
ar
X

iv
:1

40
1.

52
77

v5
 [

cs
.L

O
]

 1
4

N
ov

 2
01

9

00

Towards a Uniform Theory of Effectful State Machines

SERGEY GONCHAROV, Friedrich-Alexander-Universität Erlangen-Nürnberg

STEFAN MILIUS, Friedrich-Alexander-Universität Erlangen-Nürnberg

ALEXANDRA SILVA, University College London

Using recent developments on coalgebraic and monad-based semantics, we present a uniform study of various notions of

machines, e.g. finite state machines, multi-stack machines, Turing machines, valence automata, and weighted automata.

They are instances of Jacobs’ notion of a T-automaton, where T is a monad. We show that the generic language semantics

for T-automata correctly instantiates the usual language semantics for a number of known classes of machines/languages,

including regular, context-free, recursively-enumerable and various subclasses of context free languages (e.g. deterministic

and real-time ones). Moreover, our approach provides new generic techniques for studying the expressivity power of various

machine-based models.

CCS Concepts: •Theory of computation → Grammars and context-free languages; Quantitative automata; Regular

languages; Categorical semantics;

Additional Key Words and Phrases: monads, side-effects, coalgebras, bialgebraic semantics, Kleene theorem

ACM Reference Format:

Sergey Goncharov, Stefan Milius and Alexandra Silva, 2016. Towards a Uniform Theory of Effectful State Machines. ACM

Trans. Comput. Logic 00, 00, Article 00 (2018), 61 pages.

DOI: 0000001.0000001

1. INTRODUCTION

In recent decades much interest has been drawn to studying generic abstraction devices that not only
formally generalize various computation models and tools, but also help to identify core principles
and reasoning patterns behind them. One example of this kind is given by the notion of compu-
tational monad [Moggi 1991], which made an impact both on the theory of programming (as an
organization tool for denotational semantics [Fiore et al. 2002; Plotkin and Power 2002]) and on
the practice (e.g. being implemented as a programming language feature of Haskell [Peyton Jones
2003] and F# [Syme et al. 2007]). Another pivotal abstraction device is given by the notion of coalge-
bra, providing a uniform syntax-independent framework for concurrency theory and observational
semantics of state based systems (see e.g. [Rutten 2000]).

In this paper, we combine the use of monads and coalgebras for formalizing semantics and be-
haviors of systems to give a unified (bialgebraic) perspective of classical automata theory as well as
of some less standard models such as weighted automata and valence automata.

We base our framework on the notion of T-automaton whose original definition goes back to [Ja-
cobs 2006]. A T-automaton is a coalgebra of the form

m : X → B × (TX)A,

where T is the functor part of a monad T, which we understand as a mathematical abstraction of a
computational effect (in the sense of [Moggi 1991]) happening in conjunction with state transitions

Stefan Milius acknowledges support by Deutsche Forschungsgemeinschaft (DFG) under project MI 717/5-1.
Sergey Goncharov acknowledges support by Deutsche Forschungsgemeinschaft (DFG) under project GO 2161/1-2.
Author’s addresses: S. Goncharov., S. Milius, Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair for Theoretical
Computer Science, Martenstraße 3, 91058 Erlangen, Germany; Alexandra Silva, Department of Computer Science, Univer-
sity College London, Gower Street, London WC1E 6BT, United Kingdom.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM. 1529-3785/2018/-ART00 $15.00
DOI: 0000001.0000001

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

http://arxiv.org/abs/1401.5277v5

00:2 S. Goncharov, S. Milius, A. Silva

of the automaton, A is the set of inputs, and B is the set of outputs which is required to be a
T-algebra. For example, nondeterminism, viz. the computational effect of nondeterministic finite
state machines, is modeled by the finite-power set monad T = Pω, and B = {0, 1}, modeling
accepting and rejecting states is a Pω-algebra, equivalently a join-semilattice, with the obvious
structure. Analogously, we show that certain (nondeterministic) extensions of the pushdown store
form the underlying effect of pushdown automata.

A crucial ingredient of our framework is the generalized powerset construction [Silva et al. 2013],
which serves as a coalgebraic counterpart of classical Rabin-Scott determinization algorithm [Rabin
and Scott 1959] and allows us to provide a generic (deterministic) semantics of T-automata. By
instantiating the operational analysis of computational effects from [Plotkin and Power 2002] to our
setting we axiomatize relevant monads and algebras and thus arrive at syntactic fixpoint expressions,
which we dub reactive expressions, representing T-automata. Furthermore, we prove a Kleene-style
theorem relating T-automata and the corresponding expressions, thus generalizing previous work
in [Silva et al. 2010; Silva et al. 2011]. This generic correspondence instantiates to three large classes
of machines actively studied in the literature:

— state machines over various types of store, as classically studied in formal language the-
ory [Rozenberg and Salomaa 1997]; here we elaborate in detail push-down stores and their
combination with one another and with nondeterminism, as well as Turing tapes;

— valence automata [Render and Kambites 2009; Kambites 2009; Zetzsche 2016], capturing non-
deterministic computations over a store modeled by various classes of monoids;

— weighted automata [Droste et al. 2009; Sakarovitch 2009].

We also capture systems combining probability and nondeterminism [Segala 1995; Segala and
Lynch 1995], which do not fit any of the above classes.

A unifying semantic domain in our framework is the set BA∗

of formal power series, standardly
used in weighted automata theory (where B is assumed to be a semiring). With B being the two-
element set {0, 1} this is isomorphic to the set of all formal languages over A, which is the semantic
domain for finite state automata. In the case of stack T-automata, i.e. where T models a pushdown

store, B consists of certain predicates in 2Γ
∗

, where Γ denotes the stack alphabet. Hence formal

power series may be identified with certain functions Γ∗ → 2A
∗

, and our semantics assigns to a
state of a given T-automaton the function which maps a word w ∈ Γ∗ to the language recognized by
the automaton with initial stack content w. Analogous considerations apply to T-automata where T
models a Turing tape. Furthermore, note that most textbooks (e.g. [Hopcroft et al. 2006]) define a
Turing machine with a single tape both for performing computations and for communicating the
data. However, it is important in our approach to diffentiate the reactive and computational parts
of a machine. Therefore we consider online Turing machines [Hennie 1966] that have a designated
(one-way) input tape alongside with the Turing tape. Essentially the same type of machines (but
subject to bisimulation semantics instead of language semantics) was recently studied under the
name reactive Turing machines [Baeten et al. 2011].

The format of our general reactive expressions deviates from the format of the familiar Kleene’s
regular expressions. This is inevitable, for the latter use various features of the underlying model
that are not generally available, most notably nondeterministic choice, but also the fact that B is
precisely the two-element set {0, 1}. However, our syntax features precisely the operations coming
from an equational presentation of the computation monad T. This allows us to instances which
are beyond the reach of expression formats with “hard-wired” nondeterminism. Specifically, we
elaborate the case of deterministic machines over a pushdown store, recognizing precisely real-time
deterministic context-free languages, which are properly contained in the class of all context-free
languages, which in turn are recognized by the respective nondeterministic stack T-automata. More-
over, we show that our syntax can be simplified for monads whose presentation features a finitary
summation operation (generalizing nondeterministic choice), and under further expected assump-

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:3

tions, become convertible to the one familiar in weighted automata theory for defining rational
formal power series [Droste et al. 2009; Sakarovitch 2009].

A considerable part of our technical development (especially Section 3) is devoted to characteriz-
ing monads capturing realizable transitions of state machines. For example, the stack of a pushdown
automaton is standardly modeled by the set of finite sequences Γ∗ over an alphabet Γ of stack sym-
bols. However, not every transformation Γ∗ → Γ∗ is realizable by such an automaton (they need
not even be computable). We characterize the relevant stack monad of realizable stack transform-

ers in two complementary ways: as a submonad of the store monad TX = (X × Γ∗)Γ
∗

and as
an algebraic theory over primitive stack operations push and pop. Analogous characterizations are
established for the (Turing) tape monad, whose theory, in contrast to the stack theory, fails to be
finitely axiomatizable.

The main salient feature of our approach is that it allows one to untie from the standard enumera-
tive and diverse definitions of various kinds of state machines and reason about them collectively in
a uniform way. We demonstrate this by providing some initial constructions on T-automata, specif-
ically by tensoring the underlying monads for obtaining machines over combined effects, e.g. store
and nondeterminism. Another construction we present is a certain continuations passing style (CPS)
transformation of a given T-automaton allowing us to define an extension of the canonical coalge-
braic semantics to the case of unobservable (aka silent) transitions. The latter semantics allows us to
capture recursively enumerable languages by (deterministic) T-automata over the Turing tape. This
provides an answer to a long standing challenge of giving a coalgebraic description for any Turing
complete computation model.

Using a reduction to previous work [Book and Greibach 1970] on real-time machines we show
that T-automata with nondeterminism and an arbitrary number of stacks but without unobservable
moves capture precisely the class NTIME(n) of nondeterministic linear time languages. Based on
this result we argue that it seems unlikely to be able to capture languages beyond NTIME(n) by any
computationally feasible class of T-automata without unobservable moves. In fact, we conjecture
that this bound remains valid also for our tape T-automata. The requirement to be real-time is an
inherent feature of coalgebraic modelling and is often regarded a desirable feature of reactivity or
productivity of computations.

Finally, we prove a coalgebraic version of one direction of the classical Chomsky-Schützenberger
theorem (Theorem 7.5). As an instance, this allows to conclude that for every polycyclic monoid M
of rank at least 2, every context-free language is recognized by a valence automaton over M ; that
context-free languages are precisely the languages recognized by valence automata over polycyclic
monoids was proven in [Render and Kambites 2009].

Related work. We build on previous work on coalgebraic modelling and monad-based semantics.
Most of the applications of coalgebra to automata and formal languages however address rational
models (e.g. rational streams, regular languages) from which we note [Rutten 2003] (regular lan-
guages and finite automata), [Jacobs 2006] (bialgebraic treatment of Kleene algebra and regular
expressions), [Silva et al. 2010; Silva et al. 2011; Milius 2010; Bonsangue et al. 2013] (coalgebraic
regular expressions).

More recently, some further generalizations were proposed. In recent work [Winter et al. 2013] a
coalgebraic model of context-free grammars is given, and [Bonsangue et al. 2012] captures weighted
context-free grammars and algebraic formal power-series coalgebraically, without however an anal-
ogous treatment of (weighted) push-down automata. Winter [2014] devotes a chapter of his the-
sis to the treatmeant of push-down automata (and weighted push-down systems), including e.g. a
bisimulation-based proof of the result that any power series recognizable by a weighted pushdown
system is also recognizable by a weighted pushdown system with a single state, the latter of which
coincide with weighted grammars in Greibach normal form. However, a final coalgebra based se-
mantics of push-down systems, like the one we present for stack T-automata, is not presented in
loc. cit. Finally, [Milius et al. 2016] gives a unifying account of various finite state behaviours, and
in particular characterizes the domain of finite state behaviours by a universal property; applications

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:4 S. Goncharov, S. Milius, A. Silva

include all known coalgebraic models of rational behaviour, but also (weighted) context-free lan-
guages and algebraic power-series and the languages recognized by T-automata. Myers established
a rather general form of a Kleene theorem for surjection preserving functors on varieties [Myers
2013], while we stick to a concrete functor B × (--)A. His Kleene Theorem is parametric in a given
presentation of the variety and the type functor by operations and equations; but we do not derive
our Kleene-type theorem from his general one. The specific form of the functor we are using al-
lows us to directly associate T-automata and the corresponding expressions with their semantics,

which are formal power series from BA∗

. Moreover, this enables us to give a direct syntactic trans-
lation between the reactive expressions in Section 4 and the more convenient additive expressions
in Section 5 (see Proposition 5.5).

The notion of T-automata appeared for the first time in [Jacobs 2006]. In addition, we will also
use in our development two results from [Jacobs 2006] (these appeared also in Bartels’ thesis [Bar-
tels 2004] and Turi and Plotkin’s seminal paper [Turi and Plotkin 1997]) stating that: (i) in the
presence of a distributive law TG ⇒ GT, the final G-coalgebra carries a T-algebra structure;
(ii) there is a bijective correspondence between GT -coalgebras (in Set) and λ-bialgebras. [Jacobs
2006] gives a list of T-automata examples, including non-deterministic automata and semiring au-
tomata, but these are not treated in detail and, more importantly, this list does not include machines
with memory such as pushdown automata. We go beyond [Jacobs 2006] both in terms of examples,
but more importantly, in that we provided a uniform expression syntax for a large class of automata,
which include automata equipped with memory, for which we make use of algebraic presentations
of monads.

Pattinson and Schöder [2016] independently investigated an axiomatization of the Turing tape
equivalent to ours and showed that the axioms precisely characterize the Turing tape as a final
comodel of the corresponding algebraic theory. They proved a completeness theorem which can be
read as the fact that the induced monad injectively embeds into the store monad with the Turing tape
as the store. In contrast to the latter result in our work we additionally characterize precisely that
submonad by a collection of conditions on the store transformers.

The present paper is a considerably extended version of our previous conference publication [Gon-
charov et al. 2014].

2. DETERMINISTIC MOORE AUTOMATA, COALGEBRAICALY

In this section we recall the main definitions and existing results on coalgebraic modelling of state
machines that we need. This material, as well as the material of the following sections, uses the
language of category theory, hence we assume readers to be familiar with basic notions. We use
Set as the main underlying category throughout. Further abstraction from Set to a more general
category, while possible (and often quite straightforward), will not be pursued in this paper.

Our central notion is that of an F -coalgebra, where F is an endofunctor on Set called transition
type. An F -coalgebra is a pair (X, f : X → FX) where X is a set called the state space and f
is a map called transition structure. We shall often identify a coalgebra with its state space if no
confusion arises.

Coalgebras of a fixed transition type F form a category whose morphisms are maps of the state
spaces commuting with the transition structure: a map h : X → Y is a (coalgebra) homomorphism
from (X, f : X → FX) to (Y, g : Y → FY) if the square below commutes:

X
f

//

h
��

FX

Fh
��

Y g
// FY

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:5

g ◦ h = Fh ◦ f . A final object of this category (if it exists) plays a particularly important role and
is called final coalgebra. We denote the final F -coalgebra by

(νF, ι : νF → FνF),

and write f̂ : X → νF for the unique homomorphism from (X, f) to (νF, ι).
Our core example is the standard formalization of Moore automata as coalgebras [Rutten 2000].

For the rest of the paper we fix a finite set A of actions and a set B of outputs. We call the functor
L = B × (−)A the language functor (over A, B). The coalgebras for L are given by a set X of
states with a transition structure on X given by maps

o : X → B and ∂a : X → X, (a ∈ A)

where the left-hand map, called the observation map, represents an output function (e.g. an ac-
ceptance predicate if B = 2; here and elsewhere we identify 2 with {0, 1}) and the right-hand
maps, called a-derivatives, are the next state functions indexed by input actions from A. Finite
L-coalgebras are hence precisely classical Moore automata. It is straightforward to extend a-
derivatives to w-derivatives with w ∈ A∗ by induction: ∂ǫ(x) = x; ∂aw(x) = ∂a(∂w(x)) where
ǫ ∈ A∗ is the empty word.

The final L-coalgebra νL always exists and is carried by the set of all formal power series BA∗

.

The transition structure on BA∗

is given by

o(σ) = σ(ǫ) and ∂a(σ) = λw. σ(aw), (a ∈ A)

for every formal power series σ : A∗ → B. The unique homomorphism from an L-coalgebra X to

the final one BA∗

assigns to every state x0 ∈ X a formal power series that we regard as the (lan-
guage) semantics of X with x0 as an initial state. Specifically, if B = 2 then finite L-coalgebras are

deterministic automata andBA∗ ∼= P(A∗) is the set of all formal languages overA and the language
semantics assigns to every state of a given finite deterministic automaton the language accepted by
that state. The transition structure on P(A∗) is given by the predicate o distinguishing languages
containing the empty word and by the maps ∂a assigning to a language their left derivatives:

o(L) = ⊤ ⇐⇒ ǫ ∈ L and ∂a(L) = {w | aw ∈ L} (a ∈ A).

Definition 2.1 (Language semantics, Language equivalence). Given an L-coalgebra (X, f),
the language semantics is given by

f̂ : X → BA∗

For every x ∈ X , f̂(x) is the formal power series recognized by x.

Language equivalence identifies exactly those x and y for which f̂(x) = ĝ(y) (for possibly
distinct coalgebras (X, f) and (Y, g)); this is denoted by x ∼ y.

We obtain the following characterization of language equivalence.

PROPOSITION 2.2. Given x ∈ X and y ∈ Y where X and Y are L-coalgebras, x ∼ y iff for
any w ∈ A∗, o(∂w(x)) = o(∂w(y)).

PROOF. Let f and g be the transition structures of X and Y , respectively. Since both f̂ and ĝ

are L-coalgebra morphisms, we have o(z) = o(f̂(z)) and f̂(∂a(z)) = ∂a(f̂(z)) for every a ∈ A

and similarly for ĝ. By an easy induction, the latter equation yields f̂(∂w(z)) = ∂w(f̂(z)) for every
z ∈ X and w ∈ A∗. Therefore,

o(∂w(x)) = o(f̂(∂w(x))) = o(∂w(f̂(x))) = f̂(x)(w),

o(∂w(y)) = o(ĝ(∂w(y))) = o(∂w(ĝ(y))) = ĝ(y)(w),

where the last equations easily follow from the definitions of o and ∂w on νL = BA∗

.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:6 S. Goncharov, S. Milius, A. Silva

Now note that x ∼ y iff f̂(x) = ĝ(y) and the latter holds iff f̂(x), ĝ(y) : A∗ → B are equal on
every w ∈ A∗. Thus we conclude that o(∂w(x)) = o(∂w(y)) iff x ∼ y as desired. 2

It is well-known that Moore automata, i.e. finite L-coalgebras, can be characterized in terms of
formal power series occurring as their language semantics (see e.g. [Rutten 2003]).

Definition 2.3 (Regular power series). We call a formal power series σ regular if the set
{∂w(σ) | w ∈ A∗} is finite.

The following result is a rephrasing of a classical result on regular languages (see e.g. [Eilenberg
1974, Theorem III.8.1]). The proof for formal power series is similar and left to the reader.

PROPOSITION 2.4. A formal power series is accepted by a Moore automaton if and only if it is
regular.

Remark 2.5. Formal power series are usually considered when B is a semiring, in which case
one usually also speaks of recognizable formal power series as behaviours of finite weighted au-
tomata over B (see e.g. [Droste et al. 2009]). Our notion of regular formal power series (Defini-
tion 2.3) generally disagrees with the latter one (unless B is finite) and is in conceptual agreement
with such notions as ‘regular events’ and ‘regular trees’ [Goguen et al. 1977; Courcelle 1983].

Regular formal power series as the semantics of precisely the finite L-coalgebras are a special
instance of a general coalgebraic phenomenon [Adámek et al. 2006; Milius 2010]. Let F be any
finitary endofunctor on Set. Define the set ̺F to be the union of images of all finite F -coalgebras

(X, f : X → FX) under their respective unique homomorphisms f̂ : X → νF . Then ̺F is a
subcoalgebra of νF with an isomorphic transition structure map; ̺F is therefore called the rational
fixpoint of F . It is (up to isomorphism) uniquely determined by either of the two following universal
properties: (1) as an F -coalgebra it is the final locally finite coalgebra and (2) as an F -algebra it is
the initial iterative algebra. We refer to [Adámek et al. 2006; Milius 2010] for details.

The characteristic property of regular formal power series can be used as a definitional princi-
ple. In fact, given a regular power series σ and assuming that A = {a1, . . . , an}, we can view
{σ1, . . . , σk} = {∂w(σ) | w ∈ A∗} as a formal solution of a system of recursive equations of the
form

σi = a1.σi1 ⋔ . . . ⋔ an.σin ⋔ ci, i = 1, . . . , k, (2.1)

where for all 1 ≤ i ≤ k and 1 ≤ j ≤ n we have ∂aj
(σi) = σij and σi(ǫ) = ci. Here we introduce ⋔

as a notation allowing us to syntactically glue together the information about the “head” of a regular
formal series and all its derivatives. Reading the σ1, . . . , σk as recursion variables, the system (2.1)
uniquely determines the corresponding regular power series: for every i it defines σi(ǫ) as ci and for
w = au it reduces calculation of σi(w) to calculation of some σj(u) – this induction is obviously
well-founded.

Any recursive equation system (2.1) can be rewritten as a term using the fixpoint operator µ. To
do this, first write

σi = µσi. a1.σi1 ⋔ . . . ⋔ an.σin ⋔ ci (2.2)

where µσi binds the occurrences of σi in the right-hand term. One can then successively eliminate
all the variables σi using the equations (2.2) as assignments and thus obtain a syntactic description
of the given regular power series as σ = t where t is a closed term given by the following grammar:

γ ::= µx. a.δ ⋔ . . . ⋔ a.δ ⋔ b δ ::= x | γ (a ∈ A, x ∈ X, b ∈ B) (2.3)

Here X refers to an infinite stock of recursion variables. The term t according to (2.3) is then nothing
but a condensed representation of the system (2.1) and as such it uniquely defines σ. Thus every
regular formal power series yields a closed term. Proposition 2.6 below together with Poposition 2.4
then establish that closed expressions according to (2.3) capture precisely regular formal power

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:7

q0 = a.q1 ⋔ b.q2 ⋔ 1

q1 = a.q2 ⋔ b.q0 ⋔ 2

q2 = a.q0 ⋔ b.q1 ⋔ 3
q0, 1 q1, 2 q2, 3

a

b

a

b

a

b

Fig. 1. A Moore automaton over A = {a, b}, B = 3 = {1, 2, 3} as a graph (right) and as the corresponding system of
equations (left).

series; this can be viewed as a coalgebraic reformulation of Kleene’s theorem. This view has been
advanced recently (in a rather more general form) in [Silva et al. 2010; Silva et al. 2011; Myers
2013] and is of crucial importance for the present work.

Admittedly, the expressions of the form (2.3) are still quite close to Moore automata. However,
for T-automata (introduced in Section 4) we shall extended this syntax with operations from an
algebraic theory given by the monad T (Definition 4.8) and show how to simplify that syntax in the
case where T is an additive monad (Definition 5.4); in the special case of weighted automata, this
yields a syntax that is equivalent to the familiar rational expressions (Remark 5.6).

Proposition 2.4 in conjunction with the presentation of regular formal power series as ex-
pressions (2.3) suggest that every expression gives rise to a finite L-coalgebra generated by it,
whose state space consists of expressions. This is indeed true and can be viewed as a coalgebraic
counterpart of Brzozowski’s classical theorem for regular expressions [Brzozowski 1964]. Given
e = µx. a1.e1 ⋔ . . . an.en ⋔ c, let

o(e) = c and ∂ai
(e) = ei[e/x]. (2.4)

PROPOSITION 2.6. Let e be a closed expression (2.3). Then the set {∂w(e) | w ∈ A∗} forms a
finite L-coalgebra under the transition structure defined by (2.4).

PROOF. We only have to show that E = {∂w(e) | w ∈ A∗} is finite. Let S be the set of all
closed expressions uρ where u is a subexpression of e and ρ is a substitution sending free variables
of u to closed subexpressions of e. Then, S is closed under a-derivatives, for

∂ai
(uρ) = uiρ[u/x] if u = µx. a1.u1 ⋔ . . . ⋔ an.un ⋔ c,

and for u = x ∈ X , we have ∂ai
(uρ) = ∂ai

(ρ(x)), which lies in S by the previous case because
ρ(x) is a closed subexpression of e, which must start with a µ-operator. By definition, e ∈ S, hence
E ⊆ S. Since S is finite, so is E. 2

Remark 2.7. If B = 2, then Proposition 2.6 is essentially equivalent to Brzozowski’s theorem,
for in that case the expressions (2.3) are equivalently convertible into the standard regular expres-
sions; the proof of the latter conversion is similar to the one found in [Silva 2010]. The conversion
from regular expressions to µ-expressions deploys a determinization procedure, which is available
for the underlying notion of automaton. We revisit the question of converting µ-expressions into
generalized regular expressions in a broader context in Section 6.

We close this section with a small illustration of the presented material.

Example 2.8. Let B = {1, 2, 3} and let A = {a, b}. Consider a Moore automaton over these
data as depicted in Fig. 1. Besides the standard pictorial representation as a graph, we consider an
equivalent representation as a system of recursive equations. Given w ∈ A∗ let ♯aw and ♯bw denote
the number of occurrences of a and b in w, respectively. Then the power series σ recognized by state
qi is the one for which

σ(w) = (♯aw + 2 · ♯bw + i) mod 3 + 1.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:8 S. Goncharov, S. Milius, A. Silva

After picking q0 as the initial state we can fold the system of equations into a single fixpoint expres-
sion

q0 = µx. a.µy. (a.µz. (a.x ⋔ b.y ⋔ 3) ⋔ b.x ⋔ 2) ⋔

b.µz. (a.x ⋔ b.µy. (a.z ⋔ b.x ⋔ 2) ⋔ 3) ⋔ 1.

If we replace 1 in B with ⊤ and both 2 and 3 with ⊥, then we obtain a deterministic automaton
in which q0 is the only final state. This state then accepts exactly those words w ∈ A∗ for which
♯aw + 2 · ♯bw is divisible by 3.

3. MONADS AND Σ-THEORIES

In the previous section we summarized a coalgebraic presentation of deterministic Moore automata,
essentially capturing regular languages and regular formal power series. In order to capture bigger
language classes we introduce (finitary) monads and Σ-theories as a critical ingredient of our for-
malization; this is following and extending ideas in previous work [Jacobs et al. 2012; Silva et al.
2013]. In this work we find it easiest to work with monads in the form of Kleisli triples.

Definition 3.1 (Kleisli triple). A Kleisli triple (T, η, --⋆) consists of an object assignment T send-
ing sets to sets, a set-indexed family of maps ηX : X → TX and an operator, called Kleisli lifting,
sending any map f : X → TY to f⋆ : TX → TY . These data are subject to the following axioms:

η⋆ = id, f⋆ · η = f, (f⋆ · g)⋆ = f⋆ · g⋆.

It is well-known that the definition of a monad as a Kleisli triple is equivalent to the usual definition
of a monad T as an endofunctor T equipped with natural transformations η : Id → T (unit) and
µ : TT → T (multiplication) making the following diagrams commute:

T
ηT

//

id
""
❊❊

❊❊
❊❊

❊❊
TT

µ
��

T
Tη

oo

id
||②②
②②
②②
②②

T

TTT
µT

//

Tµ
��

TT

µ
��

TT µ
// T

A T-algebra is a pair (X, s) where X is a set (called the carrier) and s : TX → X a map (called
the structure) such that the diagrams below commute:

X
ηX

//

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

TX

s

��

TTX
µX

oo

Ts
��

X TX
s

oo

and a morphism of T-algebras is just a morphism of algebras for the functor T , i.e. a morphism
from (X, s) to (Y, t) is a map h : X → Y such that the square below commutes:

TX
s //

Th
��

X

h
��

TY
t

// Y

The category of T-algebras and their morphisms is called Eilenberg-Moore category of T and is

denoted by Set
T. Note that (TX, µX) is the free T-algebra on the set X ; that means that for every

map f : X → Y , where Y is the carrier set of a T-algebra (Y, t), there exists a unique T-algebra
morphism f ♯ : (TX, µX) → (Y, t) extending f , i.e. such that f ♯ · ηX = f . For more background
material on monads and T-algebras see [MacLane 1998].

