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Abstract
In this paper we share several experiments trying to automat-
ically translate informal mathematics into formal mathemat-
ics. In our context informal mathematics refers to human-
written mathematical sentences in the LaTeX format; and for-
mal mathematics refers to statements in the Mizar language.
We conducted our experiments against three established
neural network-based machine translation models that are
known to deliver competitive results on translating between
natural languages. To train these models we also prepared
four informal-to-formal datasets. We compare and analyze
our results according to whether the model is supervised
or unsupervised. In order to augment the data available for
auto-formalization and improve the results, we develop a
custom type-elaboration mechanism and integrate it in the
supervised translation.

CCS Concepts • Theory of computation → Logic and
verification; •Computingmethodologies→Neural net-
works; • Applied computing → Language translation.

Keywords Automating Formalization, Proof Assistants, Neu-
ral Machine Translation, Mizar, Machine Learning

ACM Reference Format:
Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and Josef Urban.
2020. Exploration of Neural Machine Translation in Autoformal-
ization of Mathematics in Mizar. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CPP ’20, January 20–21, 2020, New Orleans, LA, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7097-4/20/01.
https://doi.org/10.1145/3372885.3373827

(CPP ’20), January 20–21, 2020, New Orleans, LA, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3372885.3373827

1 Introduction
Formalization of all existing mathematics from textbooks
and literature has been a long-term dream for researchers
in interactive theorem proving (ITP) [2]. For decades we
have witnessed the growth of many ITP proof assistant li-
braries, some of which can now cover quite a proportion
of mathematics. However, despite such growth, at the cur-
rent stage formalizations are still done manually and by a
small community of domain experts. This makes the speed
of formalization much slower than the speed of increase of
mathematics. In order to work toward the vision of formal-
izing all existing mathematics, we need to figure out ways
to automate the formalization process or parts of it. We coin
this research effort as autoformalization.

Autoformalization is generally considered as a very chal-
lenging (or even impossible) task. In addition to all the tech-
nical issues facing the ITP community, an autoformalization
pipeline needs to capture the human thinking process that
enables translation from informal mathematics texts into
formal pieces of code in a proof assistant. Therefore, some
people argue that implementing such an autoformalization
pipeline would amount to implementing a program that is
capable of achieving sophisticated natural language under-
standing and mathematical reasoning. We believe that the
above holistic view can be simplified if we first approach
the problem by just considering it as a language translation
problem, i.e., given an informal mathematical sentence, we
translate it into a formal sentence that has the potential to
be further formalized into a proof assistant. If such a transla-
tion tool were available, we would be able to preprocess the
vast mathematical materials and come up with their formal
versions that can be used for later steps of formalization.

By simplifying and considering formalization as a lan-
guage translation problem, we can employ state-of-the-art
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machine translation tools and adapt them to our purpose.
Currently, the best machine translation models are all based
on neural networks [13]. As we are still in the exploration
phase, in this paper we will not cover detailed engineering
aspects of implementing neural network models but be satis-
fied with a high-level understanding of them, which we will
introduce in Section 3. To simplify our engineering effort we
will use three established neural machine translation models:

1) The neural translationmodel (NMT) by Luong et al. [31]
is a well documentedmodel developed at Google based on the
Tensorflow [1] framework. It is an encoder-decoder architec-
ture with a flexible range of configurable hyper-parameters.
The default configuration is a two-layer recurrent neural
network with LSTM cells [23]. Wang et al. [49] have con-
ducted extensive experiments with this model in particular
with hyper-parameter configurations suitable for autofor-
malization. In this paper we extend the NMT with a type
elaboration mechanism.
2) The unsupervised translation models (UNMT) based

on Lample et al. [30] and Artetxe et al. [3] attempt to find a
mapping between two languages without any initial align-
ment data. Both models are implemented in the PyTorch [35]
framework. As both models share the same idea of trans-
forming an unsupervised learning problem into a series of
supervised learning problems, we only perform experiments
with the first one, training it with with non-aligned auto-
formalization data. UNMT can be configured to use both
the NMT architecture as in 1) or the transformer architec-
ture [47]. We will illustrate both ideas in Section 3.
3) Lample et al.’s [29] cross-lingual pretraining model

(XLM) is a multi-task model. We only focus on its trans-
lation capability and treat it as an improved version of the
UNMT model. In UNMT a technique called word2vec [33]
is used to obtain vector representation of word tokens. This
vector representation is kept fixed during the whole train-
ing and evaluation process. In XLM, a new technique by
Devlin at al. [18] called pretraining is adapted to directly
obtain initial vector representations at both sentence level
and word token level. From these initial representations un-
supervised learning can be performed to fine-tune the model.
Pretraining has been shown by the natural language pro-
cessing (NLP) community to provide better results in many
experimental benchmarks. In this paper we will also see its
improvement on our informal-to-formal datasets comparing
to the original UNMT model.
The above models require training and testing data in

the form of collection of sentences, i.e., a text corpus. For
the translation task we need a source corpus and a target
corpus (in our case an informal mathematics corpus and
a formal mathematics corpus). Depending on whether the
sentences in both corpora are aligned or not, we can employ
the supervised model as in 1) or the unsupervised models as
in 2) or 3). To further clarify our research objective, in this
paper we regard informal mathematics corpus as sentences

in the LaTeX format, and formal mathematics corpus as
statements in the Mizar language. We prepared four datasets
to test the above models. The first three are LaTeX — Mizar
corpora with the informal part in increasing corpus size
and resemblance to real natural language, while the last one
corresponds to an ATP translation:

1. Synthetic LaTeX — Mizar dataset;
2. ProofWiki — Mizar topology dataset;
3. ProofWiki — Mizar full dataset;
4. Mizar — TPTP dataset.
In Section 2 we explain our decision to use Mizar as the

formal corpus and share with the reader its ensuing strengths
and weaknesses. We also give a detailed account of the four
datasets, explaining how they are prepared and giving a few
examples.
In Section 3 we first briefly explain the background of

neural machine translation and cover works that are related
to the three models we used. Then we give a high-level
introduction to the three models to the point where we can
apply them to our datasets.

In Section 4 we show our preliminary experimental results
for training the translation models with our datasets. We
evaluate the translation quality by several metrics: the BLEU
rate and perplexity provided by the models, the distribution
of edit distances, as well as visual comparison. Based on
these we try to analyze their performance and point out the
limitations of our current experiments.

In Section 5 a separate experiment is performed that incor-
porates a type elaboration mechanism with the supervised
NMT model. We introduce our motivation for this experi-
ment and then describe the type elaboration algorithm on
pattern formulas.

