data and code. It goes without saying
that for large data collection studies involving
human subjects (e.g., audio data collection)
an institutional review board (IRB) approval
needs to be sought, which we recommend
doing well in advance as the process may
take several months in complex cases.

Data Collection
In our study, [1] we collected data from
three scenarios: connected car, smart office,
and mobile. In each scenario, we deployed
multiple sensing devices to represent
realistic IoT environments—each device
was placed in a spot reflecting potential
IoT functionality such as under the ceiling
(e.g., smart light) or inside a trunk (e.g.,
smart sensor). Each scenario differs in
terms of types of sensing devices used, their
mobility and duration of data collection,
posing different challenges. In the car
scenario, we equipped two cars with six
homogenous static devices each, collecting
data during a four-hour trip. In the office
scenario, we equipped three offices with
eight homogenous static devices each,
and collected data for one week. In the
mobile scenario, we used heterogeneous

sensing devices, both statically deployed
and carried by users, and collected data for
eight hours. Overall, we used four types
of sensing devices: a Raspberry Pi 3 with
attached TI SensorTag and a Samson Go
USB microphone (Pi+Tag+Mic), a Samsung
Galaxy S6 smartphone, a Samsung Gear S3
smartwatch, and a RuuviTag. Figure 1 shows
examples of sensing devices deployed in our
scenarios. In the following, we elaborate on
power, connectivity, fault tolerance and testing
issues experienced during data collection,
and solutions to these issues found.

Power
While smartphones, watches and RuuviTags
have built-in batteries, customized sensing
devices such as Pi+Tag+Mic, need an
external power supply, accommodating the
power consumption of both the attached
peripherals and processes running on the
main board. We empirically found that
a power supply rated below 2.1A current
(at 5V) leads to unpredictable behavior of
Pi+Tag+Mic devices, hindering reliable
data collection and emphasizing the need
to carefully choose the power supply for
customized sensing devices.

In the office scenario, we used Pi+Tag+Mic
devices, which were required to run one
week non-stop, making the use of mains
supply an obvious choice. However, we
could not use AC power adapters due to
their insufficient cable length as many
devices were placed in spots (e.g., under the
ceiling) without power sockets in proximity.
Thus, we considered two other alternatives
to deliver power over 5-10 meter distances:
USB cables and Power over Ethernet (PoE)
supplied via external adapters. While the
former is much easier to deploy, we found
that USB cables experience substantial
voltage drops, resulting in insufficient power
delivered to Pi+Tag+Mic devices, again
hindering reliable data collection. PoE, on
the other hand, did not suffer from voltage
drops and additionally brought connectivity
to the devices (see “Connectivity” section),
making us favor this option.

In the car scenario, we also used
Pi+Tag+Mic devices; however, the shorter
duration of data collection, absence of
mains supply and difficulties using bulky
cables to deploy sensing devices inside a car
motivated the use of portable power banks
(10000 mAh). We used the same power

banks in the mobile scenario to power a
user-carried Raspberry Pi 3, capturing data
from RuuviTags, showing that portable
power supplies are suitable for several-hour
data collections conducted with mobile
devices, or when delivering power to static
devices over wires is impractical.

Connectivity
In data collections, devices often need
different types of connectivity (e.g., to a
core network or between each other) for

(a)

(b)

(c)

19June 2019 | Volume 23, Issue 2 GetMobile

[(ALMOST) UNPUBLISHABLE RESULTS]

purposes such as time synchronization,
monitoring, and data delivery. In our
scenarios, all sensing devices needed access
to the Internet to perform the NTP update,
facilitating the synchronous start of data
collection and correct timestamping of
sensor readings. We found that zone-specific
NTP servers rate limit requests from the
same network, so if the number of devices is
above 20, we recommend either setting up
a dedicated NTP server or spreading NTP
requests over time.

Compared to a one-time NTP update,
data delivery and data collection monitoring
require permanent connectivity between
the devices. In realistic environments,
connectivity is affected by interferences
caused by sensing devices themselves and
neighboring devices communicating in the
same frequency band. In our scenarios,
we observed connectivity drops between
Wi-Fi and Bluetooth devices communicating
in the 2.4 GHz band, which we attribute
to the overloaded spectrum. This caused
occasional drops of the Bluetooth link
between a SensorTag and Raspberry Pi,
permanently terminating sensor data
delivery from the SensorTag. We observed
similar connectivity drops between sensing
devices and a Wi-Fi access point (AP),
hindering the use of Wi-Fi to remotely
access devices for monitoring. These
examples show that wireless connections
should not be assumed reliable in realistic
environments, and wires should be used
instead if reliable connectivity is critical.