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:9

We find it useful to consider monads not only as a technical tool, but also as a metaphor for a
notion of computation as manifested by Moggi [1991]. We therefore rely on the syntax of Moggi’s
computational metalanguage (aka, Haskell do-notation):

Notation 3.2 (do-notation). For any p ∈ TX and q : X → TY we write

do x← p; q(x)

to denote q⋆(p) ∈ TY .

Intuitively, the construction do x ← p; q(x) should be read as follows: run the computation p;
bind the result to x and then run the computation q(x) depending on x. This becomes particularly
suggestive when considering state-based monads, for which one can form expressions like

do x← get(l1); set(l2, f(x)),

meaning: get a value under location l1, apply f to it and put the result under l2.

Remark 3.3. Some comments regarding the do-notation are in order.

(1) The interpretation of the do-notation in general requires that the corresponding monad is strong,
i.e. equipped with a natural transformation τX,Y : X×TY → T (X×Y) called strength and sat-
isfying a number of obvious coherence conditions, which are elided here because every monad on
Set is strong via the following canonical strength [Kock 1972]: τX,Y (x, p) = T (λy. 〈x, y〉) (p).
Strength is needed for propagating values along the do-expressions. For example, the meaning of

do x← p; y ← q(x); r(x, y) for every p ∈ TX , q : X → TY and r : X × Y → TZ

is precisely r⋆((τX,Y 〈idX , q〉)⋆(p)) (which is
(
λx. (λy. r(x, y))⋆(q(x))

)⋆
(p) in Set).

(2) Further standard notational conventions are as follows:

Notation Meaning Condition
do x← p; q do x← p; (λx. q)(x) –
do p; q do x← p; q x not a free variable in q;
do 〈x, y〉 ← p; q(x, y) do z ← p; q(z) for p ∈ T (X1 ×X2)

and q : X1 ×X2 → TY ;
do x1 ← p1; . . . ;xn ← pn; q do x1 ← p1; . . . ; do xn ← pn; q –

(3) Moggi [1991] has indeed proved that the following axiomatization of do-expressions is sound
complete for strong monads

do x← (do y ← p; q); r = do y ← p;x← q; r (y not free in r)

do x← ηX(a); p = p[a/x]

do x← p; ηX(x) = p.

making the do-notation a fully fledged internal language of strong monads.

A monad T is finitary if the underlying functor T is finitary, i.e., T preserves filtered colimits.
Informally, T being finitary means that T is determined by its action on finite sets. In addition,
finitary monads admit a presentation in terms of (finitary) equational theories over an algebraic
signature as we now outline.

Definition 3.4 (Σ-theory). An algebraic signature Σ consists of operation symbols f , each of
which comes together with its arity n, which is a nonnegative integer – we denote this by f : n→ 1.
Symbols of zero arity are also called constants. Σ-terms are constructed from the operations in
Σ and variables in the usual way. A Σ-theory is given by a set of Σ-term equations closed under
inference of the standard equational logic. We shall usually present an algebraic theory E by its
signature Σ together with a set of axioms; we then obtain E as the deductive closure of the given set
of axioms under standard equational reasoning.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:10 S. Goncharov, S. Milius, A. Silva

Given a Σ-theory E we can form a monad TE as follows: TEX is the set of equivalence classes
of terms of the theory over free variables from X (in what follows we shall refer to equivalences
of terms always by terms representing them); ηX : X → TEX casts a variable to a term; given
ρ : X → TEY and p ∈ TEX , ρ⋆(p) is the term pρ obtained by substituting the free variables in the
term p according to the substitution ρ.

Conversely, we can pass from a finitary monad T to the ΣT-theory ET, where ΣT is the signature
that contains an operation symbol fa : n→ 1 for each element a of Tn. Such an operation symbol
can be interpreted as a map

〈t1, . . . , tn〉 7→ (λi. ti)
⋆(a)

from (TX)n to TX . This yields a semantics of ΣT-terms over TX and we define ET to be the
ΣT-theory given by all term equations valid over any TX . Notably, T-algebras are then exactly the
models of the Σ-theory ET.

While the passage from a monad to the ΣT-theory ET, followed by the passage in the opposite
direction yields an identical transformation, the passage from a Σ-theory, followed by the passage
from monads to theories does not yield the original Σ-theory, but instead produces its clone, i.e.
a theory, obtained from the original Σ-theory by recognizing all Σ-terms as (possibly new) opera-
tion symbols. This fundamental observation, going back to Lawvere [1963], allows us to consider
Σ-theories as presentations of finitary monads. It will be instrumental in our study of syntactic pre-
sentations of generic automata, e.g. our Kleene Theorem (Theorem 4.13).

Definition 3.5 (Presentation of a monad). A Σ-theory E is said to be a presentation of the
monad T if T is naturally isomorphic to TE . We also say that E generates T.

While the ΣT-theory ET yields a canonical presentation of the monad T we shall subsequently be
interested in working out more compact presentations. In order to do this we will consider semantics
of Σ-terms and Σ-theories over monads not necessarily of the form TE . We will make free use of
the equivalence between n-ary algebraic operations over a monad T and the elements of Tn (where
we identify n with the set {1, . . . , n}). This equivalence was presented by Plotkin and Power [2003]
(more generally as a duality between algebraic operationsn→ m and Kleisli morphisms m→ Tn),
and we recall it below.

Let T be any monad, and recall that an n-ary algebraic operation over T is a natural transfor-
mation α : T n → T , where T n denotes the n-fold product T × · · · × T ,1 such that for every
f : X → TY we have

(TX)n

(f⋆)n

��

αX // TX

f⋆

��

(TY)n αY

// TY

(3.1)

Any element a ∈ Tn yields α : T n → T by defining

αX(f) = f⋆(a) = do x← a; f(x)

for any f : n → TX . And given an n-ary algebraic operation α : T n → T over T we obtain
αn(ηn) ∈ Tn. It is not difficult to show that these two passages are mutually inverse.

The technical advantage of using elements of Tn is that they are unconstrained whereas n-ary
algebraic operations α : T n → T need to satisfy the above coherence condition (3.1).

Definition 3.6. Let Σ be a signature and let T be a (not necessarily finitary) monad. A semantics
of Σ over T is an assignment L[−]MT sending any f : n→ 1 in Σ to L[f]MT ∈ Tn. For every Σ-term t
over a set of variables X this determines L[t]MTX ∈ TX inductively as follows:

1We will use exponents on T only in this sense and not to indicate n-fold composition of T with itself.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:11

— L[x]MTX = ηX(x) for x ∈ X ;
— L[f(t1, . . . , tn)]MTX = do i ← L[f]MT ; L[ti]MTX = αX(L[t1]MTX , . . . , L[tn]MTX), where α : T n → T

is the n-ary algebraic operation over T corresponding to L[f]MT .

Now let E be a Σ-theory. We call a semantics of Σ over T

— sound if for any equation s = t from E such that the free variables for s, t are included in X ,
L[s]MTX = L[t]MTX ;

— complete if s = t ∈ E whenever L[s]MTX = L[t]MTX for some X containing all the free variables
of s and t;

— expressive if for every p ∈ TX there is a Σ-term t over X such that p = L[t]MTX .

In the future we shall omit the subscripts of L[−]M whenever T or TX , respectively, are clear from
the context. If a semantics of E over T is assumed, we simply call E sound, complete and expressive
over T in the corresponding cases.

Remark 3.7. Note that if a Σ-theory is presented by a signature and axioms then it suffices to
verify soundness for every axiom. Soundness of all equations in the closure E of the set of axioms
under inference of standard equational logic then follows easily by induction.

Example 3.8. For every Σ-theory E we have a canonical semantics over the monad TE given by
setting L[f]M = f(1, 2, . . . , n) ∈ TEn.

The following theorem shows that the fact that a Σ-theory E generates a monadT entails a canonical
presentation of T in terms of E up to isomorphism.

THEOREM 3.9. Let E be a Σ-theory and let T be a finitary monad. Then E generates T iff there
exists a sound, complete and expressive semantics of Σ over T.

PROOF. As we outlined after Definition 3.4, from E we can construct a finitary monad TE such
that TEX consists of Σ-terms over X modulo E and equip it with the canonical semantics L[−]M.
Essentially due to Lawvere [1963] this semantics is sound, complete and expressive. Thus if E
generates T, i.e. we have a natural isomorphism γ : TE → T, then we can define the semantics
L[−]MT = γn · L[−]M, and show by an easy induction that

L[−]MTX = γX · L[−]MTEX for every set X . (3.2)

Soundness, completeness and expressivity now easily follow from the fact that γX is bijective.
Conversely, we have to show that for any sound, complete and expressive semantics L[−]MT of E

over T, the latter is isomorphic to TE via some natural isomorphism γ. Indeed, since any element
of TEX is represented by a Σ-term t we can define γX : TEX → TX by sending t to L[t]MTX .
It immediately follows by soundness that this definition is well-defined (i.e. independent of the
concrete choice of t). Completeness and expressiveness of the given semantics imply injectivity and
surjectivity, respectively, of γX . It is also easy to see by definition that γX respects unit and Kleisli
lifting, hence it extends to a monad isomorphism. 2

Example 3.10 (Monads, Σ-theories). Standard examples of computationally relevant monads
include (cf. [Moggi 1991]) the following ones.

1. The finite and unbounded powerset monads Pω and P . For both monads the unit is the sin-
gleton map ηX : x 7→ {x} and the Kleisli-lifting extends a map f : X → PY to f⋆ : PX → PY
taking direct images: f⋆(M ⊆ X) =

⋃
x∈M f(x) (and similarly for Pω). Only Pω is finitary and

corresponds to the Σ-theory of join-semilattices with bottom over Σ = {⊥,∨}, or equivalently to
the theory of commutative idempotent monoids.

2. The monoid action monad for a monoid (M, ·, 1) maps a set X to M×X . Its unit is formed by
the maps ηX : x 7→ (1, x) and the Kleisli-lifting extends f : X →M×Y to f⋆ : M×X →M×Y

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:12 S. Goncharov, S. Milius, A. Silva

with f⋆(m,x) = (m · n, y) where (n, y) = f(x). The corresponding Σ-theory is the theory of M -
actions, i.e., Σ has a unary operation symbol m · (−) for every m ∈ M with the usual axioms
m · (n · x) = (m · n) · x and 1 · x = x.

3. The store monad over a store S. The object assignment of this monad is X 7→ (X × S)S and
the unit ηX : X → (X × S)S assigns ηX(x) = λs.〈x, s〉. Typically, S is the set of maps L → V
from locations L to values V . A function f : X → (Y × S)S represents a computation that takes
a value in X and, depending on the current contents of the store S returns a value in Y and a new
store content. The Kleisli lifting sends f to f⋆ : (X × S)S → (Y × S)S with

f⋆(h) = (S
h
−→ X × S

f×S
−−−→ (Y × S)S × S

ev
−→ Y × S),

where ev is the obvious evaluation map. As shown in [Power and Shkaravska 2004], if V is finite
then the corresponding store monad can be presented by a Σ-theory for Σ = {lookupl : |V | →
1}l∈L ∪ {updatel,v : 1→ 1}l∈L,v∈V .

4. The continuation monad. Given any set R, the assignment X 7→ RRX

yields a monad under
the following definitions:

ηX(x) = λf. f(x) and f⋆(k) = λc. k(λx. f(x)(c)).

This monad is known to be non-finitary, unless R = 1.

We will need the following technical lemma for monads on Set and specifically implications from
it for submonads of the store monad.

LEMMA 3.11. Let T′ be a submonad of T and let α : T → P be a monad morphism. Then α
restricted to T

′ induces a monad morphism α′ : T′ → P
′ such that

T
′ α′

//
� _

i
��

P
′
� _

j
��

T
α // P

(3.3)

PROOF. For every set X take the factorization of αX · iX into a surjective map α′
X : T ′X →

P ′X followed by an injective map (inclusion) jX : P ′X → PX . Using the diagonal fill-in property
of image factorizations, it is easy to verify that α′ and j form natural transformations. Define η′X :
X → P ′X as the composition of ηX : X → T ′X and α′

X : T ′X → P ′X and µ′
X : P ′P ′X →

P ′X as the unique diagonal fill-in below (here ∗ denotes the usual horizontal composition of natural
transformations):

T ′T ′X
(α′∗α′)X

//

α′
X ·µX

��

P ′P ′X

µP
X ·(j∗j)X

��

µ′

X

ww♣
♣
♣
♣
♣
♣

P ′X
jX

// PX

Indeed, (α′ ∗ α′)X = T ′α′
X · α

′
P ′X is surjective since T ′ preserves surjections, and the outside

square clearly commutes (using that α · i is a monad morphism):

µP
X · (j ∗ j)X · (α

′ ∗ α′)X = µP
X · ((α · i) ∗ (αi̇))X = (α · i)X · µX = jX · α

′
X · µX .

Using the unique diagonal fill-in property, it is now an easy exercise to verify that η′ and µ′ are
natural, that (P ′, η′, µ′) satisfies the monad laws and that α′ and j are monad morphisms. 2

COROLLARY 3.12. Let TS be the store monad over S and let RS be the reader monad over S
(i.e. RSX = XS). For any submonadT of TS , the monad morphism α sending any f : S → X×S
to π1f : S → X restricts to a submonad R of RS .

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:13

The following class of examples is especially relevant for the coalgebraic modelling of state-based
systems.

Definition 3.13 (Semimodule monad, Semimodule theory). Given a semiring R, the semimod-
ule monad TR assigns to a set X the free left R-semimodule 〈X〉R over X . Explicitly, 〈X〉R
consists of all formal linear combinations of the form

r1 · x1 + . . .+ rn · xn (ri ∈ R, xi ∈ X) (3.4)

Equivalently, the elements of 〈X〉R are maps f : X → R with finite support (i.e. with |{x ∈
X | f(x) 6= 0}| < ω). The assignment X 7→ 〈X〉R extends to a monad, which we call the (free)
semimodule monad: ηX sends any x ∈ X to 1 · x and θ⋆(p) applies the substitution θ : X → 〈Y 〉R
to p ∈ 〈X〉R and renormalizes the result as expected.

The semimodule monad corresponds to the Σ-theory of R-semimodules. Explicitly, we have a
constant /0 : 0 → 1, a binary operation + : 2 → 1, and a unary operation r̄ : 1 → 1 for each
r ∈ R. The axioms presenting this theory are the laws of commutative monoids for + and /0, plus
the following identities for the (left) semiring action of R:

r̄(x+ y) = r̄(x) + r̄(y) r̄(x) + s̄(x) = r + s(x) r̄(s̄(x)) = r · s(x)

r̄(/0) = /0 0̄(x) = /0 1̄(x) = x

It can be shown by using these laws that any term can by normalized to a term of the form r̄1(x1) +
. . .+ r̄n(xn), and the latter represent precisely the element (3.4) of 〈X〉R. Thus, the above Σ-theory
generates TR.

Some notable instances of TR are the following:

— If R is the Boolean semiring {0, 1} then TR is (isomorphic to) the finite powerset monad Pω.
— If R is the semiring of natural numbers then TR is the multiset monad: the elements of 〈X〉R

are in bijective correspondence with finite multisets over X .
— If R is the interval [0,+∞) then TR is the monad of finite valuations used for modelling prob-

abilistic computations [Varacca and Winskel 2006]. Two other well-known monads of finite distri-
butions and finite subdistributions serving the same purpose embed into TR: the formal sums (3.4)
for them are requested to satisfy the additional constraints r1 + . . .+ rn = 1 and r1 + . . .+ rn ≤ 1,
respectively.

3.1. The Stack Monad

The following example shows how to model a push-down store, see [Goncharov 2013].

Definition 3.14 (Stack monad, Stack theory). Given a finite set of stack symbols Γ, the stack

monad (over Γ) is the submonad T of the store monad (--×Γ∗)Γ
∗

for which the elements 〈r, t〉 of

TX ⊆ (X × Γ∗)Γ
∗

satisfy the following restriction: there exists k depending on r, t such that for
every w ∈ Γk and u ∈ Γ∗,

r(wu) = r(w) and t(wu) = t(w)u. (3.5)

Intuitively, a function f : X → TY (cf. Example 3.10) has to compute its output in Y and result
stack in Γ∗ using only a portion of the stack of a predeclared size k that does not depend on the
current content of the stack.

The stack signature w.r.t. Γ = {γ1, . . . , γn} consists of operations pop : n+ 1 → 1 and pushi :
1 → 1, 1 ≤ i ≤ n. The intuition behind these operations is as follows (in each case the arguments
represent continuations, i.e. computations that will be performed once the operation has completed
its task, cf. [Plotkin and Power 2002]):

— pop(x1, . . . , xn, y) proceeds with y if the stack is empty; otherwise it removes the top element
from it and proceeds with xi, where γi ∈ Γ is the removed stack element.

— pushi(x) adds γi ∈ Γ on top of the stack and proceeds with x.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:14 S. Goncharov, S. Milius, A. Silva

(push-pop) pushi(pop(x1, . . . , xn, y)) = xi

(pop-push) pop(push1(x), . . . , pushn(x), x) = x

(pop-pop) pop(x1, . . . , xn, pop(y1, . . . , yn, z)) = pop(x1, . . . , xn, z)

Fig. 2. Axioms for the stack monad (i ∈ {1, . . . , n}).

The stack theory is presented by these operations and the axioms in Fig. 2. These axioms capture
semantic equivalences of terms considered as programs transforming the underlying store. This
implies that composition is to be read from left to right, e.g. the left-hand term of the first equation
means “push γi, then pop one symbol from the stack, then proceed with with y if the stack was
empty or with xj if the popped symbol was γj . We connect the stack theory with the stack monad
T by the following semantics:

L[pop]M(ǫ) = 〈n+ 1, ǫ〉, L[pop]M(γiw) = 〈i, w〉, L[pushi]M(w) = 〈1, γiw〉
where w ∈ Γ∗, and ǫ denotes the empty stack.

As claimed in [Goncharov 2013] the stack theory generates the stack monad. We include a proof of
this fact below. It relies on the following auxiliary statement.

LEMMA 3.15. Any semantic identity

L[pop(p1, . . . , pn, p)]M = L[pop(q1, . . . , qn, q)]M
with p and q not containing pop implies the semantic identities

L[p1]M = L[q1]M, . . . , L[pn]M = L[qn]M, L[p]M = L[q]M.
PROOF. Using the semantics of pop, for any 1 ≤ i ≤ n and any w ∈ Γ∗,

L[pi]M(w) = L[pop(p1, . . . , pn, p)]M(γiw) = L[pop(q1, . . . , qn, q)]M(γiw) = L[qi]M(w).
Analogously, one proves L[p]M(ǫ) = L[q]M(ǫ).

In order to prove L[p]M(w) = L[q]M(w) for all words w ∈ Γ∗, we use that neither p nor q contain pop,
i.e. both of them are nested applications of push (with various indices) to some variables. Using the
above semantics it is easy to calculate that for any w ∈ Γ∗,

L[p]M(w) = 〈x1, u1w〉 and L[q]M(w) = 〈x2, u2w〉

for some x1, x2 ∈ X and u1, u2 ∈ Γ∗ that do not depend on w. By substituting w with ǫ and using
L[p]M(ǫ) = L[q]M(ǫ) we obtain x1 = x2 and u1 = u2. It follows that L[p]M(w) = L[q]M(w) holds for all
w ∈ Γ∗ as desired. 2

THEOREM 3.16. The stack theory generates the stack monad.

PROOF. We directly verify soundness, expressiveness and completeness in order.

— Soundness is straightforward to verify. Consider for example the left-hand side of the second
axiom of the stack theory:

L[pop(push1(x), . . . , pushn(x), x)]M = do i← L[pop]M; if (i < n+ 1) then L[pushi(x)]M else L[x]M.
Using the definition of the store monad, and the semantic of push and pop,

L[pop(push1(x), . . . , pushn(x), x)]M(ǫ) = L[x]M(ǫ)
L[pop(push1(x), . . . , pushn(x), x)]M(γiw) = L[pushi(x)]M(w) = L[x]M(γiw)

which is in agreement with the right-hand side of the identity in question.
— Expressiveness. Let 〈r, t〉 ∈ TX . By definition, there is k such that for any w ∈ Γk and

any u ∈ Γ∗, (3.5) is satisfied. Using these data we construct by induction over k a Σ-term pk(r, t)
over X :

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:15

— if k = 0 then pk(r, t) = pushim(. . . pushi1(r(ǫ)) . . .) where t(ǫ) = γi1 . . . γim ;
— if k > 0 let us define for any 1 ≤ i ≤ n, 〈ri, ti〉 ∈ TX by the following equations

ri(w) = r(γiw) and ti(w) = t(γiw) for every w ∈ Γ∗.

Then we put pk(r, t) = pop(pk−1(r1, t1), . . . , pk−1(rn, tn), p0(r, t)).
We now prove that L[pk(r, t)]M = 〈r, t〉 by induction over k. For the base case k = 0, (3.5) states that
for all w ∈ Γ∗ we have r(w) = r(ǫ) and t(w) = t(ǫ)w. Therefore we have

L[p0(r, t)]M(w) = L[pushim(. . . pushi1(r(ǫ)) . . .)]M(w)
= 〈r(ǫ), γi1 · · · γimw〉 // def. of L[pushi]M
= 〈r(w), t(w)〉 // (3.5)

For the induction step note first that we may apply the induction hypothesis with ri, ti since this pair
satisfies (3.5) for every w ∈ Γk−1. Thus we have

L[pk(r, t)]M(ǫ) = L[pop(pk−1(r1, t1), . . . , pk−1(rn, tn), p0(r, t))]M(ǫ) = L[p0(r, t)]M(ǫ) = 〈r, t〉(ǫ),
and furthermore we have

L[pk(r, t)]M(γiw) = L[pop(pk−1(r1, t1), . . . , pk−1(rn, tn), p0(r, t))]M(γiw)
= L[pk−1(ri, ti)]M(w) // def. of L[pop]M
= 〈ri, ti〉(w) // induction hypothesis

= 〈r, t〉(γiw).

— Completeness. We turn the stack axioms into a rewriting system by orienting each equation
from left to right. This rewriting system is obviously strongly normalizing because each application
of the rule decreases the term size. There are no nontrivial critical pairs and therefore using the
standard argument from term rewriting any term has a unique normal form [Terese 2003]. From the
structure of the rules we can see that any normal form p either does not contain pop or is of the form
pop(p1, . . . , pn, p

′) where each pi is in a normal form and p′ does not contain pop.
By soundness, it remains to show that for any normal p and q, L[p]M = L[q]M implies p = q ∈ E . We

proceed by induction over the total number of the pop operators in p and q.
1. If both p and q do not contain pop they must be of the form pushi1(. . . pushim(x) . . .) and

pushj1(. . . pushjl(y) . . .), respectively. Then L[p]M(w) = L[q]M(w) amounts to 〈x, γim . . . γi1w〉 =
〈y, γjl . . . γi1w〉 and therefore x = y, m = l and i1 = j1, . . . , im = jm, i.e. p is identical to q.

2. If p = pop(p1, . . . , pn, p
′) and q does not contain pop, then we have

L[p]M = L[q]M = L[pop(push1(q), . . . , pushn(q), q)]M.
By Lemma 3.15, L[p1]M = L[push1(q)]M, . . . , L[pn]M = L[pushn(q)]M, L[p′]M = L[q]M. Note that the
terms pushi(q) need not be normal, but they can be normalized and since normalization only de-
creases the number of the pop operators the induction hypothesis applies to the result, and we have
{p1 = push1(q), . . . , pn = pushn(q), p

′ = q} ⊆ E . Hence, in E , p = pop(p1, . . . , pn, p
′) =

pop(push1(q), . . . , pushn(q), q) = q.
3. If q = pop(q1, . . . , qn, q

′) and p does not contain pop, then we proceed analogously to the
previous case.

4. If p = pop(p1, . . . , pn, p
′) and q = pop(q1, . . . , qn, q

′), then L[pi]M = L[qi]M, i = 1, . . . , n, and
L[p′]M = L[q′]M by Lemma 3.15. By induction hypothesis, we have {p1 = q1, . . . , pn = qn, p

′ = q′} ⊆
E . Hence, in E , p = pop(p1, . . . , pn, p

′) = pop(q1, . . . , qn, q
′) = q. 2

3.2. The Tape Monad

We now introduce a monad and the corresponding theory underlying the tape of a Turing machine.
The idea we use here is the same as in the case of the stack theory: we specify a submonad of a
suitable store monad in such a way that only local transformations of the Turing tape are allowed.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:16 S. Goncharov, S. Milius, A. Silva

Locality conditions:

t(i, ρ′) ≡ t(i, ρ) (mod [i− k, i+ k]) t(i, ρ) ≡ ρ (mod [i − k, i+ k])

z(i, ρ′) = z(i, ρ) |z(i, ρ)− i| ≤ k r(i, ρ′) = r(i, ρ)

Shift-invariance conditions:

t(i, ρ+j) = t(i + j, ρ)+j z(i, ρ+j) = z(i+ j, ρ)− j r(i, ρ+j) = r(i + j, ρ)

Fig. 3. Conditions of the tape monad, assuming ρ ≡ ρ′ (mod [i− k, i+ k]).

Let Z be the set of integers. We will need the following notation: given two maps ρ, ρ′ : Z → Γ
and a set I ⊆ Z we write

ρ ≡ ρ′ (mod I) (3.6)

if ρ(i) = ρ′(i) for all i ∈ I . We use interval notation to specify subsets of Z, e.g.

[i− k, i+ k] = {j | i− k ≤ j ≤ i+ k},

and by I denote the complement of I ⊆ Z. Also, for any ρ : Z→ Γ and any i, let ρ+i : Z→ Γ be
such that ρ+i(j) = ρ(i + j). The intuition here is that the maps ρ and ρ′ represent snapshots of a
Turing tape being filled with symbols from Γ (Γ may contain a special symbol for a blank cell, but it
does not play a role sofar). The relation (3.6) indicates that ρ and ρ′ agree on the positions indexed
by I . The tape ρ+i is obtained from ρ by reindexing the cells with the function λx. x − i. We also
commonly use the notation ρ[k 7→ γi] to refer to ρ′ : Z→ Γ defined by ρ′(k) = γi and ρ′(l) = ρ(l)
if l 6= k. This generalizes to sequences of assignments k 7→ γi in the obvious way.

Definition 3.17 (Tape monad, Tape theory). Let Γ be a finite set of tape symbols. The tape

monad (over Γ) is the submonad T of the store monad (--×Z×ΓZ)Z×ΓZ

for which TX consists of
exactly those maps

p = 〈r, z, t〉 : Z× ΓZ → (X × Z× ΓZ)

satisfying the following restriction: there exists a k ≥ 0, which we call a locality parameter of p,
such that for any i, j ∈ Z and ρ, ρ′ : Z → Γ if ρ ≡ ρ′ (mod [i − k, i + k]) then the conditions in
Fig. 3 are satisfied.

