
����� ����	�
�����
������ ���	 ������������������� �� ���� ����������

C.Gebotys, R.Gebotys1, S.Wiratunga

Department of Electrical and Computer Engineering,

University of Waterloo, Wilfrid Laurier University1,

Waterloo, Ontario Canada N2L 3G1

Abstract

This paper presents an empirical approach to infer-

ring low power code generation techniques for VLIW

processors. Architectural usage variables are used to

generate equations for power prediction which are in

turn used to infer new code generation techniques for

low power. Unlike previous techniques, the methodology

empirically derives a power prediction equation and then

based upon the coe¢cients of the architectural-usage vari-

ables identi�es new VLIW code generation techniques

for low power. The approach is illustrated using func-

tional unit usage within a VLIW architecture and iden-

ti�es a new operation rebinding technique for low power

which improved power dissipation up to 18%. The ap-

proach is general and results are veri�ed with real power

measurements. This result is important for developing a

general methodology for power minimization of embed-

ded DSP software since low power is critical to complex

DSP applications in many cost sensitive markets.

1 Introduction

Power is a growing problem especially as newer DSP

processors continue to operate at higher frequencies (di-

rectly causing higher power dissipation). Even tech-

niques which o¤er a small percent improvement in power

are regarded as important. There is a growing need for

power prediction models and for better understanding

of how DSP embedded code can be modi�ed to reduce

power. As processors become more complex (greater

parallelism, subword execution, pipelines, etc...) the

power dissipation problem is also expected to become

more complex.

Design of DSP embedded systems is a challenging

process that deals with increasingly di¢cult applica-

tions (increasing functionality and changing standards),

high performance constraints and low power dissipation

requirements. Due to rapidly changing standards and

applications a low risk programmable solution is typi-

cal using DSP programmable processor cores (combined

with memory and special purpose functional units). Re-

search has examined several techniques for meeting per-

formance constraints[9] , however power has received

very little attention in the research �eld until recently[1].

Embedded systems designers cannot use most existing

low power techniques researched due to lack of detailed

gate level representations of the processor being used

(often due to proprietary or monetary constraints).

The energy dissipation of a processor running a pro-

gram [2], E, is the product of the time required to

execute the program (T), and the power dissipation

(P). The average current (I) multiplied by the sup-

ply voltage (V dd) gives the power (P) as in the equa-

tion below. The term T is equal to N ¤ ¿; where N

is the number of clock cycles and ¿ is the clock period,

E = P ¤T = I ¤V dd¤T = I ¤N ¤¿ ¤V dd: The measured

current I is an important parameter for embedded sys-

tems design that needs to be studied in order to study

how to generate low power software for DSP processors.

2 Related Research

In the area of low power, researchers have developed

architecture-level models to be used in a simulation en-

vironment or higher level tools. Memory components,

controllers [5], instruction registers of microprocessors

[7,3], are examples of some components that are known

to dissipate signi�cant power in addition to datapath

components. Researchers have tried to schedule opera-

tions[5], or swap operands [1] to reduce data bit switch-

ing. Researchers have also employed parallel instruc-

tions to improve performance which also reduced en-

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

308

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F337292.337426&domain=pdf&date_stamp=2000-06-01

ergy such as using parallel data transfer instructions[2].

Only a few of these researchers have veri�ed these val-

ues as actual physical savings in energy[2,3].

Physical current measurement as a means of mea-

suring power was used by researchers for analysis of

processors in [1,2]. An instruction-level model of power

was derived, consisting of a base power cost per in-

struction along with a overhead cost related to the next

or nearby instruction. Their power prediction model

achieved 10% error. Researchers in [3] formulated power

prediction models for two di¤erent processors with er-

ror up to 4%. Many researchers have also shown that

faster programs consume less energy [4] and have pre-

sented techniques that save power by producing faster

or higher performance code generation techniques. Thus

power prediction tools are necessary and important for

embedded systems design.

