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Abstract
We present a new approach to checking assertion properties

for RTL design verification. Our approach combines structural,
word-level automatic test pattern generation (ATPG) and modular
arithmetic constraint-solving techniques to solve the constraints
imposed by the target assertion property. Our word-level ATPG
and implication technique not only solves the constraints on the
control logic, but also propagates the logic implications to the
datapath. A novel arithmetic constraint solver based on modular
number system is then employed to solve the remaining constraints
in datapath. The advantages of the new method are threefold.
First, the decision-making process of the word-level ATPG is con-
fined to the selected control signals only. Therefore, the enumera-
tion of enormous number of choices at the datapath signals is
completely avoided. Second, our new implication translation tech-
niques allow word-level logic implication being performed across
the boundary of datapath and control logic, and therefore, effi-
ciently cut down the ATPG search space. Third, our arithmetic
constraint solver is based on modular instead of integral number
system. It can thus avoid the false negative effect resulting from the
bit-vector value modulation. A prototype system has been built
which consists of an industrial front-end HDL parser, a property-
to-constraint converter and the ATPG/arithmetic constraint-solv-
ing engine. The experimental results on some public benchmark
and industrial circuits demonstrate the efficiency of our approach
and its applicability to large industrial designs.

1. Introduction
Simulation is still the mainstream approach for functional verifi-

cation. Various coverage metrics, for example, HDL-based code
coverage, are used to assess the quality of the test-bench and deter-
mine when to stop the simulation process. However, in today's
design flow, test-bench is either manually derived by designers or
randomly generated from the high level description of the design
and/or its environment. As a result, test-bench for some corner-
case bugs cannot be easily derived and high coverage could be
hard to achieve. Advanced techniques such as deterministic func-
tional vector generation and model (property) checking intend to
enhance the verification quality and reduce the developing effort
for this time-consuming process.

Functional vector generation can be viewed as a constraint satis-
fiability problem (e.g. [1]-[5]). Although these deterministic func-
tional vector generation techniques can enhance the coverage of
hard-to-detect design errors, they still inherit the fundamental defi-
cit of simulation  the requirement of exhaustive test patterns to

prove the correctness of a property. For designs with large number
of inputs or properties which require long (or infinite) sequence to
prove, simulation becomes a time-consuming process and usually
fails to detect some tricky corner-case bugs. An alternative is to
transform the simulation property to a temporal formula and use
methods like model checking to formally prove its correctness.

Model checking techniques treat the designs as finite state
machines and the properties as temporal relations between states.
Clarke and Emerson [6] specify the properties in computational
tree logic (CTL). The correctness of the property is then verified
by intersecting the backward reachable states with the initial states.
In general, the set of reachable states may grow exponentially as
the number of registers increases. To ease the state explosion prob-
lem, several abstraction techniques are introduced either to identify
the symmetry variables (e.g. [7]), or to approximate the set of
reachable states (e.g. [8]).

Symbolic model checking techniques (e.g. [9]-[11]) utilize
Binary Decision Diagrams (BDDs) [12] to compactly represent the
set of states and the state transition functions. In general, these
approaches are capable of handling larger designs than the explicit
state traversal techniques even though the BDD techniques may
still suffer from the memory explosion problem. Biere et al. [13]
proposes an alternative, symbolic modeling checking approach by
using the boolean satisfiability (SAT) techniques. Their experi-
mental results indicate that the temporal properties within bounded
time frames can be more efficiently proved by the SAT technique
and the memory usage is lower as well.

In this paper, we propose a new methodology in checking the
assertion type properties for RTL design verification. Our
approach combines structural, word-level, sequential automatic
test pattern generation (ATPG) and modular arithmetic constraint-
solving techniques. This hybrid approach utilizes the strengths of
both techniques in solving different kinds of constraints in the cir-
cuit. Assertion (safety) properties, like bus contention checking,
internal don't-care validation, and invariant checking, are the most
commonly encountered and practical properties in RTL design ver-
ification. They can be transformed into a counter-example-genera-
tion problem which can therefore be solved by an ATPG engine.