The tape signature w.r.t. Γ = {γ1, . . . , γn} consists of the operations rd : n→ 1, wr i : 1 → 1
(1 ≤ i ≤ n), mvk : 1→ 1 (k ∈ {−1, 1}), which we interpret over any TX as follows:

L[rd]M(j, ρ) = 〈i, j, ρ〉, where ρ(j) = γi,

L[wr i]M(j, ρ) = 〈1, j, σ[j 7→ γi]〉,

L[mvk]M(j, ρ) = 〈1, j + k, ρ〉.

The tape theory w.r.t. Γ consist of all those equations p = q in the tape signature, which are valid
over every TX .

We shall henceforth use mvk(p) with arbitrary integer k as an abbreviation for p if k = 0; mv
nested k times and applied to p if k > 0; and mv -1 nested −k times and applied to p if k < 0. It is
straightforward to see that the semantic assignments remain intact under such extended use of the
mvk construct.

It is not obvious that Definition 3.17 does indeed define a monad. In order to show this, we will
need the following auxiliary fact.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:17

LEMMA 3.18. Suppose, for some ρ, ρ′, θ, θ′ : Z→ Γ and I ⊆ J ⊆ Z that

ρ ≡ ρ′ (mod J), θ ≡ θ′ (mod I),

ρ ≡ θ (mod I), ρ′ ≡ θ′ (mod I).

Then θ ≡ θ′ (mod J).

PROOF. We need to prove that θ(i) = θ′(i) for all i ∈ J . If J = /0, we are done. So let i ∈ J . If
i ∈ I , we are done since θ ≡ θ′ (mod I). Otherwise we have i 6∈ I and obtain

θ(i) = ρ(i) = ρ′(i) = θ′(i)

by using the third, first, and last of the given equivalences. 2

Now we can prove that Definition 3.17 correctly defines a monad.

THEOREM 3.19. The conditions of Definition 3.17 identify a submonad T of the store monad
over Z× ΓZ.

PROOF. We have to show that the unit and Kleisli lifting of the store monad restrict to T . First
recall the definition of the monad structure of the store monad over Z × ΓZ: for any x ∈ X , f :
X → TY and p = 〈r, z, t〉 ∈ TX ,

ηX(x) : Z× ΓZ → X × Z× ΓZ with ηX(x)(i, ρ) = 〈x, i, ρ〉,
f⋆(p) : Z× ΓZ → Y × Z× ΓZ with f⋆(p)(i, ρ) = f(r(i, ρ))(z(i, ρ), t(i, ρ)).

It is our task to prove that the maps ηX(x) and f⋆(p) lie in TX and TY , respectively, i.e. they
satisfy the conditions in Fig. 3. For ηX(x) this clearly holds, for ηX(x) = 〈r, z, t〉, where z and t
are the left- and right-hand product projections and r is the constant map on x ∈ X . We proceed to
prove this for f⋆(p).

Let p ∈ TX , let f : X → TY and let r, z, t, rx, zx, tx be defined by

p(i, ρ) = 〈r(i, ρ), z(i, ρ), t(i, ρ)〉,

f(x)(i, ρ) = 〈rx(i, ρ), zx(i, ρ), tx(i, ρ)〉

for any x ∈ X .

1. We first show the locality conditions for f⋆(p). Let us fix a locality parameter kp of 〈r, z, t〉.
For any ρ and ρ′ such that ρ ≡ ρ′ (mod [i − kp, i + kp]) we have that r(i, ρ′) = r(i, ρ) by
the locality condition for r, and hence f(r(i, ρ′)) = f(r(i, ρ)). Let kf be a locality parameter of
f(r(i, ρ)). Finally put k = kp +kf and let us verify the locality conditions in Fig. 3 for f⋆(p) using
k as the corresponding locality parameter. First we calculate using the above notation:

f⋆(p)(i, ρ) = f(r(i, ρ))(z(i, ρ), t(i, ρ))

= 〈rr(i,ρ)(z(i, ρ), t(i, ρ)), zr(i,ρ)(z(i, ρ), t(i, ρ)), tr(i,ρ)(z(i, ρ), t(i, ρ))〉

= 〈rx(j, θ), zx(j, θ), tx(j, θ)〉,

where x = r(i, ρ), j = z(i, ρ) and θ = t(i, ρ) will be fixed from now on. Similarly,

f⋆(p)(i, ρ′) = f(r(i, ρ′))(z(i, ρ′), t(i, ρ′))

= 〈rx′(j′, θ′), zx′(j′, θ′), tx′(j′, θ′)〉,

where we also fix x′ = r(i, ρ′), j′ = z(i, ρ′) and θ′ = t(i, ρ′).
Let us fix such ρ, ρ′ that ρ ≡ ρ′ (mod [i− k, i+ k]). Note that this implies that

ρ ≡ ρ′ (mod [i− kp, i+ kp]) and ρ ≡ ρ′ (mod [i− kf , i+ kf]),

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:18 S. Goncharov, S. Milius, A. Silva

and therefore we can apply the locality conditions for both p (with locality parameter kp) and for
f(r(i, ρ)) = f(r(i, ρ′)) (with locality parameter kf). The former immediately implies that

x = x′ and j = j′. (3.7)

On the other hand, using the locality condition for f(r(i, ρ)) = f(r(i, ρ′)) we obtain:

θ′ ≡ θ (mod [i− kf , i+ kf]),

θ ≡ ρ (mod [i− kf , i+ kf]), (3.8)

θ′ ≡ ρ′ (mod [i− kf , i+ kf]).

Hence, by Lemma 3.18, we conclude

θ′ ≡ θ (mod [i− k, i+ k]). (3.9)

Since |i− j| ≤ kp and k = kp + kf , the interval [i− k, i+ k] includes [j − kf , j + kf], hence (3.9)
implies

θ′ ≡ θ (mod [j − kf , j + kf]). (3.10)

We proceed to show the locality conditions for f⋆(p).
— tx(j, θ) ≡ tx′(j′, θ′) (mod [i − k, i + k]). By applying the locality conditions for f(x) =

f(r(i, ρ)) to (3.10) we obtain

tx(j, θ
′) ≡ tx(j, θ) (mod [j − kf , j + kf]), (3.11)

tx(j, θ) ≡ θ (mod [j − kf , j + kf]), (3.12)

tx(j, θ
′) ≡ θ′ (mod [j − kf , j + kf]). (3.13)

Recall that |i − j| ≤ kp and k = kp + kf . Then by combining (3.12), (3.13) with (3.9) we
obtain

tx(j, θ
′) ≡ tx(j, θ) (mod [i− k, j − kf) ∪ (j + kf , i+ k]).

In conjunction with (3.11) and (3.7) this yields the desired result.

— tx(j, θ) ≡ ρ (mod [i− k, i+ k]). Since [i−kf , i+kf] is contained in [i−k, i+k] this follows
from (3.12) and (6.5),

— zx(j, θ
′) = zx′(j′, θ′). By applying the locality condition for f(x) to the assumption (3.10) we

obtain zx(j, θ) = zx(j, θ
′) and then we are done by (3.7).

— |zx(j, θ)− i| ≤ k. We estimate the left-hand side as follows:

|zx(j, θ) − i| = |zx(j, θ)− z(i, ρ) + z(i, ρ)− i|

≤ |zx(j, θ)− z(i, ρ)|+ |z(i, ρ)− i|

= |zx(j, θ)− j|+ |z(i, ρ)− i|.

By applying the locality conditions for f(x) and p to the assumptions ρ ≡ ρ′ (mod [i−kp, i+
kp]) and (3.10), we see that the last sum is smaller or equal than kf + kp = k.

— rx(j, θ
′) = rx′(j′, θ′). Using the locality conditions for f(x) with (3.10) as assumption we

obtain rx(j, θ) = rx(j, θ
′) and hence rx(j, θ) = rx′(j′, θ′) by (3.7).

2. We now prove the shift-invariance conditions for f⋆(p). For this we need to compare
f⋆(p)(i, ρ+m) and f⋆(p)(i +m, ρ) for any i,m ∈ Z. Similarly as before let us define

x = r(i, ρ+m) j = z(i, ρ+m) θ = t(i, ρ+m)

x′ = r(i +m, ρ) j′ = z(i+m, ρ) θ′ = t(i+m, ρ)

so that

f⋆(p)(i, ρ+m) = 〈rx(j, θ), zx(j, θ), tx(j, θ)〉,

f⋆(p)(i+m, ρ) = 〈rx′(j′, θ′), zx′(j′, θ′), tx′(j′, θ′)〉.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:19

(mv-l) mv -1(mv1(x)) = x (rd-wr) rd(wr 1(x), . . . ,wrn(x)) = x

(mv-r) mv1(mv -1(x)) = x (wr-rd) wr i(rd(x1, . . . , xn)) = wr i(xi)

(wr-wr) wr i(wr j(x)) = wr j(x)

(wr-mv) wr i(mvk(wr j(mv -k(x)))) = mvk(wr j(mv -k(wr i(x))))

Fig. 4. Axioms for the tape monad (k ∈ Z \ {0}, i, j ∈ {1, . . . , n}).

Establishing the desired conditions now boils down to proving the following equations:

rx(j, θ) = rx′(j′, θ′), zx(j, θ) = zx′(j′, θ′)−m, tx(j, θ) = tx′(j′, θ′)+m.

The shift-invariance conditions of p = 〈r, z, t〉 state that

x = x′, j +m = j′, θ = θ′+m.

Using these equations and the shift-invariance conditions of f(x) we obtain the desired equations:

rx(j, θ) = rx′(j, θ) = rx′(j, θ′+m) = rx′(j +m, θ′) = rx′(j′, θ′),
zx(j, θ) = zx′(j, θ) = zx′(j, θ′+m) = zx′(j +m, θ′)−m = zx′(j′, θ′)−m,
tx(j, θ) = tx′(j, θ) = tx′(j, θ′+m) = tx′(j +m, θ′)+m = tx′(j′, θ′)+m.

This completes the proof. 2

In contrast to the stack theory, the tape theory is so far defined indirectly. We present the correspond-
ing infinitary axiomatization for it in Fig. 4. Like in the case of the stack theory, these equations
capture semantic equivalences of terms considered as programs transforming the underlying store.
This implies that composition is to be read from left to right, e.g. wr i(wr j(x)) means “write γi,
then γj , then proceed with x”.

THEOREM 3.20. The deductive closure of the axioms in Fig. 4 generates the tape monad over
Γ = {γ, . . . , γn}.

Proving Theorem 3.20 requires some preliminaries. Let us introduce the following auxiliary opera-
tions: wr i,k : 1→ 1, rdk : n→ 1 with k ranging over all integers and i ranging from 1 to n. These
are just abbreviations for the following derived operations:

wr i,k(x) = mvk(wr i(mv -k(x)))

rdk(x1, . . . , xn) = mvk(rd(mv -k(x1), . . . ,mv -k(xn)))

Note that wr i,0 = wr i, rd0 = rd . Clearly, we have

L[wr i,k]MT (j, ρ) = 〈1, j, ρ[j + k 7→ γi]〉,

L[rdk]MT (j, ρ[j + k 7→ γi]) = 〈i, j, ρ[j + k 7→ γi]〉.

It is easy to establish the following implications of the axioms in Fig. 4.

LEMMA 3.21. The following proof rule is sound w.r.t. the axioms in Fig. 4:

wr1,k(s) = wr1,k(t) · · · wrn,k(s) = wrn,k(t)

s = t
for every k ∈ Z.

PROOF. Indeed we have

s = rdk(wr1,k(s), . . . ,wrn,k(s)) // (mv-l), (mv-r), (rd-wr)

= rdk(wr1,k(t), . . . ,wrn,k(t)) // premises

= t // (mv-l), (mv-r), (rd-wr)

2

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:20 S. Goncharov, S. Milius, A. Silva

LEMMA 3.22. The following equations are derivable from the ones in Fig. 4.

wr i,k(wr j,k(x)) = wr j,k(x) (3.14)

wr i,k(wr j,k′(x)) = wr j,k′(wr i,k(x)) (k 6= k′) (3.15)

wr i,k(rdk(r1, . . . , rn)) = wr i,k(ri) (3.16)

wr i,k(rdk′ (r1, . . . , rn)) = rdk′(wr i,k(r1), . . . ,wr i,k(rn)) (k 6= k′) (3.17)

PROOF. Equation (3.14) is shown as follows:

wr i,k(wr j,k(x))

= mvk(wr i(mv -k(mvk(wr j(mv -k(x)))))) // definition

= mvk(wr i(wr j(mv -k(x)))) // (mv-l), (mv-r)

= mvk(wr j(mv -k(x))) // (wr-wr)

= wr j,k(x). // definition

Analogously one obtains (3.16) using (wr-rd). Let us show (3.15):

wr i,k(wr j,k′(x))

= mvk(wr i(mv -k(mvk′ (wr j(mv -k′(x)))))) // definition

= mvk(wr i(mvk′−k(wr j(mv -k′(x))))) // (mv-l), (mv-r)

= mvk′(mvk−k′(wr i(mvk′−k(wr j(mv -k′(x)))))) // (mv-l), (mv-r)

= mvk′(wr j(mvk−k′ (wr i(mvk′−k(mv -k′(x)))))) // (wr-mv)

= mvk′(wr j(mvk−k′ (wr i(mv -k(x))))) // (mv-l), (mv-r)

= mvk′(wr j(mv -k′(mvk(wr i(mv -k(x)))))) // (mv-l), (mv-r)

= wr j,k′(wr i,k(x)). // definition

Finally, let us show (3.17). To this end, apply wr j,k′ to both sides of the identity and simplify the
result. For the left-hand side of the equation we obtain

wr j,k′(wr i,k(rdk′(r1, . . . , rn)))

= wr i,k(wr j,k′(rdk′(r1, . . . , rn))) // (3.15)

= wr i,k(wr j,k′(rj)), // (3.16)

and for the right-hand side,

wr j,k′ (rdk′(wr i,k(r1), . . . ,wr i,k(rn)))

= wr j,k′ (wr i,k(rj)) // (3.16)

= wr i,k(wr j,k′(rj)). // (3.15)

We are now done by Lemma 3.21, since the desired equation holds when wr j,k′ is applied to both
sides for every k′ ∈ Z. 2

PROOF OF THEOREM 3.20. By Theorem 3.9 it suffices to verify the following.

— Soundness. This is a routine calculation using L[−]M from Definition 3.6.
— Expressiveness. Recall that for any p = 〈r, z, t〉 : Z × ΓZ → (X × Z × ΓZ) in TX there

exists k for which the conditions in Fig. 3 are satisfied. We claim that

p = do x-k ← L[rd -k]MT ; . . . ;xk ← L[rdk]MT ;
L[wr t(0,p(x -k,...,xk))(-k),-k]MT ; . . . ; L[wr t(0,p(x -k,...,xk))(k),k]MT ;
L[mvz(0,p(x -k,...,xk))]MT ; L[r(0, h(x-k, . . . , xk))]M

(3.18)

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:21

(slightly abusing the notation by writing wrγi,j in lieu of wr i,j) where h : Γ2k+1 → ΓZ is any map
for which h(γi-k

, . . . , γik)(j) = γij whenever −k ≤ j ≤ k. Intuitively, the constructed program
works as follows: in the first step it reads values from the interval [−k, k] on the tape relative to the
current head position, and stores the obtained results in x-k, . . . , xk; in the step round it updated the
tape according to t; in the third step, it moves the head according to z; and in the final fourth step, it
returns the result from X computed by r.

Once we prove (3.18) we are done with the proof of expressiveness; indeed, recall from Defini-
tion 3.6 that for any f : m→ 1 and any family of terms t1, . . . tm,

L[x]M = ηX(x) L[f(t1, . . . , tm)]M = do i← L[f]MT ; L[ti]M.
Then a straightforward induction argument shows that the right-hand side of (3.18) is L[t]M for some
term t.

Now we prove (3.18). Let j ∈ Z and let ρ : Z → Γ. Applying the right-hand side of (3.18) to
〈j, ρ〉 and using the semantics of rd we obtain

(
do L[wr t(0,θ)(−k),−k]MT ; . . . ; L[wr t(0,θ)(−k),−k]MT ; L[mv z(0,θ)]MT ; L[r(0, θ)]M

)
〈j, ρ〉

for some θ : Z→ Γ such that

ρ+j ≡ θ mod [−k, k]. (3.19)

Using the semantics of wr we further reduce the right-hand side of (3.18) to
(
do L[mvz(0,θ)]MT ; L[r(0, θ)]M

)
〈j, ρ[j − k 7→ t(0, θ)(−k), . . . , j + k 7→ t(0, θ)(k)]〉

and the latter is equal to

〈r(0, θ), j + z(0, θ), ρ[j − k 7→ t(0, θ)(−k), . . . , j + k 7→ t(0, θ)(k)]〉.

It remains to show that this is equal to p(j, ρ) = 〈r(j, ρ), z(j, ρ), t(j, ρ)〉. Consider the first com-
ponent: using shift-invariance and the locality condition with assumption (3.19) for r we have
r(j, ρ) = r(0, ρ+j) = r(0, θ).

Analogously, for the second component, z(j, ρ) = j + z(0, ρ+j) = j + z(0, θ).
Finally, consider the third component. We shall prove separately that

t(j, ρ) ≡ ρ[j − k 7→ t(0, θ)(−k), . . . , j + k 7→ t(0, θ)(k)] mod [j − k, j + k]

t(j, ρ) ≡ ρ[j − k 7→ t(0, θ)(−k), . . . , j + k 7→ t(0, θ)(k)] mod [j − k, j + k]

The first congruence is equivalent to

t(j, ρ)+j ≡ ρ+j[−k 7→ t(0, θ)(−k), . . . , k 7→ t(0, θ)(k)] mod [−k, k]

≡ t(0, θ) mod [−k, k].

The last congruence clearly holds: by shift-invariance for t, t(j, ρ)+j = t(0, ρ+j) and by the first
locality condition for t, t(0, ρ+j) ≡ t(0, θ) mod [−k, k] (using (3.19)).

Let us check the second congruence. It is equivalent to t(j, ρ)+j ≡ ρ+j mod [−k, k]. Like
before t(j, ρ)+j = t(0, ρ+j) and using the second locality condition for t, we have t(0, ρ+j) ≡ ρ+j

mod [−k, k] which completes the proof of expressiveness.
— Completeness. Let s and t be tape theory terms such that L[s]M = L[t]M. We have to prove that

s = t is a provable identity. We first consider the case where both s and t are normal, that means
that s and t are composed from rdk, wr i,k, mvk and variables in such a way that (i) no rd occurs
under wr ; (ii) mv is only applied to variables. We proceed by induction over the total number of rd
operations in 〈s, t〉.

In the base case neither s nor t contains rd and hence

s = wrk1,i1(. . . (wrkm,im(mvk(x))) . . .), t = wr l1,j1(. . . (wr lw,jw(mv l(y))) . . .)

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:22 S. Goncharov, S. Milius, A. Silva

with suitable indices and variables x, y. W.l.o.g. we can assume that the sequences k1, . . . , km and
l1, . . . , lw are increasing and nonrepetetive – otherwise we can rearrange and possibly remove some
of the wr operators by Lemma 3.22. Then we argue that s must be provably equal to t. We have for
all v and ρ that L[s]M(v, ρ) = 〈x, v + k, ρ1〉 and L[t]M(v, ρ) = 〈y, v + l, ρ2〉 for some x, y, k, l, ρ1 and
ρ2. By hypothesis we have k = l, x = y and ρ1 = ρ2. Moreover, ρ1 = ρ[k1 7→ γi1 , . . . , km 7→ γim]
and ρ2 = ρ[l1 7→ γj1 , . . . , lw 7→ γjw]. Since these are equal for all ρ it follows that the sequences
〈k1, i1〉, . . . , 〈km, im〉 and 〈l1, j1〉, . . . , 〈lw, jw〉 must be equal, too.

For the induction step suppose that s = rdk(r1, . . . , rn). We apply wr i,k to s and t for every
i. Note that any term wr i,k(s) can be transformed to a normal form si using (3.16) and (3.17) as
rewrite rules as follows:

wr i,k(rdk(r1, . . . , rn))→ wr i,k(ri) (3.20)

wr i,k(rdk′ (r1, . . . , rn))→ rdk′(wr i,k(r1), . . . ,wr i,k(rn)) (3.21)

where k′ 6= k. In the same way any wr i,k(t) reduces to a normal form ti. Since L[s]M = L[t]M we have
for every i that

L[si]M = L[wr i,k(s)]M = L[wr i,k(t)]M = L[ti]M.
Now notice that si has at least one rd operator less than s; thus, the total number of rd operators in
〈si, ti〉 is lower than that of 〈s, t〉. Hence, by induction hypothesis,

wr i,k(s) = si = ti = wr i,k(t)

are provable identies in the tape theory for every i. By Lemma 3.21, s = t is a provable identity as
desired.

The remaining case t = rdk(t1, . . . , tn) is symmetric to the previous one.
In order to complete the proof it remains to show how an arbitrary tape theory term t can be

reduced to a normal form satisfying the above conditions (i) and (ii) in such a way that the reductions
are sound w.r.t. the identities in Fig. 4. Given t we ensure first (ii) and then (i) as follows.
(ii) We exhaustively apply the reductions

mvk(mv l(s))→ mvk+l(s)

mvk(wr i,l(s))→ wr i,k+l(mvk(s))

mvk(rd l(s1, . . . , sn))→ rdk+l(mvk(s1), . . . ,mvk(sn))

which are easily seen to be sound by (mv-l) and (mv-r).
(i) Then we exhaustively apply (3.20) and (3.21). 2

It can now be readily shown that any axiomatization of the tape monad is necessarily infinitary.

THEOREM 3.23. The tape theory over Γ is not finitely axiomatizable, unless |Γ| ≤ 1.

PROOF. If |Γ| = 0 then the axiom scheme (wr-mv) disappears instantly, and if |Γ| = 1 then it is
entailed by the axioms (mv-l), (mv-r) and the identity wr(x) = x (we omit the index 1 at wr); this
identity is derived as follows using (rd-wr) and (wr-wr):

x = rd(wr (x)) = rd(wr(wr(x))) = wr(x).

Note that for |Γ| = 0, the monad becomes trivial (TX = /0) and for |Γ| = 1, TX = X × Z, for
it captures precisely those moves z : Z → Z of the head for which by the second shift-invariance
condition, z(i) = z(0) + i, i.e. such transformations that are precisely characterized by a single
number z(0).

Let us assume henceforth that |Γ| ≥ 2. Given a finite set of identities A belonging to the tape
theory, we prove the claim by constructing a model M of A which does not satisfy all instances
of (wr-mv). Let m be greater than the total number of instances of operations mv -1 and mv1 in any
equation from A. Our model M is carried by the set of all endomaps on a tape of length m, i.e. all
endomaps on the set Zm × ΓZm → Zm × ΓZm , where Zm = {0, . . . ,m − 1} is the finite ring

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:23

of integers modulo m. We interpret the operations of the tape theory on M (here we overload our
previous notation L[−]MTX and write L[−]MM for this interpretation) as follows:

L[rd]MM (p1, . . . , pn)(z, ρ) = pi(z, ρ), where ρ(z) = γi,

L[wr i]MM (p)(z, ρ) = p(z, ρ[z 7→ γi])

L[mvk]MM (p)(z, ρ) = p(z +m k, ρ)

where i ranges from 1 to n = |Γ| and +m denotes addition modulo m. By additionally defining
L[x]MM = id for every variable x, we extend L[−]MM to terms over the tape signature. The inductive
clauses for L[p]MM (z, ρ) are the same as for L[p]MT1(z, ρ), except that the tuples returned by the latter
interpretation are extended to the left with an additional component constantly equal 1, and by the
fact that L[p]MM (z, ρ) may call on addition modulo m for sufficiently large z and sufficiently many
operations mvk in p. Specifically, this means that for any equation p = q in A, any z ∈ Z and any
θ : Zm → Γ,

L[p]MM (0, θ) = 〈z′, θ′〉 iff L[p]MT1(0, θ∗) = 〈1, z, θ
′
∗〉

for θ∗, θ
′
∗ : Z→ Γ defined as follows:

θ∗(i) = θ(imodm) and θ′∗(i) = θ′(imodm) for every i ∈ Z.

An analogous identity holds for q and therefore

L[p]MM (0, θ) = L[q]MM (0, θ) for every θ : Zm → Γ. (3.22)

Now note that, for any z ∈ Zm, θ ∈ ΓZm , in order to compute L[p]MM on (z, θ) one can first perform
a cyclic left-shift on the model, then apply L[p]MM with 0 it its first argument and then shift the result
back to the right. More precisely, let θ+z(i) = θ(i +m z) for every i, z ∈ Z and θ : Z → Γ (in
analogy the same notation ρ+z we previously used for ρ : Z→ Γ). Then we have

L[p]MM (z, θ) = 〈z′ +m z, θ′−z〉, where 〈z′, θ′〉 = L[p]MM 〈0, θ+z〉.

This can be shown by a straightforward induction over the term p.
Hence, from (3.22), we obtain that L[p]MM (z, θ) = L[q]MM (z, θ) for every θ : Zm → Γ and z ∈ Zm.

We have thus shown that A is valid over M .
Now, if we take k = m in (wr-mv) we obtain that for i 6= j (such a pair of indices exists for
|Γ| ≥ 2, by assumption):

L[wr i(mvm(wr j(mv -m(x))))]MM (0, ρ) = 〈0, ρ[0 7→ γj]〉

6= 〈0, ρ[0 7→ γi]〉

= L[mvm(wr j(mv -m(wr i(x))))]MM (0, ρ)

This concludes the proof. 2

4. REACTIVE T-ALGEBRAS AND T-AUTOMATA

As in Section 2 we fix a finite set of actions A. We first consider T-algebras which are equipped
with a transition structure similar to that of Moore automata but which, in addition, preserves the
algebraic structure. Such a transition structure extends a T-algebra with dynamic behaviour (making
it into a coalgebra) and hence we call such structures reactive T-algebras.

Definition 4.1 (Reactive T-algebra). Let B and X be T-algebras. Then X is a reactive T-al-
gebra if X is an coalgebra for L = B × (−)A (cf. Definition 2.1) for which ∂a : X → X and
o : X → B are T-algebra morphisms.

Remark 4.2. The definition of a reactive T-algebra is an instance of a more general con-
struction [Bartels 2004] (the main idea goes back to Turi and Plotkin [1997]). Any endofunctor

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:24 S. Goncharov, S. Milius, A. Silva

F : Set → Set equipped with a distributive law δ : TF → FT is known to lift to the Eilenberg-

Moore category Set
T. Under F = L there is a standard distributive law, given by

T (B ×XA)
〈Tπ0,Tπ1〉
−−−−−−−→ TB × T (XA)

α×〈T eva〉a∈A
−−−−−−−−−→ B × (TX)A

where π0, π1 denote the product projections, α : TB → B is the T-algebra structure on B, eva :
XA → X is the obvious evaluation at a ∈ A, and we regard (TX)A as the |A|-fold power of TX .

A reactive T-algebra is then simply a coalgebra in Set
T for the lifting of L. Putting it yet differently,

a reactive T-algebra is a δ-bialgebra for the above distributive law δ [Jacobs 2006] (see also [Klin
2011]).

Given a T-algebra B, the set of all formal power series BA∗

(which is the carrier of the final L-
coalgebra in Set) can also be viewed as a reactive T-algebra with a pointwise T-algebra structure.
The morphisms ∂a and o are easily seen to be T-algebra morphisms. Since every reactive T-algebra
is an L-coalgebra, reactive T-algebras inherit the general coalgebraic theory from Section 2. In
particular, we use for reactive T-algebras the same notions of language semantics and language
equivalence as for L-coalgebras (see Definition 2.1).