There are few related works to autoformalization of math-
ematics.We discuss them in Section 6 and conclude our paper
in Section 7.

2 Informal-To-Formal Datasets
The choice of LaTeX sentences as informal corpus is justified
by the fact that most of the mathematics literature nowadays
are written in this format. The choice of Mizar statements
as formal corpus needs more explanation.
First of all, as our objective is to leverage data-driven

machine learning models, our chosen proof assistant must
already have a large database of mathematical knowledge
from which we can prepare a formal corpus. Typical natural
language corpus consists of millions of lines of sentences.
By comparison, none of the existing proof assistants can
provide a corpus of this size. Among all proof assistants,
Mizar has more than 55 thousand theorem statements and
more than 3 million lines of code in its Mizar Mathematical
Library (MML) [6]. This is the largest formal library that
the ITP community can provide that has a comparable size
to a natural language corpus. The only contender is the
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Isabelle library and its Archive of Formal Proofs [9], which
has more formalized computer science knowledge, but less
mathematics that can be overlayed with LaTeX texts. It is
mainly because of the library size that we chose Mizar as
our formal language.

Secondly, although it is still early to discuss foundational
issues, we believe that the formal mathematics we are consid-
ering needs to be built on a formal theory that is capable to
conveniently describe all contemporary mathematics. Indeed
there are areas of mathematics (e.g., certain branches of set
theory) where one can always formulate a statement that can-
not be described in a fixed semantics, but for the purpose of
formalizing mainstream mathematics the underlying formal
theory needs to be at least able to describe large categorical
notions since they are now pervasive in many areas of math-
ematics. This rules out several HOL-based systems, as from
a denotational semantics point-of-view all non-polymorphic
types are interpreted as members of a single fixed universe
whose existence can be proved from ZFC, so the theory of
HOL is weaker than the theory of ZFC [21], and ZFC is not
enough for describing large categories without introducing
the notion of class. On the other hand, Mizar is based on
Tarski-Grothendieck set theory. The existence of universes
is guaranteed by the Tarski A axiom [42], therefore there are
no major issues in describing large categories.

There are also minor reasons that contributed to our deci-
sion to use Mizar: We want our formal language to be human
readable so it can be easier for us to evaluate translation qual-
ity; We want to minimize unicode processing and the MML
is ASCII-based; We also want the proof assistant library not
to have a drastic syntactic difference between the theory
language and its meta-language so that we can extract the
maximum amount of information to formulate our corpus.
The above reasons for choosing Mizar do not mean that

we think Mizar is better than other proof assistants. What
we want to claim is that we think Mizar is currently the
most expedient for us to test the effectiveness of neural ma-
chine translation models. We also do not claim that Mizar
will be the formal language in a potential auto-formalization
pipeline. Except the size of MML, all other reasons for choos-
ing Mizar are simple and speculative. In fact, by choosing a
proof assistant not based on type theory, we lose the oppor-
tunity to easily use automation later on to possibly further
improve the quality of translation, which is why in Section 5
we need to use a different Mizar — TPTP dataset in order to
test our type elaboration mechanism for data augmentation
in the supervised learning setting.

2.1 The Synthetic LaTeX — Mizar Dataset
By using existing tools it is possible to extract logical infor-
mation from the MML. Urban [43, 46] proposed a toolchain
that can translate the MML into first-order proof obligations
in the TPTP format [39]. These proof obligations can then
be used by resolution-based first-order automated theorem

provers (ATP). The Mizar language is not purely first-order,
its ability to form schemes of theorems as well as its soft-
typing mechanism in formulation of statements make it pos-
sible to extract higher-order information from theMML. This
was verified by Brown et al. [12] and the translated higher-
order TPTP proof obligations were subsequently tested by a
resolution-based higher-order ATP [11].

However, to prepare a LaTeX-to-Mizar dataset, techniques
and experience gained from previous efforts cannot be di-
rectly applied. Although there are abundant mathematics
literature in the LaTeX format that are freely available on
the internet, parsing natural language to obtain logical in-
formation is known to be difficult. In the NLP community,
preparing aligned data usually requires intensive manual
labor, iterative data cleansing and huge computing resources.
As a result, at the initial phase of our exploration it would be
too costly for us if we went along this direction of directly
facing the massive data.
To temporarily circumvent this problem, a possible ap-

proach is to generate informal sentences directly from the
formal sentences we already have. Such an informalization
approach has been adopted by Kaliszyk et al. [26, 27] to
obtain aligned informal-to-formal corpora from the formal
proof of the Kepler conjecture [22] in HOL Light and the
MML. In those works informal corpora were made by merg-
ing overloaded symbols, deleting symbol prefixes, removing
necessary parentheses, etc. However, this approach can only
generate ambiguated informal sentences from formal sen-
tences and they are not in the LaTeX format.

Table 1. The synthetic LaTeX — Mizar dataset

Total sentence pairs 1056478
Unique sentence pairs 605232
Shortest Mizar sentence 3 tokens
Shortest LaTeX sentence 3 tokens
Longest Mizar sentence 1526 tokens
Longest LaTeX sentence 19012 tokens

Fortunately, over the last decades the Mizar group has
developed a tool that can be adapted to our purpose: To facil-
itate the publishing of Mizar’s journal Formalized Mathemat-
ics, Bancerek et al. [5, 7] developed a tool that can translate
theorems and top-level proof statements from a Mizar arti-
cle into artificial LaTeX sentences. This tool first specifies
translation patterns for all the Mizar constructors (e.g. func-
tors, predicates, attributes, modes and structures) that are
involved in that Mizar article. Then it uses a combination of
algorithms to handle the use of parenthesis, the regrouping
of conjunctive formulas, grammatical correctness as well as
other typesetting issues. Finally, necessary style macros are
added to polish the output rendering.
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Comparing to other ITP-journals such as Isabelle’sArchive
of Formal Proofs, Mizar’s Formalized Mathematics blurs the
distinction between side remarks and formal code. The ar-
tificial LaTeX sentences are quite readable and the whole
translated article has an outlook that is similar to a human-
written article. We find these features appealing and spot
the significance of Bancerek’s tool for generating informal-
to-formal corpora.
Bancerek’s original tool could only translate Mizar ab-

stracts, i.e., top-level theorem statements, definitions and
registrations. In 2018, based on the early work of Urban [44],
the Mizar group extended Bancerek’s translation tool and ap-
plied it to all theMizar articles [8]. To generate aligned LaTeX
— Mizar sentences, this new tool keeps track of the offsets of
Mizar statements throughout the intermediate steps, so the
final LaTeX output can be traced back to its corresponding
Mizar statement. We use this new tool to generate an aligned
LaTeX — Mizar corpus of one million sentence pairs. Since
the LaTeX corpus is artificially generated from Mizar corpus
instead of collected from human-written LaTeX sentences,
we call this dataset the synthetic dataset. Some statistics of
this dataset are presented in Table 1 and example sentences
are presented in Table 2.
As stated previously, obtaining aligned informal corpus

from formal corpus algorithmically is only a temporary
workaround to the data collection problem. Since all the
translation techniques involved are deterministic, although
the generated LaTeX sentences are grammatically correct,
they usually look artificial and vocabulary used is smaller
than in human-written sentences. This weakens the general-
ization capability of a translation model trained by only the
synthetic dataset.