Given an HDL design, we first synthesize/map it into a netlist of
high-level primitives, called RTL netlist, including (1) Boolean
gates, (2) arithmetic units, (3) comparators (data-to-control), (4)
multiplexors (control-to-data), and (5) memory elements (flip-
flops). The circuit can then be viewed as an interconnection of
control and datapath portions with some datapath-selecting and
comparison-output signals as the interface. Based on this circuit
model, our constraint-solving algorithm follows a two-phase pro-
cess: first we apply structural ATPG technique to solve the con-
straints on the control logic part and propagate the implications of
the partial solutions to the datapath as much as possible. Secondly,
we use analytical methods based on modular arithmetic to solve
the constraints on the datapath.

There are several advantages of using structural ATPG and
modular arithmetic, instead of satisfiability-based (SAT) and linear
programming techniques for constraint solving: (1) We can fully
utilize the high-level RTL information and perform word-level
implication on both Boolean and arithmetic gates. We have also
developed several techniques to translate the implications between
Boolean and arithmetic gates such that conflicting implications can
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be detected as early as possible. (2) Because the signal values in
circuit netlist (RTL netlist) are finite-width bit-vectors, solving
arithmetic constraints in modular instead of general integral num-
ber system will not miss the solutions that come from the modula-
tion and therefore can avoid the false negative effect in generating
counter examples (which is false positive from the viewpoint of
assertion checking). (3) The abstract state variables in the EFSM
model [5] serve as good candidates of decision points in the
branch-and-bound process of ATPG. Besides, whenever the search
encounters a conflict in an abstract state transition or learn that a
transition can lead to a hard-to-reach state, the transition in the
Extended State Transition Graph (ESTG) is recorded. This
recorded information is then used in the subsequent ATPG process
to speed up the search.

In addition, compared to the BDD-based symbolic model
checking techniques, our method is highly memory efficient. The
experimental results show that the new approach is much less sen-
sitive to the exponential growth of the state space and thus more
scalable to larger designs.

We organize the rest of the paper as follows: in Section 2, we
first outline our assertion checking framework. The detailed word-
level ATPG and modular arithmetic constraint-solving algorithms
will be described in Sections 3 and 4, respectively. The experimen-
tal results of applying our constraint solver to some public bench-
mark and industrial circuits will be shown in Section 5. Section 6
concludes the paper.

2. The Assertion Checking Framework
Fig. 1 shows our assertion checking framework. The input of

our framework is RTL Verilog or VHDL codes. Initialization
sequence is applied to derive the set of initial states. It also requires
some environmental setup which defines constraints on the circuit
inputs such as clock waveform(s), one-hot constraints, etc.

Our framework then performs a quick synthesis to generate a
flattened RTL netlist with high-level primitives. Note that in order
to preserve the original design intent, we do not perform logic min-
imization to optimize the netlist. Instead, we record the internal
don't-cares and represent them as functions of module inputs.
These don't-care conditions will later be included in the justifica-
tion of the ATPG constraint-solving process.

We formulate the constraints of the target assertion as a linear
temporal property[14], which specifies the expected signal values
and relations in an execution sequence. The assertion property is
first inverted to produce a counter-example-generation problem
and then translated into value requirements in different time-
frames. Our constraint solver then applies word-level ATPG tech-
nique to solve the constraints in the Boolean domain and propagate

the implications to the arithmetic units. If no solution is found, we
can conclude that no counter example can be generated for this
property and thus the assertion holds. Otherwise, we check if all
the constraints in the datapath are satisfied. If yes, then a counter
example is found and the assertion fails. Otherwise, we use the
arithmetic solver to see if the remaining constraints are feasible. If
not, we backtrack to the ATPG process and iterate for the next set
of solutions. This process continues until the property is proved or
the run-time exceeds the pre-set limit.

3. Word-level ATPG
The flow of our word-level ATPG algorithm is shown in Fig. 2.

The assertion property is first translated into initial assignments at
different time-frames and word-level logic implication of these
assignments is applied to the whole circuit.

