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ABSTRACT
Undergraduate computer science (CS) programs often suffer from
high dropout rates. Recent research suggests that self-efficacy – an
individual’s belief in their ability to complete a task – can influence
whether students decide to persist in CS. Studies show that students’
self-assessments affect their self-efficacy in many domains, and in
CS, researchers have found that students frequently assess their
programming ability based on their expectations about the pro-
gramming process. However, we know little about the specific pro-
gramming experiences that prompt the negative self-assessments
that lead to lower self-efficacy. In this paper, we present findings
from a survey study with 214 CS1 students from three universities.
We used vignette-style questions to describe thirteen programming
moments which may prompt negative self-assessments, such as
getting syntax errors and spending time planning. We found that
many students across all three universities reported that they neg-
atively self-assess at each of the thirteen moments, despite the
differences in curriculum and population. Furthermore, those who
report more frequent negative self-assessments tend to have lower
self-efficacy. Finally, our findings suggest that students’ perceptions
of professional programming practice may influence their expec-
tations and negative self-assessments. By reducing the frequency
that students self-assess negatively while programming, we may
be able to improve self-efficacy and decrease dropout rates in CS.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; CS1.

KEYWORDS
Self-efficacy; Self-assessments; CS1; Persistence
ACM Reference Format:
Jamie Gorson and Eleanor O’Rourke. 2020. Why do CS1 Students Think
They’re Bad at Programming? Investigating Self-Efficacy and Self-Assessments
at Three Universities. In Proceedings of the 2020 International Computing
Education Research Conference (ICER ’20), August 10–12, 2020, Virtual Event,
New Zealand. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3372782.3406273

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER ’20, August 10–12, 2020, Virtual Event, New Zealand
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7092-9/20/08. . . $15.00
https://doi.org/10.1145/3372782.3406273

1 INTRODUCTION
While failure rates in CS1 courses have improved over the past
decade, computer science (CS) programs still struggle to retain
students in the major [9, 11, 12, 45, 54]. Furthermore, women and
underrepresented minorities drop out at a higher rate than their
counterparts, amplifying the lack of diversity in CS programs [4, 19,
23]. This has led researchers to investigate why students drop out
of CS [1, 8, 29, 42, 55]. In many domains, studies show that low self-
efficacy is associated with higher dropout rates from college majors
and can impact career choice [13, 33, 41, 49]. Self-efficacy is defined
as a person’s perception of her ability to succeed in a particular
domain [7]. Recently, researchers have found that self-efficacy and
negative beliefs about programming abilities may contribute to the
high dropout rates in computer science [34, 51].

Foundational research in psychology has shown that students’
self-assessments of their ability have a strong impact on self-efficacy
[6]. While evaluating knowledge and monitoring progress are an
important part of self-regulation [3, 15, 46], students who frequently
engage in negative self-assessments are likely to have lower self-
efficacy [7]. Researchers have found that CS1 students assess their
programming ability often and may negatively self-assess during
unexpected moments, such as when stopping to think or plan [24]
or after a positive programming performance [30]. These negative
evaluations often occur when students’ problem-solving process
does not match their performance expectations [30]. For example,
a student might think she has performed poorly on a programming
problem if it takes longer to complete than she expected. Since
self-assessments strongly influence self-efficacy, the frequency of
negative self-evaluations in CS could contribute to student dropout
in CS.

Recent studies have identified a number of criteria that students
use to evaluate their programming ability. For example, Lewis et
al. found that CS1 students assess their ability based on prior ex-
perience, speed, and grades [34], and Kinnunen and Simon found
that they use speed, social comparisons, and whether their program
works [30]. We identified an even broader set of criteria in our prior
work, for example finding that some students think looking up
syntax and getting errors are signs of low ability [24]. Surprisingly,
many of these criteria contradict the practices that instructors think
are important to novice success [21, 27, 37], or the practices of pro-
fessional programmers [27, 31, 40, 44, 50, 53]. This suggests that
students may have inaccurate expectations of the programming
process, which could impact how they self-assess. While this prior
work provides important insights into the criteria that students use
to evaluate ability, we do not know what programming moments
prompt negative self-assessments.
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To overcome these challenges, we conducted a survey study
with CS1 students at three universities. The goals of this study were
to (1) identify the programming moments that cause students to
negatively self-assess, (2) identify any differences in these moments
across universities, (3) identify whether there is a relationship be-
tween negative self-assessments and student self-efficacy, and (4)
explore whether students with inaccurate perceptions of profes-
sional programming practice tend to negatively self-assess during
those natural moments in the programming process. We designed
vignette-style survey questions to measure whether students neg-
atively self-assess at thirteen programming moments that occur
naturally during professional practice, such as struggling with er-
rors or spending time planning. We found that students at all three
universities reported that they negatively self-assess at each of the
moments, with some moments eliciting more consistently nega-
tive reactions than others. Interestingly, we found few differences
across the universities, showing that these self-assessmentmoments
generalize across contexts. Additionally, we found that students
who negatively respond to the self-assessment vignette questions
more frequently and strongly tend to have a significantly lower
self-efficacy in their programming course. Finally, we found that
students’ perceptions of professional programming practice may
help explain some of the self-assessment moments, but other factors
may contribute as well. These findings highlight the prevalence
of self-assessments across university contexts, and suggest that
we may be able to improve student self-efficacy by reducing self-
assessments in response to moments that arise as a natural part of
the programming process.

2 BACKGROUND
A number of studies have explored aspects of self-efficacy in the
domain of CS. We first present a background on self-efficacy theory,
discussing both the sources that inform self-efficacy and how self-
efficacy influences student persistence. We then describe how self-
efficacy theory has been specifically applied in the domain of CS.
Finally, as self-assessments inform self-efficacy, we discuss recent
literature on the criteria that CS1 students use when making self-
assessments about their programming ability.

