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ABSTRACT
The paper presents a novel strategy aimed at modeling the
instruction energy consumption of 32-bits microprocessors.
The proposed instruction-level pow er model is founded on a
functional decomposition of the activities accomplished by
a generic microprocessor and exhibits signi�cant generaliza-
tion capabilities. It allows estimation of the pow er �gures of
the en tire instruction-set starting from the analysis of a sub-
set, as w ell as to po w er characterize new processors by using
the model obtained by considering other microprocessors.

1. INTRODUCTION
The increasing relevance of pow er requires to predict with
reasonable con�dence the pow er consumption of both hard-
w are and softw are. The approaches for soft w are reported in
literature, fall in t w o main classes, working at the architec-
tural and instruction level. The �rst class exploits the main
strategies identi�ed for the hardware to po w er-characterize
bloc ks of the microprocessor architecture [1; 2; 3]. This so-
lution su�ers the lack of details on the internal structure
of processor cores and, being typically simulation-based, is
time-consuming. To overcome these problems, instruction-
level measurement-based models have been proposed [4; 5;
6]. The key poin t lays in measuring the average curren t
drawn by the processor as it executes a long sequence of the
same instruction. This procedure has to be repeated for all
instructions to completely characterize the processor model.
These approaches are processor-dependent by construction
and do not exhibit any generalization capability over di�er-
ent architectures. Furthermore, the con�dence of the esti-
mations is also seldom considered under a formal viewpoint:
the statistical signi�cance of the model of consumption is
usually neither considered nor justi�ed. The approach here
proposed belongs to the instruction-level class, focuses on
32-bit general-purpose processors and overcomes the above
limitations. In fact, it proposes a general methodology, in-
dependent of the speci�c processor, allowing to accurately
estimate the energy of an instruction set. The methodology
abstracts from the architectural level and focuses on the

functionalities involv edin the instruction execution. The
analysis of the statistical properties of the model, con�rms
two types of generalization:

� Intra-processor: a model built on a suitable subset
of instructions allows the extrapolation of the energy
characterization of the whole instruction set;

� Inter-processor: a model built on a set of even partially
characterized processors allows the extension of the
results to new architectures.

To validate the proposed methodology, as reported in sec-
tion 3, experiments ha ve been performed on �ve commercial
microprocessors. P articular attention has been paid to show
that all the assumptions are well founded under a statistical
viewpoint. In section 4 conclusions are drawn to summa-
rize the v alue of the proposed approach and to outline some
future researc h e�orts.

2. THE MODEL IDENTIFICATION
The proposed model is built on an a priori kno wledge of
both the energy characterization of a set of instructions and
the relevan t functional characteristics of each instruction
of the set. The model, starting from a subset of pow er-
characterized instructions of a given processor, allows deriva-
tion of a static|data independent|estimate for the instruc-
tions that do not belong to the set on which the model is
built. The model accuracy and its generalization capability
depend on three factors: the n umber of instructions, their
type (RISC/CISC, arithmetic, branch, etc.) and the model
gran ularit y.As the specialization of the model increases, its
generalization capability decreases and thus the model is a
trade-o� betw een accuracy and generalization.

2.1 Model definition
The identi�cation of a functional model for the energy con-
sumption at the instruction level is investigated considering
the relation that exists betw een the processor architecture
and a set of functionalities.

De�nition 1. A functionality is a set of activities aimed at
a speci�c goal and involv es, partially or totally, one or more
units that can be iden ti�ed in the structure of a generic
microprocessor.

De�nition 2. Two functionalities F1 and F2 are space-
disjoint if the activities accomplished by F1 involv e di�erent
structural units than those of F2. Two functionalities F1
and F2 are time-disjoint if F1 accomplishes its activities at
a di�erent time than F2 does.
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According to de�nitions 1 and 2, the activities associated
with an instruction can be modeled as the union of some
speci�c functionalities not representing a structural parti-
tion, but rather a purely functional partition. The prob-
lem of the model identi�cation consists in determining the
set, whose cardinality is k, of independent functionalities in-
volved in the execution of a generic instruction, the average
current absorbed by each functionality (ifj) and, the rela-
tion between functional units and each instruction (as;j � 0)
such that the current associated with each instruction can
be approximated with the linear combination of the currents
absorbed by the functionalities. Consequently, the model of
a generic instruction s can be expressed as:

is =
Pk

j=1 ifj � as;j (1)

where is is the estimated value for the current consumption
of instruction s.