Definition 4.3 (T-automaton, cf. [Jacobs 2006]). Suppose, T is finitary and B is finitely gen-
erated, i.e. there is a finite set B0 of generators and a surjection TB0 → B underlying a T-algebra
morphism. A T-automaton m is given by a triple of maps

om : X → B, tm : A×X → TX, αm : TB → B, (⋆)

where αm is a T-algebra and X is finite. The first two maps in (⋆) can be aggregated into a coalge-
bra transition structure, which we write as

m : X → B × (TX)A

slightly abusing the notation.

Remark 4.4. We require the monad T in (⋆) to be finitary in order to be able to represent T-
automata using finite syntax. For technical reasons, it is sometimes convenient to drop this restriction
(e.g. in Section 8 where T is the continuation monad). This is not in conflict with Definition 4.3,
since we apply T to finite sets only, and therefore, in lieu of T, we can use its finitary coreflection
Tω whose object part is defined by TωX =

⋃
Y⊆X,|Y |<ω TY .

A simple nontrivial example of a T-automaton is given with the nondeterministic finite state ma-
chines (NFSM) by taking B = {0, 1}, T = Pω and αm (s ⊆ {0, 1}) = 1 iff 1 ∈ s.

In order to introduce the language semantics of a T-automaton we will first convert it into a reac-
tive T-algebra, and the language semantics of the latter is settled by Definition 2.1. This conversion
is called the generalized powerset construction [Silva et al. 2013], as it generalizes the classical
Rabin-Scott NFSM determinization [Rabin and Scott 1959] and amounts to the following. Observe

that LTX is a T-algebra, since TX is the free T-algebra on X and L lifts to Set
T (see Remark 4.2).

Hence, given a T-automaton m : X → B × (TX)A there exists a unique T-algebra morphism

m
♯ : TX → B × (TX)A

such that m
♯ · ηX = m ; explicitly, m

♯(p) = (B × µA
X) · δTX · Tm where δ is the distributive law

from Remark 4.2. This m
♯ is a reactive T-algebra on TX .

Definition 4.5. Given a T-automaton m : X → B × (TX)A, its language semantics assigns to
every state x ∈ X the formal power series

JxKm = m̂
♯(ηX(x)) : A∗ → B,

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:25

where m̂
♯ is the unique L-coalgebra morphism from (TX,m ♯) to the final coalgebra (BA∗

, ι). This
can be summarized in the following diagram

X
ηX

//

m

��

TX
m̂

♯

//

m
♯

ww♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥

BA∗

ι

��

54��76

J−Km

B × (TX)A
B×(m̂♯)A

// B × (BA∗

)A

(4.1)

Remark 4.6.

(1) Due to the 1-1-correspondence of m and m
♯ given by freeness of TX , T-automata bijectively

correspond to reactive T-algebras whose carrier is a free algebra on a finite set; but we find it
useful to retain the distinction.

(2) The term language semantics comes from the fact that for T = Pω and B = {0, 1}, our language
semantics of T-automata is precisely the classical language semantics of NFSM; JxKm is the
formal language accepted by the NFSM given by m with initial state x.
More generally, for any semiring R, take B = R and the semimodule monad TR. Then T-
automata are precisely weighted automata with weights in the semiring R, and for every state
x the formal power-series JxKm : A∗ → R is the weighted language accepted by the weighted
automaton given by m .

However, for other monads T and algebras B elements in BA∗

may look very different than
formal languages, e.g. for the stack T-automata we will discuss in Section 5.1.

(3) Note that T-automata for the identity monad are precisely the same as Moore automata, and the
above definition of their language semantics coincides with Definition 2.1.

Note that the generalized powerset construction does not reduce a T-automaton to a Moore au-
tomaton over TX as TX need not be finite. However, when this is the case, e.g. for T = Pω, the
semantics of a T-automaton falls within regular power series, which is precisely the reason why
the languages recognized by deterministic and nondeterministic FSM coincide. Surprisingly, all
T-automata with a finite B have the same property:

PROPOSITION 4.7. For every T-automaton (⋆) with finite B and x ∈ X , JxKm : A∗ → B is
regular.

We will present the proof of this proposition after Corollary 8.2.

We are now ready to introduce fixpoint expressions for T-automata similar to (2.3).

Definition 4.8 (Reactive expressions). Let Σ be an algebraic signature and let B0 be a finite set.
Reactive expressions w.r.t. these data are closed terms δ defined according to the following grammar:

δ ::= x | γ | f(δ, . . . , δ) (x ∈ X, f ∈ Σ)

γ ::= µx. a1.δ ⋔ . . . ⋔ an.δ ⋔ β (x ∈ X)

β ::= b | f(β, . . . , β) (b ∈ B0, f ∈ Σ)

where we assume A = {a1, . . . , an} and an infinite collection of variables X . Free and bound
variables here are defined in the standard way. We do not distinguish expressions equivalent under
α-conversion (i.e. renaming of bound variables).

Notation 4.9.

(1) Let t be a Σ-term over {1, . . . , n} (i.e. the numbers 1, . . . , n are identified as variables) and let
t1, . . . , tn be any Σ-terms. Then we write t(t1, . . . , tn) for the substitution t[t1/1, . . . , tn/n].

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:26 S. Goncharov, S. Milius, A. Silva

(2) For every Σ-algebra A (so, in particular for every T-algebra, where Σ is part of a presentation
of T) we write fA : An → A for the operation associated to f : n → 1 from Σ. We also write
tA : An → A for the map evaluating the Σ-term t over {1, . . . , n} in A.

(3) Finally, we shall sometimes call Σ-terms over a set X of variables simply Σ-terms.

Observe that a reactive expression can be uniquely represented in the form t(e1, . . . , en) where
e1, . . . , en are reactive expressions starting with µ.

Let T be a finitary monad, generated by an algebraic theory E over the signature Σ and let B be a
finitely generatedT-algebra over a finite set of generatorsB0 (witnessed by the surjective T-algebra
morphism h : TB0 → B). Let us denote by EΣ,B0

the set of all reactive expressions over Σ and B0.
We aim to define a reactive T-algebra structure on a suitable quotient of EΣ,B0

. First, notice that
EΣ,B0

is obviously a Σ-algebra. Then we introduce an L-transition structure on EΣ,B0
as follows:

notice that expressions b from the β-clause in Definition 4.8 are just Σ-terms on the generators from
B0. Recall also that B is a surjective image of TB0 and let bB be the image of b ∈ B0 under

B0

ηB0 // TB0
h // // B.

This extends to arbitrary Σ-terms over B0 by putting (t(b1, . . . , bk))
B = tB(bB1 , . . . , b

B
k). Then let

us define

o(f(e1, · · · , en)) = fB(o(e1), . . . , o(en)),

∂ai
(f(e1, · · · , en)) = f(∂ai

(e1), . . . , ∂ai
(en)),

o(µx. (a1.e1 ⋔ . . . ⋔ an.en ⋔ b)) = bB,

∂ai
(µx. (a1.e1 ⋔ . . . ⋔ an.en ⋔ b)) = ei[µx. (a1.e1 ⋔ . . . ⋔ an.en ⋔ b)/x].

(4.2)

This defines an L-transition structure s : EΣ,B0
→ B×(EΣ,B0

)A and so ŝ : EΣ,B0
→ BA∗

provides
language semantics to expressions and a language equivalence relation ∼ on them according to
Definition 2.1.

Notation 4.10. We overload notation and write JeK := ŝ(e) (i.e. J−K with no subscripts) for the
formal power series denoted by the expression e.

Note that the first two equations in (4.2) above imply that the L-transition structure s is a Σ-algebra
homomorphism.

Remark 4.11. Recall that the category of Σ-algebras (and its full subcategory of all T-algebras)
has image factorizations. That means that every Σ-algebra morphism f : A→ B can be factorized
as a surjective Σ-algebra morphism e : A ։ C followed by an injective one m : C B. This
factorization system has the usual diagonalization property: given a commutative squarem·f = g ·e
with m injective and e surjective we have a unique diagonal d with m · d = g and d · e = f . See
e.g. Adámek, Herrlich and Strecker [1990] for basics on factorization systems.

THEOREM 4.12. The quotient EΣ,B0
/∼ is a reactive T-algebra whose L-coalgebra part is

inherited from EΣ,B0
and whose T-algebra part is a quotient of the Σ-algebra structure on EΣ,B0

.

PROOF. Recall first that T-algebras, being the variety of Σ-algebras satisfying the equations in
E , form a full subcategory of the category of Σ-algebras. We have seen that EΣ,B0

is a coalgebra

for the lifting of L to the category of Σ-algebras and that the final coalgebra for the lifting is BA∗

(its L-transition structure is a Σ-algebra morphism since it is a T-algebra morphism). Thus, the

language semantics map J−K : EΣ,B0
→ BA∗

is a Σ-algebra morphism. The quotient EΣ,B0
/∼ is

obtained by taking its factorization into a surjective followed by an injective Σ-algebra morphism:

EΣ,B0

q
// // EΣ,B0

/∼ // m // BA∗

.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:27

Since (the lifting of) L preserves monos we obtain an L-transition structure on the quotient by
diagonalization:

EΣ,B0

〈o,∂〉
//

q
����

L(EΣ,B0
)

Lq
��

EΣ,B0
/∼ //❴❴❴❴❴

m
��

L(EΣ,B0
/∼)

��
Lm
��

BA∗

〈o,∂〉
// L(BA∗

)

More explicitly, the Σ-algebra structure on EΣ,B0
/∼ is given for any operation f : k → 1 in Σ by

fEΣ,B0
/∼

(
[t1]∼, . . . , [tk]∼

)
=

[
f(t1, . . . , tk)

]
∼
.

And the L-transition structure on EΣ,B0
/∼ is given by

o([t]∼) = o(t) and ∂a([t]∼) = [∂a(t)]∼.

Now since BA∗

is a T-algebra and EΣ,B0
/∼ is its sub-Σ-algebra, EΣ,B0

/∼ is a sub-T-algebra

of BA∗

(since varieties are closed under subalgebras). Similarly, L(EΣ,B0
/∼) is a sub-T-algebra of

L(BA∗

). It then follows that the L-transition structure on EΣ,B0
/∼ is a T-algebra morphism as a

restriction of the L-transition structure on BA∗

. 2

The following theorem is the main result of this section – it is a variant of the celebrated Kleene
theorem for regular languages. Like its classical counterpart our theorem enables conversions from
T-automata to expressions and vice versa.

THEOREM 4.13 (KLEENE THEOREM). For any reactive expression e ∈ EΣ,B0
there is a cor-

responding T-automaton (⋆) and a state x ∈ X such that JeK = JxKm . Conversely, for every
T-automaton (⋆) and state x ∈ X there is an expression e ∈ EΣ,B0

such that JeK = JxKm .

PROOF. (⇒) From expressions to T-automata. Let e ∈ EΣ,B0
and let us proceed with the defi-

nition of the corresponding T-automaton. Recall that the grammar generating reactive expressions
has γ- and δ-clauses and let us call a not necessarily closed expression a γ-expression if it matches
the γ-clause.

We assume w.l.o.g. that distinct µ-operators bind distinct variables in e; this can be ensured by
α-conversion. Let X = {x1, . . . , xm} be the set of variables occurring in e. For i = 1, . . . ,m, let

ti = µxi. a1.t
i
1θ

i
1 ⋔ . . . ⋔ an.t

i
nθ

i
n ⋔ bi

be the uniquely determined subexpression of e with each tij being Σ-terms (i.e. not containing µ)

and each tijθ
i
j being the maximal proper δ-subexpression of ti (cf. Example 4.14 further below);

consequently, the tij are obtained from the maximal proper δ-subexpressions of e by replacing top-

most occurrences of tk (i.e. topmost subexpressions starting with µxk) with xk, and θij being the

derived substitution sending every xk introduced in this way to tk. Note that the θij need not be total

on X and note that the ti, the θij and the tij are uniquely determined by e. Without loss of generality
we may assume that t1 = e.

Starting with the triple

{ }, [], {x1
.
= t1}, (4.3)

where { } denotes the emptyset and [] the empty substitution, we successively produce further
triples of the form I, θ, S, such that I ⊆ {x1, . . . , xm}, θ is a substitution sending variables from

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:28 S. Goncharov, S. Milius, A. Silva

I to closed γ-expressions, and S is a set of formal equations of the form xi
.
= ti such that all the

free variable of each ti are among I . A successor of such triple is (nondeterministically) produced
by the rule

I, θ, S ∪ {xk
.
= tk}

I ∪ {xk}, θ[tkθ/xk], S ∪ {xi
.
= ti | θ

k
j (xi) = ti}

({xk
.
= tk} /∈ S)

This procedure of successively applying the above rule eventually terminates with S = { }, for each
step reduces the number of µ-operators that occur in the terms on the right-hand side of equations
in S. Note that the above rule maintains the assumptions imposed on the triples I, θ, S. Hence we
obtain a triple {x1, . . . , xm}, ρ, { }where the substitution ρ sends each xi to a closed γ-expression,
which we denote by ei, i.e., ρ = [e1/x1, . . . , em/xm], or equivalently ei = xiρ for i = 1, . . . ,m.

We assume henceforth the representation

ei = µxi. a1.e
i
1 ⋔ . . . ⋔ an.e

i
n ⋔ bi. (4.4)

Observe that

ei = tiρ, (4.5)

which can be seen by induction as follows: if ti was handled at the first iteration of the above
procedure then

ei = xiρ = xi[ti/xi] = ti = tiρ;

otherwise, by induction, we have

ei = xiρ = xiθ[tiθ/xi] = xi[ti/xi]θ = tiθ = tiρ,

where the middle equation holds by the properties of substitution.
Using the above definition of ti, we obtain

ei = µxi. a1.t
i
1θ

i
1ρ−i ⋔ . . . ⋔ an.t

i
nθ

i
nρ−i ⋔ bi

where ρ−i agrees with ρ except that it leaves xi unchanged. By comparing it with (4.4), we obtain
for any i, j that tijθ

i
jρ−i = eij and therefore eij[ei/xi] = tijθ

i
jρ. Recall that for any k = 1, . . . , n, θij

sends xk to tk and ρ sends tk to ek, see (4.5). Therefore the composite substitution θijρ sends each

xk to ek, i.e., we have θijρ = ρ, whence

tijθ
i
jρ = tijρ.

We have thus obtained

eij [ei/xi] = tijρ = tij [e1/x1, . . . , em/xm].

This allows us to restate the definitions for o and ∂ as follows:

o(t(e1, . . . , em)) = tB(bB1 , . . . , b
B
m),

∂aj
(t(e1, . . . , em)) = t(t1j [e1/x1, . . . , em/xm], . . . , tmj [e1/x1, . . . , em/xm]),

for any Σ-term t over {1, . . . ,m}. Let ρaj
= [t1j/x1, . . . , t

m
j /xm] and inductively define ρǫ = id,

ρajw = ρaj
ρw. By induction we obtain

o(∂w(t(e1, . . . , em))) = rB(bB1 , . . . , b
B
m)

where t(x1ρw, . . . , xmρw) = r(x1, . . . , xm).
(4.6)

Suppose that e = s(e1, . . . , em) with a Σ-term s and let X̃ = {x, x1, . . . , xm}. We turn T X̃ into a

reactive T-algebra. Recall that every element of T X̃ can be written as [t(x, x1, . . . , xm)]≡, where t

is a Σ-term and [p]≡ denotes the equivalence class of the Σ-term p in T X̃. Now let

o([t(x, x1, . . . , xm)]≡) = tB(sB(bB1 , . . . , b
B
m), bB1 , . . . , b

B
m),

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:29

∂aj
([t(x, x1, . . . , xm)]≡) =

[
t(s(t1j , . . . , t

m
j), t1j , . . . , t

m
j)

]
≡
.

It is not difficult to see that the T-algebra and the L-transition structures interact properly, i.e. o
and the ∂a are T-algebra morphisms; in fact, o = α · Tf , where α : TB → B is the T-algebra

on B and the map f : X̃ → B is defined by f(xi) = bi, i = 1, . . . ,m, f(x) = sB(bB1 , . . . , b
B
n);

and ∂aj
= g⋆j : T X̃ → T X̃ where gj : X̃ → T X̃ is the map defined by gj(xi) = [tij]≡ for

i = 1, . . . ,m and gj(x) = [s(t1j , . . . , t
m
j)]≡. Note that the induced language semantics identifies x

and s(x1, . . . , xm), i.e. we have [x]≡ ∼ [s(x1, . . . , xn)]≡ (cf. Definition 2.1).
For a Σ-term t, by definition ∂aj

([t]≡) = [tρaj
]≡, so an easy induction shows that

o(∂w([t(x1, . . . , xm)]≡)) = rB(bB1 , . . . , b
B
m) where t(x1ρw, . . . , xnρw) = r(x1, . . . , xm).

By comparing this to (4.6) we obtain by Proposition 2.2, that

Jt(e1, . . . , en)K ∼ [t(x1, . . . , xn)]≡

Thus, specializing to t = s we obtain

e = s(e1, . . . , em) ∼ [s(x1, . . . , xm)]≡ ∼ [x]≡.

By Remark 4.6(1), the constructed reactive T-algebra is equivalent to a T-automaton m for which
we then clearly have JeK = JxKm .

(⇐) From T-automata to expressions. Suppose, we are given a T-automaton (⋆). The general-
ized powerset construction yields a reactive T-algebra over TX for which

o([t(x1, . . . , xm)]≡) = tB(bB1 , . . . , b
B
m), ∂aj

([t(x1, . . . , xm)]≡) =
[
t(t1j , . . . , t

m
j)

]
≡
, (4.7)

where bBi = om (xi) ∈ B, tij is a term representing tm (aj , xi) ∈ TX and [t]≡ denotes the equiva-
lence class of the Σ-term t in TX . We successively build expressions um, . . . , u1 such that all free
variables of each ui with i > 1 are in {x1, . . . , xi−1} and u1 is closed. Let

um = µxm. (a1.t
m
1 ⋔ . . . ⋔ an.t

m
n ⋔ bm)

ui = µxi. (a1.t
i
1[ui+1/xi+1, . . . , um/xm] ⋔ · · · ⋔ an.t

i
n[ui+1/xi+1, . . . , um/xm] ⋔ bi)

for all i = m− 1, . . . , 1, and let e1 = u1. We now apply the same construction to e1 that we applied
to e in the first part of the proof. Note that the Σ-terms tij in the construction are precisely the tij
from (4.7) that we used to define the expressions ui. Now the construction yields further expressions
ei, i = 2, . . . ,m and, for every i, expressions ei1, . . . , e

i
n satisfying the identities

ei = µxi. (a1.e
i
1 ⋔ . . . ⋔ an.e

i
n ⋔ bi),

eij[ei/xi] = tij [e1/x1, . . . , en/xn].

By the same argument as in the first part of the proof we obtain (4.6). Moreover, for the original
reactive T-algebra, also

o(∂w([t(x1, . . . , xn)]≡)) = rB(bB1 , . . . , b
B
n) where t(x1ρw, . . . , xnρw) = r(x1, . . . , xm),

and therefore we are done by Proposition 2.2. 2

Example 4.14. Fig. 5 depicts a simple instance of the general correspondence established by
Theorem 4.13 in the particular standard case of NFSM. For the expression for q0, the subexpressions
ti, t

i
j and the substitutions θij are as follows (we omit empty substitutions θij):

t1 = µx. (a.x ⋔ b.µy. (a.∅ ⋔ b.(x+µz. (a.x ⋔ b.∅ ⋔ ⊤)) ⋔ ⊥) ⋔ ⊥)

t2 = µy. (a.∅ ⋔ b.(x+µz. (a.x ⋔ b.∅ ⋔ ⊤)) ⋔ ⊥)

t3 = µz. (a.x ⋔ b.∅ ⋔ ⊤)

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:30 S. Goncharov, S. Milius, A. Silva

q0 = a.q0 ⋔ b.q1 ⋔ ⊥

q1 = a.∅ ⋔ b.(q0+q2) ⋔ ⊥

q2 = a.q0 ⋔ b.∅ ⋔ ⊤

q0 q1 q2

b

a
b

b

a

q0 = µx. (a.x ⋔ b.µy. (a.∅ ⋔ b.(x+µz. (a.x ⋔ b.∅ ⋔ ⊤)) ⋔ ⊥) ⋔ ⊥)

Fig. 5. A Pω-automaton over A = {a, b}, B = {⊤,⊥} as a system of recursive definitions (left); as a nondeterministic
FSM (right); and as a reactive expression (bottom).

t11 = x t12 = y θ12 = [t2/y]
t21 = /0 t22 = x+ z θ22 = [t3/z]
t31 = x t32 = /0

Furthermore, the triples obtained by successively applying the rule (4.3) are as follows:

I ρ S

{ } [] {x
.
= t1}

{x} [t1/x] {y
.
= t2}

{x, y} [t1/x, t2[t1/x]/y] {z
.
= t3}

{x, y, z} [t1/x, t2[t1/x]/y, t3[t1/x, t2[t1/x]/y]/z] { }

5. T-AUTOMATA: EXAMPLES

As indicated in the previous section, a nondeterministic finite state machines (NFSM) is a specific
case of a T-automaton under B = 2 and T = Pω. More generally, we have the following definition.

Definition 5.1 (Weighted T-automata). A weighted T-automaton is a T-automaton (⋆) with
T being the semimodule monad for the semiring R (see Definition 3.13).

Let T be the semimodule monad for the semiring R. Besides the case R = B = 2, where we obtain
NFSMs, we also obtain R-weighted automata [Droste et al. 2009] under B = R (here B is the free
T-algebra finitely generated by {1}).

Weighted T-automata can be further generalized as follows. We call a monad additive
(cf. [Coumans and Jacobs 2013]) if the corresponding Σ-theory supports operations

+ : 2→ 1 and /0 : 0→ 1

subject to the axioms of commutative monoids. We call a T-automaton additive if T is additive.
Semimodule monads TR are additive, of course. Besides the finite powerset monad T = Pω, which
is the semimodule monad for the Boolean semiring {0, 1}, a simple example is the bag monad TN,
where N is the usual semiring of natural numbers. This monad assigns to every set X the finite
multisets on X (i.e. the free commutative monoid on X).

Example 5.2 (Probabilistic automata). Rabin’s probabilistic automata [Rabin 1963] can be
modelled as weighted T-automata over the semiring [0,∞) with the standard arithmetic operations.

In fact, a Rabin automaton is precisely a T-automaton (⋆) with a fixed initial state x0. Then
given a cut-point λ ∈ [0, 1), the set

{w ∈ A∗ | Jx0Km (w) > λ}

is precisely the language accepted by the Rabin automaton with cut-point λ in the standard
sense [Rabin 1963].

We now give one example of an additive T-automaton, which is not a weighted T-automaton.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:31

Example 5.3. (Simple) Segala systems [Segala 1995; Segala and Lynch 1995] are systems com-
bining probability and nondeterminism and are essentially coalgebras of transition typeP(D×A) ∼=
(PD)A whereD is the probability distribution functor. Unfortunately,PD is not a monad [Dahlqvist
and Neves 2017, Theorem 25]. However, the combination of probability and nondeterminism can
be modelled by a monad T whose functorial part is the composition CM of two functors given as
follows: for every X , MX consists of the finite valuations over X (cf. Definition 3.13); for any
semimodule U , C(U) consists of all subsets of U , which are nonempty and convex. Convexity of a
set S here means that a convex combination p1 ·ξ1+ . . .+pn ·ξn, i.e. where

∑
i pi = 1, belongs to S

whenever ξi ∈ S for every i. T-automata for T = CM are automata with combined probabilistic
and nondeterministic branching. Taking B = CM1 = C[0,∞), the set of all nonempty convex sub-
sets of [0,∞), the semantics of a state of a T-automaton is a formal power-series A∗ → C[0,∞).
We leave the task of working out the relationship to Segala systems and their semantics for further
work.

We will now show that additive T-automata allow for a more relaxed syntax of reactive expres-
sions. As before we fix a finite set A = {a1, . . . , an} of actions.

Definition 5.4 (Guardedness, Additive expressions). Let Σ be the signature of the algebraic the-
ory of the additive monad T, and let B0 be a finite set. We call an expression e defined by the
grammar

γ ::= b | x | µx. γ | a.γ | f(γ, . . . , γ) (a ∈ A, b ∈ B0, f ∈ Σ) (5.1)

guarded in x if one of the following inductive clauses apply:

— (induction base) e ∈ B0, e is a variable distinct from x, e = a.e′, or e = µx. e′ for some
expression e′;

— (induction step) e = f(e1, . . . , en) for some e1, . . . , en guarded in x, or e = µy. e′ where x 6= y
and e′ guarded in x.

An expression generated by (5.1) is an open additive reactive expression if for every of its subex-
pression µx. e, e is guarded in x. Additive reactive expressions are those open ones in which all
variables are bound. We denote by AΣ,B0

the set of additive reactive expression over Σ, B0 and by

A
O
Σ,B0

the corresponding set of open additive expressions.

PROPOSITION 5.5. Let T be an additive monad and let B be a T-algebra generated by the
finite set B0. Given a reactive expression we obtain an additive reactive expression by replacing
recursively each ⋔ with +. Conversely, one can also transform any additive reactive expression to
a reactive expression, and both transformation are mutually inverse modulo the semantic equiva-
lence∼.

PROOF. (1) Let Σ be the signature of the Σ-theory of T. First, we observe that AΣ,B0
clearly

carries a Σ-algebra structure. Moreover, it also carries an L-transition structure. In order to define it
we first define an auxiliary normalization function n on (not necessarily closed) additive expressions
as follows:

n(f(e1, . . . , en)) = f(n(e1), . . . , n(en)) (f 6= +) n(p+ q) = p (n(q) = /0)

n(p+ q) = n(p) + n(q) (n(p) 6= /0, n(q) 6= /0) n(p+ q) = q (n(p) = /0)

n(µx.e) = µx. n(e) n(a.e) = a.n(e) n(p) = p (p a variable or p ∈ B0)

Then we inductively define the L-transition structure on AΣ,B0
:

o(b) = bB o(µx. e) = o(e[µx. e/x]) o(ai.e) = /0
B

∂ai
(b) = /0 ∂ai

(µx. e) = ∂ai
(e[µx. e/x]) ∂ai

(ai.e) = n(e), ∂ai
(aj .e) = /0 (i 6= j)

o(f(e1, . . . , en)) = fB(o(e1), . . . , o(en)) ∂ai
(f(e1, . . . , en)) = n(f(∂ai

(e1), . . . , ∂ai
(en)))

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:32 S. Goncharov, S. Milius, A. Silva

Our usage of n here is merely a technical trick to keep the proof elementary. Note that the clauses
for µx. e are well-founded due to guardedness.

We record the following simple properties of n:

n(n(p)) = n(p) (5.2)

n(p+ q) = n(n(p) + n(q)) (5.3)

n(e[µx. t/y]) = n(e)[n(µx. t)/y] (5.4)

n(∂a(p)) = ∂a(n(p)) (5.5)

where p, q ∈ AΣ,B0
. Identity (5.2) follows by structural induction over p. The only nontrivial case

is p = p1 + p2 with n(p1) 6= /0 and n(p2) 6= /0 (note that in the third step below we use that, by
induction, n(n(pi)) = n(pi) 6= /0):

n(n(p)) = n(n(p1 + p2))

= n(n(p1) + n(p2)) // def. of n

= n(n(p1)) + n(n(p2)) // def. of n, (5.2)

= n(p1) + n(p2) // (5.2)

= n(p1 + p2) // def. of n

= n(p).