Although the methodology presented in this paper is

general, the TMS320C6201 processor[10] (C62) is used

to obtain actual current measurements. The C62 is

a complex VLIW-based (very long instruction word)

DSP processor with eight parallel functional units (two

multipliers, two address generation units, and four alu

types of units). Code is generated from commercial

TI C Compilers, in-house scheduling tools, and hand-

generated assembly code. The methodology however is

general and can be applied to any processor. The next

section will outline the methodology and experimental

setup to be used in the rest of the paper.

3 Experimental Approach

This section will brie�y describe the methodology in-

cluding the DSP processor, power measurement setup,

the DSP programs, the variables, and the statistical

analysis methods used in this paper.

Figure 1 shows the power minimization methodology

driven by architectural-feature usage variables for em-

bedded systems DSP design. Initially the DSP bench-

mark codes (c 2 f1; :::; dg) are run on the DSP proces-
sor hardware using pseudorandom (and voice) type of
input data and the currents are measured (see Current
Measurement box). The average current (Ic

m
) for each

DSP code is recorded. Variables (uc
i
,i 2 f1; :::;mg) are

extracted from the DSP benchmark code (c). Vari-
ables represent architectural usage features (u

c

a
, a 2

f1; :::; ng). For example one might wish to identify how
to bind operations to functional units for low power and
de�ne variables as the fraction of total instructions ex-
ecuted by each functional unit. These functional unit
usage variables are combined with other basic variables
(uc

b
, b 2 fn+1; :::;mg) necessary to stabilize the power

prediction equation. The power-prediction equation (

Figure 1: Methodology for minimizing power through
DSP code generation.

I
c

p
= f(uc

i
) =
Pi=m

i=0 ciu
c
i , where u

c
0
= 1) is obtained

automatically using a linear regression technique using

these variables (u
c
i ,i 2 f1; :::;mg) as predictors. The

output is a set of coe¢cients ci from equation for I
c
p

which predicts current. The embedded systems designer

then analyzes the model, looking at the smallest sized

coe¢cients of the architectural-usage variables, to see if

code can be regenerated to maximize usage of this ar-

chitectural feature (which implies minimizing the usage

of another architectural feature which has a large coe¢-

cient in the equation, since variables represent fraction

of architectural usage). If the user can not rearrange

the code to maximize usage of this functional unit, the

next smallest coe¢cient identi�es an alternative feature

to maximize. Code is regenerated (using some tech-

nique such as rebinding operations to functional units,
rescheduling as in �gure 2 to allow for rebinding, or

recompilation followed by rebinding) in an attempt to
obtain code that minimizes the predicted-power de�ned

by the equation. If the predicted current of new code is

lower, it�s real current is measured and if the error is not
acceptable then it is added to the benchmark set and

a new predictive power equation is generated. Other-

wise if the error is acceptable a new technique for power
minimization in embedded systems has been found.

The architectural-feature driven algorithm to explore
software generation for low power is outlined below:

1) De�ne Variable Set: [uc
1
; u

c

2
; :::; u

c

m
; I

c

m
] 2 S; where

I
c

m
= measured current of code c, and u

c

i
= variable i

of code c.

i 2 F = f1; 2; :::; ng; identi�es architectural-feature

variable set.

i 2 B = fn+1; n+2; :::;mg; identi�es basic variable
set .

2) Perform Linear Regression, ie. �nd predictive-

power equation:

Find c0; c1;:::;cm Ä I
c

m
¡fc0+c1u

c

1
+c2u

c

2
+:::+cmu

c

m
g

309

Figure 2: Rescheduling to support greater operation

rebinding and parallelism using delay slots.

is minimum, 8c:
Is error (minimum) low enough?, If not, add more

basic variables into set S, and go to 1). otherwise go to

3)

3) Choose minimum coe¢cient of architectural-feature

set ijmini2F ci:

If one cannot recode program to maximize this ar-

chitectural feature set F = Fni; B = B [i and go to

3). otherwise go to 4).

4) Recode the user�s application or DSP program

(not a part of benchmark DSP set) , to create a new

program (new) to maximize this architectural feature, i.

Compute predictive power of new code, measure actual

current of new code, Inew
m

, If error=Inew
m

¡fc0+c1u
new

1 +

:::+cmu
new

m
g is small enough for designer, you can stop,

you�ve found a technique for reducing power. Otherwise

, if error is too large, add this program into benchmark

set and regenerate predictive power equation, ie. S =

S [[unew
1

; unew
2

; :::; unew
m

; Inew
m

]; and go to 2).