 3.1 Word-level Logic Implication
We use different kinds of data structures to represent the legal

values for different kinds of gates. This enables forward and back-
ward word-level logic implications not only on Boolean gates but
also on arithmetic elements. It also allows translation of the impli-
cations between Boolean gates and arithmetic elements.
Boolean gates. We utilize 3-valued logic encoding (i.e. 0, 1, x,
where x means unknown) to perform parallel implication for bit-
wise logic gates. For example, suppose a 4-bit AND gate has input
values a = 4'b10xx, b = 4'bxxxx, and output y = 4'bx00x. If the
input b receives the new implication value 4'b1x1x, it will forward
imply a new value 4'b100x at output y, which in turns backward
implies a new value 4'b100x at input a.
Arithmetic units. For arithmetic units like adders, we perform
3-valued forward and backward simulation in order to propagate as
much known-value information as possible. For example, if a 4-bit
adder has output value 4'b0111, and one of its input has value
4'b1x1x (Fig. 3), then by subtracting 4'b1x1x from 4'b0111, we can
learn that the other input must at least have the value 4'b1x0x, and
the adder must have carry-out value equal to 1.

Besides, as will be shown in the next section, the solutions to a
linear arithmetic network can be represented as a closed matrix
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Fig. 1: The assertion checking framework.

Fig. 2: The word-level ATPG algorithm.

property to
initial assignments

logic
implication

unjustified
gates

empty
cut

make
a decision

backtrack
one decision

backtrack
one decision

backward find
a cut of critical 
control signals

tree

logic
implication

unjustified
gates

done

FAIL
conflict

yes

SUCCEED
none

SUCCEED
yes

no

yes

conflict
done

no

yes

no

FAIL

ok

none

119



form: x = x0 + N * f, where x is the vector of the input variables, x0
is a particular solution, N is a coefficient matrix and f is a set of
free variables.

Comparators. We use a pair of bit-vectors to record the maxi-
mum and minimum values for each of the comparator inputs. For
example, suppose a 4-bit "greater" (>) gate has output value 1
(TRUE) and input values "in_a = 4'bx01x" and "in_b = 4'b1x0x"
(Fig. 4). By setting all the x's to 0's and then to 1's, we learn that
"in_a" has the minimum and maximum values [min_a, max_a]
equal to [2, 11], and "in_b" has [min_b, max_b] = [8, 13]. How-
ever, for the "greater" gate to be evaluated "TRUE", it implies
"min_a" must be greater than "min_b", and "max_b" must be
smaller than "max_a". Adjusting the values of "min_a" and
"max_b", we have [min_a, max_a] = [9, 11] and [min_b, max_b] =
[8, 10]. To map the new ranges back to 3-valued logic, we use the
following rules:
(Rule 1) Only bits with value "x" can have new boolean implica-

tions.
(Rule 2) More significant bits must have implication prior to less

significant ones.

While Rule 1 is trivial in logic implication, Rule 2 is based on
the fact that only the most significant "x" bit can divide the original
range into two disjoint sub-ranges. For this example, implication
on the second highest bit of input b (with original value 4'b1x0x)
can split the original range [8, 13] into two distinct sub-ranges [8,
9] (implied "0") and [12, 13] (implied "1"). On the other hand,
implication on the least significant bit will produce two overlapped
ranges [8, 12] and [9, 13]. Therefore, to have the new implied
range [8, 10], it is mandatory that the second highest bit be implied
"0" because this new range has null intersection with the other
implied range [12, 13]. Implication on the least significant bit can-
not draw any conclusion on this.

Likewise, we can learn that the most significant bit of "in_a"
must have implied value "1". Therefore, we will have the new
ranges for "in_a" and "in_b" equal to [10, 11] and [8, 9], respec-
tively. Mapping these new ranges back to 3-valued logic, we will
have implications "in_a = 4'b101x" and "in_b = 4'b100x".
Multiplexors. Because we represent the value of a multiple-bit
bus as a 3-valued bit-vector (a cube), we can use cube union of the
input values to derive the implication on the output of a multi-
plexor. On the other hand, if one of its inputs has null cube inter-
section with the output, then it implies that the control signal
cannot have the value that selects this input.
Registers/Flip-flops. Similarly, we can derive implication for
the asynchronous "set" and "reset" signals of a data register by

examining its data input and output values. For example, if the data
output bits have all been assigned to zero and at least one of its
input bits has been assigned to one, we can learn that its "reset"
signal must be asserted.

Based on the rules above, we perform logic implication when-
ever a decision on a Boolean gate assignment is made. If any con-
flict occurs during the implication process, the process backtracks.
However, unlike the bit-level logic implication where the single-
bit signal can be implied only once, i.e. from "x" to "0" or "1", a
word-level signal can be implied multiple times. Therefore, when
an implication process returns a conflict and the process back-
tracks to its previous condition, we cannot just reset the signals to
"x" but need to recover them to their previously partially-implied
values.