Fault Tolerance
Fault tolerance is indispensable to ensure
reliable data collection. In realistic environ-
ments with distributed sensing devices, it
is important to monitor liveness of data
collection. The easiest way is to remotely
access the devices, however, this can either
be infeasible (see “Connectivity” section) or
undesirable (e.g., security/privacy concerns),
making visual inspection a viable alternative.
In smartphones and watches, visual inspection
is easy to implement due to available user
interfaces, however, customized sensing
devices such as Pi+Tag+Mic often lack
user interfaces, making the use of LEDs
imperative to visually monitor liveness of
data collection. We leveraged this observation
by shutting down Pi+Tag+Mic devices
(LEDs go off—easy to notice) in cases of
critical data collection errors.

Liveness detection can be coupled with
recovery procedures, increasing reliability of
data collection. For example, a connectivity
drop between a SensorTag and Raspberry Pi
(see “Connectivity” section) terminates the
process, fetching data from the SensorTag.
We thus introduced a watchdog process,
continuously monitoring the data-fetching
process and restarting it if the process was
terminated.

In a distributed setup with many devices,
it makes sense to implement a scheduled
start-up of data collection. If the data
collection is interrupted (e.g., Pi+Tag+Mic
powers off), a manual intervention becomes
unavoidable. To facilitate a seamless restart

of data collection, two points need to be
considered: first, the restart must be fast,
requiring minimum user interaction such
as unplugging a device and plugging it
back in or relaunching the data collection
app, second, the data collected before the
interrupt must be saved separately and not
be overwritten by newly collected data.

Testing
Testing a data collection platform care-
fully allows identifying many error
cases and ensuring reliability during the
real experiment. Here, we outline three
crucial points for testing derived from our
experience, providing concrete examples of
problems encountered and pitfalls to avoid.

First, a data collection platform must
be tested for realistic deployment time,
corresponding to the duration of actual
data collection. This allows identifying,
memory leaks, durability of power supplies,
and file size limitations—we empirically
found a 4 GB WAV size limit imposed by
the standard, making us adopt the FLAC
format instead. Second, a data collection
platform must be thoroughly tested in the
exact environment it will be deployed in.
For example, we undertested our platform in
running cars before collecting data in them,
resulting in incorrectly chosen microphone
settings, ruining audio recordings as they
were saturated by the engine hum, and
necessitating a repeat of the experiment.

Third, a data collection platform
must be tested with a realistic number

WE HOPE OUR
EXPERIENCE
CAN HELP RAISE
AWARENESS ABOUT
THE CHALLENGES
RESEARCHERS FACE
WHEN ATTEMPTING
TO REPRODUCE THE
WORKS OF OTHERS
AND COLLECTING
DATA IN THE WILDFIGURE 2. Example of faulty illuminance values being periodically delivered by SensorTag

GetMobile June 2019 | Volume 23, Issue 220

[(ALMOST) UNPUBLISHABLE RESULTS]

of devices, running under realistic loads.
Using this principle, we identified a number
of problems related to interference and
overloaded 2.4 GHz spectrum. For example,
before opting for Samson Go microphones,
we tried several more affordable alternatives,
all of which suffered from interference
caused by communicating SensorTags,
making the quality of audio recordings
unacceptable. In the case of the overloaded
spectrum, we found that Wi-Fi captures (i.e.,
scanning visible APs) crashed on Raspberry
Pi and Samsung S6 devices, freezing the
whole Wi-Fi interface, indicating that there
might be a serious flaw in the Wi-Fi stack of
Linux-based devices.

Data Processing
Regarding data processing, we elaborate on
two main points: first, ensuring the quality
of collected data, and second, dealing with
large datasets.

Having collected the data, one must
ensure its quality, which can be affected by
devices stopping recording (and manually
restarted), faulty sensor readings, and
sampling drift. If the restart of data
collection is properly implemented, the
sensor data only needs to be stitched, which
is straightforward for most modalities
except audio. If an audio recording is not
terminated correctly, the resulting audio
file may become corrupted due to missing
file headers. We experienced such cases and
used binary hex editors to manually craft
audio file headers, completely restoring
the audio recording; for stitching audio
recordings we used Audacity.