4 Experimental Results

The architectural-feature driven methodology to infer-

ring methods of generation code that is low power for a

particular DSP processor is illustrated with the C62 test

evaluation board (along with an in-house designed inter-

face board). An elaborate warmup and calibration was

performed before and after each DSP program in order

to verify power readings were correct and reproducable.

An initial set of benchmark codes (hand-coded assem-

bly, in-house scheduler and compiler generated versions

of common DSP applications, such as the fast fourier

transform, least means squares, high pass �lter, dis-

crete cosine transform, vector compare algorithms etc)

were used. The objectives were to use this methodol-

ogy to help determine if it were possible to exploit op-

eration binding to functional units in the datapath in

order to generate software with minimum power. The

uc
i
n c iir loop dct

P 1 5.5 2.5

B 11 416 0

S1 .076 .133 .259

M2 .152 .108 .058

D1 0 .141 .154

L1 .152 .145 .124

L2 .095 .109 .094

M1 0 .035 .087

I
c

p
(A) .564 .736 .611

I
c

m
(A) .575 .730 .681

I
c

p
¡ I

c

m
-0.01 0.0054 -0.069

Table 1: Codes and their equation variables.

C62 power-prediction equation was a function of two

basic variables (u
c

b
) the parallelism (P , average number

of non-NOP instructions performed per cycle), and the

total number of branches (B) performed by the DSP

code during one iteration of the program. The bench-

mark codes had parallelism ranging from 1 to 5.5 and

branch variables ranging from 0 to over 400 (see table

1, as an example of some codes). The fraction of to-

tal non-NOP instructions performed by each functional

unit (Si, Mi, Di, Li, i=1; 2 [11]) during one iteration of

the program formed the architectural-feature variable

(u
c

a
) set. Speci�cally, the predicted power measured in

Amperes is I
c

p
= 0:49+ 3:59£10

¡3
£P+ 3:14£10¡4£B+

0:194 £ S1+ 0:186 £ M2+ :065 £ M1+ 0:147 £ D1+

0:211£L2+ :025£L1. The R
2value for this power pre-

diction equation was 0:930 (indicating that the equa-

tion could account for 93% variation in current). The

predicted current had minimum and maximum absolute

current errors of +0:1049 and ¡0:1009 Amps and an av-

erage error of 4% overall. Table 1 provides an example

of the variables used in the C62 power prediction model.

The loop is a handcoded vector compare code (taken

from [10]), the dct is the in-house scheduler version of
a discrete cosine transform code example, and the iir

is compiler generated code of an IIR �lter. Table 1 il-
lustrates how three very di¤erent codes can be used in
same model to predict current with small errors (error)
using the C62 power prediction equation. During the
architectural-feature driven algorithm presented in this
paper, the coe¢cients for each type of unit is summed
(ie. L1+2 units have coe¢cient 0:236 and M1+2 units
have coe¢cients 0:252). Thus the functional unit with
the smallest coe¢cient is the D1+2 unit with coe¢cient
of 0:147:

As an example of the functional usage-driven method-
ology for generating software for low power, an ¤t ap-
plication (not a part of the initial benchmark set) was
used. It required 0:5519A measured current and was

310

predicted to have current of 0:5577A from the power-
prediction equation. Since the D units had the smallest
coe¢cients overall in the equation, the operations (add,
sub, mv, neg[11]) were redistributed among functional
units in this application. Speci�cally these operations
which were assigned to L and S units in original code,
where possible, were reassigned to D units. This re-
sulted in fractional usage of D1+2 units changing from
:57 to :69 and the fractional usage of L=S1+2 units com-
bined changing from :307 to :211. The new code, had a
predicted current of 0:5355A. The measured current for
this new code was 0:5325A which veri�ed the improve-
ment in power of 3:6 %. The new code has the same
performance as the original code, thus showing that it
was possible to �nd ways of minimizing power for the
same performance even with complex VLIW processors.