After implication, we check if there is any unjustified logic gate,
that is, its 3-valued simulation value is different from its output
implied value, or the values of the control flip-flops do not cover
the initial states. If yes, the Boolean constraints are not satisfied
and the justification procedure is called.

 3.2 Justification Process
After implication, a branch-and-bound algorithm is employed to

justify the value requirements on the control logic. In this phase we
only make decisions on control signals and leave the requirements
in the datapath portion unjustified. This greatly reduces the effort
of ATPG process as we avoid the enumeration of the possibly
enormous number of datapath decision points. In addition, when-
ever there is a new decision of assigning a logic value to a single-
bit control signal, word-level logic implication is followed imme-
diately to reduce the search space and to detect early contradiction
in value assignments.

The justification process begins by backward, breadth-first tra-
versing the circuit from the unjustified gates and stopping at a cut
of candidate decision points including control PIs, flip-flops, com-
parator outputs, and multiple-fanout internal logic gates. Note that
if the number of decision candidates is too large, using all of them
as the decision points may make the decision-making process less
efficient. Therefore, if the number of decision candidates exceeds a
limit, based on the number of fanouts of each candidate, a subset of
them is selected as the decision nodes.

The list of candidate decision-making gates is then sorted based
on their bias of being assigned "1" or "0" to meet the requirements
of the unjustified gates. Note that observability in general is not a
problem in this application as we can add watch points (in RTL
simulation) wherever is necessary. Therefore, in calculating the
order of the decision points, the controllability/observability mea-
sures used for traditional stuck-at-fault testing [15][16] is not
appropriate. In our method, we backward compute the legal-1/
legal-0 probability for the signals between the unjustified and deci-
sion-making gates.
Definition 1 (legal-1/legal-0 probability). The legal-1(legal-
0) probability of a signal is the probability of its being assigned to
"1"("0") to satisfy its output logic value.

For example, if a 2-input AND gate has output value "0", and
both inputs with value "x", then there are 3 different legal assign-
ments which can satisfy this unjustified value: {(0, 0), (0, 1), (1,
0)}. Therefore, the legal-1 probability for the input signal is 1/3
because only one out of three legal assignments is value "1" for
each of the inputs. On the other hand, if the 2-input AND gate has
output value "1", its input legal-1 probability is 1.0 since this is the
only legal assignment. Note that the summation of legal-1 and
legal-0 probabilities is equal to 1.0.

We can generalize the rules above and have the backward legal-
1 probability calculation as:
(Rule 3) For signals with Boolean value "1", the legal-1 probabil-

ity = 1.0. On the contrary, for signals with Boolean value
"0", the legal-1 probability = 0.0.

(Rule 4) Suppose the legal-1 and legal-0 probability for a gate out-

4'b0111
4'b1x1x
4'bxxxx + 1 0111

  1x1x
1x0x

implied carry-out

implied value

Fig. 3: Word-level implication for an adder circuit.
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put are p1, and p0, and it has unjustified output value and
n unknown inputs (with value "x"). The input legal-1
probability q1 (for different gate types) is:
INVERTER : q1 = p0.

AND: q1 = 

OR: q1 = 

(Rule 5) The legal-1 probability of a fanout stem is set to the aver-
age of the legal-1 probabilities of its fanout branches.

Due to the space limitation, we omit the detailed derivation of
the rules here. After the legal-1 probabilities of the decision gates
are computed, we calculate their legal assignment bias as:
Definition 2 (legal assignment bias). Let the legal-1 proba-
bility of a gate be p1, its legal assignment bias is:

 if p1 >= 0.5; (bias value = "1")

 if p1 < 0.5; (bias value = "0")

Note that the legal assignment bias is always greater or equal to
1. Having the legal assignment bias for each decision point, we
make the decision at the gate with the highest bias first. If we are
proving an assertion property, that is, it is likely that the counter
example does not exist or, if exists, is hard to find, we first assign
the complement of the bias value so that the conflicting condition
occurs early and thus help trim down the decision space. On the
other hand, if our objective is to generate a witness sequence
which is likely to exist, we assign the bias value (instead of its
complement) first.