2.1 Self-efficacy Theory
Bandura defined self-efficacy as an individual’s judgment of their
ability to execute tasks or achieve mastery in a particular domain
[7]. The theory states that self-efficacy is based on four principal
sources of information: (1) enactive attainments, or the results of
performing tasks related to mastering the subject, (2) vicarious
experiences observing others performing subject-related tasks, (3)
verbal persuasion from others, like words of encouragement, and
(4) physiological states, like stress [6]. Self-assessments are one
way that people interpret their performance on a task, which in-
fluences their enactive attainments. Enactive attainments are the
most influential of these sources because the information comes
from the performance of tasks that contribute to mastering the
domain. Therefore, when students evaluate their performances as
successful, their self-efficacy increases, but when students view
their performances as failures, their self-efficacy decreases.

Researchers in psychology have established a strong relationship
between self-efficacy and persistence. Studies show that students

with higher self-efficacy are more likely to persist through chal-
lenges and be more resilient through their long-term goals [7, 49].
Researchers have directly explored how self-efficacy influences ca-
reer choice, and found that students with lower self-efficacy are less
likely to persist through their college majors [13, 26, 32, 33, 41]. For
example, Lent et al. surveyed undergraduates in technical and sci-
ence majors and found that students with higher self-efficacy were
more likely to persist in their field [32]. Since higher self-efficacy
has been found to increase students’ persistence in their college
major, self-efficacy may contribute to the dropout issues in CS.

2.2 Self-efficacy in CS
Researchers in computer science education have, in fact, identified
a relationship between self-efficacy and student persistence in the
CS major [34, 39, 51]. In a semester long study, Lewis et al. found
that one factor students consider in their decision to major in CS is
their perception of their CS ability. Other studies used formal self-
efficacy surveys to examine the relationship between self-efficacy
and persistence [39, 51]. For example, Miura found that students
with higher self-efficacy were more likely to take a CS course in
college, which may help to explain the gender diversity issues in CS
since male students have higher self-efficacy on average [39]. These
studies highlight the importance of understanding the factors that
impact self-efficacy for improving retention in CS programs.

Researchers have identified many factors that correlate with
self-efficacy, including: previous programming experiences [28, 47],
gender [5, 35, 39], computer literacy [5, 28], goal orientation and
metacognitive strategies [35], understanding of programming con-
cepts [25, 47], and sense of belonging in CS [52]. For example,
Rammaligan used a survey to measure students’ comprehension of
software programs and found that students with better mental mod-
els of programming concepts were more likely to report a higher
programming self-efficacy [47]. Similarly, Askar and Davenport
found that students with more years of computer experience had
higher programming self-efficacy, and that males on average had
higher programming self-efficacy than females [5]. These studies
show a number of different and diverse factors that contribute
to students’ self-efficacy in computer science. In this paper, we
focus on one particularly influential factor, namely students’ self-
assessments of their programming ability.

2.3 Self-assessments in CS
Self-assessments, or students’ evaluations of their performance
on tasks, are a particularly important source of information for
self-efficacy [6]. Recently, researchers have begun to explore self-
assessments in CS1, finding that students assess their ability fre-
quently [24, 30]. This may be because many CS1 students are new to
the field [48] and feel pressure to choose a college major [34]. While
evaluating knowledge and monitoring progress are a necessary part
of the self-regulated learning process [3, 15, 46], studies show that
CS1 students sometimes negatively self-assess in response to natu-
ral parts of the programming process and after positive program-
ming episodes [24, 30]. Kinnunen and Simon suggest that these
negative evaluations may occur when a programming experience
does not match the student’s expectations. For example, students
may negatively self-assess if they take longer to solve a problem
than expected, even if they complete it successfully. These findings
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suggest that CS1 students may have unnecessarily high or inaccu-
rate expectations of the programming process, which could lead to
more frequent negative self-assessments. Researchers have not es-
tablished a relationship between self-assessments and self-efficacy
in CS, a gap that we address through this paper. However, self-
efficacy theory in other domains suggests that frequent negative
evaluations will result in lowered self-efficacy.

To better understand these self-assessments, researchers have
started to explore the criteria that students use to evaluate them-
selves. Kinnunen and Simon conducted a series of interviews
and identified that CS1 students use these criteria in their self-
assessments: speed, social comparisons, and whether their program
works [30]. Lewis et al. also conducted an interview study and
identified three similar criteria: perceived prior experience, speed,
and grades [34]. In our previous work, we built on these findings
by creating a more thorough list of criteria, including the ability to:
remember syntax, solve a problem without stopping to think, and
solve a problem without asking for help [24]. Through a survey
with CS1 students, we found that some students agreed with each
of the criteria. Interestingly, we also found significant variation
in agreement with the self-assessment criteria, showing that CS1
students define programming intelligence in different ways [24].

Surprisingly, many of the self-assessment criteria that we identi-
fied in that study are an expected part of professional programming
practice [24]. For example, studies of expert programmers have
shown that they frequently plan [21, 50, 53], get errors [17, 44], and
ask for help [27, 31, 40]. However, students negatively self-assess
using these criteria. For example, some students consider spend-
ing time planning as indicative of lower programming intelligence
[24], even though planning is widely documented as part of the
professional process [50, 53] and as a good practice for novices [21].
Given these misalignments, we suspect that students may not have
accurate perceptions of professional programming practices.

While many of the criteria from the previous study relate to
moments in the programming process, we only asked about crite-
ria broadly rather than situated in the context of a programming
session. Specifically, our previous questions were framed around
overall programming intelligence and not in-the-moment, task-
specific self-assessments. Therefore, we do not know if students
self-assess in response to specific programming moments. Addi-
tionally, our previous questions asked about the criteria broadly,
and did not distinguish potentially important nuances. For example,
we found that some students consider getting errors as a sign of low
ability, but we did not distinguish between complex semantic errors
and simple syntax errors [24]. In this paper, we dive deeper into the
student programming experience by studying the specific program-
ming moments that prompt students to negatively self-assess and
how these self-assessments interact with their overall self-efficacy.
We also explore students’ perceptions of professional programmers
to understand how these relate to their self-assessments.