Sometimes sensors deliver erroneous
readings, which need to be identified and
excluded. To do so, we plotted the collected
sensor data and visually inspected it. This
turned out to be a very powerful tool to
spot outliers (see Figure 2) and missing
data. This type of sanity checks suffices
for most of the modalities except audio. In
audio recordings made by heterogeneous
devices, we observed non-negligible sampling
drift (see Figure 3) caused by internal
clock offsets of different devices, despite
the synchronous start of audio recordings.
To remedy this, we found the lag between
heterogeneous audio recordings and applied
the time-stretching effect in Audacity.

Similar to prior research [6], we found
sensor bias among heterogeneous devices,

most notably in barometric pressure
readings. We also observed sampling rate
instability among smartphones of the same
model, especially for IMU sensors (tested
with Galaxy S6, Nexus 5X, and 6P), with
the actual sampling rate deviating by up to
10% from the set value. The sampling rate
instability can hinder data collection, for
example, light sensor readings on Nexus
5X and 6P missed the advertised sampling
rate (5 Hz) by a wide margin, going as low
as 0.2 Hz and, thus, preventing us from
using these smartphones in our study. The
sampling rate instability was less prominent
on smartwatches and insignificant on
SensorTags. This demonstrates that although
modern smartphones contain powerful
sensors, they can be unsuitable for scientific
measurements [7].

After sanity checking the collected data,
we ended up with the dataset of 239 GB to
compute on. To deal with such large data in
a reasonable time, we followed known best
practices, which are often overlooked.

First, we ensured sufficient resources

with access to our institution’s high-
performance cluster. To leverage full
potential of the cluster, the code running
on it needs to be customized to work in
a highly parallel environment. When
running highly parallel computations,
one must consider licensing issues if
commercial software is used. For example,
to work around shortage of Parallel
Computing Toolbox licenses in MATLAB,
we used the MATLAB compiler, allowing
us to create a standalone application,
which can be launched royalty-free on an
arbitrary number of machines.

Second, we tried avoiding redundant
operations on large datasets. This can be
done by using stateful systems such as
Jupyter Notebook, loading data once and
keeping it in RAM afterwards. In the case
of time-consuming computations, we
recommend liberally caching intermediate
results to files, which can significantly
speed up reruns of the evaluation.

Third, we applied compression to reduce
storage and computing requirements.

FIGURE 3. Sampling drift between heterogeneous devices: insignificant at the beginning of
audio recording, it becomes prominent over the course of several hours (highlighted regions
indicate the same part of audio recording)

21June 2019 | Volume 23, Issue 2 GetMobile

[(ALMOST) UNPUBLISHABLE RESULTS]

REFERENCES
[1] Fomichev, M., Maass, M., Almon, L., Molina, A.

and Hollick, M. (2019). Perils of zero-interaction
security in the Internet of Things. Proceedings of
the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 3(1). DOI:https://doi.
org/10.1145/3314397.

[2] Fomichev, M., Maass, M., Almon, L., Molina, A.
and Hollick, M. (2019). A dataset for zero-
interaction security systems. DOI: https://doi.
org/10.5281/zenodo.2537721

[3] Benureau, F.C.Y. and Rougier, N.P. (2018,
January). Re-run, repeat, reproduce, reuse,
replicate: Transforming code into scientific
contributions. Frontiers in Neuroinformatics,
11, 1–8. DOI:https://doi.org/10.3389/
fninf.2017.00069.

[4] Collberg, C. and Proebsting, T.A. (2016,
February). Repeatability in computer systems
research. Communications of the ACM, 59(3)
62–69. DOI:https://doi.org/10.1145/2812803.

[5] Rawassizadeh, R. and Kotz, D. (2017, April).
Datasets for mobile, wearable and IoT
research. GetMobile: Mobile Computing and
Communications, 20(4), 5–7. DOI:https://doi.
org/10.1145/3081016.3081018.