De�nition 3. A model is compatible if and only if the cur-
rent absorbed by each instruction can be expressed as a
linear combination of the currents associated with a set of
disjoint functionalities.

De�nition 3 indicates that the groups of active function-
alities, instruction by instruction, are either time-disjoint,
space-disjoint or both, so that the total energy can be ob-
tained by summing up the energy corresponding to each
functionality. As an example, consider a simple decompo-
sition in two functionalities: fetch & decode and execute.
These two phases are time-disjoint even if they are not space-
disjoint: some of the activities necessary for fetch & decode,
in fact, are also performed during execution. For this reason,
the above decomposition is a partition and thus the additive
property on the energy (or, equivalently, on the currents) is
applicable. To verify the compatibility property, the covari-
ance matrix must be computed and the principal compo-
nents analysis should be applied. These data reveal whether
or not the identi�ed functionalities are reasonably indepen-
dent and, in this case, how much each of them contributes
to the complete model. A compatible model is feasible if the
energy consumed by an instruction is positive.

De�nition 4. Let S be the set of all instructions of a pro-
cessor, SL � S be the learning-set constituted by the in-
structions used to tune the model and SG = S � SL be
the generalization-set. A model is feasible if and only if the
estimated currents of instructions in S is nonnegative.

It is not suÆcient that the model is compatible and feasible:
it also has to provide a realistic evaluation of data. For this
purpose, the following de�nitions are introduced:

De�nition 5. Let d(w) be some data depending on a set
of parameters w and ŵ = f(d(w)) be the estimated value
of the parameters. The function f(�) is an estimator, and ŵ
are the estimated values, if and only if it is unbiased that is
E[ŵ] = w, where E[ŵ] is the expected value of ŵ.

De�nition 6. A model is reliable if and only if it is both
compatible and feasible and the estimator used is unbiased.

The model identi�cation procedure is structured on a se-
quence of steps. In the �rst step, a functional decompo-
sition is identi�ed. This subdivision is obtained referring

to a generic processor instruction set architecture and de-
tecting disjoint functionalities whose absorbed currents are
independent of|or weakly correlated to|each other. The
second step consists in identifying the correspondence be-
tween each instruction in the learning-set (considering both
the operating code and the addressing modes) and the set
of functionalities involved. For instance, the instruction MOV

CX,10 (Intel 80486DX2) is characterized by a register writ-
ing, while ADD CX,10 implies a computation and a register
writing. This step leads to an over-constrained system of
linear equations. The third step consists in computing the
estimates of the current associated with each functionality
by means of the least square method. Let m be the car-
dinality of the considered instruction set S. The energy
associated with the instruction s 2 S is:

es =
Pk

j=1 es;j = Vdd � is � nck;s � � (2)

where es;j is the energy absorbed by the j-th functionality
involved in the instruction s, k is the number of functionali-
ties considered, Vdd is the supply voltage of the core, nck;s is
the total number of clock cycles of the instruction s and � is
the clock period. If ifj is the current drawn by functionality
j and as;j is the contribution of the same functionality in
the execution of instruction s, equation 2 becomes:

es =
Pk

j=1 es;j = Vdd �
hPk

j=1(ifj � as;j) + rs
i
� � (3)

where as;j is known for each instruction s and rs is a resid-
ual. Comparing relations 2 and 3, for each instruction s, the
following equality must hold:Pk

j=1(ifj � as;j) + rs = is � nck;s (4)

Taking into account q < m instructions (m being the cardi-
nality of S) whose energy characterization is known, a lin-
ear system of q equations in k unknowns|the functionality
currents|is obtained. In such a system the coeÆcients as;j
are known since they are derived from the analysis of each
instruction in terms of the functionalities of the model. As
an example, consider the simplest possible decomposition in
a fetch & decode (F&D) functionality and an execute (Exec)
functionality. The equation for each instruction is thus:

ifF&D � as;F&D + ifExec � as;Exec + rs = is � nck;s (5)

The procedure to determine the value of the parameters
as;F&D and as;Exec is detailed in section 3.