2.2 The ProofWiki — Mizar Datasets
Translation models based on supervised learning require
high-quality aligned corpora between source and target lan-
guages. Unsupervised learning claims to get rid of aligned
corpora, so that only monolingual corpora are needed for
training. However, at least for the two unsupervised mod-
els we are considering, a smaller aligned corpus for model
validation and testing is still required. In addition, to maxi-
mize the translation quality, both languages from the aligned
corpus need to come from the same topic realm where the
monolingual corpora are prepared.

In UNMT, the authors used English and French news arti-
cles in WMT’14 dataset as monolingual corpora, and parallel
English-to-French news translations in WMT’17 dataset for
model evaluation. Since both are news articles, the linguis-
tic variety and the vocabulary used are at the same range.
To adapt this model for our purpose, we also need to have
sizable LaTeX and Mizar corpora with a subset of the two
corpora aligned. A simple solution to this requirement is to
just use the previous synthetic dataset, keeping the align-
ment of a subset of it and forgetting the alignment of the

rest. However, in order for us to cope with the limitations of
using the synthetic dataset and to explore the capability of
the unsupervised models, we also manually prepared other
datasets.
The new ProofWiki — Mizar datasets were prepared by

collecting sentences fromMML and proofwiki.org. ProofWiki
is a website that contains more than 26K theorems with de-
tailed human-written proofs. These proofs have been col-
lectively contributed by many users over the years and are
written inMathJax, a browser-adapted LaTeX format. During
2015–2016, Grzegorz Bancerek embarked on an individual
project to align ProofWiki theorems with Mizar theorems.
Bancerek manually aligned 470 theorems, more specifically
theorem statements that appear in both MML and ProofWiki.
All the aligned theorems were in point-set topology and lat-
tice theory.

Thanks to this effort we are able to prepare a dataset sim-
ilar to the English-to-French dataset used in UNMT. This
ProofWiki — Mizar dataset contains two monolingual cor-
pora, one in the Mizar language and the other in ProofWiki’s
LaTeX. These two monolingual corpora need not be aligned.
The ProofWiki —Mizar dataset also contains a smaller aligned
corpus consisting of theorem statements extracted from
Bancerek’s manual alignment. Since Bancerek’s alignment
only focuses on topology and lattice theory, we also picked
sentences from the monolingual corpora that are from topol-
ogy and lattice theory and form a dataset with the same
aligned corpus but two smaller monolingual corpora. Some
statistics of these datasets are presented in Table 3 and sen-
tence examples are given in Table 5.

2.3 The Mizar — TPTP Dataset
As mentioned earlier, a serious disadvantage of using the
Mizar language as our formal language is that we lose the
ability to further improve the translation quality by harness-
ing Mizar’s own toolchain. Adding to the fact that the Mizar
engine is closed-source, Mizar texts are notoriously hard to
compile without a proper environment declaration, let alone
a single Mizar statement without any external reference. A
correct environment declaration requires a conceptual un-
derstanding of the internals of the Mizar engine together
with a lot of domain expertise. This would be too challenging
for us at the current stage if we want to automate the lookup
of the environment declaratives.
To bypass this difficulty while fully exploring the capa-

bility of neural machine translation models, we design a
different experiment in which the supervised NMT model
takes Mizar statements as input and outputs TPTP formulas.
These TPTP formulas, after preprocessing, can be fed into a
custom type elaboration tool to determine the correctness
of a Mizar statement. The aligned Mizar — TPTP dataset can
be generated with the MPTP toolchain [46]. The size of the
dataset is presented in Table 4.
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Table 2. Mizar vs. Synthetic LaTeX

Mizar cluster reflexive -> complete for 1 -element RelStr ;

LaTeX One can verify that every 1-element relational structure which is reflexive is also complete .
LATEX One can verify that every 1-element relational structure which is reflexive is also complete .

Mizar let T be RelStr ;

LaTeX Let $ T $ be a relational structure .
LATEX Let T be a relational structure .

Mizar mode type of T is Element of T ;

LaTeX { A type of $ T $ } is an element of $ T $ .
LATEX A type of T is an element of T .

Mizar attr T is Noetherian means : Def1 : the InternalRel of T is co-well_founded ;

LaTeX We say that { $ T $ is Noetherian } if and only if ( Def . 1 ) the internal relation of $ T $ is reversely well founded .
LATEX We say that T is Noetherian if and only if ( Def . 1 ) the internal relation of T is reversely well founded .

Mizar a ast ( b ast t ) <= b ast t ;

LaTeX $ a \ast ( b \ast t ) \leq b \ast t $ .
LATEX a ∗ (b ∗ t) ≤ b ∗ t .

Mizar ’not’ Ex ( Ex ( a , A , G ) , B , G ) = All ( ’not’ Ex ( a , B , G ) , A , G ) ;

LaTeX $ \neg { \exists _ { \exists _ { a , A } G , B } } G = { \forall _ { \neg { \exists _ { a , B } } G , A } } G $ .
LATEX ¬∃∃a,AG ,BG = ∀¬∃a,BG ,AG .