[6] Md Faridee, A.Z., Ramamurthy, S.R. and Roy, N.
(2018, September). HappyFeet: Challenges in
building an automated dance recognition and
assessment tool. GetMobile: Mobile Computing
and Communications, 22(3), 10–16. DOI:https://
doi.org/10.1145/3308755.3308759

[7] Stisen, A., Blunck, H., Bhattacharya, S.,
Prentow, T.S., Kjærgaard, M.B., Dey, A., Sonne, T.
and Jensen, M.M. (2015). Smart Devices are
Different: Assessing and Mitigating Mobile
Sensing Heterogeneities for Activity Recognition.
ACM SenSys., 127–140. DOI:https://doi.
org/10.1145/2809695.2809718

Sensor data is often redundant (e.g., slowly
changing modalities such as temperature),
showing great potential for compression.
We leveraged this observation by counting
and deduplicating identical instances and
assigning them weights in the dataset used
to train the machine learning classifiers,
reducing its size from 81 GB to 600 MB
and decreasing training time by orders of
magnitude.

Data and Code Release
When releasing a dataset, several issues need
to be considered. First and most importantly,
the data needs to be sufficiently anonymized
to protect the study subjects and comply
with legal requirements. If the dataset will
be released, this should be communicated
clearly to the study participants as part of the
informed consent process. We decided to
keep the audio recordings from two of our
three scenarios private and only make the
audio from the third scenario available to
others upon request. We took precautions
to limit the privacy impact of this release
before and during the recording, and
obtained consent from all involved parties,
including our IRB. Wi-Fi and Bluetooth
device identifiers were replaced with
pseudonyms. The other parts of the dataset
were deemed to be non-critical, as they did
not contain any sensitive information.

Once the data has been cleaned and
anonymized, an appropriate data repository
needs to be chosen. Prior work discussed
this issue in more detail [5]. As no fitting
specialized repository for zero-interaction
security data exists, we chose the noncom-
mercial general-purpose repository Zenodo.
To ensure that data can be selectively down-
loaded, we split our dataset into several
parts (raw data, processed data, and results
for each of the scenarios). Where our data
exceeded the size limits of Zenodo, we
hosted it on Google Drive and created a
stub dataset on Zenodo, which contained
a link to the Google Drive folder and a list
of file hashes to verify the download. We
also created an index dataset that contains
links to all individual datasets [2].

To release the code, we created a
public GitHub repository, chose an Open
Source license, and linked it to Zenodo
to obtain a DOI for it. This allows others
to use our reference implementations of
the algorithms under test in their own

research. Using a version control system
like Git also allowed us to annotate our
result files with the exact version of the
code that generated them, as defined by
the Git commit identifier, and the hashes
of the input files. Together with a list of the
exact versions of all libraries, this makes it
possible for others to exactly reproduce our
results, as recommended by Benureau and
Rougier [3].

CONCLUSION
In this paper, we discussed the challenges
we encountered when reproducing and
validating five state-of-the-art Zero-
Interaction Security (ZIS) schemes on
a realistic dataset [1]. They included
problems in understanding and replicating
the published schemes due to ambiguous
descriptions and a lack of published
source code and datasets, issues with the
data collection and processing, and the
subsequent release of the dataset. We also
discussed a selection of best practices to
help others overcome these challenges.
We hope our experience can help raise
awareness about the challenges researchers
face when attempting to reproduce the
works of others and collecting data in the
wild. We encourage researchers to release
source code and data [3] to make this
process easier, allowing others to advance
the state of knowledge by attempting to
confirm or invalidate their results. n

Acknowledgement
This work has been co-funded by the DFG
within CRC 1119 CROSSING and CRC
1053 MAKI projects, and by the RTG 2050
“Privacy and Trust for Mobile Users.”

Mikhail Fomichev is a PhD candidate at
the Secure Mobile Networking Lab in the
Computer Science Department of Technische
Universität Darmstadt, Darmstadt, Germany.
His main research interests are practical
context-based pairing and authentication
solutions, enhancing security and privacy in
the Internet of Things.

Max Maass is a PhD candidate at the Secure
Mobile Networking Lab in the Computer
Science Department of Technische Universität
Darmstadt, Darmstadt, Germany. His research
interests include privacy and security for the
Internet of Things, and the use of transparency-
enhancing technologies to make invisible
tracking systems visible to the end user.

Matthias Hollick heads the Secure Mobile
Networking Lab in the Computer Science
Department of Technische Universität
Darmstadt, Darmstadt, Germany. After
receiving his PhD degree there in 2004, he
has been researching and teaching at TU
Darmstadt, Universidad Carlos III de Madrid,
and the University of Illinois at Urbana
Champaign. His research focus is on resilient,
secure, privacy-preserving, and quality-of-
service-aware communication for mobile and
wireless systems and networks.