Once the gates between the unjustified gates and the decision
points are all justified, we further traverse backward to see if there
is any unjustified boolean gate. If yes, we update the list of deci-
sion points and repeat the justification process again for the new
set of unjustified gates. Otherwise, we should have reached the pri-
mary inputs and the datapath-control boundary and all the con-
straints on the control logic should have been satisfied.

4. Arithmetic Constraint Solver
After the constraints on the control logic are satisfied, we fur-

ther check whether the requirements on the datapath are also satis-
fied. If not, we apply modular arithmetic techniques to solve the
constraints on the datapath portion. Note that although the datapath
constraints may across many timeframes, we can create a combina-
tional model by treating the state elements (D flip-flops) as buffers
and adding necessary new variables for the inputs of each time-
frame. As a result, the datapath constraints can be represented by a
set of arithmetic equations.

The arithmetic constraint solver is based on the modular number
system, which is required as the values of the hardware signals are
represented as fixed-width bit-vectors. Besides, using the modular
instead of the general integral arithmetic is critically important to
prevent the false negative effect. For example, suppose we have a
multiplier with two 3-bit inputs a and b, and a 4-bit output c. The
following nonlinear arithmetic constraints describe the multiplier:

Consider an initial assignment of c = 12 and a = 4. The solution
b = 3 can be easily derived by direct implication. However, b = 7 is
also a solution because (4 * 7) modulo 16 = 12 as c is a 4-bit sig-
nal. Therefore, if the local solution (a, b) = (4, 3) does not satisfy
other imposed constraints while (a, b) = (4, 7) does, using a solver/

algebra not based on the modular number system will result in a
false negative conclusion.

Generally speaking, constraints on datapath can be divided into
two types: linear and nonlinear. Nonlinear arithmetic constraints
are those derived from multipliers and shifters. Since completely
solving them could be very difficult, if not impossible, we apply
some analytical approaches like prime number factoring to heuris-
tically enumerate the possible solutions and substitute them into
the arithmetic equations so that the constraints become linear and
can be solved by our linear constraint solver.

 4.1 Linear Constraint Solver
Linear constraints, on the other hand, arise from adders, subtrac-

tors, and multipliers with one constant input. They make up most
of the arithmetic units for industrial circuits in various applica-
tions. Given a linear subcircuit with m outputs and n inputs, we can
transform it to a problem of m linear equations with n variables and
further formulate it into the matrix form as A*x = b, where A is a
m*n matrix representing the coefficients in the m equations, x is a
n*1 column matrix containing the n variables, and b is a m*1 col-
umn matrix for the output constraints. Solving the input vectors
that can satisfy the output constraints is equal to finding the solu-
tion to the matrix equation1.

For example, consider a 2-input, 2-output linear circuit with all
signals of 3-bit wide. Suppose the output constraint is (5, 4) and
the circuit under this constraint can be expressed in the following
matrix format:

, where x and y are the input signals.

Solving it in the integral domain, we first multiply the first row
by 2 and subtract it from the second row. We have:

It is clear that there is only one non-integral solution (x, y) =
(31/5, -6/5). However, under modulo-23 number system we can
find a solution (x, y) = (3, 2). We will demonstrate later that this
solution can be derived by calculating the multiplicative inverse of
bit-vectors.

In the rest of section, we provide some theoretic details of our
linear constraint solver which is capable of finding all solutions to
a given set of linear constraints under modular number system and
expressing them in a closed form.
Definition 3 (multiplicative inverse of bit-vector). The
multiplicative inverse x of an n-bit bit-vector a is defined as:
{ x | (a * x) modulo 2n = 1 } [17]. We denote it as
multiplicative_inverse(a).

Note that while multiplicative inverse exists for every non-zero
real number, in integral number domain only integers 1 and -1
have multiplicative inverse. In modulo-2n number system, only
odd numbers have one and only one multiplicative inverse [18].
For example, for 3-bit-wide bit-vectors, 3 is 3's multiplicative
inverse because 3 * 3 = 9 and 9 modulo 23 = 1. On the other hand,
2 does not have any multiplicative inverse.