Identity (5.3) then follows from (5.2) by case distinction: it is obvious if n(p) = /0 or n(q) = /0,
otherwise n(p+q) = n(n(p+q)) = n(n(p)+n(q)). Identity (5.4) is a restricted form of substitution
lemma, which can as usual be established by induction over the context e and the proof relies both
on (5.2) and (5.3). Note, however that in our setting it does not hold more generally, e.g. with
e = b+ y, n(e[/0 /y]) = b 6= b+ /0 = n(e)[n(/0)/y]. Finally, identity (5.5) follows from the previous
identities by induction over p, in particular, the most difficult case p = µx. e requires (5.4):

n(∂a(p)) = n(∂a(µx. e))

= n(∂a(e[p/x])) // def. of ∂a

= ∂a(n(e[p/x])) // ind. hypothesis

= ∂a(n(e)[n(p)/x]) // (5.4)

= ∂a(µx. n(e)/x]) // def. of n

= ∂a(n(p)). // def. of ∂a

Another case of interest in proving (5.5) is p = p1 + p2 under n(p1) 6= /0 6= n(p2):

∂a(n(p1 + p2)) = ∂a(n(p1) + n(p2)) // def. of n

= n(∂a(n(p1)) + ∂a(n(p2))) // def. of ∂a

= n(n(∂a(p1)) + n(∂a(p2))) // ind. hypothesis

= n(∂a(p1) + ∂a(p2)) // (5.3)

= n(n(∂a(p1) + ∂a(p2))) // (5.2)

= n(∂a(p1 + p2)). // def. of ∂a

(2) By Definition 2.1, the above L-coalgebra structure on AΣ,B0
induces a language semantics;

again we write JeK for the formal power series denoted by e ∈ AΣ,B0
. Let us show that this semantics

agrees with the semantics of EΣ,B0
, that is JeK = Jtr(e)K with e ∈ EΣ,B0

and tr : EΣ,B0
→ AΣ,B0

defined inductively as follows:

tr(f(e1, . . . , en)) = n(f(tr(e1), . . . , tr(en))), tr(x) = x,

tr(µx. a1.e1 ⋔ . . . ⋔ an.en ⋔ s) = µx. n(a1.tr(e1) + . . .+ an.tr(en) + tr(s)), tr(b) = b.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:33

Note that s in the bottom left equation is an arbitrary term in the theory of T according to the
β-clause of the grammar in Definition 4.8. In fact, the above assigments define tr on expressions
containing free variables and according to the γ and β-clauses of Definition 4.8. By case distinction
it is straightforward to prove that for every (not necessarily closed) e we have

n(tr(e)) = tr(e). (5.6)

Moreover, we have the following property

tr(e[t/x]) = n(tr(e)[tr(t)/x]). (5.7)

The proof of the latter is essentially straightforward but quite tedious. In order to show the desired
equation JeK = Jtr(e)K, by Proposition 2.2, it suffices to check that tr is an L-coalgebra homomor-
phism, i.e.

∂ai
(tr(e)) = tr(∂ai

(e)) and o(tr(e)) = o(e) (ai ∈ A, e ∈ EΣ,B0
)

This again follows by induction over the number of clauses recursively applied to define o(e) and
∂ai

(e) and the proof relies on (5.2)–(5.5). E.g. for e = f(e1, . . . , en) we calculate

∂ai
(tr(f(e1, . . . , en))) = ∂ai

(n(f(tr(e1), . . . , tr(en)))) // def. of tr

= n(∂ai
(f(tr(e1), . . . , tr(en)))) // (5.5)

= n(n(f(∂ai
(tr(e1)), . . . , ∂ai

(tr(en))))) // def. of ∂ai

= n(f(∂ai
(tr(e1)), . . . , ∂ai

(tr(en)))) // (5.2)

= n(f(tr(∂ai
(e1)), . . . , tr(∂ai

(e1)))) // ind. hypothesis

= tr(f(∂ai
(e1), . . . , ∂ai

(en))) // def. of tr

= tr(∂ai
(f(e1, . . . , en))), // def. (4.2) of ∂ai

on EΣ,B0

o(tr(f(e1, . . . , en))) = o(n(f(tr(e1), . . . , tr(en)))) // def. of tr

= o(f(n(tr(e1)), . . . , n(tr(en)) // def. of n

= o(f(tr(e1), . . . , tr(en))) // (5.6)

= fB(o(tr(e1)), . . . , o(tr(en))) // def. of o

= fB(o(e1), . . . , o(en)) // induction hypothesis

= o(f(e1, . . . , en)). // def. of o

The remaining clauses do not cause any trouble and are handled in a similar fashion. For example,
for e = µx. a1.e1 ⋔ . . . ⋔ an.en ⋔ s we have by the definition of o

o(µx. a1.e1 ⋔ . . . ⋔ an.en ⋔ s) = sB.

Starting at the right-hand side we have

o(tr(µx. a1.e1 + . . .+ an.en + s)

= o(µx. n(a1.tr(e1) + . . .+ an.tr(en) + tr(s))︸ ︷︷ ︸
t

) // def. of tr

= o(n(a1.tr(e1) + . . .+ an.tr(en) + tr(s))[µx. t/x]). // def. of o

If n(tr(s)) = /0 then the latter evaluates to

o(a1.n(tr(e1))[µx. t/x] + . . .+ an.n(tr(en))[µx. t/x]) = /0
B
= sB,

using the definition of n for the first equation, and the fact that n(tr(s)) = /0 implies s = /0+ · · ·+ /0
for the second equation.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:34 S. Goncharov, S. Milius, A. Silva

If n(tr(s)) 6= /0 then, analogously,

o(n(a1.tr(e1) + . . .+ an.tr(en) + tr(s))[µx. t/x])

= o(a1.n(tr(e1))[µx. t/x] + . . .+ an.n(tr(en))[µx. t/x] + n(tr(s))) // def. of n

= (tr(s))B = sB,

where the last step is established by an easy induction (over terms s according to the β-clause in
Definition 4.8).

Finally, we calculate:

tr(∂ai
(µx. a1.e1 ⋔ . . . ⋔ an.en ⋔ b))

= tr(ei[µx. a1.e1 ⋔ . . . ⋔ an.en ⋔ b/x]) // def. of ∂ai

= n(tr(ei)[µx. n(a1.tr(e1) + . . .+ an.tr(en) + b)/x]) // (5.7)

= n(∂ai
(µx. n(a1.tr(e1) + . . .+ an.tr(en) + b))) // def. of ∂ai

= ∂ai
(n(µx. n(a1.tr(e1) + . . .+ an.tr(en) + b))) // (5.5)

= ∂ai
(tr(µx. a1.e1 ⋔ . . . ⋔ an.en ⋔ b)). // def. of tr

(3) In order to prove the desired converse in the statement of the proposition, we define a trans-
lation map tr : AΣ,B0

→ EΣ,B0
. In order to do this we first define an auxiliary map ō on every

expression according to (5.1) that is guarded in each of its variables; ō works similarly as o but
without interpreting /0, f and b in B, whence delivering a term in the theory of T according to the
β-clause of Definition 4.8:

ō(b) = b ō(µx. e) = ō(e[µx e./x])
ō(a.e) = /0 ō(f(e1, . . . , en)) = f(ō(e1), . . . , ō(en))

Then ō(e) is well-defined by guardedness of e. Similarly, we define auxiliary maps a-1 completely
similarly as ∂a; however, a-1 can be applied to expressions e containing free variables but which are
still guarded in each of their variables. That means we do not (need to) define a-1 on variables x.
Now we define tr (on not necessarily closed expressions) as follows:

tr(x) = x,

tr(b) = µx. a1. /0 ⋔ . . . ⋔ an. /0 ⋔ b,

tr(ai.e) = µx. a1. /0 ⋔ . . . ⋔ ai.tr(e) ⋔ . . . ⋔ an. /0 ⋔ /0,

tr(f(e1, . . . , en)) = f(tr(e1), . . . , tr(en)),

tr(µx. e) = µx. a1.tr(a
-1
1 (e)) ⋔ . . . ⋔ an.tr(a

-1
n (e)) ⋔ ō(µx. e).

Before we proceed we first need a substitution lemma similar to (5.7):

tr(e[t/x]) = tr(e)[tr(t)/x]. (5.8)

We deduce JeK = Jtr(e)K for any e ∈ AΣ,B0
from

o(tr(e)) = o(e) and ∂a(tr(e)) = tr(∂a(e)) for every a ∈ A.

We have, e.g. for e = µx. t,

∂ai
(tr(e)) = ∂ai

(µx. a1.tr(a
-1
1 (t)) ⋔ . . . ⋔ an.tr(a

-1
n (t)) ⋔ o(e))

= tr(a-1
i (t))[tr(e)/x]

= tr(a-1
i (t)[e/x]) // (5.8)

= tr(∂ai
(t[e/x])) // guardedness

= tr(∂ai
(e)).

The remaining cases are verified routinely. 2

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:35

Remark 5.6. We note that for weighted automata additive expressions can be equivalently con-
verted to the familiar rational expressions from weighted automata theory. Suppose that B0 is a one-
element set, {1} say, so B = R. Then we can define a composition operation • : AO

Σ,B0
×A

O
Σ,B0

→

A
O
Σ,B0

inductively by:

x • t = x 1 • t = t (µx. e) • t = µx. (e • t)

(a. e) • t = a. (e • t) f(e1, . . . , en) • t = f(e1 • t, . . . , en • t)

According to this definition we have a.e = a.(1 • e) = (a.1) • e, i.e. every expression a.e can be
expressed using • and expressions a.1 only. The signature Σ of the semimodule theory consists of
one binary operation symbol + and unary operation symbols, one for every r ∈ R, denoted r · − .
Thus, writing simply a for a.1 and r for r · 1, an alternative syntax for additive reactive expressions
can be defined by the following grammar:

γ ::= x | µx. γ | a | r | γ + γ | γ • γ (a ∈ A, r ∈ R) (5.9)

Guardedness becomes somewhat more complicated to formulate: t is guarded in x if x is contained
in a subterm tl • tr of t in the right-hand subterm tr, where the left-hand subterm tl contains some
letter a ∈ A. Again, we consider expressions in which in every subexpression µx. e, e is guarded
in x and where all variables are bound. The syntax can be restricted further by requiring that in
every expression µx. t, t is of the form 1 + e • x, where e is closed. Indeed, using the above sound
equations, associativity of •, and the following distributive laws

(s+ t) • e = s • e+ t • e, e • (s+ u) = e • s+ e • u,

the desired result can be shown by induction over the number of µ-operators as follows. Let µx. t be
an expression with t satisfying the induction hypothesis. Then t can be brought to the form q+ e•x
with q not containing x. Now we have

µx. t = µx. (q + e • x)

= µx. (1 • q + e • (x • q))

= µx. ((1 + e • x) • q)

= (µx. (1 + e • x)) • q

The usual notation for µx. (1+e•x) is Kleene star e∗. Hence, by replacingµx. γ with γ∗ in the gram-
mar (5.9) we thus arrive at the grammar of rational expressions used in the Kleene-Schützenberger
theorem (see e.g. [Droste et al. 2009]).

5.1. Stack T-automata

Here and in later sections we turn our attention to a different kind of examples of T-automata,
where T is related to the store monad. A prominent instance are T-automata where T is the stack
monad (Definition 3.14), which model finite state machines manipulating a push-down store.

Definition 5.7 (Stack T-automaton). A stack T-automaton is a T-automaton (⋆) for which

— T is the stack monad over Γ;
— B is the set of predicates over Γ∗ consisting of all those p ∈ 2Γ

∗

for each of which there exists a
k such that p(wu) = p(w) whenever |w| ≥ k;

— αm : TB → B is given by evaluation; it restricts the morphism

(2Γ
∗

× Γ∗)Γ
∗ ev

Γ
∗

−−−−−→ 2Γ
∗

,

where ev : 2Γ
∗

× Γ∗ → 2 is the evaluation morphism:

αm (r, t)(s) = r(s)(t(s)).

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:36 S. Goncharov, S. Milius, A. Silva

Intuitively, om : X → B ⊆ 2Γ
∗

models the acceptance condition by final states and stack contents,
that is, we can consider w ∈ A∗ to be jointly accepted by a stack T-automaton m , an initial state
x0, an initial stack symbol γ0, a finite set of final states F and a set of final stack configurations S
if Jx0Km (w)(γ0) = ⊤ where om (x)(s) = ⊤ iff x ∈ F , s ∈ S. As B obeys constraints analogous
to those of TX , scanning an unbounded portion of the stack by om is disallowed; the role of the
algebraic structure αm is roughly to trace acceptance conditions backwards along the transition
structure tm .

In terms of Σ-theories, B is finitely generated over the set of generatorsB0 = {⊥,⊤} and as such
is a quotient of T 2 under additional laws: pushi(⊥) = ⊥ and pushi(⊤) = ⊤. The formal argument
showing that B is indeed an algebra for the stack monad is as follows. By Corollary 3.12, the stack
monad, being a submonad of the store monad over Γ∗, induces a submonad P of the reader monad
over Γ∗. For this monad P we have that PX consists of those r : Γ∗ → X for each of which there
exists k such that for every w ∈ Γ∗ and u ∈ Γ∗, r(wu) = r(w) whenever |w| ≥ k. In particular,
this makes B = P2 a P-algebra and hence a T-algebra.

The expected fact that stack T-automata can be used as a replacement for deterministic push-
down automata without silent transitions (viz deterministic real-time push-down automata) is justi-
fied by the following result.

THEOREM 5.8. Let m be a stack T-automaton. Given x0 ∈ X and γ0 ∈ Γ,

{w ∈ A∗ | Jx0Km (w)(γ0) = ⊤} (5.10)

is a real-time deterministic context-free language. Conversely, for any real-time deterministic
context-free language L ⊆ A∗ there exist a stack T-automaton (⋆), an x0 ∈ X , and a γ0 ∈ Γ
such that L is the language in (5.10).

As we shall see in Theorem 6.7, one can obtain an analogous characterization of ordinary context-
free languages (essentially because for nondeterministic push-down automata the restriction of be-
ing real-time is omissible).

For the proof of Theorem 5.8 we need an explicit description of the action of the language seman-
tics map J−Km defined in Diagram (4.1) in terms of the given data of the T-automaton m .

LEMMA 5.9. Given any T-automaton (⋆), x ∈ X and w ∈ A∗ then

JxKm (ǫ) = om (x), JxKm (au) = αm (do y ← tm (a, x); ηXJyKm (u)) . (5.11)

PROOF. Recall that the transition structure ι in (4.1) arises from o : BA∗

→ B and ∂a : BA∗

→
BA∗

with o(σ) = σ(ǫ) and ∂a(σ) = λw. σ(aw). Thus, we obtain the semantics map

J−Km =
(
X

ηX
−−−−→ TX

m̂
♯

−−−→ BA∗)
.

The commutativity of (4.1) can now equivalently be restated as the two equations

o(JxKm) = om (x), ∂a(JxKm) = m̂
♯(tm (x, a)) for every x ∈ X and a ∈ A.

The left equation implies the left of (5.11) since o(JxKm) = JxKm (ǫ). For the second statement
notice first that by the freeness of TX we have that m̂

♯ is the unique T-algebra morphism extending
J−Km . Thus, we have

m̂
♯ = α · T J−Km : TX → BA∗

,

where α is the T-algebra structure on BA∗

. Observe that α : T (BA∗

) → BA∗

is given pointwise,
i. e. α is the unique morphism satisfying

evu · α =
(
T (BA∗

)
T evu−−−−−→ TB

αm

−−−→ B
)
,

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:37

for every u ∈ A∗, where evu : BA∗

→ B is the obvious evaluation at u ∈ A∗: evu(f) = f(u). It
follows that for every word u ∈ A∗ we have

m̂
♯(−)(u) =

(
TX

T (evu·J−Km)
−−−−−−−−−−→ TB

αm

−−−→ B
)
;

indeed we have:

m̂
♯(−)(u) = evu · m̂

♯ = evu · α · T J−Km = αm · T evu · T J−Km = αm · T (evu · J−Km)

and therefore

JxKm (au) = ∂a(JxKm)(u) // definition of ∂a

= m̂
♯(tm (x, a))(u) // (4.1)

=(αm · T (evu · J−Km))(t
m (x, a)).

The last line is the desired right-hand side of the right equation in (5.11). 2

Before we proceed with the proof of Theorem 5.8, let us recall that a deterministic pushdown au-
tomaton (dpda) M is determined by a transition function

δ : Q× (A+ {ǫ})×∆→ Q×∆∗ + {⊥}, (5.12)

an initial stack symbol ⊠ ∈ ∆, an initial state q0 ∈ Q and a set of final states F ⊆ Q. Here Q is a
finite set of all states, A is a finite alphabet of actions and∆ is a finite alphabet of stack symbols. The
transition function δ is subject to the following restrictions: for every x ∈ Q, γ ∈ ∆ (exclusively)
either δ(x, ǫ, γ) 6= ⊥ or δ(x, a, γ) 6= ⊥ for all a ∈ A. Automaton configurations and transitions
over them are defined in the standard way.

A word w is recognized by M if there is a chain of transitions over automaton configurations
that starts at 〈x0,⊠〉, consumes w, and finishes at some 〈xn, sn〉 with xn ∈ F . A dpda M is called
real-time if δ(x, ǫ, γ) = ⊥ for every x ∈ Q, γ ∈ ∆ and it is called quasi-real-time if there is n such
that the following chain of transition is not admissible for any x1 ∈ Q, s1 ∈ ∆∗ and m > n:

〈x1, s1〉
ǫ
−−−→ 〈x2, s2〉

ǫ
−−−→ · · ·

ǫ
−−−→ 〈xm, sm〉

We will make use of the fact that the classes of languages recognized by real-time dpda and quasi-
real-time dpda coincide [Harrison and Havel 1972].

PROOF OF THEOREM 5.8. Given (⋆) over a stack monad and a finite X , let us construct a
quasi-real-time dpda M as follows. For any x ∈ X and a ∈ A let nx,a be the smallest n ≥ 1
such that tm (x, a) : Γ∗ → X × Γ∗ sends any su with s, u ∈ Γ∗, |s| = n to 〈y, s′u〉 where
〈y, s′〉 = tm (x, a)(s). Analogously, let nx be the smallest n ≥ 1 such that om (x) : Γ∗ → 2 returns
equal results on words agreeing on the first n letters. Note that the numbers nx,a and nx exist by the
definition of the stack monad. Let m = max{nx,maxa na,x}. As the state space of M we take

Q =
{
〈x, s⊠k〉 | x ∈ X, s ∈ Γ∗, |s| ≤ m− k

}
.

Let ∆ = Γ+ {⊠}. Then we define the transition function δ as follows:

(i) δ(〈x, s〉, ǫ, γ) = 〈〈x, sγ〉, ǫ〉 if γ 6= ⊠ and |s| < m;
(ii) δ(〈x, s〉, ǫ,⊠) = 〈〈x, s⊠〉,⊠〉 if |s| < m;

(iii) δ(〈x, s⊠k〉, a, γ) = 〈〈y, ǫ〉, s′γ〉 if a 6= ǫ, s ∈ Γm−k and 〈y, s′〉 = tm (x, a)(s).

Finally, let

F = {〈x, s⊠k〉 ∈ Q | om (x)(s) = 1, s ∈ Γm−k}

be the set of accepting states of M . The intuitive motivation for the definition of M comes from the
need to save portions of the stack as parts of the state. This is needed to model the behaviour of m ,
which unlike a standard pda can read several symbols from the stack at once and not just the top one.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:38 S. Goncharov, S. Milius, A. Silva

For technical reasons it is convenient to assume that we always can transfer m symbols from the
stack to the state. We ensure this by allowing the completion of the second component of the state
with an appropriate number of symbols ⊠ added from the right if the stack happens to be shorter
than m.

Our goal is to show that for any w ∈ A∗, Jx0Km (w)(γ0) = 1 iff w is accepted by M with 〈x0, γ0〉
as the initial state. To that end we prove a (clearly) more general statement: for any w ∈ A∗,
x ∈ X and s ∈ Γ∗, JxKm (w)(s) = 1 iff there is a chain of transitions C over configurations of
M corresponding to w, starting at 〈〈x, ǫ〉, s⊠〉 and finishing in an accepting state. We proceed by
induction over the length of w.

— Let w = ǫ. Then by Lemma 5.9 JxKm (w)(s) = om (x)(s) = om (x)(s′) where s′ is the prefix
of length min{|s|, nx} of s. Therefore, JxKm (w)(s) = 1 iff 〈x, s′⊠k〉 ∈ Q belongs to F with
k = m − |s′|. On the other hand, by (i)–(ii), every chain C of transitions corresponding to w = ǫ
and starting at 〈〈x, ǫ〉, s⊠〉 must be a prefix of the following chain:

〈〈x, ǫ〉, s⊠〉
ǫ
−→ · · ·

ǫ
−→ 〈〈x, s′⊠k〉, u⊠〉

where s = s′u and k = m − |s′|. Clearly, C leads to an accepting configuration iff 〈x, s′⊠k〉 is an
accepting state.

— Let w = au. Then by Lemma 5.9,

JxKm (w)(s) = αm (do y ← tm (x, a); ηXJyKm (u)) (s)

= JyKm (u)(s
′) where 〈y, s′〉 = tm (x, a)(s).

The latter is equal to 1 iff JyKm (u)(s
′) = 1 where 〈y, s′〉 = tm (x, a)(s). By the induction hypothesis

JyKm (u)(s
′) = 1 iff there is a chain of transitions C corresponding to u, starting at 〈〈y, ǫ〉, s′⊠〉 and

finishing in an accepting state. We shall show that there is a chain of transitions C′ starting in
〈〈x, ǫ〉, s⊠〉 and finishing in an accepting state. There are two cases: (1) if |s| < m then we obtain
C′ by prepending C with

〈〈x, ǫ〉, s⊠〉
ǫ
−→ · · ·

ǫ
−→ 〈〈x, s⊠k〉,⊠〉

a
−→ 〈〈y, ǫ〉, s′⊠〉,

where k = m− |s|; (2) if |s| ≥ m let s = s′′w with |s′′| = m and let tm (x, a)(s′′) = (ŷ, ŝ). Then
since tm (x, a)(s′′u) = (ŷ, ŝu) holds by the properties of tm (x, a) : Γ∗ → X × Γ∗, we know that
ŷ = y and ŝu = s′. So we obtain C′ by prepending C with

〈〈x, ǫ〉, s⊠〉
ǫ
−→ · · ·

ǫ
−→ 〈〈x, s′′〉, u⊠〉

a
−→ 〈〈ŷ, ǫ〉, ŝu⊠〉 = 〈〈y, ǫ〉, s′⊠〉.

Conversely, given a chain of transitions C′ for w from 〈〈x, ǫ〉, s⊠〉 and leading to a final state, then
it must be a chain C starting at 〈〈y, ǫ〉, s′⊠〉 prepended by one of the above two prefixes (depending
on |s|). This completes the induction and the proof of the first part of the theorem.

In order to show the second part of the claim, suppose we are given a real-time deterministic pda
M with a transition function (5.12), an initial state q0 ∈ Q, a set of accepting states F ⊆ Q and an
initial stack symbol ⊠. Let us define a T-automaton (⋆) with X = Q+ {⊥} and T being the stack
monad over ∆ as follows: for every q ∈ X , s ∈ ∆∗, a ∈ A, om (q)(s) = 1 iff q ∈ F and

tm (q, a)(ǫ) = tm (⊥, a)(γs) = 〈⊥, ǫ〉

tm (q, a)(γs) = 〈q′, s′s〉 where 〈q′, s′〉 = δ(q, a, γ).

Let us show by induction over the length of w ∈ A∗ that for every q ∈ Q, s ∈ ∆∗ an accepting
configuration is reachable from 〈q, s〉 by w iff JqKm (w)(s) = 1.

— Let w = ǫ. Then 〈q, s〉 is accepting iff q ∈ F iff om (q)(s) = 1. By Lemma 5.9, the latter is
equivalent to JqKm (w)(s) = 1.

— Let w = au. Then an accepting configuration is reachable from 〈q, s〉 iff 〈q, s〉
a
−→ 〈q′, s′〉

for some 〈q′, s′〉 from which an accepting configuration is reachable by u. By induction hypothesis

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:39

and by definition of tm , an equivalent formulation is as follows: Jq′Km (u)(s
′) = 1 where 〈q′, s′〉 =

tm (q, a)(s). On the other hand, by Lemma 5.9,

JqKm (w)(s) = αm (do q′ ← tm (q, a); ηXJq′Km (u)) (s)

= Jq′Km (u)(s
′) where 〈q′, s′〉 = tm (q, a)(s),

i.e. also JqKm (w)(s) = 1 iff Jq′Km (u)(s
′) = 1 where 〈q′, s′〉 = tm (q, a)(s).

As a result, the language recognized by M is equal to (5.10) under x0 = q0 and γ0 = ⊠. 2

6. MONAD TENSORS FOR COMBINING STORE AND NONDETERMINISM

Tensor products of monads (resp. algebraic theories) have been introduced by Freyd [1966] in the
context of universal algebra. Later, computational relevance of this operation has been demonstrated
by Hyland et al. [2007]. Here, we use tensors of monads as a tool for studying T-automata, where
T combines (several kinds of) store with nondeterminism.

Definition 6.1 (Tensor). Let E1 and E2 be two algebraic theories. Then the tensor product E =
E1 ⊗ E2 is the algebraic theory, whose equations are obtained by joining the equations of E1 and E2
and adding for every f : n→ 1 of E1 and every g : m→ 1 of E2 the following axiom

f(g(x1
1, . . . , x

1
m), . . . , g(xn

1 , . . . , x
n
m)) = g(f(x1

1, . . . , x
n
1), . . . , f(x

1
m, . . . , xn

m))

called the tensor laws. Given two finitary monads T1 and T2, their tensor product T1 ⊗ T2 arises
from the algebraic theory ET1

⊗ET2
. Note that the embedding of terms and equations of Ei, i = 1, 2,

into E1 ⊗ E2 gives rise to monad morphisms Ti → T1 ⊗ T2 called tensor injections.

Intuitively, the tensor product of two monads captures a noninterfering combination of the corre-
sponding computational effects. In the present work we shall use two kinds of tensor products:
(1) tensors with submonads of the store monad (see Example 3.10) and (2) tensors with semimodule
monads (see Definition 3.13). This allows us to combine nondeterminism with one or several stores
in one monad.

It has been shown in [Hyland et al. 2007] that tensoring with the store monad is equivalent to the
application of the store monad transformer sending any monad T to the store monad transform TS

whose functorial part is given by TSX = T (X × S)S . Here we establish a similar result about the
stack monad (Defnition 3.14).