3 STUDY DESIGN AND METHODS
In this paper, we ask four research questions about the program-
ming moments that cause students to negatively assess their ability,
to help us better understand the student programming experience:

RQ1: When presented with scenarios of programming moments,
which do students say cause them to negatively self-assess?

RQ2: Are there any differences in the moments that students say
cause them to negatively self-assess across university contexts?

RQ3: Do students who report negatively self-assessing in response to
more moments have a lower self-efficacy in their CS course?

RQ4: Do students’ perceptions of professional programming practices
correlate with the moments that cause them to negatively self-assess?

Through these questions, we aim to identify the programming mo-
ments that prompt students to negatively self-assess, and uncover
any differences across university contexts. We also aim to measure
the relationship between self-assessments and student self-efficacy,
and determine whether students’ inaccurate perceptions of profes-
sional programming practice contribute to their self-assessments.

To answer these questions, we conducted a survey study. We
chose a surveymethodology because it ensures that we canmeasure
each student’s reactions to the same set of moments, in compari-
son to an observational approach where similar events might not
naturally occur for each student. We were interested in learning
how responses might vary across different populations of students,
so we conducted our study at three different universities. Addition-
ally, we conducted follow-up interviews with a small portion of
the survey participants to learn more about their thought process
when answering the survey questions.

3.1 Survey Design
We designed a survey with a number of sections, each measuring
a different construct. We measured student self-efficacy in their
programming course first, to ensure that responses would be un-
biased by later sections of the survey which describe potentially
challenging programming moments. We adapted the five-question
general academic efficacy survey from [38] by changing their ref-
erences to “coursework” to “in my CS1 class” (where “CS1” is re-
placed with the name of the student’s course). For example, we
asked students to rate how much they agree with the statement,
“I’m certain I can master the skills taught in my CS1 class this term”
on a 6-point forced-choice Likert scale. We chose to use a survey
that measured self-efficacy in their CS course, instead of a survey
about programming self-efficacy in general, because course expec-
tations are well-defined and consistent for all of the students. In
comparison, students may interpret the definition of “good” in a
programming self-efficacy survey differently. For example, some
students might report low self-efficacy if they believe they are
not good at programming relative to experts, even if they have
high self-efficacy about their ability to learn CS and succeed in the
course.

Next, we measured whether specific programming moments
elicit negative self-assessments. We designed vignette-style survey
questions that provide short descriptions of specific programming
moments to convey vivid descriptions and then asked students
to report how they feel when they experience similar moments.
To design the vignette survey questions, we curated a list of self-
assessment moments. We define a self-assessment moment as a
point in the programming process that might elicit student evalua-
tions about how they are doing on a task. We started with the list
of moments that are associated with the programming intelligence
self-assessment criteria from our previous study [24] and added
additional moments based on needfinding interviews with students.
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Self-assessment moment Vignette
Getting a simple error Jen is working on her programming assignment. She runs her code. An error pops up. She immediately realizes that she left

out a parenthesis. She adds the parentheses and her code runs successfully. Jen thinks: “That was a stupid mistake. A good
programmer wouldn’t make small mistakes like this.”

Starting over Nadia is working on a hard homework problem. She plans out a solution. She writes a few lines of code. She realizes that
her approach to the problem will not work. She decides to start over. Nadia feels frustrated that she wasted time. She erases
all her code and starts again.

Not understanding an er-
ror message

Frank is working on a programming problem. He runs his code. An error pops up. Frank has no idea what the error message
means. He is not sure what to try next. He thinks: “I’m doing so badly, I don’t even know what this message means”.

Stopping programming to
plan

Diego starts working on a programming problem. He writes a few lines of code. He realizes that he is confused about what
to do next. He pauses and plans his next steps. Diego wishes that he did not have to stop writing code to plan.

Getting help from others Julie is working on her homework assignment. She gets stuck. Julie meets with an instructor to get help in order to finish
the assignment.

Spending a long time on a
problem

Tamyra is working really hard on a programming problem. She solves the problem. She is proud of herself. Tamyra looks at
the clock and realizes how many hours she spent on the problem. She feels upset because it took her so long to finish it.

Not knowing how to start Miguel reads his programming homework assignment. He opens up the editor but has no idea where to start. Miguel feels
disappointed in himself because he doesn’t even know how to approach the problem.

Using resources to look up
syntax

Arjun is working on a programming problem. He can’t remember the syntax. He uses Google to look up the syntax. He is
disappointed that he could not remember the syntax on his own.

Spending time planning at
the beginning

Jake is unsure how to begin his programming assignment. He spends time planning how to solve the problem. Eventually,
Jake comes up with a plan and begins to write code. Jake wishes that he did not need to spend as much time planning before
writing code.

Spending a long time look-
ing for a simple error

Isabella is working on a challenging problem. She runs into an error. She looks through the code but can’t find it. After a long
time, she realizes that it was a small typo. She thinks to herself: “Wow. I am so bad at programming. A good programmer
would not take so long to find a simple error.”

Struggling to fix errors Daniel is working on his programming homework. He runs his code and gets an error. He struggles to fix the error for a
long time. When he runs the code, another error comes up. He struggles again. Eventually, he fixes it. Then, a different
error comes up.

Not able to finish in time
expected

Sirena is working on her programming assignment. She expects to finish it in one night. After a while, she decides to stop
working because it got late. She feels upset that she was not able to finish it in one night.

Does not understand the
problem statement

Fatima reads her programming homework assignment. She does not understand what the problem statement is asking her
to do. She feels upset and frustrated because she can’t even understand the question.

Table 1: The thirteen self-assessment moments and the vignettes that we included on the survey.