Although there exists no multiplicative inverse for even bit-vec-
tors, we can extend the concept of multiplicative inverse to the
multiplicative inverse with product k:
Definition 4 (multiplicative inverse of bit-vector with 
product k). The multiplicative inverse x of an n-bit bit-vector a
with multiplication product k is defined as { x | (a * x) modulo 2n =

1. Note that we use the term "column/row matrix" instead of "col-
umn/row vector" in order not to get confused with the term "bit-
vector".
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k }. We denote it as multiplicative_inversek(a).
For example, for 3-bit-wide bit-vectors, 3 is 6's multiplicative

inverse with product 2 because 6 * 3 = 18 and 18 modulo 23 = 2.
Especially, 0 does not have any multiplicative inverse with non-
zero product, but every bit-vector is the multiplicative inverse of 0
with product 0.

As for the linear constraint example above, we can modulate the
equation with 23 and have:

Solving the second row by multiplicative_inverse2(5), we can
have y = 2. Substitute it back to the first row, we can derive x = 3.

A bit-vector may have none or several multiplicative inverses.
The following theorem gives the number of multiplicative inverses
for a given bit-vector.
Theorem 1. Given a non-zero n-bit-wide bit-vector a with great-
est odd factor a', it can be expressed as a = a' * 2m, where m is an
integer.
(T1.1) a has exactly one multiplicative inverse with product k if

and only if a is an odd number, that is, m = 0. Moreover,
multiplicative_inversek(a) = multiplicative_inverse(a) * k.

(T1.2) a has no multiplicative inverse with product k if and only if
a is an even number and k is not a multiple of 2m.

(T1.3) a has exactly 2m multiplicative inverse with product k if and
only if a is an even number and k is a multiple of 2m.

For example, for 3-bit-wide bit-vectors, 6 (= 3 * 21) has no mul-
tiplicative inverse with product 3 because 3 is not a multiple of 21,
but has exactly 2 multiplicative inverse of product 4 as {2, 6}.

Furthermore, we can represent all the 2m multiplicative inverse
bit-vectors in (T1.3) in a closed form as shown in the following
theorem:
Theorem 2. Given a non-zero, even, n-bit-wide bit-vector a with
the greatest odd factor a' expressed as: a = a' * 2m. If k is a multiple
of 2m as k = k' * 2m, and b is the only multiplicative inverse of a'
with product k', that is, (a' * b) modulo 2n = k', then the multiplica-
tive inverse of a with product k can be represented in the following
closed form:

multiplicative_inversek(a) = (b + 2(n-m)* t) modulo 2n, where t

is a free integer between 0 and 2m - 1.

For example, for 4-bit-wide bit-vectors, let a = 6 = 3 * 21, and k
= 10 = 5 * 21 which is a multiple of 2. By (T1.3), we know that a =
6 has exactly 2 multiplicative inverse with product k = 10. Because
the multiplicative inverse of 3 with product 5 is 7 (3 * 7 = 21 mod-
ulo 24 = 5), we can represent all the multiplicative inverse of 6
with product 10 as: "7 + 23 * t", for t = 0 or 1.

We extend the concept of multiplecative inverse and apply it to
solve the linear bit-vector matrix constraints using the Gauss-Jor-
dan Elimination method. The solutions can be represented in a
closed form as:

x = N * f + x0
where N is called the null matrix (because multiplying it with the
constraint matrix A will result in a zero matrix), f is a column
matrix containing some free variables, and x0 is a solution and can
be derived from A, N and b in linear time. Applying different val-
ues of the free variables in f, we can obtain different values of x
and each of which is a solution of A * x = b.

Example: Assume all the signal buses in the linear circuit of
Fig. 5 are 4-bit wide, and an initial assignment for output x = 2 and
y = 10 are given. The linear constraints can be expressed as an

integer matrix equation: 

Modulating the coefficients by 16 (24), we have: 

We then apply the Gauss-Jordan Elimination method (based on
the extended concept of multiplecative inverse) to solve the equa-
tion and obtain the solution x in a close form:

 , where i and j are free variables

between 0 and 15. 

The computational complexity of solving the linear constraints
(finding all solutions) under the modular number system is O(n3),
where n is the number of input variables. This can be proved by
construction. Due to the space limit, the proof is omitted here.

5. Experimental Results
We have implemented the combined word-level ATPG and

arithmetic constraint-solving techniques and integrated them with
a commercial HDL parser/logic synthesizer. The framework is
applied to several public benchmark and industrial circuits. Table 1
shows the statistics of these designs.