Table 3. The ProofWiki — Mizar datasets

ProofWiki — Mizar full dataset

Total sentences in monolingual Mizar 1056478
Unique sentences in monolingual Mizar 1035511
Total sentences in monolingual ProofWiki 198801
Unique sentences in monolingual ProofWiki 198225
Total sentences in pairs 330

ProofWiki — Mizar topology dataset

Total sentences in monolingual Mizar 49408
Unique sentences in monolingual Mizar 48774
Total sentences in monolingual ProofWiki 29763
Unique sentences in monolingual ProofWiki 29618
Sentences in pairs 330

Table 4. The Mizar — TPTP dataset

Total sentence pairs 53994
Unique sentence pairs 53994
Shortest Mizar sentence 3 tokens
Shortest TPTP sentence 2 tokens
Longest Mizar sentence 986 tokens
Longest TPTP sentence 786 tokens

3 Neural Machine Translation Models
3.1 Brief Overview
Theoretical foundations demonstrating the expressiveness
of neural networks date back to late 1980s. In 1989, Cy-
benko [17] and Hornik at al. [25] showed that any mea-
surable function between Euclidean spaces can be uniformly
approximated by a composition of an affine mapping to-
gether with a non-linear mapping satisfying certain mild
restrictions. Hornik (1991) [24] further generalized the un-
derlying spaces and relaxed the restrictions on the non-linear
mapping. Due to the limitation of computing resources as
well as the scarcity of large datasets, we did not see competi-
tive applications based on neural network until the seminal
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Table 5. Sample aligned ProofWiki — Mizar theorem statements

Mizar for T being non empty TopSpace for A being Subset of T st A is countable holds A ^0 = { }

LaTeX Let T = \left ( { S , \tau } \right ) be a topological space . Let A be a subset of S . Then if A is countable , then A ^ 0 =
\varnothing .

Mizar for T being non empty TopSpace for A , B being Subset of T holds ( A \/ B ) ^0 = ( A ^0 ) \/ ( B ^0 )

LaTeX Let T = \left ( { S , \tau } \right ) be a topological space . Let A , B be subsets of S . Then \left ( { A \cup B } \right ) ^
0 = A ^ 0 \cup B ^ 0

Table 6. Sample Mizar — TPTP statements

Mizar
(Source)

for A holds A is doubleLoopStr & not A is empty implies for B holds B is Scalar of A

implies B is being_a_square iff ex C st C is Scalar of A & B = C ^2

Prefix
(Target)

c! b0 c=>__2 c&__2 cnl6_algstr_0__1 b0 c˜__1 cnv2_struct_0__1 b0 c! b1 c=>__2

cnm4_vectsp_1__2 b1 b0 c<=>__2 cnv1_o_ring_1__1 b1 c? b2 c&__2 cnm4_vectsp_1__2 b2 b0

cnr1_hidden__2 b1 cnk1_o_ring_1__1 b2

TPTP-FOF
fof(a1,elaborate,(! [A0] : ((nl6_algstr_0(A0) & (˜ nv2_struct_0(A0))) => (! [A1] :

(nm4_vectsp_1(A1,A0) => (nv1_o_ring_1(A1) <=> (? [A2] : (nm4_vectsp_1(A2,A0) &

nr1_hidden(A1,nk1_o_ring_1(A2)))))))))).

TPTP-THF
thf(a1,elaborate, (! [A:$i]:(((nl6_algstr_0 @ A) & ˜ ((nv2_struct_0 @ A))) => (! [B:$i] :

((nm4_vectsp_1 @ B @ A) => ((nv1_o_ring_1 @ B) <=> (? [C:$i] : ((nm4_vectsp_1 @ C @ A) &

(nr1_hidden @ B @ (nk1_o_ring_1 @ C)))))))))).

Elaborated-
FOF

fof(a1,conjecture,(! [X0] : ((˜(l6_algstr_0(X0) => (˜(˜v2_struct_0(X0))))) => (! [X1] :

(m1_subset_1(X1,u1_struct_0(X0)) => (v1_o_ring_1(X1,X0) <=> (˜(! [X2] :

(˜(˜(m1_subset_1(X2,u1_struct_0(X0)) => (˜r1_hidden(X1,k1_o_ring_1(X0,X2)))))))))))))).

work of AlexNet in 2012 [28] which harnessed the computa-
tional power of GPU and the ImageNet dataset. Since then,
machine learning based on deep neural networks has gained
tremendous popularity in a wide range of areas from com-
puter vision [28] to natural language translation [14] and
even to mastering the game of Go [38]. During these years
we have also witnessed progress in learning theory: Telgar-
sky (2015) [41] and Safran et al. (2016) [37] showed that the
increase of depth in a deep neural network can exponentially
reduce the width of the affine maps at each layer and Du
(2018) [19] discovered the global convergence of gradient
descent in an over-parameterized neural network.

In neural machine translation, a series of works published
around 2014 has laid out the foundation for architecture
based on recurrent neural networks (RNNs): Chung at al.
first extended RNN with sophisticated recurrent units that
implement a gating mechanism [14]; Sutskever at al. [40]
incorporated the Long Short-Term Memory cell (LSTM) [23]
into RNN and discovered the importance of bi-directional
encoding; Bahdanau et al. [4] and Luong at al. [32] discovered
the attention mechanism and demonstrated its effectiveness

in handling long sequences. These contributions eventually
led to Luong’s NMT implementation [31].

Meanwhile architectures that are not based on RNN have
also been developed: Gehring et al. (2017) [20] applied con-
volutional neural networks (CNNs) in sequence to sequence
translation. Vaswani et al. (2017) [47] invented a self-attention
mechanism called the Transformer that overcomes the lack
of parallelization in RNN-based training. This parallelization
of encoding also enabled the use of pre-training which led to
the seminal BERT model developed by Devlin et al. [18] The
UNMT model [30] we are using is based on the Transformer
architecture, adding a novel back translation technique for
unsupervised learning. The XLM model [29] extends the
UNMT model with BERT-style pretraining. Unsupervised
learning of UNMT is then performed on the pre-trained
model to fine-tune the model parameters.

3.2 RNN-Based NMT
The fundamental idea behind neural machine translation is to
encode source and target sentences as lists of numeral vectors
and feed them into a network architecture for computation
of a loss function. Since the neural network is essentially a
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differentiable function, training the neural network amounts
to minimization of the loss function. This is a gradient opti-
mization problem and in neural networks the gradients of
network parameters are computed by the back-propagation
algorithm.
At the top level, the NMT architecture consists of an en-

coder network and a decoder network, each of which is a
multi-layer recurrent neural network with LSTM cell as its
network cells.
During training, the encoder takes in a source sentence

one word vector at a time. After all the word vectors have
been put in, an end-of-sentence marker initiates the decoder
which takes in the hidden vector of the encoder. The decoder
produces a target sentence one word vector at a time and
simultaneously takes in the correct target sentence. The
evaluated target sentence is then compared with the correct
target sentence and the loss value is computed.
During inference, only a source sentence is needed. The

source sentence is first taken by the encoder. The encoder
then passes the hidden vector to the decoder. The decoder
then produces the evaluated target sentence one word vec-
tor at a time. Each time a word vector is generated it is
put directly back to the decoder input for the evaluation of
the next word vector. There are two ways to pick a word
vector. First, given a probability distribution of words, the
greedy approach always picks the next word as the one with
the highest probability. Second, the beam search approach
also picks the next word from the probability distribution
of words, but it is chosen in such a way the sentences with
the highest n joint probabilities are kept (n is the width of
the beam search). We use the greedy approach in our model
comparison experiments for the fairness of the comparison,
while we will use the beam search approach to further aug-
ment the data in Section 5.