2.2 Mathematical model
Let k be the number of identi�ed functionalities and let
mL > k be the cardinality of the energy-characterized in-
struction set SL. Then, let A be the mL � k matrix whose
entries are the activation coeÆcients as;j , IF be the k � 1
column vector whose entries are the unknown currents ifj ,
and IN be the mL � 1 column vector whose elements are
the known terms is � nck;s. The linear system:

IN = A� IF (6)

represents the available knowledge on the variables is that

have to be estimated. Let bis be an estimate of is and cIF
be an estimate of the real parameters IF. Minimizing the

square error kIN � cINk2 leads to the equation:cIF = (AT �A)�1 �A
T � IN (7)
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To estimate the model parameters cIF, the columns of ma-
trix A must be linearly independent, otherwise two possi-
ble strategies can be envisaged. A �rst solution consists in
suitably changing the instructions in the learning-set For
example, if the model only consists of Exec and F&D, the
instructions in the learning set must di�er with respect to
these two functionalities. The learning-set should thus be
composed of instructions with one-cycle and multi-cycles
fetches and/or instructions with executions distributed over
one or more cycles. The second solution requires the modi-
�cation of the functional decomposition by either increasing
or reducing the model granularity. Considering the func-
tional decomposition of the previous example, a possible so-
lution would be splitting the Exec functionality into more
speci�c functionalities such as arithmetic, registers, etc.

2.3 Single-processor model
Equation 7 gives the set of estimated parameters based on
the known relations between current measures and weights
as;j . This set of parameters is a reliable model if its esti-
mator is not biased (de�nitions 5 and 6). Starting from the
preliminary problem description, where R is the residual
vector of the rs:

IN = A� IF+R (8)

and solving the system in the least square sense yields:cIF = IF+A
� �R (9)

where A� = (AT �A)�1�AT . Equation 9 expresses the re-
lation between estimated and actual parameters. The model
is completely characterized from a statistical point of view
when the expectation value and the variance of its param-

eters are given. The expectation value E[cIF] of cIF and its

variance VAR[cIF] are:
E[cIF] = IF+A� � E[R] (10)

VAR[cIF] = E[(IF+A� �R� IF�A� � E[R])2] (11)

By assuming the residual is a gaussian noise G(0; �2) , where
0 is the expectation value and �2 is the variance, the follow-
ing relations are satis�ed:

E[R] = 0; E[R�R
T ] = �2 � I (12)

While the �rst of these relations is straightforward, the sec-
ond implies that E[R�RT ] is a diagonal matrix and thus:

E[ri � rj ] =
(
0 i 6= j

�2 i = j
(13)

Under these assumptions the estimator is unbiased, that is

E[cIF] = E[IF] and VAR[cIF] = �2(AT � A)�1. Unfortu-
nately, �2 is unknown since it depends on the residual vec-
tor R. For this reason the value of �2 has to be substituted
by its estimation �̂2. By indicating with bR = cIN� IN the
vector of the estimated modeling errors, an estimator of the

variance is �̂2 = kbRk2=(m�k), where, again, m is the num-
ber of samples and k is the number of parameters of the
model. The method described in the preceding paragraphs
is applicable if and only if the distribution of the residuals
obtained by using the proposed linear model is the gaussian
G(0; �2). The mean value of the residuals �R, depending on

a statistical model, is in turn a statistical variable and has
an expectation value and a variance:

E[�r] = �r; VAR[�r] = �4=m (14)

To test the null hypothesis �R = 0 with a 95% con�dence
level, according to a Z0:95 test, the inequality j�Rj � 1:96�2=p
m must be satis�ed.

2.4 Multi-processor model
Data collected from measures on �ve microprocessors, shows
that instructions of the same type (i.e. same operation and
addressing mode) have strongly di�erent absolute current
absorption, while the relative currents are of the same order
of magnitude. This suggests that by using relative currents
and a set P of p processors for learning, a single general
model for all processors can be derived. The relative current
is de�ned as:

irel;s =
is
iref

=
Pk

j=1

ifj
iref

� as;j =Pk
j=1ifrel;j � as;j (15)

For the generic q-th processor of the set P characterized by
Aq and INrel;q = fis;rel �nck;sg the following equation holds:

INrel;q = Aq � IFrel;q +Rrel;q (16)

where Rrel;j is the residual vector of the rs;rel;j . Solving the
system in the least square sense yields:

cIFrel;q = A
�

q � INrel;q (17)