We conduct the experiments by applying several different asser-
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Table 1: Circuit statistics

ckt name #lines #gates #FFs #ins #outs

addr_decoder 52 307 86 7 64
token_ring 157 4902 536 518 132

arbiter 303 2443 24 69 25
alarm_clock 719 1277 33 7 40
industy_01 11280 380k 9922 293 733
industy_02 5726 25520 96 60 25
industy_03 694 2623 0 70 64
industy_04 599 924 0 79 32
industy_05 47 210 7 13 1

* ckt name: circuit name 
* #gates: number of gates
* #ins: number of inputs

* #lines: lines of Verilog codes
* #FFs: number of flip-flops
* #outs: number of outputs
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Fig. 5: A linear circuit example.
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tion properties for each circuit. The properties are denoted as "p1",
"p2",...etc.

For addr_decoder, we first check that for any randomly-selected
memory cell we can write the data to it successfully (p1). We also
prove that it is impossible to have two address lines selected at the
same time (p2). The properties for token_ring and arbiter are the
same. We assert that the bus-selecting signals for the clients are
one-hot, (p3 and p5) and each client can access the bus after wait-
ing certain periods (p4 and p6). There are three properties associ-
ated with the design alarm_clock: first we show that the clock will
be reset to time "12:00" after it passes "11:59" (p7). Second, we
generate a witness sequence that brings its "hour" display to "2"
after the alarm clock is powered on (p8), and third, we assert that it
is impossible for the "hour" output to display "13" (p9). For the
industrial designs industry_01 and industry_05, we prove that their
internal don't-cares are also external to the circuits (p10 and p14).
That is, it is impossible to reach these internal don't-care states and
therefore we can use them to optimize the circuits. Designs
industry_02, industry_03, and industry_04 contain 152, 128, and
32-bit bus signals, respectively. We assert that there is no bus con-
tention for these designs, that is, either the tri-state enabling signals
are one-hot, or when more than two of the enabling signals are on,
their tri-state input data values must be consensus (p11, p12, and
p13).

The experimental results are shown in Table 2. We conducted
the experiments on a Sun UltraSparc 5 workstation with 512MB
memory. It shows that our algorithm is very efficient especially on
the memory usage. This is mainly because the memory consump-
tion for the ATPG algorithm is linear with respect to the circuit size
times the number of timeframes. Since we always try to make the
generated sequence as short as possible and use the extended state
transition graph to record the illegal states, the number of time-
frames will not become arbitrarily large. Besides, because we uti-
lize word-level primitives instead of Boolean gates to represent the
netlist, the number of gates can be reduced significantly. There-
fore, our approach is promising for large industrial designs.

6. Discussion and Conclusion
We propose a combined word-level ATPG and modular arith-

metic constraint-solving approach for the RTL assertion property
checking. The experimental results show that our methods are very
memory efficient and thus suitable for large industrial designs.
However, we found that there is still some high-level information

in the RTL design that we can utilize to speed up our algorithms.
For example, there are usually many local finite state machines in
the design and the transition relationship for each individual
machine is usually very easy to extract in the parsing and synthesis
steps. Storing the local state transition graph and using them to
guide the ATPG justification process can avoid entering illegal
states and therefore can generate the test vectors more efficiently.
In addition, recognition of other high-level modules like counters,
and shift-registers,...etc, can also help improve the efficiency.

In addition to applying our techniques to assertion properties,
we also plan to use them for model checking more general proper-
ties in the future. We will study algorithms on efficient state hash-
ing of the extended state transition graph and detecting loops of
execution sequence.
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Table 2: Experimental results

ckt_name prop. cpu time memory

addr_decoder
p1 0.08 0.01
p2 0.09 0.01

token_ring
p3 1.88 1.57
p4 1.45 1.53

arbiter
p5 0.14 0.12
p6 0.59 0.20

alarm
p7 0.36 0.88
p8 1.31 2.74
p9 137.05 9.76

industry_01 p10 14.79 54.66
industry_02 p11 20.37 17.89
industry_03 p12 1.25 2.85
industry_04 p13 0.40 1.59
industry_05 p14 0.03 0.02

* cpu time is in seconds and memory usage is in Mega bytes.
They include flattening the circuit and solving the constraints.
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