PROPOSITION 6.2. Let S be the stack monad over Γ. Then for any finitary monad T, S⊗ T is
the submonad R of the store monad transform of T with Γ∗ as the store, identified by the following
condition: p : Γ∗ → T (X × Γ∗) is in RX if

∃k ∈ N. ∀s ∈ Γk. ∀u ∈ Γ∗. p(su) = do〈x, s′〉 ← p(s); ηX×Γ∗〈x, s′u〉. (6.1)

PROOF. Note that (6.1) is equivalent to

∃k ∈ N. ∀s, u ∈ Γ∗. |s| ≥ k ⇒ p(su) = do 〈x, s′〉 ← p(s); ηX×Γ∗〈x, s′u〉. (6.2)

Indeed, the implication (6.2) ⇒ (6.1) is obvious. For the converse one, let k be as in (6.1), let
s, u ∈ Γ∗ and let |s| ≥ k. Then s = s′w for suitable s′ ∈ Γk, w ∈ Γ∗, and

p(su) = p(s′wu)

= do〈x, s′′〉 ← p(s′); ηX×Γ∗〈x, s′′wu〉

= do〈x, s′′〉 ← (do〈x, s′′〉 ← p(s′); ηX×Γ∗〈x, s′′w〉); ηX×Γ∗〈x, s′′u〉

= do〈x, s′′〉 ← (do〈x, s′′〉 ← p(s′w); ηX×Γ∗〈x, s′′〉); ηX×Γ∗〈x, s′′u〉

= do〈x, s′′〉 ← p(s); ηX×Γ∗〈x, s′′u〉.

We next check that (6.1) does indeed identify a submonad of the aforementioned store monad
transform. First, for any x ∈ X , p = ηX(x) satisfies (6.1) with k = 0. Then, for every

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:40 S. Goncharov, S. Milius, A. Silva

f : X → (T (Y × Γ∗))Γ
∗

, such that for every x ∈ X , f(x) satisfies (6.1) with some kx, and
for every p : Γ∗ → T (X × Γ∗), satisfying (6.1) with some k, we must show that f⋆(p) also
satisfies (6.1). Note that for s ∈ Γk,

f⋆(p)(su) = do〈x, s′〉 ← p(su); f(x)(s′)

= do〈x, s′〉 ← (do 〈x, s′〉 ← p(s); ηX×Γ∗〈x, s′u〉); f(x)(s′)

= do〈x, s′〉 ← p(s); f(x)(s′u).

Since by assumption, T is finitary, for some finite X ′ ⊆ X and m ∈ N, p(s) ∈ T (X ′ × Γ∗).

By (6.2), for k̂ = max{kx | x ∈ X ′}, and u ∈ Γk̂, we continue as follows:

f⋆(p)(suw) = do〈x, s′〉 ← p(s); f(x)(s′uw)

= do〈x, s′〉 ← p(s); 〈y, s′′〉 ← f(x)(s′u); ηY×Γ∗〈y, s′′w〉

= do〈y, s′′〉 ← (do 〈x, s′〉 ← p(s); f(x)(s′u)); ηY ×Γ∗〈y, s′′w〉

= do〈y, s′〉 ← f⋆(p)(su); ηY×Γ∗〈y, s′w〉.

That is, we have proven (6.1) for f⋆(p) with k + k̂.
Let us refer to the stack theory over Γ = {γ1, . . . , γn} as E and to the theory corresponding to

the monad T as T . We define a semantics of the theory E ⊗ T over R as follows:

L[pop]MR(ǫ) = ηN×Γ∗〈n+ 1, ǫ〉, L[pop]MR(γiw) = ηN×Γ∗〈i, w〉,

L[pushi]MR(w) = η1×Γ∗〈1, γiw〉, L[f]MR(w) = do j ← L[f]MT; ηM×Γ∗〈j, w〉,

where η denoted the unit of the monad T, N = {1, . . . , n+ 1}, 1 in the subscript of η denotes the
set {1}, i ranges from 1 to n, f ranges over the operations of T , and M = {1, . . . ,m}, where m is
the arity of f . We proceed by verifying the properties prescribed by Theorem 3.9. This verification
is analogous to the proof of Theorem 3.16 and hence we discuss only the specific features of the
case at hand.

— Soundness. We have to verify soundness of (i) the stack theory, (ii) the equations from T ,
and (iii) the tensor laws. Soundness of (i) is verified exactly as in Theorem 3.16. Soundness of (ii)
immediately follows from soundness of T over T. Finally, soundness of (iii) is verified directly for
the push and for pop operations. For pushi we have for every set X

L[pushi(f(x1, . . . , xk))]MRX (w)

= (do L[pushi]MR; j ← L[f]MR; L[xj]MRX)(w)

= do 〈x, u〉 ← η1×Γ∗〈1, γiw〉; 〈j, v〉 ← L[f]MR(u); L[xj]MRX(v)

= do 〈j, v〉 ← L[f]MR(γiw); L[xj]MRX(v)

= do j ← L[f]MT; 〈x, v〉 ← ηM×Γ∗〈j, γiw〉; L[xj]MRX(v)

= do j ← L[f]MT; L[xj]MRX(γiw)

and

L[f(pushi(x1), . . . , pushi(xk))]MRX (w)

= (do j ← L[f]MR; L[pushi]MR; L[xj]MRX)(w)

= do 〈j, v〉 ← L[f]MR(w); 〈x, u〉 ← L[pushi]MR(v); L[xj]MRX(u)

= do j ← L[f]MT; (y, v)← ηM×Γ∗〈j, w〉; 〈x, u〉 ← L[pushi]MR(v); L[xj]MRX(u)

= do j ← L[f]MT; 〈x, u〉 ← L[pushi]MR(w); L[xj]MRX(u)

= do j ← L[f]MT; 〈x, u〉 ← η1×Γ∗〈1, γiw〉; L[xj]MRX(u)

= do j ← L[f]MT; L[xj]MRX(γiw)

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:41

We leave the verification for pop to the reader.
— Expressiveness. Let p : Γ∗ → T (X ×Γ∗) be an element of RX under some parameter k. We

construct a term pk over X such that L[pk]M = p by induction over k adapting the construction from
Theorem 3.16.
— Let k = 0 and note that p(ǫ) ∈ T (X × Γ∗). Let q be a term over X × Γ∗ for which

L[q]MT (X×Γ∗) = p(ǫ) and let p0 be obtained from q by replacing any 〈x, γim . . . γi1〉 ∈ X × Γ∗

by the term pushi1(· · · (pushim(x)) · · ·).
— If k > 0 then we build pk from pk−1 in the same way as in Theorem 3.16.

— Completeness. Suppose we are given s and t such that L[s]MRX = L[t]MRX . Let us normalize
both s and t using the equations of the stack theory oriented from left to right and additionally the
rules:

pushi(f(x1, . . . , xm))→ f(pushi(x1), . . . , pushi(xm)) (6.3)

pop(x1, . . . , xn, f(y1, . . . , pop(z1, . . . , zn, z), . . . , ym))

→ pop(x1, . . . , xn, f(y1, . . . , z, . . . , ym)) (6.4)

where f(1, . . . ,m) is an m-ary term in the signature of T . Note that the obtained system is strongly
normalizing because every rule either decreases the height of the term, or keeps it the same, but
propagates the push operator downwards. Except for the last rule, by definition, the respective
equations belong to E ⊗ T . The equation corresponding to the last rule also belongs to E ⊗ T , for
by (pop-push), (pop-pop), and by tensor laws:

pop(x1, . . . , xn, f(y1, . . . , pop(z1, . . . , zn, z), . . . , ym))

= pop(x1, . . . , xn, f(pop(push1(y1), . . . , pushn(y1), y1), . . . ,

pop(z1, . . . , zn, z), . . . ,

pop(push1(ym), . . . , pushn(ym), ym)))

= pop(x1, . . . , xn, pop(f(push1(y1), . . . , z1, . . . , push1(ym)), . . . ,

f(push1(y1), . . . , zn, . . . , push1(ym)), f(y1, . . . , z, . . . , ym)))

= pop(x1, . . . , xn, f(y1, . . . , z, . . . , ym)).

It suffices to prove that s = t ∈ E ⊗ T for normal s and t, and this is done by induction over the
total number of operations distinct from push occurring in s and t. Let f and g be terms (possibly a
single variable) in the signature of T such that s = f(s1, . . . , sm) and t = g(t1, . . . , tl) and where
each of the terms s1, . . . , sm and t1, . . . , tl is either a variable or has an operation of the stack theory
at the top.
— If none of the terms s1, . . . , sm, t1, . . . , tl contains the pop operation on top, then by normality

each of these terms must be an application of a sequence of the push operations to a variable.
Hence, by the definition of our semantics we obtain

L[s]MRX (ǫ) = L[f(〈x1, w1〉, . . . , 〈xm, wm〉)]MT (X×Γ∗),

L[t]MRX (ǫ) = L[g(〈y1, u1〉, . . . , 〈yl, ul〉)]MT (X×Γ∗),

where 〈xi, wi〉 = L[si]MRX(ǫ) and 〈yj , uj〉 = L[tj]MRX(ǫ). It follows that

f(〈x1, w1〉, . . . , 〈xm, wm〉) = g(〈y1, u1〉, . . . , 〈yl, ul〉)

is provable in T , and the desired proof of s = t ∈ E ⊗ T can be obtained from that proof by
substituting every 〈xi, wi〉 by si and every 〈yj , uj〉 by tj .

— Otherwise, suppose that sj = pop(. . . , s′) for some j ∈ {1, . . . ,m}. Using the laws of R we
have that

s = f(s1, . . . , sj, . . . , sm)

= f(s1, . . . , pop(. . . , s
′), . . . , sm)

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:42 S. Goncharov, S. Milius, A. Silva

= f(pop(push1(s1), . . . , pushn(s1), s1), . . . , pop(. . . , s
′), . . . ,

pop(push1(sm), . . . , pushn(sm), sm)) // (pop-push)

= pop(f(push1(s1), . . . , push1(sm)), . . . ,

f(pushn(s1), . . . , pushn(sm)), f(s1, . . . , s
′, . . . , sm)). // tensor law

Now substitute the last term for the right-hand s in

s = pop(push1(s), . . . , pushn(s), s)

and use (pop-pop) and (pop-push) to conclude

s= pop(push1(s), . . . , pushn(s), f(s1, . . . , s
′, . . . , sm)),

t= pop(push1(t), . . . , pushn(t), t).
(6.5)

By (possibly repeated) application of the rule (6.4), we may replace f(s1, . . . , s
′, . . . , sm) and

t in the right-hand arguments by terms s̃ and t̃, respectively, that do not contain pop. Thus we
obtain

s = pop(push1(s), . . . , pushn(s), s̃

t = pop(push1(t), . . . , pushn(t), t̃),

whence by soundness and since L[s]MRX = L[t]MRX we have

L[pop(push1(s), . . . , pushn(s), s̃)]MRX = L[pop(push1(t), . . . , pushn(t), t̃)]MRX .

Therefore, by Lemma 3.15 (which is easily seen to be valid over R), we obtain

L[push1(s)]MRX = L[push1(t)]MRX , . . . , L[pushn(s)]MRX = L[pushn(t)]MRX

and

L[s̃]MRX = L[t̃]MRX .

Note that each pushi(s) can be renormalized, and since sj has the pop operation on top, by
(push-pop) the total number of operations distinct from push decreases at least by one. Hence,
using the induction hypothesis, we obtain pushi(s) = pushi(t) ∈ E ⊗ T for every i. Analo-
gously, f(s1, . . . , s

′, . . . , sm) has one pop operator less that s. Moreover, rewriting the former
and t, respectively, in their contexts in (6.5) by the rule (6.4) might only reduce the number of
pop operators further, while the number of all other operators remains unchanged. Therefore,
we obtain s̃ = t̃ ∈ E ⊗ T , and by standard equational reasoning we have

s = pop(push1(s), . . . , pushn(s), s̃)

= pop(push1(t), . . . , pushn(t), t̃)

= t,

i.e., we obtain that s = t ∈ E ⊗ T as desired. 2

Using Proposition 6.2, one can combine two stacks by computing the tensor square of the stack
monad. The resulting monad T is a submonad of the store monad for S = Γ∗ × Γ∗, whence
elements of TX are certain maps of the form

〈r, t1, t2〉 : Γ
∗ × Γ∗ → X × Γ∗ × Γ∗.

This allows one to define T-stack automata over two and more stacks analogously to the one-stack
case from Definition 5.7. Before we do this formally in Definition 6.5 we briefly discuss forming
tensors with semimodule monads.

PROPOSITION 6.3 ([FREYD 1966]). The tensor product of any finitary monad with a semimod-
ule monad is again a semimodule monad.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:43

Remark 6.4. Proposition 6.3, in conjunction with Proposition 6.2, offers two perspectives on
machines with memory and nondeterminism. On the one hand, we shall, for example, consider the
tensor product of Pω with the stack monad to model (nondeterministic) push-down automata. As
Proposition 6.2 indicates, this monad embeds into the monad with functorial part TX = Pω(X ×
Γ∗)Γ

∗

. On the other hand, by Proposition 6.3, this tensor product is equivalent to a semimodule
monad. A rough intuition about this change of perspective can be gained from the isomorphism

P(X × Γ∗)Γ
∗ ∼= P(Γ∗ × Γ∗)X relating “nondeterministic” stateful computations over X and

values over X weighted in the semiring P(Γ∗ × Γ∗).

Definition 6.5 (Multi-stack nondeterministic T-automaton). A multi-stack nondeterministic T-
automaton is a T-automaton (⋆) for which

— T is the tensor of m copies of the stack monad with Pω;

— B is the set of m-ary predicates over Γ∗ consisting of all those p ∈ 2Γ
∗×···×Γ∗

for each
of which there is a k such that for every wi ∈ Γk and ui ∈ Γ∗, i = 1, . . . ,m, we have
p(w1u1, . . . , wmum) = p(w1, . . . , wm);

— for every s ∈ (Γ∗)m, f : (Γ∗)m → Pω(B × (Γ∗)m) ∈ TB

αm (f)(s) = 1 iff ∃s′ ∈ (Γ∗)m. ∃p ∈ B. (p, s′) ∈ f(s) ∧ p(s′).

To see that B in Definition 6.5 is indeed a T-algebra, let us deduce the following corollary of
Lemma 3.11.

COROLLARY 6.6. Let TS be the nondeterministic store monad over S (i. e. TX = Pω(X ×
S)S) and let RS be the nondeterministic reader monad over S (i.e. RSX = Pω(X)S). For every
submonad T of TS , the monad morphism α sending any f : S → Pω(X ×S) to Pω(π1) · f : S →
Pω(X) restricts to a submonad of RS .

Recall that by Proposition 6.2, the tensor of Pω with m copies of the stack monad over Γ∗ is the
submonad T of the nondeterministic store monad over (Γ∗)m identified by the following condition:
f : (Γ∗)m → Pω(X×(Γ

∗)m) ∈ TX iff there exists a k such that whenever |u1| ≥ k, . . . , |um| ≥ k
then

f(u1w1, . . . , umwm) = {〈x, u′
1w1, . . . , u

′
mwm〉 | 〈x, u

′
1, . . . , u

′
m〉 ∈ f(u1, . . . , um)}.

This induces a submonad R of the nondeterministic reader monad over (Γ∗)m identified by the
following condition: f : (Γ∗)m → Pω(X) ∈ TX iff there exists a k such that whenever |u1| ≥
k, . . . , |um| ≥ k then f(u1w1, . . . , umwm) = f(u1, . . . , um). The T-algebra used in Definition 6.5
is thus obtained by taking X = 1.

We are now ready to prove the following result.

THEOREM 6.7. For any m let Lm be the following class of all languages

{w ∈ A∗ | Jx0Km (w)(γ0, . . . , γ0) = ⊤} (6.6)

with m ranging over nondeterministic multistack T-automata with m stacks, x0 ranging over the
state space of m and γ0 ranging over Γ. Then

(1) L1 is the class of context-free languages;
(2) for all m > 2, Lm is the class of nondeterministic linear time languages NTIME(n);
(3) L2 sits properly between L1 and L3.

PROOF. The proof is completely analogous to the proof of Theorem 5.8. We outline the main
distinctions. In lieu of quasi-real-time deterministic pda we use nondeterministic push-down quasi-
real-time (NPDQRT) machines (see [Book and Greibach 1970]). The transition function δ of such
a machine has type

δ : Q× (A+ {ǫ})×∆m → Pω(Q × (∆∗)m). (6.7)

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:44 S. Goncharov, S. Milius, A. Silva

This function is subject to the condition of being quasi-real-time, i.e. there is a global bound on the
lengths of ǫ-transition chains over machine configurations.

Two acceptance conditions for NPDQRT are possible: (i) by final states and (ii) by the empty
stack. It is a standard exercise to make sure that a language accepted by empty storage can be
accepted by final states. In fact, the construction for ordinary PDAs (see e.g. [Hopcroft et al. 2001])
also works for NPDQRT: for a given PDA P one forms a PDA P ′ with a fresh initial stack symbol
γ′
0 and a new inital state that pushes the original initial stack symbol on all stacks and then proceeds

to the initial state of P . In addition, P ′ has one final state that can be reached from all states by an
(internal) ǫ-transition if the stack content is (γ′

0, . . . , γ
′
0) (which corresponds to configurations of P

with all stacks empty). Clearly, this construction preserves quasi real-timeness.
Conversely, for every m, (i) can be modelled by (ii), i.e. a language accepted by final states can

be accepted by the empty stack: for m = 1, we obtain standard push-down automata for which the
equivalence of (i) and (ii) is well-known [Rozenberg and Salomaa 1997]; for m = 2 this is shown
in [Ginsburg and Harrison 1968]; for any m > 2, by [Book and Greibach 1970], the languages
recognized under (ii) are exactly NTIME(n) and since for quasi-real-time machines the depths of
all stacks is linearly bounded, these can be purged in linear time once a final state is reached.

As shown in [Li 1985], the class of languages recognized by NPDQRT with m = 2 is properly
between context-free and NTIME(n).

It remains to show that for every m the languages recognized by nondeterministic multistack T-
automata with m stacks are the same as the languages recognized by NPDQRT with m stacks with
the acceptance condition chosen at pleasure.

As in Theorem 5.8, given a nondeterministic multistack T-automaton m with m stacks we iden-
tify a global bound n for the depths of the stack prefixes accessed at one step and then model m by
an NPDQRT M over the state space

Q =
{
〈x, s1⊠

k1 , . . . , sm⊠km〉 | x ∈ X, si ∈ Γ∗, |si| ≤ n− ki
}
.

The stack alphabet ∆ is Γ + {⊠}, the transition function is given as in Theorem 5.8 by changing
the number of elements in tuples Q and by allowing for nondeterminism. The acceptance condition
is chosen to be by the following final states:

F = {〈x, s1⊠
k1 , . . . , sm⊠km〉 ∈ Q | om (x)(s) = 1, si ∈ Γn−ki}.

It then follows along the same lines as in the proof of Theorem 5.8 that for every w ∈ A∗,
L[x0]Mm (w)(γ0, . . . , γ0) = 1 iff w is accepted by M with 〈x0, γ0, . . . , γ0〉 as the initial configura-
tion.

In order to show the second part of the claim, assume that M is a NPDQRT with m stacks, a
transition function (6.7), an initial state q0 ∈ Q, a set of accepting states F ⊆ Q and an initial stack
symbol ⊠. According to [Book and Greibach 1970], we assume that M is real-time, that means that
no internal transitions are present.

We define a nondeterministic T-automaton over m stacks with X = Q and with stack symbols
∆ as follows: for any q ∈ X , si ∈ ∆∗, a ∈ A, om (q)(s1, . . . , sm) = 1 iff q ∈ F and

tm (q, a)(s1, . . . , sm) = /0 (if si = ǫ for some i)

tm (q, a)(γ1s1, . . . , γmsm) = {〈q′, s′1s1, . . . , s
′
msm〉 |

〈q′, s′1, . . . , s
′
m〉 ∈ δ(q, a, γ1, . . . γm)} (otherwise)

A similar argument as in Theorem 5.8 then shows that for every w ∈ A∗, q ∈ Q and s ∈ ∆∗ an
accepting configuration is reachable from 〈q, s1, . . . , sm〉 by w iff JqKm (w)(s1, . . . , sm) = 1. 2

Theorem 6.7 shows, on the one hand, that the coalgebraic formalization of nondeterministic push-
down automata as nondeterministic T-automata over one stack is adequate in the sense that it rec-
ognizes the same class of languages. On the other hand, it indicates the boundaries of the present
model: it seems unlikely to capture languages beyond NTIME(n) (e.g. all recursive ones) by a

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:45

computationally feasible class of T-automata. This is not surprising in view of the early work on
(quasi-)real-time recognizable languages [Book and Greibach 1970], which underlies the proof of
Theorem 6.7. We return to this issue in Section 8 where we provide an extension of the present
semantics that allows us to capture language classes up to recursively enumerable ones.

We conclude this section with a corollary of Theorem 6.7 and Proposition 2.2. It is well known
that equivalence of context-free languages is undecidable; in fact, it is Π0

1-complete (the non-halting
problem for arbitrary Turing machine can be encoded as an equality of certain context-free lan-
guages [Hartmanis 1967]). We will use this to prove a similar completeness result for the equiva-
lence of reactive expressions. We say that a Σ-algebra B over a set of generators B0 is effectively
presented (over Σ and B0) if Σ and B0 are recursive sets and the set

{(t, s) | t, s are closed terms over Σ, B0 with tB = sB}

is decidable (recall Notation 4.9(2)). The language equivalence problem for reactive expressions
is then the following decision problem: given recursive sets Σ and B0, an effectively presented
T-algebra B, and two reactive expressions e1 and e2 in EΣ,B0

, decide if e1 ∼ e2 (cf. (4.2)).

COROLLARY 6.8. The language equivalence of reactive expressions is Π0
1-complete.

PROOF. The fact that language equivalence of reactive expressions is in Π0
1, i.e. co-r.e., follows

from Proposition 2.2: if two reactive expressions e and u are not language equivalent, we can even-
tually detect this by finding a suitable word w ∈ A∗ for which o(∂w(e)) 6= o(∂w(u)). Here we rely
on our effectiveness assumption, for, by the definitions (4.2), both o(∂w(e)) and o(∂w(u)) are terms
over Σ and B0 evaluated over B.

To prove Π0
1-hardness, let us show how to reduce the equivalence problem of context-free lan-

guages to the current equivalence problem of reactive expressions. Given two context-free languages
L1 and L2 recognized by two pushdown automata over a stack alphabet Γ = {γ1, . . . , γn}, we pro-

vide an instance of our problem with B ⊆ 2Γ
∗

being the T-algebra from Definition 6.5 for the
nondeterministic stack theory T over one stack. We need to prove that B is effectively presented.
First note that both Σ and B0 are finite, specifically, B0 is the two-element set {⊤,⊥}. Indeed, Σ
consists of the operation symbols pop, pushi, i = 1, . . . , n, + and /0, and we recall from Defini-
tion 6.5 that B consists of precisely those predicates p over Γ∗ for each of which there is a k such
that for every w ∈ Γk and u ∈ Γ∗, p(wu) = p(w). Hence, each predicate p in B can be finitely
represented, e.g. by the list of words w in Γk with p(w) = ⊤. In order to check that tB = sB for a
given pair of terms t, s over Σ, B0 we first compute the two predicates tB, sB and then verify that
they are equal. Indeed, for the latter we only need to verify (tB)(w) = (sB)(w) for finitely many
w ∈ Γ∗, which is a decidable problem, and for the former we need to verify that the algebra opera-
tions on B are computable. Using the definition of αm in Definition 6.5 and the interpretation of the
nondeterministic stack theory in the monad T, which is a submonad of the store monad transform

Pω(X × Γ∗)Γ
∗

(cf. the proof of Proposition 6.2), we verify that for every p, q, pi, i = 1, . . . n, in B
we have

popB(p1, . . . , pn, q)(ǫ) = q(ǫ)

popB(p1, . . . , pn, q)(γiw) = pi(w)

pushB
i (p)(w) = p(γiw)

(p+B q)(w) = p(w) ∨ q(w)

/0
B
(w) = ⊥.

Hence, the above operations are clearly computable as desired.
By Theorem 6.7(2), we have two nondeterministic stack T-automata m1 and m2 and states x1,

x2, respectively, in them such that

Li = {w ∈ A∗ | JxiKmi
(w)(γ1) = ⊤} , for i = 1, 2.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:46 S. Goncharov, S. Milius, A. Silva

Further, by Theorem 4.13, we obtain reactive expressions ei in EΣ,B0
such that JeiK = JxiKmi

for
i = 1, 2. Thus, we have L1 = L2 iff λw. Je1K(w)(γ1) = λw. Je2K(w)(γ1). Of course, the latter is
not equivalent to λw. Je1K(w)(s) = λw. Je2K(w)(s) for all s ∈ Γ∗. However, it is easy to modify e1
and e2 to obtain this property: let for i = 1, 2,

e′i = pop(pop(/0, . . . , /0, push1(ei)), /0, . . . , /0).

Then, clearly, Je′1K = Je′2K iff λw. Je1K(w)(γ1) = λw. Je2K(w)(γ1). 2

One can also consider the language equivalence problem of reactive expressions for a fixed Σ
and B; a very similar argument than the one in the previous proof then shows that the language

equivalence of reactive expressions for the algebra B ⊆ 2Γ
∗

of Definition 6.5 is Π0
1-complete.

However, for other Σ and B (coming from a type of T-automaton), the language equivalence
of reactive expressions is decidable, e.g. for finite Σ and B this follows from Theorem 4.13 and
Proposition 4.7, for the identity monad T and any recursive set B (in this case T-automata are
simply Moore automata with output in B), for the finite powerset monad T = Pω and B = 2 (for
which T-automata are classical nondeterministic automata), or for the monad T assigning to a set
the set of formal linear combinations with coefficients from a fixed field k and B = k (for which
T-automata are weighted automata over k). Identifying further monads T and algebras B for which
the language equivalence for reactive T-expressions is decidable is an interesting question for future
work.

7. CONTEXT-FREE LANGUAGES AND VALENCE AUTOMATA

Throughout this section we assume that R is a semiring finitely generated by the set R0; B is an
R-semimodule finitely generated by the set B0; and TR is the semimodule monad for R.

By Proposition 6.3, a nondeterministic T-automaton over one stack is a specific case of a
weighted T-automaton (Definition 5.1). In this form it is rather similar to valence automata, an-
other example of a machine previously studied in the literature (e.g. [Render and Kambites 2009;
Kambites 2009]). We present the corresponding algebraic theories side by side and explain how
valence automata can be formalised as T-automata.

Example 7.1 (Nondeterministic stack theory). The nondeterministic stack theory is obtained by
tensoring EPω

, i.e. the theory of commutative, idempotent monoids, with the stack theory. The
result is a semimodule theory over an idempotent semiring R presented by the generators oi, ui,
i = 1, . . . , |Γ| and e and the following relations:

uioi = 1 uioj = 0 uie = 0 o1u1 + . . .+ onun + e = 1 eoi = 0 ee = e (i 6= j)

The corresponding unary operations of the semimodule theory are denoted by popi = oi : 1→ 1,
pushi = ui : 1 → 1 and empty = e : 1 → 1 (cf. the notation of Definition 3.13). It is straight-
forward to relate the nondeterministic stack theory and the presented semimodule theory by giving
two translations defining the operations of one theory in terms of operations of the other. First the
unary operations popi and empty of the semimodule theory determine pop:

pop(x1, . . . , xn, y) = pop1(x1) + . . .+ popn(xn) + empty(y).