The general model should depend on a single, general, set
of parameters IFrel, rather than the processor-speci�c pa-
rameters IFrel;j , and thus the model becomes:

INrel;q = Aq � IFrel +Rrel;q (18)

Combining equation 17 and 18 gives:

cIFrel;q = A
�

q � INrel;q = IFrel +A
�

q �Rrel;q (19)

Adding up these relations for all indices q corresponding to
the p available processors and dividing both sides by p, leads
to the following relation:

1

p

Pp

q=1
cIFrel;q = IFrel +

1

p

Pp

q=1A
�

q �Rrel;q (20)

Equation 20 indicates that an unbiased estimator of the pa-
rameters of the general model can be the average of the
estimated parameters of each processor in the set P. The
statistical properties of the residuals Rrel;q and the cho-
sen estimator are discussed in [11]. By applying the same
method used for the single-processor case, the expression for
the variance is:

VAR[cIFrel] =
1

p2
Pp

q=1VAR[
cIFrel;q] (21)

The meaning of this last equation is that by increasing the
number p of considered processors, the variance of the pa-
rameters of the general model decreases.

3. EXPERIMENTAL RESULTS
This section collects the experimental results obtained on a
set of �ve power-characterized commercial microprocessors.
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3.1 Identification of functionalities
A �rst simple decomposition leads to two disjoint function-
alities: fetch & decode and execute. It is intuitive that the
fetch & decode needs not to be further di�erentiated, while
the execute performs a number of tasks that greatly di�ers
from instruction to instruction and thus a more detailed de-
composition is necessary. An accurate analysis, supported
by the available measures, revealed that:

� a functionality, denoted as A&L, performs arithmetic
and logic operations;

� data transfer operations may or may not access mem-
ory and this a�ects the power consumption. The func-
tionality denoted as Ld&St performs load, store and
stack operations. Register write operations are ac-
counted for by theWrReg functionality, while register
reads can be neglected;

� jumps and procedure calls require speci�c operations
and thus their execution is modeled with the Br func-
tionality (branch). This functionality is also involved
in interrupt handling and system calls instructions;

� oating-point instructions are usually performed by a
speci�c arithmetic unit. At a functional level of ab-
straction, this unit is not distinguishable from an inte-
ger ALU. The A&L functionality is thus used to model
these operations;

� string operations can be be modeled using the previ-
ously de�ned functionalities.

A microprocessor can thus be decomposed in the �ve func-
tionalities: F&D, A&L, WrReg, Ld&St and Br. The func-
tionalities stimulated by an instruction not only depend on
the operation but also on the addressing modes. Table 1
shows the relation between some common addressing modes
and the functionalities involved. Note that the calculation
of an address is not functionally associated with the A&L
functionality but with Ld&St or Br. The completion of

Addressing mode Sample Functionalities

Register R2 [WrReg]
Relative 10(R2) Ld&St
Indexed (R2+R3) Ld&St
Memory (100) Ld&St
Auto-increment (R2)+ Ld&St, A&L, WrReg

Table 1: Addressing modes and functionalities

an instruction requires both executing an operation and ac-
cessing zero or more operands. According to a decompo-
sition into op-code and addressing mode, the characteriza-
tion of each instruction is obtained by computing the union
of the set of functionalities relative to the operation and
the sets of functionalities relative to the addressing mode
of each operand. For instance, consider the instruction ADD

R3,(R2)+: the ADD operation stimulates the A&L function-
ality, the destination operand R3 uses the WrReg function-
ality and the source operand (R2)+ uses the Ld&St, A&L
and WrReg functionalities. The functionalities stimulated
by the complete instruction are thus fA&Lg [ fWrRegg [
fLd&St; A&L;WrRegg = fLd&St;A&L;WrRegg. The �ve
extracted functionalities are a possible partition of the tasks

performed by a generic processor and represent a trade-o�
between the necessary knowledge on the architectures be-
ing modeled and the accuracy obtainable. This partition is
compliant to de�nitions 1 and 3 and is an acceptable basis
for the mathematical model. Its correctness, from a statisti-
cal point of view, extensively discussed in [11], is con�rmed
by the values of the relative normalized contribution of each
parameter (i.e. functionality) to the overall model (see ta-
ble 2). These results show that no functionalities can be
neglected without a�ecting the accuracy of the model.