Then, we designed vignettes that describe a character encountering
each of the programming self-assessment moments. To refine the
vignettes and ensure that they represented the moments accurately,
we conducted preliminary user studies that asked students to talk
out loud while reading the questions to reveal their interpretations.
The moments and the associated vignettes can be seen in Table 1.

After each vignette, we asked participants to rate if they nega-
tively evaluate themselves when they experience a similar moment
while programming. For example, the statement following the using
resources to look up syntax vignette is: I feel like I’m not doing well
on a problem when I can’t remember the syntax and have to look
it up. (6-point Likert scale). In this paper, we call these questions
self-assessment vignette questions. Since we wanted to understand
when students were negatively evaluating themselves, potentially
causing feelings of low self-efficacy, we only asked about negative
reactions to the vignettes. We also included a check question after
two of the vignettes that instructed participants to enter a specific
response to ensure that they were reading the survey questions
carefully. To control for biases in students’ reactions to the ques-
tions based on gender or ethnicity of the character, we randomized
the names of the characters for the survey participants. We also
randomized the order that the vignettes appeared to control for
earlier vignettes affecting responses to later vignettes.

We chose to use vignette-style survey questions because it allows
for detailed descriptions of moments in a programming process
to elicit students’ memories of similar experiences. This style of
survey has been used extensively in the field of psychology as
an approach to reduce self-report biases, particularly with survey
questions in cases where participants might be concerned about
social approval from the researcher [2, 18]. Vignette questions are
also useful for questions about decisions, judgements or situations
that the participants may not have previously considered, like when
students self-assess while programming. In those cases, asking a
direct question might lead to inaccurate results compared to a
vignette. However, since vignette surveys are hypothetical, they
can not generate the same emotional experience as a laboratory or
field experiment [16, 20, 43].

The last section of the survey measures whether students be-
lieve that professionals encounter the moments described in the
self-assessment vignette questions. We hypothesize that students
strive to be like professionals in their field and thus their perceptions
of professional programmers might correlate with the moments
that prompt them to negatively self-assess. Studies show that pro-
fessional programmers encounter many of the moments described
in the vignette questions [27, 44, 50], however, the results from our
previous study indicated that students do not believe that “good
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programmers” encounter the self-assessment moments [24]. We
decided to ask about professional programmers rather than more
advanced students or “good programmers” because we wanted
to capture students’ perceptions of undeniable experts and not of
people who are better but may still be learning.

For each of the thirteen self-assessment moments, we asked
students to finish a sentence about professional programmers. For
example, the question associated with the using resources to look up
syntax self-assessment moment states:

Professional programmers:
• often forget the exact syntax and use Google and
other resources to help them remember.

• remember the syntax they need and rarely have to
look it up.

In each question, one option states that the self-assessment mo-
ment occurs in professional programming practice, aligning with
research on professional practice. The other option states that the
self-assessment moment rarely or never occurs in professional
practice, which contradicts research on professional practice. The
questions are presented in a randomized order to control for ear-
lier questions affecting students’ responses to later questions. The
options following the questions are also presented in a randomized
order to control for potential bias caused by the order in which
students read them.

We included a few additional sections in the survey, which we
will not discuss in this paper because they are out of the scope of
these research questions. These sections included an open-ended
response question, a programming intelligence mindset survey,
and a sense of belonging in CS survey. Each vignette was also
followed by a second question that asked students how they would
evaluate the performance of the character in the vignette. We do not
report on this question because our paper focuses on understanding
students’ evaluations of themselves rather than of others.

The full survey can be found at https://bit.ly/2B7irzC.

3.2 Participants
We recruited participants from CS1 courses at three universities
that serve different populations of students, all located within the
same metropolitan area in the midwestern United States. University
1 is a highly selective, private, research-focused university (R1) that
is mid-sized (8,200 undergraduates) and primarily residential. Uni-
versity 2 is a selective, private research university (R2) that is larger
(14,500 undergraduates) and primarily nonresidential. University 3
is a less selective, public university with masters programs (M1) that
is mid-sized (6,400 undergraduates) and primarily nonresidential.
University 3 has been recognized as the most diverse university in
the midwest. See Table 2 for the demographics of our participants
at each university.

A total of 283 students took our survey over a three week period
in the middle of their programming courses. We removed data from
participants who did not answer the check questions correctly. This
left us with a total of 214 participants, with 78 from University
1, 57 from University 2, and 79 from University 3. We recruited
participants from two introductory CS courses at University 1, one
that is required for all CS majors and another that is not part of
the major sequence. We recruited students from the introductory
programming course at University 2. We recruited students from

School # F AA A LA W O 2+
University 1 78 58% 6% 35% 4% 42% 4% 8%
University 2 57 32% 7% 23% 10% 47% 5% 5%
University 3 78 17% 7% 24% 31% 24% 8% 6%
# = Total responses, F = Female, AA = African American, A =
Asian, LA = Latin American, W = White, O = Other, 2+ = Two
or More Races.

Table 2: Demographic data from survey participants for each
University in percentages.

the first two classes in the introductory computer science sequence
for CS majors at University 3. Since we were most interested in
studying self-evaluations across the different school contexts, we
focus our analysis at the school level rather than the class level.

3.3 Survey Procedure
All participants completed the survey in a proctored room with
a researcher present. However, the recruitment and distribution
of surveys varied based on the constraints of the university poli-
cies, course structure, and instructor preferences. For some of the
classes, a researcher announced the survey in class and posted the
announcement on the class discussion board, directing interested
students to take the survey with the researcher at a designated
time and place on campus, outside of class time. For other classes,
a researcher announced the survey in class and interested students
were given time to fill out the survey at the end of class. For the
remainder of the classes, a researcher announced the survey in the
course lab section and interested students could fill out the survey
during or directly after that lab section. These different recruitment
methods may have impacted the participation rates in the classes,
so our findings may be subject to participation bias. However, given
that this is the first study of self-assessments across multiple uni-
versities, we believe it still makes an important contribution despite
this limitation. All survey participants provided informed consent
for the survey and were compensated for their time with a $5 gift
card of their choice.