Conversely, popi and empty can be defined from pop:

popi(x) = pop(/0, . . . , x, . . . , /0, /0) empty(x) = pop(/0, . . . , /0, x)

(x is on the i-the position in the sequence on the left). It is then straightforward to prove that the
axioms of the nondeterministic stack theory and semimodule theory for R, respectively, are satisfied
for the operations as defined by the translations.

Example 7.2 (Nondeterministic monoid action theory). The nondeterministic monoid action
theory is obtained by tensoring the theory EPω

with the theory of M -actions of the monoid (M, ·, 1)
(see Example 3.10). As shown in [Hyland et al. 2007], the corresponding monad T maps a set X to

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:47

Pω(M ×X) and has the unit ηX : x 7→ {(1, x)} and the Kleisli lifting given by extending a map
f : X → Pω(M × Y) to f⋆ : Pω(M ×X)→ Pω(M × Y) with

f⋆(S) = { (m · n, y) | ∃x. (m,x) ∈ S ∧ (n, y) ∈ f(x) }.

Note that the theory corresponding to T is the semimodule theory for the semiring R = Pω(M)
with addition given by ∪ with unit /0 and multiplication given by S · S′ = {m · n | m ∈ S, n ∈ S′}
for any finite subsets S and S′ of M with unit {1}.

Now let the monoid (M, ·, 1) be fixed. The idea of valence automata over M is to use the
monoid structure to model various kinds of stores (stack(s), counter(s), etc.). Recall e.g. from [Ren-
der and Kambites 2009; Kambites 2009] that a valence automaton over M is a tuple A =
(X,M,A, δ, q0, F) where X is a finite set of states, δ is finite subset of X × A∗ × M × X of
transitions, q0 ∈ X is an initial state and F ⊆ X a set of final states. This induces a transition rela-
tion⇒ on X×A∗×M as usual by defining (p, w,m)⇒ (q, wu,mn) if there exists (p, u, n, q) ∈ δ.
The language accepted by a given valence automatonA is

L(A) = {w ∈ A∗ | ∃q ∈ F. (p, ǫ, 1)⇒ (q, w, 1) }

We call A ǫ-free if δ does not contain tuples of the form (p, ǫ, n, q). Note that for any ǫ-free valence
automaton there is an equivalent one that only contains single letters in its transitions, for every
transition (p, a1a2 · · · an,m, q) can be replaced by transitions

(p, a1, 1, p1), (p1, a2, 1, p2), . . . , (pn−1, an,m, q).

An ǫ-free valence automatonA in which every transition contains only single letters can be regarded
as a T-automaton (⋆) for the nondeterministic monoid action theory over M . To see this let B =
Pω(M × 1) ∼= Pω(M) be the free T-algebra on 1 and define the map om : X → Pω(M) by
om (q) = {1} if q ∈ F and om (q) = /0 else, and the transitions in δ yield the map tm : X →
Pω(M ×X)A. Using Lemma 5.9 it is now not difficult to prove that {w ∈ A∗ | 1 ∈ Jq0Km} is the
language accepted by A.

Example 7.3 (Nondeterministic polycyclic theory). A relevant special case of the previous ex-
ample is when M is a polycyclic monoid [Lawson 1999]. This means that M is the monoid over a
set of generators , g1, . . . , gk, . . . , g -1

1 , . . . , g -1
k and satisfying the relations

 gi = gi = , gig
-1
i = 1, gig

-1
j = (i 6= j).

The number k is called the rank of M . We call the theory of Pω(M × (−)) the nondeterministic
polycyclic theory.

The technical distinction between the nondeterministic stack theory and the nondeterministic poly-
cyclic theory is minor. On the one hand, the nondeterministic stack theory uses the zero 0 of the
semiring to model failure in computing the right inverse, while the nondeterministic polycyclic the-
ory has its own zero , which coexists with 0. On the other hand, emptiness detection is explicitly
available for stacks (using e) but not for polycyclic monoids.

It is well-known that valence automata over polycyclic monoids of rank at least 2 recognize
context-free languages and so do nondeterministic stack T-automata. We would like to give a uni-
form proof of this fact applying both to Example 7.1 and to Example 7.3.

First, observe that if the semiring R is idempotent then any R-semimodule (equivalently, TR-
algebra) B can be partially ordered by putting b ≤ c iff b+ c = c.

Definition 7.4. Given a TR-automaton m : X → B × (TRX)A, and an initial state x0 ∈ X we
define the language recognized by b ∈ B by

Lb(m) = {w ∈ A∗ | Jx0Km (w) ≥ b}.

Note that both semirings arising from Examples 7.1 and 7.3 are idempotent (since addition is given

by union of sets). For nondeterministic stack T-automata we typically choose as b ∈ B ⊆ 2Γ
∗

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:48 S. Goncharov, S. Milius, A. Silva

the predicate distinguishing the initial stack configuration, e.g. b(w) = ⊤ iff w is the initial stack
symbol. For valence automata over M we take B = Pω(M) and b = {1}. Then the above definition
of accepted languages instantiates as expected.

Recall that the language of balanced parentheses, or Dyck language is a language Dn ⊆ An =
{(1,)1, . . . , (n,)n}

∗ consisting of string of parentheses balanced in the standard sense. The follow-
ing result is a reformulation of the classical Chomsky-Schützenberger theorem.

THEOREM 7.5. Let α be a monoid morphism from A2 to the multiplicative structure of some
idempotent semiring R such that

(1) for some b0, b1 ∈ B, α(w) · b0 ≥ b1 iff w is balanced;
(2) for any c1, c2 if c1 + c2 ≥ b1 then either c1 ≥ b1 or c2 ≥ b1.

Then for any context-free language there is a TR-automaton recognizing it by b1.

PROOF. Let us denote Ωn = {(1,)1, . . . , (n,)n} so that An = Ω∗
n. First note that from

α : A2 → R that we postulated we can obtain a monoid morphism α′ : An → R for every n with
the same property (1). Indeed, following [Book 1975], we define a monoid morphism γ : An → A2

sending every (n to (n1 (2 and every)n to)2)
n
1 and having the property that Dn = γ -1(D2), which

means that if γ(w) ∈ A2 is balanced then w is also balanced. Since the converse is obvious, the
composition α′ = α · γ : An → R inherits from α the property that α′(w) · b0 ≥ b1 iff w is
balanced.

Let L be any context-free language. By Theorem 4.13 and Proposition 5.5, it suffices to prove
that there is an additive reactive expression e such that

L = {w ∈ A∗ | JeK(w) ≥ b1}.

By the Chomsky-Schützenberger theorem, we have L = β(R ∩ Dn) for some regular language
R over Ωn and some monoid morphism β : An → A∗, and, according to the above argument, in
what follows let us regard α as a morphism from An to R. We use the version of the Chomsky-
Schützenberger theorem from [Okhotin 2012] where it is shown that if L does not contain one-letter
words then β can be chosen non-erasing, i.e. ǫ 6∈ β(g) for all g ∈ Ωn. The assumption that L does
not contain one-letter words does not restrict generality, for if we could show for L′ = L \ A and
an expression e that L′ = {w ∈ A∗ | JeK(w) ≥ b1} then of course we would have

L =
{
w ∈ A∗ |

q
e+

∑
a∈L∩A

a.b1
y
(w) ≥ b1

}
.

Henceforth we assume that L ∩ A = /0 and β is non-erasing.
As we know from Propositions 4.7 and 5.5, R can be given by an additive reactive expression

over the boolean semiring R = B = {0, 1}. We replace in this expression every occurrence of the
form g.− where g ∈ Ωn by a1. . . . ak. α(g) · (−) where a1 · · · ak = β(g) and every occurrence of
1 ∈ B0 = {1} by b0. The resulting expression e is a reactive additive expression for the semimodule
monad TR. Note that the assumption that β is nonerasing ensures that e remains guarded. It is then
easy to check that

JeK(w) ≥ r · b0 if ∃u ∈ An. r = α(u) ∧ w = β(u); (7.1)

indeed, given u = g1 . . . gk ∈ An with gi ∈ Ωn such that r = α(u) and w = β(u), by definition,
JeK(w) ≥ r · b0 iff o(∂β(g1)···β(gk)(e)) ≥ α(g1) · · ·α(gk) · b0, which follows from the definition of

e, specifically, from the way g.− is replaced. Suppose, w ∈ L = β(R∩Dn). Then there is u ∈ Dn

such that w = β(u). By assumption (1), α(u) · b0 ≥ b1 and by (7.1), JeK(w) ≥ α(u) · b0. Therefore,
JeK(w) ≥ b1.

For the converse, suppose JeK(w) ≥ b1 and show that w ∈ L. Note that JeK(w) is representable
as a finite sum α(u1) · b0 + · · ·+ α(uk) · b0 in such a way that w = β(ui) and ui ∈ R for all i. By
assumption (2), α(uj) · b0 ≥ b1 for some j and therefore by assumption (1), uj is balanced. Since
w = β(uj), uj ∈ R and uj ∈ Dn, we obtain w ∈ L. 2

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:49

Example 7.6. Let us check that conditions of Theorem 7.5 apply to Examples 7.1 with |Γ| > 1
and 7.3 with k > 1.

1. For the nondeterministic stack theory, let us consider B ⊆ 2Γ
∗ ∼= P(Γ∗) as in Definition 6.5

(for m = 1). It is not difficult to work out that the action of R on B satisfies for every given
f : Γ∗ → 2 the following laws

e · f(u) =

{
f(ǫ) if u = ǫ

0 else,
oi · f(u) =

{
f(v) if u = γiv

0 else,
ui · f(u) = f(γiu); (7.2)

in fact, this holds because e · (−), oi · (−) and ui · (−) are the unary operations emptyB, popBi
and pushB

i , respectively, by using the definition of empty, popi and pushi from push and pop (see

Example 7.1), and by using how popB : Bn+1 → B and pushB : B → B act ensuing the definition
of the algebra structure αm on B (see Definitions 6.5, and 5.7).

We take α : A2 → R sending (i to ui,)i to oi for i = 1, 2 and b0 = b1 = {ǫ}. Condition (2) holds
because {ǫ} is an atom of the Boolean algebra P(Γ∗) (noting that + on B is union of languages
over Γ). Condition (1) means that w is balanced iff α(w) · {ǫ} ⊇ {ǫ}. This is easy to verify: on the
one hand, if w is balanced, then α(w) can be reduced to 1 by successively replacing every α((i)i) =
uioi by 1, and therefore for such w, α(w) · {ǫ} = {ǫ}; on the other hand, if w is not balanced, by
replacing α((i)i) = uioi with 1 we eventually obtain that α(w) either (i) contains a factor uioj
with i 6= j, or (ii) contains a factor oiuj , or (iii) is a nonempty product of ui’s, or (iv) is a nonempty

product of oi’s. In the cases (i)–(iii), we see that α(w) ·{ǫ} is /0 using the relations from Example 7.1
and the equations in (7.2). In the remaining case, α(w) is a (nonempty) product of the oi, and hence
α(w) · {ǫ} ⊇ {ǫ} would imply a contradiction: (eα(w)) · {ǫ} = 0 · {ǫ} = /0 ⊇ e · {ǫ} = {ǫ}.

2. For the polycyclic theory we take α : A2 → Pω(M) sending (i to {gi} and)i to {g -1
i }

for i = 1, 2 and b0 = b1 = {1}. The verification of conditions (1) and (2) here is analogous, in
particular, for (1) one readily checks that α(w) = 1 iff w is balanced.

Contrasting [Kambites 2009] we cannot replace the polycyclic monoid in Example 7.3 by a free
group and conclude by Theorem 7.5 that automata with free group memory recognize context-free
languages because the relevant construction would make an essential use of internal transitions,
which we do not allow.

As we have seen by Examples 7.1 and 7.2, for any Σ-theory we can automatically generate its
nondeterministic variant by tensoring with EPω

and this has a sensible interpretation in terms of T-
automata. One may wonder if it is possible to convert a given T-automaton to a T⊗Pω-automaton
(which is necessarily a weighted T⊗ Pω-automaton, by Proposition 6.3) preserving the semantics.
The answer turns out to be affirmative under a natural assumption on the T-algebra component B.

Let us first establish the following general result. It follows from [Bonsangue et al. 2015, Propo-
sition 5.1]; we include a proof for the convenience of the reader.

LEMMA 7.7. Let κ : T → S be a monad morphism, and let m : X → B × TXA and
m∗ : X → B × SXA be a T- and an S-automaton over X , respectively, such that

om = om∗ , αm = αm∗ · κB, κX · t
m = tm∗

(in particular this implies that B is simultaneously a T- and an S-algebra). Then the language
semantics of m and m∗ agree, i.e. JxKm = JxKm∗

for any x ∈ X .

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:50 S. Goncharov, S. Milius, A. Silva

PROOF. The proof amounts to showing commutativity of the following diagram:

X
ηT

X //

ηS

X

))

m

��

TX
κX //

m̂
♯

))

m
♯

vv♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

SX

m
♯
∗

xxqq
qq
qq
qq
qq
q

m̂
♯
∗ // BA∗

ι

��

B × (TX)A
id×κA

X // B × (SX)A
id×(m̂♯

∗)
A

// B × (BA∗

)A

The left-hand triangle commutes by the definition of m
♯, the right-hand part by the finality of BA∗

(recall from (4.1) that m̂
♯
∗ denotes the unique coalgebra morphism) and the upper left-hand triangle

since κ is a monad morphism. The upper right-hand triangle commutes by uniqueness of the final

map from TX to BA∗

as soon as we establish commutativity of the middle parallelogram.
To see the latter we will use the freeness of the T-algebra (TX, µX) (see Section 3) in the upper

left-hand corner, i.e. we shall show that all morphisms in this part are T-algebra morphisms and
that this part commutes when precomposed with ηTX . Indeed, the latter follows from the fact that the
upper left-hand triangle commutes and since clearly

m∗ =
(
X

m

−−−→ B × (TX)A
id×(κX)A

−−−−−−−−→ B × (SX)A
)
.

Now to see that all morphisms in the middle part are T-algebra morphism, recall first that the
monad morphism κ : T→ S induces a functor κ̄ from the category of S-algebras to the category of
T-algebras given on objects by (Y, t) 7→ (Y, t · κY) and being identity on morphism. Clearly, this
functor maps (B,αm∗) to (B,αm). Now let β and β∗, denote the algebraic structures on B×(TX)A

and B× (SX)A, respectively, which are componentwise given by the structures of the free algebras
(TX, µX) and by αm and αm∗ on B, respectively. Now consider the four morphisms of the middle
parallelogram of our diagram: (1) κX : TX → SX is easily seen to be a T-algebra morphism from
the free T-algebra (TX, µT

X) to the T-algebra (SX, µS
X · κSX) (since κ is a monad morphism) and

therefore (2) id×(κX)A is a T-algebra morphism from (B × (TX)A, β) to (B × (TBX)A, β∗ ·

κB×(SX)A); (3) m
♯ is by definition a T-algebra morphism and (4) m

♯
∗ is an S-algebra morphism

and hence by applying the functor κ̄ we see it is also a T-algebra morphism as desired. 2

We immediately obtain the following corollary.

COROLLARY 7.8. Let B be a T⊗Pω-algebra with structure αm∗ : (T ⊗Pω)B → B. Then B
is also a T-algebra under αm∗ · κB : TB → B where κ : T → T⊗ Pω is the left tensor injection.
Let m be any T-automaton (⋆) with αm = αm∗ · κB and form the T ⊗ Pω-automaton m∗ with
om∗ = om , tm∗ = κX · t

m and the given αm∗ . Then the semantics of m and m∗ agree; in symbols:
JxKm = JxKm∗

for every state x ∈ X .

Effectively, Corollary 7.8 states that for every T we can understand a T-automaton as a special non-
deterministic automaton, i.e. a T⊗Pω-automaton, provided that its output T-algebra B additionally
carries the structure of a commutative idempotent monoid which commutes with the operations of
T (in the sense of satisfying the tensor laws). In particular, this works well with submonads T of
the state monad over a store S and output algebras B which are subalgebras of 2S (see e.g. Exam-
ple 5.7).

8. CPS-TRANSFORMS OF T-AUTOMATA AND R.E.-LANGUAGES

Theorem 6.7 suggests that the present language semantics is unlikely to produce languages beyond
NTIME(n) under a computationally convincing choice of the components of a T-automaton (⋆).
The approach suggested by the classical formal language theory is to replace A with the set Aτ =

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:51

A∪ {τ}, where τ is a new unobservable action2, but in lieu of the formal power series BA∗

τ we use

BA∗

as the semantic domain. This new observational semantics is supposed to be obtainable from
the standard one by eliminating the unobservable actions.

We argue briefly, why the general assumptions about the structure of a T-automaton are not
sufficient to define the observational semantics. Consider the Moore automaton m : X →
B × XAτ with A = {a} and B = {b0, b1}. The underlying monad is the identity monad
and αm is the identity morphism. Let X = {x0, x1}, om = {〈x0, b0〉, 〈x1, b1〉}, tm =
{〈x0, a, x0〉, 〈x0, τ, x1〉, 〈x1, a, x1〉, 〈x1, τ, x1〉}. Removal of τ -transitions leads to a nondetermin-
istic automaton having two a-transitions from x0 to states marked with b0 and with b1 by om , which
cannot be determinized unless we assume the structure of a commutative idempotent monoid (i.e. a
Pω-algebra structure) on B. A similar argument applied to looped internal transitions shows that B
must support countable iterations of the monoid operation.

Using these assumptions on B, our idea is to use Lemma 7.7 to transform a given T-automaton m

to some S-automaton m∗ for which τ -transitions can be eliminated in a generic way. After elimi-
nating the τ -transitions we then obtain an S-automaton mv , and finally we define the observational
semantics of m as the standard language semantics of mv. Note that Corollary 7.8 does not offer a
sufficiently good candidate for m∗, because we would have to assume that B is a T ⊗ Pω-algebra,
which would rule out too many interesting instances, e.g. Examples 5.2 and 5.3. We therefore ob-
tain m∗ by a technique borrowed from higher-order programming language semantics and known
as continuation passing style (CPS) transformation [Plotkin 1975].

Let α : TB → B be a T-algebra. We denote by TB the continuation monad (see Example 3.10)

with TBX = BBX

. We define κ : T → TB by sending p ∈ TX to κX(p) = λf. (α · Tf(p)) ∈
TBX , which yields a monad morphism; in fact, it is well known that for every monad T on a cat-
egory with powers the above assignment of κ to α is part of a bijective correspondence between
Eilenberg-Moore algebras on B and monad morphisms from T to TB (see e.g. [Kock 1970, Theo-
rem 3.2]).

Construction 8.1. Given a T-automaton (⋆), let κ : T → TB be the monad morphism given
by κX(p) = λf. (αm · Tf(p)) and let

om∗ = om , tm∗ = κX · t
m , αm∗ = λt. t(id),

which yields a TB-automaton3
m∗ : X → B × (TBX)A. It is easily seen that αm∗ : TBB → B is

a TB-algebra and αm = αm∗ · κB . We call m∗ the CPS-transform of (⋆).

The following is another a corollary of Lemma 7.7.

COROLLARY 8.2. The language semantics of a T-automaton and of its CPS-transform agree;
more precisely, for every T-automaton (⋆) and a state x ∈ X , JxKm = JxKm∗

.

Corollary 8.2 implies Proposition 4.7 announced previously in Section 4.

PROOF OF PROPOSITION 4.7. If B in (⋆) is finite then, by definition, TBX is also finite. Thus,
the generalized powerset construction performed on the CPS-transform m∗ yields a Moore automa-
ton. Thus, for every x ∈ X , JxKm = JxKm

∗ is a regular formal power series. 2

We now proceed with the definition of the observational semantics. In order to do this we shall
make use of algebras for the countable multiset monad M. Its monad structure will not be needed;
however, we recall its definition for the convenience of the reader.

Remark 8.3. For the countable multiset monad M, MX consists of countable multisets on
X , i.e.

MX = {f : X → N∞ | f has countable support},

2We prefer to use τ instead of the more standard ǫ to avoid confusion with the empty word.
3We abuse terminology here since TB is not finitary (see Remark 4.4).

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:52 S. Goncharov, S. Milius, A. Silva

where N∞ = N + {∞} with the operations of addition and multiplication extended to ∞ in the
expected way. The unit of M is given by ηX(x) = δx : X → N∞ with δx(x) = 1 and δx(y) = 0
otherwise. For any map h : X →MY the Kleisli lifting h⋆ : MX →MY acts as follows:

h⋆(f)(y) =
∑

x∈X
f(x) · h(x)(y).

An M-algebra is, equivalently, a commutative monoid with infinite summation satisfying the ex-
pected laws. We call such a monoid ω-additive. For an ω-additive monoid we denote by /0 the
neutral element, by a+ b the binary sum and by

∑∞
i=1 ai the countable sum.

Definition 8.4 (ω-additive T-automata). A T-automaton (⋆) is ω-additive if B (besides being
T-algebra) is an ω-additive monoid.

It is easy to see that the ω-additive monoid structure extends from B to TBX pointwise:

LEMMA 8.5. If B is an ω-additive monoid and a T-algebra then for every set X , TBX is an
ω-additive monoid.

PROOF. This follows from the fact that B carries an Eilenberg-Moore algebra structure for the
countable multiset monad M. Equivalently, we have a monad morphism m : M → TB (see [Kock

1970, Theorem 3.2]). Thus, by forming (TBX,µTB

X ·mTBX) we obtain an Eilenberg-Moore algebra
structure for M on TBX , i.e., TBX is an ω-additive monoid. 2

The ω-additive monoid structure on TBX allows us to define for any given T-automaton over the
alphabet Aτ a TB-automaton over A. To this end, we first form the CPS-transform of the given
T-automaton and then use infinite summation to get rid of unobservable actions τ :

Construction 8.6. Given a T-automaton m : X → B × (TX)Aτ , we construct mv : X →
B × (TBX)A with αmv = αm∗ = λt. t(id) and with tmv , omv defined as

tmv (x0, a) =
∑∞

i=1
do x1 ← tm∗(x0, τ); . . . ;xi−1 ← tm∗(xi−2, τ); t

m∗(xi−1, a),

omv (x0) = om∗(x0) +
∑∞

i=1

(
do x1 ← tm∗(x0, τ); . . . ; t

m∗(xi−1, τ)
)
(om∗).

(Note that do x1 ← tm∗(x0, τ); . . . ; t
m∗(xi−1, τ) is an element of TBX = BBX

, i.e. a function
BX → B which can be applied to om∗ ∈ BX .)

Intuitively, for tmv (x0, a) we accumulate the effects underlying the τ -transitions preceding the first
a-transition; for omv (x0) we accumulate the effects along any sequence of τ -transition leading to an
accepting state detected by om∗ .

We define the observational semantics for m to be the language semantics for mv.

Definition 8.7 (Observational semantics). Given a T-automaton (⋆) over input alphabet Aτ ,
its observational semantics is defined as J−Kτ

m
= J−Kmv

.

In order to consider the observational semantics J−Kτ
m

in concrete instances of T-automata, we
need a description similar to Lemma 5.9. Before we state and prove it we make some auxiliary
observations.

Remark 8.8. Since κ : T→ TB is a monad morphism we have that for every f : X → TY :

κY (do x← p; f(x)) = do x← κX(p);κY · f(x). (8.1)

Remark 8.9. We shall need two properties of the ω-additive monoid structure on TBX .

1. Kleisli substitution distributes over sums:

do y ←
∑∞

i=1
pi; f(y) =

∑∞

i=1
do y ← pi; f(y). (8.2)

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:53

Indeed, this equation expresses that the outside of the following diagram commutes for every f :
X → TBY (here we abbreviate TB as T , and recall that M denotes the countably supported multiset
monad):

MTX
mX //

Mf⋆

��

TTX
µX

//

Tf⋆

��

TX

f⋆

��

MTY mY

// TTY µY

// TY

And this diagram clearly commutes by the naturality of the monad morphism m : M → TB , and
since f⋆ is a T-algebra morphism.

2. Similarly, sums commute with the TB-algebra structureαm∗ , i.e. the following equation holds
for every countable family of elements pi ∈ TBB:

αm∗

(∑∞

i=1
pi

)
=

∑∞

i=1
αm∗(pi); (8.3)

in other words, αm∗ : TBB → B is a morphism of ω-additive monoids. Indeed, this follows from
the commutativity of the following diagram (again we abbreviate TB by T):

MTB
mTB

//

Mαm∗

��

TTB

Tαm∗

��

µB
// TB

αm∗

��

MB mB

// TB
αm∗

// B

LEMMA 8.10. Given a T-automaton (⋆), x0 ∈ X and u ∈ A∗ then

Jx0Kτm (ǫ) = om (x0) +
∑∞

i=1
αm

(
do x1 ← tm (x0, τ); . . . ;xi ← tm (xi−1, τ); η

T

B · o
m (xi)

)

Jx0Kτm (au) =
∑∞

i=1
αm

(
do x1 ← tm (x0, τ); . . . ;xi ← tm (xi−1, a); η

T

B · JxiKτm (u)
)

PROOF. We proceed by induction over the argument w ∈ A∗ of Jx0Kτm . For w = ǫ:

Jx0Kτm (ǫ) = Jx0Kmv
(ǫ) // definition of J−Kτ

m

= omv (x0) // Lemma 5.9

= om∗(x0) +
∑∞

i=1 (do x1 ← tm∗(x0, τ); . . . ; t
m∗(xi−1, τ)) (o

m∗)

// definition of omv

= om (x0) +
∑∞

i=1 κX

(
do x1 ← tm (x0, τ); . . . ; t

m (xi−1, τ)
)
(om)

// repeated application of (8.1)

// with om∗ = om , tm∗ = κX · t
m

= om (x0) +
∑∞

i=1(α
m · Tom)

(
do x1 ← tm (x0, τ); . . . ; t

m (xi−1, τ)
)

// definition of κX

= om (x0) +
∑∞

i=1 α
m

(
do x1 ← tm (x0, τ); . . . ;xi ← tm (xi−1, τ); η

T
B · o

m (xi)
)

// property of do-notation

For the induction step we consider w = au and compute:

Jx0Kτm (au) = Jx0Kmv
(au) // definition of J−Kτ

m

= αmv
(
do y ← tmv (x0, a); η

T
B · JyKmv

(u)
)

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:54 S. Goncharov, S. Milius, A. Silva

// Lemma 5.9

= αm∗

(
do xi ←

(∑∞
i=1 do x1 ← tm∗(x0, τ); . . . ; t

m∗(xi−1, a)
)
; ηTB

B · JxiKmv
(u)

)

// definition of tmv , since αmv = αm∗ ,

// and renaming y to xi

= αm∗

(∑∞
i=1 do x1 ← tm∗(x0, τ); . . . ;xi ← tm∗(xi−1, a); η

TB

B · JxiKmv
(u)

)

// (8.2)

= αm∗

(∑∞
i=1 κB

(
do x1 ← tm∗(x0, τ); . . . ;xi ← tm∗(xi−1, a); η

T
B · JxiKmv

(u)
))

// (8.1) and since κ · ηT = ηTB

=
∑∞

i=1 α
m∗ · κB

(
do x1 ← tm∗(x0, τ); . . . ;xi ← tm∗(xi−1, a); η

T
B · JxiKmv

(u)
)

// (8.3)

=
∑∞

i=1 α
m

(
do x1 ← tm∗(x0, τ); . . . ;xi ← tm∗(xi−1, a); η

T
B · JxiKmv

(u)
)

// since αm∗ · κB = αm

=
∑∞

i=1 α
m

(
do x1 ← tm (x0, τ); . . . ;xi ← tm (xi−1, a); η

T
B · JxiKτm (u)

)

// definition of J−Kτ
m

. 2

Example 8.11. We consider two concrete instances of our observational semantics.