One crucial add-on to the encoder-decoder architecture is
the attention mechanism, which can be considered as a side
network connecting the encoder and the decoder, forming a
larger network. The attention network records the hidden
vector at each word input of the source sentence. Depending
on the type of attention, different computation steps are
involved to obtain an attention vector. This attention vector
is then fed into the decoder to affect the generation of the
target sentence.

Our NMT experiment uses 2-layer LSTM cells in both the
encoder and the decoder. The dimension of hidden vectors
in a LSTM cell is 1024. We used scaled Luong’s attention,
bi-directional encoding and 20% dropout rate. Due to the
size of this network we cannot fit into a single GPU, so
we train our model in CPU-only mode. The total training
time is 17.9 hours. The synthetic dataset is divided into a
90:10 ratio between training and inference set. An extra 4000
sentence pairs are reserved, in which 2000 are used for model
validation and the remaining half are used for testing and
model evaluation.

3.3 UNMT
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Figure 1.Denoising and back translation in UNMT and XLM

The key idea of the unsupervised learning according to
Lample et al. [30] is to transform the unsupervised learning
problem into a series of supervised learning problems. This
idea is illustrated in Figure 1. First, the two monolingual
corpora are concatenated and are processed by fastText [10],
a word2vec [33] implementation for learning word repre-
sentation. This bilingual word representation is kept fixed
throughout the training and evaluation phase.
The neural network architecture of UNMT consists of a

shared encoder and two decoders. To initialize the parameter
values, a denoising step is performed: for each monolingual
corpus, we corrupt each sentence by randomly permuting
and dropping a few words. We then use the corrupted corpus
as source language and the original non-corrupted corpus
as target language. This gives us two aligned corpora. We
use one of them for initializing the parameters of the shared
encoder and the L1 decoder. And the other for refining the
parameters of the shared encoder and initializing the param-
eters of the L2 decoder.
The training is done using a back translation technique.

For each sentence in language L1 as input to the neural net-
work, we first generate a sentence in L2 from the L2 decoder.
This generated sentence is then put back into the shared en-
coder again and we now generate a sentence in L1 from the
L2 decoder. The combined result is a merged network taking
L1 sentence as input and generating L1 sentence as output,
and this can be treated as a supervised problem. Similarly
we can do the same on L2, generating L2 → L1 → L2 data
flow and obtain an L2→ L2 supervised problem. The UNMT
model is trained in alternative fashion: a few iterations L1→
L1 followed by a few iterations of L2 → L2. This alternation
continues until a reasonable stopping criterion is met.

In UNMT we can configure the encoder-decoder architec-
ture as either based on RNN or based on Transformer. In
our experiments we use the Transformer architecture, since
it provides a similar quality, while allowing for more effi-
cient training on GPU architectures. The key feature in a
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Transformer block is a multi-headed attention cell, which
is a multi-copy version of so called self-attention cells. A
self-attention cell computes several feature vectors for each
word in a sentence in parallel. Then a cross-weighting and
averaging step is computed. Since the weighting step is com-
puted in parallel and the input sentence is read in parallel,
the Transformer cell can maximally harness the power of
GPU and is usually trained much faster than RNN.
The UNMT model was trained on one NVIDIA GeForce

GTX 1080 Ti Graphics Card. The training times are 30 min-
utes for the ProofWiki — Mizar topology dataset and 1 hour
8 minutes for the ProofWiki — Mizar full dataset.

3.4 XLM
The key difference between UNMT and XLM is that in UNMT
the word embedding is fixed throughout the training pro-
cess while in XLM it is also pre-trained. XLM uses Masked
Language Model (MLM) method borrowed from BERT [18].
In MLM, each word in a sentence has 15% chance of being
selected. If a word is selected, it has 80% chance of being sub-
stituted by a [MASK] token; 10% chance of being substituted
by a random token; and 10% chance being unchanged. After
pre-training, back translation similar to UNMT is performed
to fine-tune the parameters in both encoders and decoders.

The XLM model was also trained on one NVIDIA GeForce
GTX 1080 Ti Graphics Card. The training times are 4 hours
24 minutes for the ProofWiki — Mizar topology dataset and
7 hour 53 minutes for the ProofWiki — Mizar full dataset.

4 Experiments and Results
We compare the three models introduced in Section 3 by
three metrics that are commonly used in evaluating the qual-
ity of language translation models: the BLEU rate [34], the
perplexity score and the Levenshtein edit distance.
The calculation of the BLEU rate involves counting of

n-grams, geometric averaging, as well as an exponentially
scaled length penalty. It computes a score from 0 to 100,
with larger values indicating better translation quality. In
NLP research, bilingual machine translation attains a typical
BLEU score ranging from 25.16 to 40.51 depending on the
languages (see Table 1. of [20]).
The perplexity also involves counting of n-grams with

exponentials. It intuitively captures the idea of the number
of words randomly picked before obtaining the correct word.
It is a positive number with smaller value denoting better
translation quality. In Table 4 and 5 of [20] we witnessed the
perplexities ranging between 6 to 7 in bilingual translation.

The edit distance is also a very common evaluation metric.
It calculates the number of insertions, deletions and substitu-
tions from a translated sentence to its corresponding correct
sentence. The calculation is done using a dynamic program-
ming algorithm. The smaller the edit distance is, the closer
the translated sentence to correctness.