3.4 Follow-up Interviews Procedure
We conducted semi-structured follow-up interviews to understand
whether students interpreted the vignette-style survey questions in
the ways we expected. We also explored whether the vignettes en-
couraged students to recall similar moments in their own program-
ming experiences. Finally, we used the interviews to investigate
students’ rationales for their responses. We randomly selected sur-
vey respondents from each of the three universities to participate
in the follow-up interviews from the participants who indicated
interest in participating in future research studies. Of the students
we contacted, we interviewed 6 participants from University 1, 4
from University 2 and 3 from University 3.

Students who agreed to participate in the interview met with the
first author individually, either via video conference or in-person
at their respective university. They first signed a consent form
allowing for audio and video recording of the interview. Then,
the researcher gave the participants their previously completed
survey and asked them to re-read each of the vignette questions.
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Figure 1: Histograms of the responses to each of the self-assessment vignette questions on a 6-point Likert scale ranging from
strongly disagree (-3) to strongly agree (3). Students who answered on the agree side of the scale were reporting that they
negatively self-assess at that programming moment.

Students were asked to think-aloud while reading the questions
and say anything that came to mind, similar to a talk-aloud [22].
The researcher also asked students to explain why they answered
each of the survey questions the way they did.

4 DATA ANALYSIS AND FINDINGS
To answer our four research questions, we analyzed a number of
measures calculated from the survey responses. Before beginning
the analysis, we evaluated the normality of our data using a Shapiro-
Wilk test and found that it was statistically significant for all of our
measures. We therefore use non-parametric statistical methods for
the analysis presented in this paper.

4.1 Students from all three universities
reported negative self-assessments

To answer RQ1, we analyzed students’ responses to the self-
assessment vignette questions to evaluate if these moments prompt
negative self-assessments. First, we plotted a histogram of student
responses to each self-assessment vignette question, shown in Fig-
ure 1. We expected that only some students would report that they
negatively self-assess at each moment because in our previous
study, we found high variation in students’ agreement with the self-
assessment criteria [24]. The histograms show that the responses
to some of the self-assessment vignette questions were widely dis-
tributed across the scale, like struggling to fix errors, while others
leaned heavily to one side, like does not understand the problem
statement. A few of the questions even have a bimodal distribution,
like starting over, which shows that students report two distinct
views of these moments. Overall, we found that each question has

at least some responses across the full scale, indicating that all of
the moments prompt negative self-assessments for some students.
These results are notable because the moments described in the
vignettes are natural parts of expert programming practice, and
should not necessarily prompt students to negatively self-assess.

To gain an overarching view of the directionality of student re-
sponses, we calculated the percentage of participants who agreed
with each self-assessment vignette question by combining partici-
pants who responded with slightly agree, agree, and strongly agree.
Agreeing with a question represents a negative self-assessment
at that moment. A summary of the percent agreement for each
self-assessment vignette question is shown in Table 3. The results
ranged from 15% of students reporting that stopping programming
to plan prompts negative self-assessments to 84% of students report-
ing that not knowing how to start prompts negative self-assessments.
These results help us identify the programming moments that most
students use to assess their ability.

To answer RQ2, we analyzed whether there were any differences
in the moments that students say cause them to negatively self-
assess across university contexts. We enumerated their responses
to the 6-point Likert scale, ranging from negative three for strongly
disagree up to positive three for strongly agree. We used a Kruskal-
Wallis test to compare students’ responses at each university for
each of the self-assessment vignette questions, the results of which
are shown in Table 3. Out of the thirteen self-assessment moments,
only one showed a significant difference between the three univer-
sities: finishing in the time expected (H(2) = 10.16, p-value = .006).
For this self-assessment vignette question, the mean responses
were 0.077 for University 1, 0.053 for University 2 and -0.760 for
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Self-assessment moment Percentage that
self-assesses at
the moment

Comparison of responses
to self-assessment vignette
questions across universi-
ties

Percentage
with inaccurate
perception of
professionals

Relationship between each
self-assessment vignette
and the associated pro-
fessional programmers
question

Getting a simple error 22.43% (H(2) = 0.267, p = 0.875) 19.16% U(214) = 3823, p = 0.421
Starting over 55.61% (H(2) = 1.328, p = 0.515) 14.49% U(214) = 3196.5, p = 0.249
Not understanding an error message 61.68% (H(2) = 0.374, p = 0.829) 57.94% U(214) = 6025.5, p = 0.306
Stopping programming to plan 15.42% (H(2) = 3.859, p = 0.145) 10.28% U(214) = 2784.5, p = 0.010
Getting help from others 28.50% (H(2) = 4.828, p = 0.089) 26.64% U(214) = 5171.5, p = 0.074
Spending a long time on a problem 36.92% (H(2) = 1.034, p = 0.596) 14.95% U(214) = 3595.5, p = 0.029
Not knowing how to start 84.11% (H(2) = 2.495, p = 0.287) 50.93% U(214) = 6061, p = 0.430
Using resources to look up syntax 30.37% (H(2) = 1.227, p = 0.542) 42.06% U(214) = 6920, p = 0.002
Spending time planning at the beginning 18.22% (H(2) = 4.471, p = 0.1069) 15.42% U(214) = 4038, p < 0.001
Spending a long time looking for a simple
error

34.58% (H(2) = 4.051, p = 0.1319) 35.98% U(214) = 6246, p = 0.022

Struggling to fix errors 59.81% (H(2) = 1.834, p = 0.3997) 44.39% U(214) = 6445.5, p = 0.071
Not able to finish in time expected 49.53% (H(2) = 10.16, p = 0.006) 17.29% U(214) = 3760.5, p = 0.1457
Does not understand the problem state-
ment

78.97% (H(2) = 1.173, p = 0.556) 48.60% U(214) = 6688.5, p = 0.027

Table 3: Results of our statistical analysis of the self-assessment moments. The second column displays the percentage of
students who agree with each vignette question. The third column shows the Kruskal-Wallis tests evaluating the differences
in student responses to the vignette questions across the three schools. All but one of the vignette questions showed no sig-
nificant difference, suggesting that most of these moments can be generalized across contexts. The fourth column shows the
percentage of students who report that professional programmers do not encounter the self-assessment moments. The last
column displays the Mann-Whitney U tests evaluating the correlations between responses to the self-assessment vignette
questions and associated professional programmers questions. Six of the moments showed significant results, suggesting that
these perceptions may contribute to students’ self-assessments at these moments. Significant results are bolded.