A di¤erent dct application was rescheduled to increase

the usage of D units by 0.455 over the combined us-

age of L and S units, and produced improvement in

power from .6258 A to .53 A, an overall improvement

of 18% (and predicted power had absolute error of only

0.033A).

5 Discussions and Conclusions

This new architectural-feature driven methodology for

power minimization demonstrated power savings is pos-

sible even for complex DSP VLIW processors. The

methodology was demonstrated for a functional unit

usage exploration. It was found that by changing the

fractional usage of di¤erent units in the VLIW, power

could be saved. In particular the D units were iden-

ti�ed as being more power e¢cient. This �nding ap-

pears to make logical sense. Since the D units in the

C62 support 2 to 3 times less functionality than the L

and S units, it is highly likely that they would dissi-

pate less power, since they would have less circuitry (or

less power wastage). In fact experimentation through

running single instruction codes on di¤erent functional

units proved this to be the case. However the approach

presented in this paper is general and can be applied

to study other architectural features, which may prove

useful to saving power. Using the C62 processor, par-

allelism and redistribution of functional unit usage (ie.

performance, power) were limited by the di¤erential ca-

pabilities of the functional units and their register �le

limitations (unlike newer architectures such as [8] which

do not have these architecture constraints).

For the �rst time, an approach to identifying new

ways of saving power through software has been devel-

oped. This approach is based upon real power mea-

surements, and architectural-feature usage to infer new

ways of decreasing power. This is important for em-

bedded system designers who are designing with an

existing processor or processor core. These designers

are involved in the software design, where only access

to the hardware is available and speci�cally detailed

simulation models (from which register or bus switch-

ing data can be obtained) are typically not available.

Results showed that predictive-power equations based

upon variables derived from the code itself, could be

used to infer new methods for lower power. A wide

range of code, with parallelism varying from single func-

tional unit usage to all 8 functional units usage in the

VLIW processor, and branches varying from negligible

to over 1000 branches, was used in the benchmarks to

derive the useful predictive power equation.

Unlike previous research, this research addresses the

di¢cult problem of determining how to write software

code for a DSP processor to reduce power. These results

show that it is possible to decrease power independently

from performance and energy. Furthermore since power

is an increasingly growing problem, the power experi-

mentally lowered in this paper, up to 18 percent im-

provement is signi�cant and important. This method-

ology is general (see �gure 1) and can be applied to

any processor. This research is important for industry

since a methodology for developing power prediction for

DSP code is critical as new processors or cores grow in

complexity and become integrated into embedded DSP

systems with stringent power, performance, and cost

constraints. This research is supported by NSERC.

References

[1] V.Tiwari, S.Malik, A.Wolfe, �Power Analysis of Embedded

Software �, IEEE Trans on VLSI, Dec 1994, p437-445.

[2]M.Lee, V.Tiwari, S.Malik, M.Fujita, �Power Analysis and

Minimization Techniques for Embedded DSP Software�, IEEE

Trans on VLSI Design, March 1997, p123-135.

[3]C.Gebotys, R.Gebotys, �Statistically based prediction of

power dissipation for complex embedded DSP processors� Micro-

processors and Microsystems Journal, 23, p135-144, 1999.

[4]V.Tiwari, S.Malik, A.Wolfe, �Compilation techniques for

low energy�, ISLPED Oct 1994.

[5]C.L.Su, C.Y.Tsui, A.M.Despain, �Saving power in the con-

trol path of embedded procesors�, IEEE Design and Test Comp.,

p24-30, Dec 1994.

[6]D.Shin, K.Choi, �Low power high level synthesis by increas-

ing data correlation�, ISLPED, 1997.

[7]H.Mehta, R.Owens, M.Irwin, D.Ghosh, �Techniques for low

energy software�, ISLPED , p72-75, 1997.

[8]StarCore 140 Speci�cations, Motorola and Lucent, 1999.

[10]Y-T.S.Li, S.Malik �Performance Analysis of Embedded

Software Using Implicit Path Enumeration�, IEEE Trans on CAD,

Dec 1997, p1477-1487.

[11]TMS320C62 CPU and Instruction Set Reference Guide,

Texas Instruments Inc., January 1997.

311