It is noted that all the above three metrics only compare
the syntactic closeness of a translated corpus from the refer-
ence corpus. Although in terms of formalization evaluating
syntactic closeness is primitive (e.g. missing a ‘not’ in the
statement negates its meaning), for convenience and speed
we temporarily borrow what is available in existing NLP
research. It would be interesting if new techniques on mea-
suring closeness of formal statements by semantics could
appear.
Table 7 gives the metrics of a 2000-sample evaluation

on the synthetic dataset. Because of the maximum use of
alignment, we can see that NMT performs consistently better
than both UNMT and XLM in all metrics. As XLM uses a
pre-training step instead of fixing a word embedding, we
also anticipate that XLM performs better than UNMT. This
is indeed verified by the results shown.
For truly non-aligned datasets, we can only compare the

two unsupervised models (Table 8). Due to the small size of
our aligned corpus (as well as the fact that each sentence
pair is generally longer than the synthetic dataset), we wit-
ness a significant decrease of performance in all the metrics.
However, if we compare within the dataset, we can still see
a trend that, except the surprising perplexity score, XLM
performs generally better than UNMT. In addition, since our
aligned corpus is only focused on topology and lattice the-
ory, we see the trend that no matter which model we used,
the metrics show better results on the topology sub-dataset
instead of the full ProofWiki — Mizar dataset.

Table 7. Model evaluation on the synthetic dataset

2000 samples NMT UNMT XLM

BLEU 70.9 27.14 43.61
Perplexity 1.58 3.00 2.91
Edit distance 0 65.2% 26.8% 34.1%
Edit distance ≤1 74.6% 34.4% 38.5%
Edit distance ≤2 81.5% 41.8% 42.1%
Edit distance ≤3 83.9% 46.3% 45.9%

5 Data Augmentation Using Type
Elaboration

The major motivation of this experiment is to form a feed-
back loop such that the evaluated target sentence can be
deterministically transformed back to a source sentence. By
using beam search during the inference phase of the NMT
model, we can generate more than one target sentence. If
some of these target sentences can be translated back to the
source sentences, we can add the new sentence pairs into our
training dataset and retrain our model. We anticipate that
the model with augmented data will have more syntactically
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Table 8.Model evaluation on the Proofwiki — Mizar dataset

131 samples UNMT XLM

topology full topology full

BLEU 4.03 1.55 7.87 6.07
Perplexity 11.57 10.73 33.01 39.70
Edit distance 0 0% 0% 0% 0%
Edit distance ≤1 0% 0% 0% 0%
Edit distance ≤2 0% 0% 0.76% 0%
Edit distance ≤3 9.92% 2.29% 6.11% 2.29%

correct translation, or in a way, we manage to “teach” the
model the correct syntactic format.
In Section 5.1 we shortly recall the soft type system in

order to cover the internal mechanism of our Elaborator
that does Mizar-style type checking in Section 5.2. In Sec-
tion 5.3 we illustrate how pseudo-patterns in a TPTP-THF
formula are type-checked by the Elaborator. We integrate
the Elaborator and our data transformation pipeline into
the feedback loop in Section 5.4 and show experimental re-
sults in Section 5.5.

5.1 Mizar Soft Type System
All Mizar types are represented as predicates (soft types) in
MPTP [46]. Hence even a Mizar type corresponding to the
real numbers would be represented by a predicate over a
type of individuals (sets).

Suppose we are given a binary operation + (written in in-
fix), a constant 1̂ and a unary predicate real. For each positive
natural number n, let n̂ be the term 1̂ + · · · + 1̂ (associating
to the left). Consider the following three formulas.

1. real 1̂
2. ∀xy.real x → real y → real (x + y)
3. ∀xy.real x → real y → x + y = y + x

In order to prove the conjecture ∀x .real x → x + n̂ =
n̂ + x a theorem prover would need to instantiate using the
commutativity axiom and then prove real n̂. Proving real n̂
requires applying the second axiom n − 1 times.

The formula above indicating the sum of two reals is real
is an example of a “function type” axiom, indicating that if
the inputs of a function has certain soft types then the result
will have certain soft types. A different kind of soft typing
axiom is a “type hierarchy” axiom, indicating that if a term
has certain soft types then it also has certain “inherited” soft
types. We can extend the example to include a type hierarchy
axiom by adding a predicate for natural numbers.
Suppose we add a unary predicate nat and change the

axioms of the problem to be the following:
1. (Function type for 1̂) nat 1̂

2. (real function type for +)
∀xy.real x → real y → real (x + y)

3. (nat function type for +)
∀xy.nat x → nat y → nat (x + y)

4. (Type hierarchy for nat) ∀x .nat x → real x
5. ∀xy.real x → real y → x + y = y + x

The conjecture ∀x .real x → x + n̂ = n̂ + x still follows.
In this case, however, a proof must make use of the type
hierarchy axiom to infer that n̂ is real. There are actually
multiple derivations. At one extreme one can infer that 1̂ is
real and use the real function typing axiom for + n − 1 times.
At the other extreme one can use the nat function typing
axiom for + n − 1 times to infer that n̂ is a natural number
and then infer that n̂ is real. For a general theorem proving
procedure this redundancy leads to a needless expansion of
the search space. By treating soft types as special, the fact
that n̂ is real will be computed by the (deterministic) soft
typing algorithm.
Until now we have only considered the unary predicates

real and nat as soft types. In order to handle predicates cor-
responding to Mizar soft types we must be able to handle
predicates with extra dependencies. For example, in Mizar
there are types “Element of X ” and “Function of A, B.” These
could appear as a binary predicate elt and a ternary predicate
func in a problem, where we write elt x X to mean x has
type “Element of X ” and write func f A B to mean f has
type “Function of A, B.” We have also considered variants of
our example with soft typing axioms such as

• (Function type for ap)∀ab f .func f a b → ∀x .eltx a →

elt (ap a b f x) b

where ap is a 4-ary operator for set theoretic function appli-
cation.

5.2 Mizar Soft Type Inference
In [45] the notion of a (first-order) “Mizar-like Horn theory”
is defined, distinguishing between a “type hierarchy part”
and “functor types part.” We lift this to the higher-order
setting by carving out appropriate first-order formulas from
higher-order formulas [15] satisfying similar conditions.

• A first-order term is either a variable (of base type)
or a term of the form f t1 . . . tn where f is an n-ary
function (taking n terms of base type to a term of base
type) and ti is a first-order term for each i ∈ {1, . . . ,n}.

• A first-order atom is p t1 · · · tn where n ≥ 1, p is an
n-ary predicate over terms of base type and ti is a first-
order term for each i ∈ {1, . . . ,n}. Given a first-order
atomA of the form p t1 · · · tn , we say p is the predicate
of A and write predA = p and say t1 is the primary
term of A and write primA = t1.

• A first-order literal is either a first-order atom or the
negation of a first-order atom. We extend predL and
primL to be pred¬A = predA and prim¬A = primA and
call predL the predicate of L and primL the primary
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term of L. We say L has positive polarity if it is an atom
and negative polarity otherwise.