University 3, suggesting that fewer students at University 3 view
completion speed as a sign of ability, compared to the students
at Universities 1 and 2. It is surprising that only one of the self-
assessment moments was significantly different across the three
universities because these are different types of institutions serving
different populations of students. This suggests that most of these
moments can be generalized across contexts.

4.2 Students understood and related to the
vignettes

We analyzed the twelve interviews to ensure that students inter-
preted the vignettes in the ways we intended, and to evaluate poten-
tial risks in the survey design. We did not conduct a formal analysis
of the interviews because our sample size was small. Thus, instead
of looking for themes, we extracted instances in the interviews
when students described their interpretation of a vignette scenario,
provided rationale for their response, or mentioned that a vignette
sparked the recollection of a particular programmingmemory. Since
the vignette questions were newly designed, they presented a num-
ber of risks that could impact the validity of our findings. One risk is
that students might answer the self-assessment vignette questions
based on hypothetical moments rather than memories of specific
programming experiences. However, we found that students refer-
enced their own related programming experiences when discussing
their answers to the self-assessment vignette questions in the in-
terviews. For example, P6 discussed a specific experience from the

current week’s homework when explaining his response to the
starting over vignette:

“A lot of the times I have to erase my code, like many-a-
times, like even for this current homework assignment I
had to erase several lines of code, sometimes just starting
from the beginning.”

We also saw participants relate events that happened to the vignette
characters to their own programming experiences. For example,
P10 noticed that both he and Diego get help from the TAs. He said:

“[The question was] kinda cool for me because Diego
had to get help from the instructor and I often have to
get help from the TAs a lot and I don’t feel like I’m doing
bad. Like I feel like I’m just improving myself.”

Another potential risk is that students might only answer the
questions negatively because the questions are framed with a nega-
tive angle. We would expect students to respond in both directions
because our previous findings show that they have varied reactions
to these moments [24]. To evaluate whether this happened, we
looked for instances in the interviews when students explained
the rational for their responses to the questions in both positive
and negative directions. In the interviews, we found that students
agreed and disagreed with the questions and had a distinct rationale
for their responses. For example, we heard students describe both
opinions around the topic of planning. P3 described planning as an
important part of the process:

“I actually [stop to plan in the middle of a problem] a lot
but I don’t feel bad about it because I feel that planning

Day 3: CS-1, Novices  ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

176



ICER ’20, August 10–12, 2020, Virtual Event, New Zealand Jamie Gorson and Eleanor O’Rourke

is a really huge part before you even start anything.
So it is something that you shouldn’t feel bad about.
I actually think it is one of the things that everybody
should do before just jumping into a problem.”

On the other hand, P1 said that when she spends time planning,
she feels that it means she is not properly prepared for the problem:

“Yeah I definitely feel bad when I have to spend time
planning and can’t start programming right away, be-
cause at that time I am in a situation where I feel that
oh I did a lot of practice and still I was stuck and I did
not know where to start from and where to end . . . as a
computer science student, we don’t have to think after
reading the question, that ok this is the plan going on
in my mind. Rather, we should implement it and we
should write it whatever way we feel and by running
the program, we can get to know the error instead of
wasting time in the beginning.”

Both participants personally related to the vignette whether
they agreed or disagreed with the character’s negative assessment.
This suggests that the vignettes elicited reactions and captured the
differences in from students who felt both similarly and differently
from the character.

Another potential risk is that students might not consider the
nuances in the survey question when providing their answer, which
could discount the distinctions we incorporated into the vignettes.
However, we found that participants mentioned that they weighed
these specific details in the vignettes when deciding how to answer
the questions. For example, P7 discussed the nuances in the different
types of errors:

“You are not doing poorly if you are getting a bunch of
syntax errors. But sometimes you do get errors that you
completely don’t understand and don’t make any sense
and then that is a loss of concept . . . I think it would feel
more like a setback if it was a concept understanding
because I feel like that is more part of the understanding
process. . . So, I would feel like I’m doing less well in
comparison to where I get a syntax error.”

This shows how the nuances in different types of errors impacted
the way P7 answered the question, suggesting that students con-
sider these details when reacting to the scenarios. This indicates
that incorporating nuanced details into survey questions is impor-
tant for gaining an accurate representation of the moments that
elicit negative self-assessments.

Overall, we found that students resonated with the vignettes and
reflected on their own experiences while answering the questions.
These interviews help establish that the self-assessment vignette
questions capture students’ interpretations of programming mo-
ments with reasonable accuracy.

4.3 Students who self-assess more frequently
have lower self-efficacy

To answer RQ3, we analyzed the relationship between students’
responses to the self-assessment vignette questions and the self-
efficacy survey. Enactive attainments, or the results of performing
tasks related to subject mastery, are the most influential information
source for students’ self-efficacy [6], so we expected that students

who negatively self-assess more strongly or more frequently would
have lower self-efficacy in their programming course.