1. Nondeterministic stack T-automata m over Aτ , i.e. where T is the tensor product of the stack
monad and Pω, are in bijective correspondence with ordinary pushdown-automata (i.e. nondeter-
ministic ones with ǫ-transitions). In fact, a similar construction to the one performed in the proof of
Theorem 6.7 allows one to obtain for any given m , x0 ∈ X and γ0 ∈ Γ a push-down automaton
that accepts the language

{w ∈ A∗ | Jx0Kτm (w)(γ0) = ⊤}.
Conversely, every pushdown automaton M yields a nondeterministic stack T-automaton such that
the above language is the language accepted by M . It follows that the class of these languages is
precisely the class of context-free languages over A.

2. Coming back to Example 7.2 let us consider valence automata again, but now with ǫ-
transitions. Given any valence automatonA = (X,M,A, δ, q0, F) we can again assume w.l.o.g. that
its transitions are labelled with a single letter or ǫ. Then we can regardA as a T-automaton m over
Aτ for the nondeterministic monoid action theory over M . Using Lemma 8.10 it is not difficult to
prove that {w ∈ A∗ | 1 ∈ Jq0Kτm} is the language accepted by A.

We now proceed to define a class of T-automata that correspond to classical Turing machines in
the sense that the observational semantics yields precisely all recursively enumerable languages.

Definition 8.12 (Tape T-automaton). A tape T-automaton is a T-automaton (⋆) for which

— T is the tape monad over Γ (see Definition 3.17);

— B is the set of predicates over Z×ΓZ consisting of all those p ∈ 2Z×ΓZ

for each of which there is
a k such that p(i, σ) = p(i, σ′) and p(i, σ+j) = p(i+j, σ) whenever σ ≡ σ′ (mod [i−k, i+k]);

— αm : TB → B is given by evaluation; it restricts the morphism T (2S) = (2S × S)S
ev

S

−−→ 2S ,
where S = Z× ΓZ.

The argument showing that B is indeed a T-algebra is completely analogous to the one for stack
T-automata (Definition 5.7).

Tape T-automata over Aτ are essentially deterministic 2-tape Turing machines with input al-
phabet A, where the first tape is a special read-only and right-only tape holding the input word at

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:55

the beginning of a computation. Thus, we obtain that tape automata represent all the recursively
enumerable languages.

THEOREM 8.13. For every tape T-automaton m over Aτ , Γ with |Γ| ≥ 2 containing a special
blank symbol ⊠, and every state x ∈ X the following language is recursively enumerable:

{w ∈ A∗ | JxKτ
m
(w)(0, σ⊠) = ⊤},

where σ⊠ is the constant function returning ⊠. Conversely, every recursively enumerable language
can be represented in this way.

In order to prove this theorem, we will relate tape automata and a special form of Turing machines
called online Turing machines. The idea of an online Turing machine is a rather old one [Hennie
1966] and essentially amounts to equipping a standard (offline) Turing machine with an additional
input tape which can only be read in one direction and not modified. From the coalgebraic point of
view online Turing machines naturally extend finite state machines and push-down automata.

Definition 8.14 (Online Deterministic Turing Machine (ODTM)). An online deterministic Tur-
ing machine is a six-tuple M = (Q,A,Γ, δ, q0, F), where Q is a finite set of states, A is the action
(or input) alphabet, Γ is the tape alphabet (assumed to contain the special blank symbol ⊠), q0 is
the initial state, F ⊆ Q is a set of final (or accepting) states and

δ : Q× (A ∪ { τ })× Γ→ Q× Γ× { L,N,R }

is the transition function.

The difference to an ordinary TM is that transitions do not only depend on the tape contents but also
on an input in the form of an action a ∈ A given by the user from the outside during runtime of the
machine, and there are also internal transitions, i.e. where a silent action τ triggers the transition.
Hence, a configuration of an ODTM M is an element of

Q×A∗ × (Z× ΓZ)

consisting of the current state q ∈ Q the remaining input actions w ∈ A∗ and a pair (i, σ) consisting
of the current position i of the read/write head and tape content σ : Z → Γ. Computations (or
runs) are then defined in the usual way as sequences of configurations starting from the initial
configuration (q0, w, (0, σ⊠)) where w ∈ A∗ is the input word and σ⊠ denotes the constant function
on ⊠. Note that internal transitions leave the remaining input actions untouched while otherwise the
head symbol is removed from w ∈ A∗ in a configuration.

Remark 8.15. The above definition is essentially the one from [Aanderaa 1974]. A nondetermin-
istic variant of this definition has been recently employed by Baeten et al. [2011] under the name
reactive Turing machine with the aim to equip TM’s with a notion of interaction and so bridge the
gap between classical computation and concurrency theory. In particular, the standard equivalence
relation for reactive Turing machines is bisimilarity rather than language equivalence we study here.

Definition 8.16 (Language of a ODTM). Let M be an ODTM. The formal language accepted
by M is the set of words w ∈ A∗ such that there exists a computation from the initial configuration
to a configuration (q, ǫ, (n, σ)) with q ∈ F .

More informally, a word is accepted by M if there is a computation that consumes all the letters
in the input work w and leads to an accepting state. Note that due to the internal actions there may
be several accepting computations of a word. So an ODTM is only deterministic in the sense that
in every configuration there can be no two different moves consuming the same input letter. But an
internal transition can happen nondeterministically in any configuration.

That ODTM’s are an appropriate model of computations is stated by the following lemma.

LEMMA 8.17. The class of languages accepted by ODTM’s is the class of semi-decidable lan-
guages.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:56 S. Goncharov, S. Milius, A. Silva

PROOF. We show that an ordinary TM can be simulated by an ODTM and vice versa.
(a) Given an ODTM M it can be simulated by a nondeterministic TM M̄ with two tapes as

follows: the first (input) tape of M̄ stores the input word w ∈ A∗ which is processed read-only from
left to right, and the second tape of M̄ corresponds to the tape of M . The NTM M̄ simulates M
as follows: in each step M̄ nondeterministically either performs an internal action of M or reads
one symbol from the first tape (then moving the head to the right by one position on this tape). In
addition, M̄ has a special accepting halting state qf , and it can nondeterministically decide to move
to that state from every accepting state of M whenever a blank symbol is read on the first tape; this
allows M̄ to halt and accept if M is in any accepting configuration after consuming its input. It is
then clear that M̄ and M accept the same language. We conclude that the language accepted by any
ODTM is semi-decidable.

(b) Conversely, suppose we have a deterministic TM with input alphabet A. Then M can be
simulated by an ODTM M̄ . The computation of M̄ has two phases: in the first phase M̄ consumes
its entire input and writes it on its tape. During this phase no internal transitions happen. The first
phase ends as soon as M̄ performs its first internal action, which starts the second phase. In this
phase M̄ only performs internal actions in the sense that all transitions consuming an input symbol
a ∈ A lead to a non-accepting state that is never left again. At the beginning of the second phase
M̄ then moves the head to the first input symbol (if any) on its tape. It then starts a simulation
of the DTM M using internal transitions only. Whenever M halts in a (non-)accepting state, then
M̄ moves to a (non-)accepting state that it never leaves again. Again, M̄ clearly accepts the same
language as M . Thus, it follows that every semi-decidable language is accepted by an ODTM. 2

PROOF OF THEOREM 8.13. We give for a tape automaton m as in the statement of the theorem
an equivalent ODTM and vice versa.

(a) Given m , we define an ODTM M . For every x ∈ X and a ∈ A let kx,a be the minimal natural
number as in Definition 3.17 for

tm (x, a) = 〈r, z, t〉 ∈ TX.

Analogously, let lx be the minimal natural number according to the second clause of Definition 8.12
for

om (x) : Z× ΓZ → 2.

The state set of M consists of the states X of m times a finite memory that can store a finite portion
of M ’s tape and is of the form

{−n, . . . , 0, . . . , n} × Γ2n+1, where n = max{lx,max{kx,a | a ∈ A}}.

We say that a memory content (0, σ̄) restricts (i, σ) ∈ Z × ΓZ if σ̄(j) = σ(i + j) for all j =
−n, . . . , 0, . . . , n. The final states of M are those states x ∈ X together with memory contents
(0, σ̄) that restrict (i, σ) with om (x)(i, σ) = ⊤; that this is well-defined follows from Definition 3.17.
We now describe informally how M simulates m . Since m can access several symbols from the tape
at once we need to simulate transitions of m by several steps of M . These steps will make sure that
the contents of M ’s finite memory always restricts its tape contents. Hence, a transition of m given
by tm (x, a)(i, σ) = (x′, i′, σ′) is simulated by the following steps of M (where M starts in state x
with the memory contents (0, σ̄) restricting M ’s tape content (i, σ)):

(1) M performs a transition that consumes the input letter a and changes the state to x′ and the
memory content to the appropriate value (j, σ̄′) that reflects the values of i′ and σ′, i.e. j = i′− i
and σ̄′(ℓ) = σ′(i+ ℓ) for every ℓ = −n, . . . , 0, . . . , n (this is possible by Definition 3.17);

(2) now M replaces the 2n+1 tape cells around the current position of the read/write head according
to σ̄′ from the memory content and then the read/write head’s position is changed according to j
(this uses a finite number of additional auxiliary states);

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

Towards a Uniform Theory of Effectful State Machines 00:57

(3) finally, the memory is overwritten with the 2n + 1 tape symbols around the new position of
the read/write head so that the computation of the m-transition ends in state x′ with a memory
content (0, σ̄) restricting the new tape content (i′, σ′).

Note that all the above points except (1) are realized by internal transitions of M .
Now we need to prove that M accepts a word w ∈ A from the initial state x0 (with memory

content (0, σ⊠) iff Jx0Kτm (w)(0, σ⊠) = ⊤. We will prove more generally that for every state x0,
we have Jx0Kτm (w)(z0, σ0) = ⊤ iff there exists an accepting M -computation from state x0 starting
with tape content (z0, σ0).

Before we proceed with the proof recall that the T-algebra structure αm : TB → B is given by
evaluation. It follows that for every map f : X → TB the uncurrying of αm · f : X → B ⊆ 2S is

X × S
f ′

−−−→ B × S ⊆ 2S × S
ev
−−−→ 2,

where S = Z× ΓZ and ev is the evaluation map.
Now we prove the desired statement by induction on w. For the base case observe that, by

Lemma 8.10, Jx0Kτm (ǫ)(z0, σ0) = ⊤ iff om (x0)(i0, σ0) = ⊤ or there exists an i ≥ 1 such that

αm

(
do x1 ← tm (x0, τ); . . . ;xi ← tm (xi−1, τ); η

T
B · o

m (xi)
)
(z0, σ0) = ⊤.

In the first case x0 is a final state of M and so the empty (0-step) computation of M is an accepting
M -computation of ǫ. In the second case, let i be such that the above equation holds. Equivalently,
the following morphism

X × S −→ · · · −→ X × S
om×S
−−−−−→ B × S ⊆ 2S × S

ev
−−−→ 2,

where the unlabelled arrows form the i-fold composition of the uncurrying of tm (−, τ) : X → (X×
S)S , maps (z0, σ0) to 1. So equivalently, we have x1, . . . , xi and tape configurations (zk, σk), 1 ≤
k ≤ i, such that tm (xk, τ)(zk, σk) = (xk+1, zk+1, σk+1) for all 0 ≤ k < i, and om (xi)(zi, σi) = ⊤.
Equivalently, we have an M -computation that performs steps (1)–(3) above i times (simulating τ -
steps of m) and ends in the accepting state xi with tape content (zi, σi).

In the induction step of our proof let w = au. By Lemma 8.10, we have Jx0Kτm (au)(z0, σ0) = ⊤
iff there exists an i ≥ 1 such that

αm
(
do x1 ← tm (x0, τ); . . . ;xi ← tm (xi−1, a); η

T

B · JxiKτm (u)
)
(z0, σ0) = ⊤.

By a similar argument as in the base case, this is equivalent to the existence of states x1, . . . , xi

and tape content (zk, σk), 1 ≤ k ≤ i, such that tm (xk, τ)(zk, σk) = (xk+1, zk+1, σk+1) for all
0 ≤ k < i−1, tm (xi−1, a)(zi−1, σi−1) = (xi, zi, σi) and JxiKτm (u)(zi, σi) = ⊤. The last conditions
corresponds, by induction hypothesis, bijectively to an accepting M -computation from state xi

with initial tape content (zi, σi). And the rest corresponds bijectively to an M -computation that
consists of i-iterations of steps (1)–(3) simulating i − 1 many τ -steps and one a-step of the given
tape automaton m starting in state x0 with tape content (z0, σ0) and ending in state xi with tape
content (zi, σi). Putting these two parts together, we obtain the desired bijective correspondence to
an accepting M -computation from state x0 with initial tape content (z0, σ0).

(b) Conversely, given an ODTM M = (Q,A,Γ, δ, q0, F) we construct an equivalent tape automa-
ton m . We take Q as the set of states and we let

om (q)(z, σ) = ⊤ ⇐⇒ q ∈ F and tm (q, a)(z, σ) = (q′, z′, σ′),

where q′ and (z′, σ′) are the state and the tape content, respectively, of M after performing an a-
transition in state q with tape content (z, σ). For internal transitions, tm (q, τ) is defined analogously.

We need to prove that M accepts a word w ∈ A iff Jq0Kτm (w)(0, σ⊠) = ⊤. More generally, one
proves that for every state q0 and tape content (z0, σ0) of M one has Jq0Kτm (w)(z0, σ0) = 1 iff there
exists an accepting M -computation from state q0 with initial tape content (z0, σ0). This is proved
by induction on w once again. The details are similar (but slightly easier) than in part (a) of our
proof, and so we leave them as an easy exercise for the reader. 2

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:58 S. Goncharov, S. Milius, A. Silva

9. CONCLUSIONS AND FUTURE WORK

In the present paper, we have presented the first steps towards a uniform theory of effectful state
machines combining Moore automata with computational monads. We have given a coalgebraic
account of several types of state machines with effects (such as manipulation of a store, their ac-
cepted languages and syntactic expressions to specify them). We have presented several results
of our theory including a generic Kleene-style theorem (Theorem 4.13) and one-direction of a
Chomsky-Schützenberger-style theorem (Theorem 7.5). We have also given the first treatment of
Turing machines in a coalgebraic setting: the observational language semantics of tape automata
yields precisely the recursively enumerable languages.

There are several possible directions for future work. A converse to Theorem 7.5 is of interest.
In addition, we plan to derive a sound calculus of reactive expressions extending [Bonsangue et al.
2013] and explore the boundaries for completeness. Such a calculus will depend on the monad T

and its algebra B; in fact, while currently we only need the signature Σ and the algebra B for
our results, the axioms of the theory presenting T will become laws of the calculus. Note that
completeness is only possible for specific choices of T and B, for it follows from Corollary 6.8 that
for the nondeterministic stack theory and B from Definition 6.5 a finite complete axiomatization is
not possible.

Another interesting point is to capture further language and complexity classes, such as the
context-sensitive languages using T-automata. Capturing various classes of machines under the
umbrella of coalgebra will result in standard tools such as bisimulation proof methods becoming
available for those classes of machines and their language semantics. Hence, further investigations
into such proof principles are of interest.

Acknowledgements. We thank the anonymous reviewers for their very careful reading of our
manuscript and for their suggestions to improve the presentation.

REFERENCES

Stål O. Aanderaa. 1974. On k-tape versus (k − 1)-tape real time computation. Complexity of Computation 7 (1974), 75–96.

Jiřı́ Adámek, Horst Herrlich, and George Strecker. 1990. Abstract and concrete categories. John Wiley & Sons Inc., New
York. xiv+482 pages.

Jiřı́ Adámek, Stefan Milius, and Jiřı́ Velebil. 2006. Iterative Algebras at Work. Math. Structures Comput. Sci. 16, 6 (2006),
1085–1131.

Jos Baeten, Bas Luttik, and Paul Tilburg. 2011. Reactive Turing Machines. In FCT’11, Olaf Owe, Martin Steffen, and
JanArne Telle (Eds.). LNCS, Vol. 6914. Springer-Verlag, 348–359.

Falk Bartels. 2004. On generalized coinduction and probabilistic specification formats. Ph.D. Dissertation. Vrije Universiteit
Amsterdam.

Marcello M. Bonsangue, Helle Hvid Hansen, Alexander Kurz, and Jurriaan Rot. 2015. Presenting Distributive Laws. Log.

Methods Comput. Sci. 11, 3:2 (2015), 23 pp.

Marcello M. Bonsangue, Stefan Milius, and Alexandra Silva. 2013. Sound and Complete Axiomatizations of Coalgebraic
Language Equivalence. ACM Trans. Comput. Log. 14, 1, Article 7 (2013), 52 pages.

Marcello M. Bonsangue, Jan J. M. M. Rutten, and Joost Winter. 2012. Defining Context-Free Power Series Coalgebraically.
In CALCO 2012. 20–39.

Ronavld V. Book. 1975. On the Chomsky-Schützenberger Theorem. Technical Report 33. Dept. of Computer Science, Yale
University.

Ronald V. Book and Sheila A. Greibach. 1970. Quasi-Realtime Languages. Math. Systems Theory 4, 2 (1970), 97–111.

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (1964), 481–494.

Dion Coumans and Bart Jacobs. 2013. Scalars, monads, and categories. In Quantum physics and linguistics. A compositional,

diagrammatic discourse., Chris Heunen; Mehrnoosh Sadrzadeh and Edward Grefenstette (Eds.). Oxford University
Press, 184–216.

Bruno Courcelle. 1983. Fundamental properties of infinite trees. Theor. Comput. Sci. 25, 2 (1983), 95 – 169.

Fredrik Dahlqvist and Renato Neves. 2017. Program semantics as Kleisli representations. (2017). preprint; available at
https://fredrikdahlqvist.files.wordpress.com/2015/08/dahlqvist neves1.pdf.

M. Droste, W. Kuich, and H. Vogler (Eds.). 2009. Handbook of weighted automata. Springer.

Manfred Droste, Werner Kuich, and Heiko Vogler (Eds.). 2009. Handbook of Weighted Automata. Springer.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

https://fredrikdahlqvist.files.wordpress.com/2015/08/dahlqvist_neves1.pdf

Towards a Uniform Theory of Effectful State Machines 00:59

Samuel Eilenberg. 1974. Automata, Languages, and Machines. Pure and Applied Mathematics, Vol. A. Academic Press.

Marcelo P. Fiore, Eugenio Moggi, and Davide Sangiorgi. 2002. A fully abstract model for the π-calculus. Inf. Comput. 179,
1 (2002), 76–117.

Peter Freyd. 1966. Algebra valued functors in general and tensor products in particular. Colloq. Math. 14 (1966), 89–106.

Seymour Ginsburg and Michael A. Harrison. 1968. One-way Nondeterministic Real-time List-storage Languages. J. ACM

15, 3 (1968), 428–446.

Joseph A. Goguen, James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. 1977. Initial Algebra Semantics and Continuous
Algebras. J. ACM 24, 1 (1977), 68–95.

Sergey Goncharov. 2013. Trace Semantics via Generic Observations. In CALCO 2013 (LNCS), Reiko Heckel and Stefan
Milius (Eds.), Vol. 8089. 158–174.

Sergey Goncharov, Stefan Milius, and Alexandra Silva. 2014. Towards a Coalgebraic Chomsky Hierarchy. In TCS’14, Vol.
8705. Springer, 265–280.

Michael A. Harrison and Ivan M. Havel. 1972. On a Family of Deterministic Grammars. In In Proc. ICALP 1972. 413–441.

Juris Hartmanis. 1967. Context-free languages and Turing machine computations. In Proc. Sympos. Appl. Math. 19. 42–51.

Frederick C. Hennie. 1966. On-Line Turing Machine Computations. IEEE Trans. on Electronic Computers EC-15, 1 (1966),
35–44.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2001. Introduction to Automata Theory, Languages, and Compu-

tation (2nd ed.). Addison-Wesley.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to Automata Theory, Languages, and Compu-

tation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Martin Hyland, Paul Blain Levy, Gordon D. Plotkin, and John Power. 2007. Combining algebraic effects with continuations.
Theor. Comput. Sci. 375, 1-3 (2007), 20–40.

Bart Jacobs. 2006. A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages. In Algebra, Mean-

ing, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday (LNCS), K. Futat-
sugi, J.-P. Jouannaud, and J. Meseguer (Eds.), Vol. 4060. 375–404.

Bart Jacobs, Alexandra Silva, and Ana Sokolova. 2012. Trace Semantics via Determinization. In CMCS’12. LNCS, Vol.
7399. Springer, 109–129.

Mark Kambites. 2009. Formal Languages and Groups as Memory. Communications in Algebra 37, 1 (2009), 193–208.

Bartek Klin. 2011. Bialgebras for structural operational semantics: An introduction. Theor. Comput. Sci. 412, 38 (2011),
5043–5069.

Anders Kock. 1970. On Double Dualization Monads. Math. Scand. 27 (1970), 151–165.

Anders Kock. 1972. Strong Functors and Monoidal Monads. Arch. der Mathematik 23, 1 (1972), 113–120.

Mark V. Lawson. 1999. Inverse Semigroups: The Theory of Partial Symmetries. World Scientific Publishing Company.

William Lawvere. 1963. Functorial Semantics of Algebraic Theories. Proc. Natl. Acad. Sci. USA 50, 5 (1963), 869–872.

Ming Li. 1985. Simulating two pushdown stores by one tape in O(n1.5
√
logn) time. In Foundations of Computer Science,

1985., 26th Annual Symposium on. 56–64.

Saunders MacLane. 1998. Categories for the working mathematician (2nd ed.). Springer.

Stefan Milius. 2010. A Sound and Complete Calculus for finite Stream Circuits. In Proc. LICS 2010. IEEE Computer Society,
449–458.

Stefan Milius, Dirk Pattinson, and Thorsten Wißmann. 2016. A New Foundation for Finitary Corecursion: The Locally
Finite Fixpoint and its Properties. In Proc. FoSSaCS 2016 (LNCS), Bart Jacobs and Christof Löding (Eds.), Vol. 9634.
Springer, 107–125.

Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93 (1991), 55–92.

Robert Myers. 2013. Rational Coalgebraic Machines in Varieties: Languages, Completeness and Automatic Proofs. Ph.D.
Dissertation. Imperial College London.

Alexander Okhotin. 2012. Non-erasing Variants of the Chomsky–Schützenberger Theorem. In Developments in Language

Theory, Hsu-Chun Yen and OscarH. Ibarra (Eds.). LNCS, Vol. 7410. Springer, 121–129.

Dirk Pattinson and Lutz Schröder. 2016. Program equivalence is coinductive. In Proc. LICS 2016. IEEE Computer Society.

Simon Peyton Jones (Ed.). 2003. The Haskell 98 Language and Libraries: The Revised Report. Vol. 13. 0–255 pages.

Gordon Plotkin and John Power. 2002. Notions of Computation Determine Monads. In FoSSaCS’02 (LNCS), Vol. 2303.
Springer, 342–356.

Gordon Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Appl. Cat. Struct. 11 (2003), 69–94.

Gordon D. Plotkin. 1975. Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci. 1 (1975), 125–159.

John Power and Olha Shkaravska. 2004. From Comodels to Coalgebras: State and Arrays. In CMCS’04 (ENTCS), Vol. 106.
297–314.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

00:60 S. Goncharov, S. Milius, A. Silva

Michael O. Rabin. 1963. Probabilistic Automata. Information and Control 6, 3 (1963), 230–245.

M. O. Rabin and D. Scott. 1959. Finite Automata and Their Decision Problems. IBM J. Res. Dev. 3, 2 (April 1959), 114–125.

Elaine Render and Mark Kambites. 2009. Rational subsets of polycyclic monoids and valence automata. Information and

Computation 207, 11 (2009), 1329 – 1339.

Grzegorz Rozenberg and Arto Salomaa (Eds.). 1997. Handbook of formal languages, vol. 1: Word, Language, Grammar.
Springer-Verlag New York, Inc.

Jan J. M. M. Rutten. 2000. Universal Coalgebra: A Theory of Systems. Theor. Comput. Sci. 249 (2000), 3–80.

Jan J. M. M. Rutten. 2003. Behavioural Differential Equations: A Coinductive Calculus of Streams, Automata, and Power
Series. Theor. Comput. Sci. 308, 1-3 (2003), 1–53.

Jacques Sakarovitch. 2009. Elements of Automata Theory. Cambridge University Press.

Roberto Segala. 1995. Modelling and Verification of Randomized Distributed Real-Time Systems. Ph.D. Dissertation. Mas-
sachusetts Institute of Technology.

Roberto Segala and Nancy A. Lynch. 1995. Probabilistic simulations for probabilistic processes. Nordic Journal of Comput-

ing 2, 2 (1995), 250–273.

Alexandra Silva. 2010. Kleene coalgebra. Ph.D. Dissertation. Radboud Univ. Nijmegen.

Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rutten. 2013. Generalizing determinization from automata
to coalgebras. Log. Methods Comput. Sci. 9, 1:9 (2013), 27 pp.

Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. 2011. Quantitative Kleene Coalgebras.
Inform. and Comput. 209, 5 (2011), 822–849.

Alexandra Silva, Marcello M. Bonsangue, and Jan J. M. M. Rutten. 2010. Non-deterministic Kleene coalgebras. Log. Meth-

ods Comput. Sci. 6, 3:23 (2010), 39 pp.

Don Syme, Adam Granicz, and Antonio Cisternino. 2007. Expert F#. Apress.

Terese. 2003. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, Vol. 55. Cambridge University
Press.

Daniele Turi and Gordon D. Plotkin. 1997. Towards a mathematical operational semantics. In Proc. LICS 1997. 280–291.

Daniele Varacca and Glynn Winskel. 2006. Distributing probability over non-determinism. Math. Struct. Comput. Sci. 16
(2006), 87–113.

Joost Winter. 2014. Coalgebraic Characterizations of Automata-Theoretic Classes. Ph.D. Dissertation. Radboud University
Nijmegen.

Joost Winter, Marcello M. Bonsangue, and Jan J. M. M. Rutten. 2013. Coalgebraic Characterizations of Context-Free Lan-
guages. Log. Methods Comput. Sci. 9, 3:14 (2013), 39 pp.

Georg Zetzsche. 2016. Monoids as Storage Mechanisms. PhD thesis.

ACM Transactions on Computational Logic, Vol. 00, No. 00, Article 00, Publication date: 2018.

	1 Introduction
	2 Deterministic Moore Automata, Coalgebraicaly
	3 Monads and Sigma-theories
	3.1 The Stack Monad
	3.2 The Tape Monad

	4 Reactive T-algebras and T-automata
	5 T-automata: Examples
	5.1 Stack T-automata

	6 Monad Tensors for Combining Store and Nondeterminism
	7 Context-free Languages and Valence Automata
	8 CPS-transforms of T-automata and r.e.-languages
	9 Conclusions and Future Work