In [45] a chronological total order < on functor and type
symbols is used to add appropriate conditions on Mizar-like
Horn clauses. Here we instead work with an strict partial
order ≺ which is computed dynamically while determining
the classification of axioms.
Let ≺ be a strict partial order on constants. Let φ be a

formula

∀x1 · · · ∀xn .L1 ∧ · · · ∧ Lm → Lm+1 ∧ · · · ∧ Lm+k

• We say φ is a type hierarchy formula if
1. n ≥ 1,
2. m > 1,
3. Lm is either of the form px1 . . . xn or ¬px1 . . . xn ,
4. for each i ∈ {1, . . . ,m − 1} primLi ∈ {x1, . . . , xn−1}

and xn is not free in Li and
5. for each i ∈ {m+1, . . . ,m+k} we have primLi = xn

and predLi ≺ p.
• We say φ is a function type formula (for f ) if for each
i ∈ {1, . . . ,m}

1. primLi ∈ {x1, . . . , xn} and
2. for each j ∈ {m + 1, . . . ,m + k} primLj is f x1 · · · xn

and predLi ≺ f .
We now describe the soft typing inference mechanism

designed for a type system given by function type and type
hierarchy formulas. We first describe a procedure for “widen-
ing” a given soft type and then describe how all soft types
of t are computed.

Suppose we have computed a soft typing literal L. We can
compute new soft types by a “widening” procedure making
use of type hierarchy formulas as follows.

• Find all type hierarchy formulas

∀x1 · · · ∀xn .L1 ∧ · · · ∧ Lm → Lm+1 ∧ · · · ∧ Lm+k

where Lm has the same predicate and polarity as L.
Let θ be a substitution such that θ (Lm) = L. (The
restrictions on type hierarchy formulas ensure such
a θ exists.) Continue if θ (Lj ) has already been com-
puted to be a soft type of its principle term for each
j ∈ {1, . . . ,m − 1}.1

• For each j ∈ {m + 1, . . . ,m + k}, θ (Lj ) is a new soft
type for the same term as the primary term of L. We
add this as a known soft type and recursively widen
each such θ (Lj ).2

We now describe the algorithm for computing all soft
types of a ground first-order term t . The algorithm proceeds
by recursion.

1Note that this may give different results depending on the order in which
soft types have been computed.
2Note that the ≺ relation guarantees termination.

1. Since t is ground, it must have the form f t1 . . . tn
where each ti is a ground first-order term. Assume all
soft types of each ti have been computed.

2. We next find all function type formulas for f , e.g.,

∀x1 · · · ∀xn .L1 ∧ · · · ∧ Lm → Lm+1 ∧ · · · ∧ Lm+k

where f (x1, . . . , xn) is the primary term of Lj for j ∈
{m + 1, . . . ,m + k}. Let θ be the substitution with
θ (xi ) = ti for i ∈ {1, . . . ,n}.
a. Note that for each j ∈ {1, . . . ,m} the principle term

of θ (Lj ) is some ti and we have already computed
the soft types of ti . Continue if θ (Lj ) is a known soft
typing literal for each j ∈ {1, . . . ,m}.

b. For each j ∈ {m+1, . . . ,m+k}, add θ (Lj ) as a known
soft typing literal and call the widening procedure
with θ (Lj ).

The procedure described above is a simplification of the
one used by the Elaborator, as there are still more soft typ-
ing formulas than function type and type hierarchy formulas.
For example, there are redefinition formulas allowing one
to declare that a new function is defined to be the same as
some previous function but with new typing information for
the new function. The equations introduced by redefinitions
require introducing some degree of equational reasoning
within the soft typing inference procedures. For brevity we
omit details.

5.3 Elaborator — Patterns and Elaboration
In order to allow for partially specified terms and formulas,
we extend the language to allow pattern names. A pattern
name is used as a predicate or function with a fixed arity,
but should not be thought of as having a clear intended se-
mantics. Instead each pattern name will be associated with a
different constructor name which can be thought of semanti-
cally. We call terms and formulas with occurrences of pattern
names pseudo-terms and pseudo-formulas. Our primary use
of Elaborator is to try to compute formulas corresponding
to pseudo-formulas produced by the translation mechanism.

Recall the constructor name apwith function type formula

∀ab f .func f a b → ∀x .elt x a → elt (ap a b f x) b .

Here func and elt are also constructor names. For each of
these constructor names there will be corresponding pattern
names ap, func and elt. Along with the formulas defining the
type system we give Elaborator a pseudo-formula for each
pattern name. For the pattern names above, three pseudo-
formulas similar to the following would be given.

1. ∀AB.elt B A ≡ elt B A.
2. ∀ABf .func f A B ≡ func f A B.
3. ∀CDf c .func f C D ∧ elt c C → ap f c = apC D f c .

In each case there is an equation or equivalence indicating
how to elaborate a pattern name into a term or formula using
corresponding constructor name, possibly guarded by soft
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typing constraints on the variables. In the case of ap the
soft typing constraints determine the extra two arguments
required by ap.
Given these pattern pseudo-formulas in addition to the

typing formulas, the algorithm used by the Elaborator to
elaborate pseudo-formulas into formulas is relatively straight-
forward. The essential idea is to recursively traverse pseudo-
formulas and pseudo-terms elaborating from the bottom up.
At each step there will be type constraints required by the
pattern pseudo-formulas and the type checker is used to
check if these type constraints are satisfied. If the type con-
straints are satisfied, terms for the missing arguments will
be determined. When traversing binders, introduce a fresh
name to replace the variable and assume this fresh name
has all appropriate soft typing assumption. For example, to
elaborate ∀x .φ(x) → ψ (x), we extract the parts of φ that
correspond to soft typing literals, create a fresh name a, as-
sume a satisfies these soft typing literals, and then continue
by trying to elaborate φ(a) → ψ (a). Similar remarks apply
when attempting to elaborate ∃x .φ(x) ∧ψ (x).

Example 5.1. Suppose we wish to elaborate the following
pseudo-formula:

∀Ax .elt x A → ∃f .func f A A ∧ ap f x = x .

The elaborated formula is

∀Ax .elt x A → ∃f .func f A A ∧ ap A A f x = x .