To test this hypothesis, we created a measure that represents the
degree to which each student negatively self-assesses, which we call
the self-assessment compound score. We computed this measure by
averaging students’ responses to all of the self-assessment vignette
questions after converting the responses to numerical values rang-
ing from negative three to positive three. In averaging the questions,
we are not suggesting that students’ responses should be internally
consistent, but rather that they each represent an instance of a
negative self-assessment. For example, two students could have
the same self-assessment compound score, yet one student might
report making negative self-assessments when he gets errors while
the other student reports making negative self-assessments when
she spends time planning. We therefore use this measure to get an
overall sense of how strongly and frequently each student nega-
tively self-assesses. We also averaged students’ responses to the
five self-efficacy questions to create a self-efficacy compound score,
after confirming that the responses have high internal consistency
(Cronbach’s alpha of 0.91).

Then, to test our hypothesis, we used a Spearman’s rank cor-
relation coefficient to measure whether there was a correlation
between the two compound scores. The results show a significant
negative association between students’ self-assessment compound
score and their self-efficacy (𝑟𝑠 (212) = -0.418, p < 0.001). This finding
shows that students who negatively self-assess more frequently
and strongly tend to have lower self-efficacy in their CS1 course.
From this analysis, we cannot determine whether this is a causal
relationship. However, since self-efficacy theory has previously es-
tablished that negative self-assessments influence students’ overall
self-efficacy [6], it is possible that there is a causal relationship
between these negative self-assessments and self-efficacy. Future
research should therefore try to establish this causal relationship.

We were also interested in measuring whether there were any
differences in the relationship between students’ negative self-
assessments and self-efficacy across the three universities. First, we
tested whether there was a difference in the compound self-efficacy
scores between the three schools. A Kruskal-Wallis test revealed a
significant difference (H(2) = 13.96, p-value < 0.001). Students at Uni-
versity 1 reported an average self-efficacy compound score of 1.808,
compared to an average of 1.375 at University 2 and an average of
2.071 at University 3 (higher scores indicate higher self-efficacy).
Given there was a difference in students’ self-efficacy across the
universities, but not in their responses to the self-assessment vi-
gnette questions, we hypothesized that there might be a difference
in the correlation between the self-assessment compound score
and self-efficacy. To test this, we ran a non-parametric ANCOVA
(using the sm.ancova subroutine in R), which analyzes differences
in correlations between a set of non-parametric regression curves
[14]. We chose a smoothing parameter of h=1 because this provided
an accurate representation of the data without overfitting. The test
returned a p-value < .001, showing that there is a significant differ-
ence in the strength of the correlation between the self-assessment
compound score and self-efficacy across the three schools. The fit
lines in Figure 2 show that the self-assessment moments have a
stronger correlation with self-efficacy for students at University 2,
and a weaker correlation for students at University 3. This could
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Figure 2: Graph showing the self-assessment compound
score and the self-efficacy compound score for each survey
participant, grouped by university. The results of the non-
parametric ANCOVA show that the fit lines for each of the
universities are significantly different from each other.

be because a number of other factors beyond self-assessments cor-
relate with self-efficacy in computer science [5, 25, 35, 47, 52]. For
example, if students already have high self-efficacy due to factors
like encouragement from the instructor, high grades, or an expec-
tation that the course is easy, self-assessments may not have as
strong of an impact on students’ beliefs in their ability to succeed.

4.4 Perceptions of professional programmers
may influence self-assessment moments

We expect that multiple factors may impact the set of moments
students use to negatively self-assess while programming, and find-
ings from our previous study suggested that students’ perceptions
of more experienced programmers may be one of those factors [24].
Therefore, to answer RQ4, we explored students’ perceptions of
professional programming practice to evaluate whether these per-
ceptions correlate with the moments that cause them to negatively
self-assess. First, we evaluated how frequently students reported
that each of the self-assessment moments rarely occur in profes-
sional practice. The results ranged from 10% of students believing
that professionals do not stop programming to plan to 58% of stu-
dents believing that professionals always understand their error
messages, shown in Table 3. This indicates that that there is a wide
variation in students’ perceptions of professional programmers and
shows that many students’ perceptions do not align with studies of
professional practices [27, 44, 50].

Next, we wanted to measure whether students’ responses to the
self-assessment vignette questions correlated with their responses
to the professional programming survey questions. We hypothe-
sized that students who think that professional programmers do
not encounter the self-assessment moments would be more likely
to negatively self-assess during these moments. For example, if
a student believes that professional programmers do not spend
time planning, she may be more likely to negatively self-assess
when she has to spend time planning. We used a Mann-Whitney
U test to evaluate if there was a significant difference in students’
responses to the self-assessment vignette questions based on their

responses to the corresponding professional programming ques-
tions, as shown in Table 3. We found a significant effect for six of the
moments, for example using resources to look up syntax and spend-
ing time planning in the beginning. Additionally, two of the other
moments were trending towards significance (p-value between .05
and .1). We found no significant effect for five of the moments.
These results suggest that in some cases, students’ perceptions of
the professional programming process may influence the moments
when they negatively self-assess.

Finally, we analyzed the interviews to understand whether stu-
dents’ perceptions of professional practice factored into their re-
sponses to the self-assessment vignette questions. We also analyzed
the interviews with a more exploratory lens to identify other ratio-
nales that students provided for their responses. We noticed that
multiple students, unprompted, brought up professional program-
ming practice when explaining their response to the self-assessment
vignette questions. For example, when P10 explained why she does
not negatively self-assess after getting a syntax error, she said:

“This is with simple errors . . . I strongly disagree that
you are doing badly on it. I don’t even feel like I’m doing
badly on it because I get a small error. Again, I’m pretty
sure professionals make mistakes.”

Similarly, P9 explained her response about using resources saying:
“I said slightly agree because I’ve gone to a lot of tutoring
centers so I know that professionals or people with more
experience than me do use websites to help them figure
it out. So I feel like I am not doing well [when I need to
use resources] because I wish that I could figure it out
on my own and I would be doing better if I could figure
it out on my own but it’s not a major way to see that
I’m not doing well.”

Because P9 knows that professional programmers use resources,
she responded with slightly agree instead of agree. While her per-
ception of professional programmers may not have fully informed
her reactions to this moment, she still factored it into her response.
Additionally, when P8 explained her response to the vignette about
memorizing syntax, she said:

“I [think] that programmers need to know every single
little piece of syntax and every code and how to at least
start doing everything. . . so the fact that I don’t have it
memorized just made me feel bad.”

Note that we cannot tell from this statement whether P8 is referring
to professionals or simply more experienced programmers. In either
case, it is clear that she is considering her perception of expert prac-
tice in making her self-assessment. Overall, these quotes show that
students use their perceptions of more experienced programmers
to form their assessments of particular programming moments.

Through our analysis, we identified additional factors beyond
perceptions of professionals that students considered when report-
ing on the self-assessment moments. For example, many partici-
pants used social comparisons. P13 said:

“Yeah I definitely feel badly on a problem if I don’t
know where to start. Just like I said before, just seeing
everyone else around me being able to solve it. I don’t
know if I’m just struggling and everyone else is breezing

Day 3: CS-1, Novices  ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

178



ICER ’20, August 10–12, 2020, Virtual Event, New Zealand Jamie Gorson and Eleanor O’Rourke

through it, then I feel badly about myself and I feel like
I’m not as smart as everyone else.”

Self-efficacy theory states that the vicarious experience of watch-
ing peers informs students’ enactive attainments [6], which could
explain why social comparisons arose as a rationale for students’
responses. Students also rationalized their responses by citing rec-
ommendations given by their professors. For example P4 said:

“I put disagree, mainly because of our professors. They
always tell us that planning should be first and once
you have your plan then you start coding.”

These quotes suggest that peer comparisons and recommendations
from professors are additional factors that may contribute to the
particular moments that prompt students to negatively self-assess,
which should be explored further in future studies. These other
factors may help explain why we did not find a correlation be-
tween students’ responses to the perceptions of professional pro-
grammer questions and the self-assessment vignette questions for
every moment. Students’ inaccurate perceptions of professional pro-
gramming practice partially explain why students make negative
self-assessments at natural parts of the programming process, but
other factors also play an important role in determining students’
self-assessments.

5 CONCLUSION
In this paper, we contribute the results of a survey study with 214
CS1 students from three universities. We found that some students
reported that each of the programming moments prompt them to
negatively self-assess, even though these moments occur in pro-
fessional practice. Interestingly, there was no significant difference
in students’ responses between the three universities for twelve
of the thirteen self-assessment vignette questions despite large
differences in the populations of students that these universities
serve. This suggests that many self-assessment moments gener-
alize across different university populations. We also found that
the frequency with which students negatively self-assess correlates
with their overall self-efficacy in their programming course. While
there was little difference in the self-assessment moments across the
schools, the degree to which self-assessment moments correlated
with students’ overall self-efficacy significantly differed between
the universities. Finally, we found that students’ perceptions of
professional programmers correlated with their responses to some
of the self-assessment vignette questions, suggesting that these
perceptions may influence when students negatively self-assess.

Our findings demonstrate that students are negatively self-
assessing often and, importantly, in response to moments that occur
in professional programming practice. This suggests that students
may not have a good understanding of professional practice and the
experiences they should expect to encounter while programming.
This gap in knowledge may exist because CS1 courses typically
do not teach about the cognitive aspects of programming, includ-
ing problem-solving strategies and programming practices [36].
By explicitly teaching about programming practices in CS1, for
example with direct instruction [36] or by showing recordings of
professional programmers [10], we may be able to help students
build accurate expectations of the programming process and reduce
negative self-assessments. This type of intervention might also im-
prove students’ self-efficacy in their programming course, since

we found that students who negatively self-assess more frequently
and strongly tend to have lower self-efficacy. However, while help-
ing students develop more accurate representations of professional
practice may be one promising intervention strategy for changing
student expectations, other messaging around peer comparisons
and instructor expectations may also be needed to reduce negative
self-assessments. Since studies show that students factor their per-
ceived ability into their decision to major in CS [34, 39, 51], these
types of interventions may help to lower the dropout rates in CS
programs.

While these results provide valuable insight into CS1 student
experiences, our study has a few important limitations. First, even
though we chose the self-assessment moments included in our
survey based on previous research and preliminary user studies,
it is likely that our set of moments is not comprehensive. There
may be other moments in the programming process that prompt
students to make negative self-assessments. In particular, cultural
differences both within and outside of the US may strongly influ-
ence the moments that prompt students to negatively self-assess.
Additionally, while our interviews with a small sample of students
provide promising initial evidence that our survey accurately cap-
tures student self-assessments, we need to conduct a more for-
mal validation of the survey. Finally, our results rely on student
self-reports based on remembered experiences triggered by the
vignettes. While retrospective assessments are still relevant for
understanding students’ perceptions of ability, we do not know
whether these responses accurately reflect the thoughts that arise
during programming episodes. However, we chose this methodol-
ogy because the survey allowed us to collect a larger sample of data
with consistent experiences between students.

We believe there are many opportunities to extend and ap-
ply these findings through future work. First, studying the self-
assessment moments across a wider variety of contexts and coun-
tries would help generalize these findings and allow for interesting
cross-cultural comparisons. We are also interested in exploring fac-
tors beyond student perceptions of professional programmers, such
as class format and social comparisons, to understand why students
negatively self-assess in these moments. Finally, since our study
was designed to measure correlations, future work could identify
the factors that cause students to self-assess and confirm that nega-
tive self-assessments have a causal effect on students’ self-efficacy.
Our findings show that many students negatively self-assess at
moments that are natural parts of the programming process, and
that these self-assessments negatively correlate with self-efficacy.
This research lays a theoretical foundation for designing interven-
tions that reduce unnecessary negative self-assessments for novice
programmers.
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