This elaborated formula is determined as follows. We choose
fresh names a and y for A and x and try to elaborate the
antecedent of the implication: elt y a. This succeeds giving
elt y a. We recognize this as a typing literal and assume this
as typing information abouty. We then begin elaborating the
succedent of the implication. We choose a fresh name д for
f and attempt to elaborate the left side of the conjunction:
func д a a. This succeeds giving func д a a which is then
assumed as type information about д. We finally elaborate
ap д y = y. To elaborate ap д y we must find types of д
and y of the form func д Y Z and elt y Y . Using the typing
assumptions above we know func д a a and elt y a. Hence
we can elaborate ap д y as ap a a д y. When passing back
through the quantifiers, the fresh names are replaced with
the original bound variables.

5.4 Data Augmentation Pipeline
Figure 2 illustrates the idea of the feedback loop mentioned
above. In the chart the x-axis denotes edit distances while the
y-axis denotes the number of sentences inferred. We use the
Mizar — TPTP dataset as described in Section 2.3. Instead of
using the standard TPTP first-order format, we use a prefix
notation. This notation not only largely reduces the need for
matching parenthesis, but it also reduces the overall length of
the TPTP sentence. This has been previously found to benefit
the neural translation task [36]. Sample prefix notation as

NMT
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Data to augment

Infer
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Elaborator

Elaborated
inferred data
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Figure 2. Feedback loop Supervised NMT + Elaborator
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TPTP-FOF (Elaboratable)
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success
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Figure 3. Format transformation pipeline

well as its corresponding TPTP statements can be seen in
Table 6.

Our Elaborator takes a TPTP-THF pseudo-formula as
input and returns a boolean value indicating whether the
pseudo-formula can be elaborated or not. To use the Elab-
orator we translate the TPTP-FOF prefix format into the
TPTP-THF format by a series of Prolog programs and re-
lated scripts. If the pseudo-formula can be elaborated, the
Elaborator will also output the corresponding elaborated
TPTP-FOF formula. In that case, the original pseudo-formula
is back-translated by the MPTP toolchain into a Mizar state-
ment, forming the feedback loop. Figure 3 illustrates the
transformation of the file formats in the feedback loop.

5.5 Experiments

Table 9. Model evaluation on the Mizar-TPTP dataset

2000 samples Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

BLEU 42.3 85.5 88.7 88.0 87.4
Perplexity 2.68 1.27 1.14 1.18 1.17
Edit distance 0 2.05% 2.40% 2.00% 5.15% 4.45%
Edit distance ≤1 9.70% 13.4% 20.9% 21.6% 19.2%
Edit distance ≤2 22.3% 25.0% 38.7% 36.9% 34.6%
Edit distance ≤3 32.6% 34.3% 49.3% 48.5% 45.4%
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Iteration 1 41 153 251 206 141 104 85 71 60 65 42 37 38 42 31 24 47 41 25 33

Iteration 2 48 220 232 186 181 104 80 63 50 58 52 41 41 35 38 19 33 24 21 25

Iteration 3 100 318 355 213 140 88 56 56 52 34 33 29 35 23 20 26 18 14 20 17

Iteration 4 103 329 305 232 141 85 64 48 36 47 25 21 21 37 28 21 16 22 25 18

Iteration 5 89 294 308 216 147 74 71 53 46 34 41 31 27 27 28 20 27 13 18 20
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Figure 4. Distribution of edit distances in the elaboration experiment (total 2000 sentences)

We evaluate the result of the data augmentation toolchain
based on type elaboration by comparing the distribution of
edit distances across the first five iterations of the feedback
loop.
In Figure 4 we can see that there is nearly an 100% in-

crease of values at edit distance 0 (exact match), indicating
an improvement of translation quality. The whole distribu-
tion curves in the first three iterations are becoming more
skewed to the left, indicating a general improvement of trans-
lation quality toward exact matches. However, as we can also
see from Table 9, starting from the fourth iteration the im-
provement is no longer significant. The fourth iteration has
the highest concentration of edit distance up to 2. After that
the distribution begins to drop and flatten. This indicates
that our trained model is beginning to overfit. Such an over-
fit is likely to happen given limited training data. This is
unfortunate. However, it is notable that from from Iteration
1 to Iteration 3, we have only had a 16.41% increase in the
size of the training data but we achieved a 100% increase
in the number of exact matches. This shows that data aug-
mentation based on strong semantic methods such as type
elaboration can be very useful.

6 Related Works
There are several works directly related to autoformalization
of mathematics. The earliest goes back to Wang (1954) [48]
which hinted at the potential automation of formalization
of mathematics. In 1994, a group of anonymous authors de-
clared the QED Manifesto [2] which set out the vision of
formalization of all mathematical knowledge in a computer-
based database. Zinn (2004) [50] used domain discourse the-
ory to parse a number theory textbook. The Naproche sys-
tem [16] invented a controlled natural language that looks
very similar to normal natural language text but compilable

to proof obligations for automated theorem prover. The vi-
sion set out in the QEDManifesto is exactly what the authors
are trying to achieve. It is our hope that the recent advent of
neural network-based machine learning can finally provide
a push to its realization.

7 Conclusion
In this paper we have proposed autoformalization of mathe-
matics and performed first experiments using unsupervised
machine learning for translating LaTeX to formal proof assis-
tant statements. We have also proposed a soft type elabora-
tion mechanism for data augmentation and integrated it into
the supervised learning framework for autoformalization.
We practically evaluated various approaches and showed the
results. We think this is a promising direction and envision
the possible future of the formalization community and the
AI community embracing each other.

There are several directions that are worthy of further
investigation: a primary concern is collecting more high-
quality data and conducting more comprehensive experi-
ments. It will be good if we can merge the ideas from new
models and quickly test them in a single pipeline. This could
help us push to the extreme the capability of neural machine
translation on our informal-to-formal datasets.

To adapt the existing models the format of our datasets is
based on sequences only. We have so far not experimented
with the inclusion of other features such as the syntax tree of
a formula or the required environment declaration of a state-
ment. This enriched information could have the potential to
enrich the translation quality. It could also open possibility
for us to explore other non-sequential input formats.

As we have seen in Section 4, even in unsupervised learn-
ing, it is still important to obtain a sizable aligned datasets
for a reasonable evaluation. To further harness the power
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of neural machine translation, we are currently still bound
by the limitation of relevant datasets available. Looking into
the informal world, the amount of mathematics literature is
actually quite abundant, but we still lack a way to combine
those with the ITP knowhow we have at hand. We believe
that this is the major issue to be solved in autoformalization
of mathematics. It will be the long-term focus of our contin-
ual research effort. At the current stage, we are exploring
the possibility of joint embedding of multiple proof assistant
libraries to see for opportunity to increase the size of our
formal data.
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