Functionality F&D Br WrReg A&L Ld&St
Contribution 0.08 0.08 0.13 0.20 0.51

Table 2: Relative contribution to the overall model

3.2 Instruction characterization methodology
Once a functional model has been identi�ed, the instruction
set must be characterized by assigning a value to the coeÆ-
cients as;j . To clarify the procedure adopted for instruction
characterization, consider a decomposition two functionali-
ties F&D and Exec. In this case, equation 5 expresses the
model for each instruction. Intuitively, since the power con-
sumption depends on the number of cycles taken to fetch,
decode and execute the instruction, a reasonable choice is
as;F&D = nck;s;F&D and as;Exec = nck;s;Exec, that is as;F&D
is the number of clock cycles nck;s;F&D needed for fetch and
decode, and as;Exec is the number of clock cycles nck;s;Exec
needed for the execution. In a more complex model, con-
stituted by a F&D functionality and k � 1 disjoint exe-
cution functionalities (A&L, WrReg, etc.), the sum of the
k�1 coeÆcients of the execution functionalities should equal
the number of clock cycles needed for the complete execu-
tion. By indicating with if1 the F&D current and with
if2; : : : ; ifk the k�1 execution functionality currents, these
relations must hold:

as;1 = nck;s;F&D;
Pk

j=2 as;j = nck;s;Exec (22)

Based on the analysis presented in section 3.1, it is possible
to determine whether or not a functionality is involved in
the execution of a given instruction. This information can
be represented by means of an activation coeÆcient bs;j =
f0; 1g, such that bs;j = 1 indicates that the j-th functionality
takes part in the execution of instruction s. The bs;j and
the model coeÆcients as;j are related by the equation:

as;j =

(
bs;jnck;s;F&D j = 1

bs;jws j = 1 : : : k
(23)

where the weight ws is given by:

ws =

(
0

Pk
j=2 bs;j = 0

nck;s;Exec
ÆPk

j=2 bs;j otherwise
(24)

3.3 Estimation on a single processor
The processor used here to show the validity of the approach
is the Intel i80486DX. Tables 3 and 4 show the average cur-
rents drawn per clock cycle for a subset of instructions along
with the number of clock cycles, the total current and the
activation coeÆcients. The coeÆcients as;j are obtained
using equations 23 and 24. Let A = fas;jg be the instruc-
tion characterization matrix and IN = fisnck;sg the column
vector of the total currents. The solution IF is computed
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Instruction is nck;F&D nck;Exec isnck

ADD DX,BX 313.6 1 1 313.6
CMP [BX],DX 388.0 1 2 776.0
JMP label 373.0 1 3 1119.0
MOV [BX],DX 521.7 1 1 521.7
NOP 275.7 1 1 275.7
SAL BX,CL 306.5 1 3 919.5

Table 3: Currents and clock cycles of i80486DX

bs;j
Instruction F&D Br WrReg A&L Ld&St

ADD DX,BX 1 0 1 1 0
CMP [BX],DX 1 0 0 1 1
JMP label 1 1 0 0 0
MOV [BX],DX 1 0 0 0 1
NOP 1 0 0 0 0
SAL BX,CL 1 0 1 1 0

Table 4: Activation coeÆcients of i80486DX

by solving the linear problem in the least square sense. The
results, relative to the available 18 energy characterized [7]
instructions of the sample microprocessor, are shown in �g-
ure 1. The value of the functionalities currents are reported
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Figure 1: Intel i80486DX power estimates

in 5. To verify the correctness of the gaussian noise hypoth-
esis, residuals have been analyzed. The errors, measured as
the di�erence between actual and estimated currents, give
an estimate of the input residual R. The Z0:95 test is sat-
is�ed, therefore, the gaussian noise assumption holds (the
mean estimated error �R = 9:94 � 10�11 falls in the range
Z0:95 = �40:75). Similar results, reported in table 6, have
been obtained for all the other processors analyzed.

3.4 Generalization on a single processor
To investigate the generalization capabilities of the model,
the following procedure has been adopted: i) from the set of
available instructions, select a learning-set, whose cardinal-
ity is mL, such that the least square problem is non-singular
and well-conditioned; ii) solve the problem and estimate
the currents of instructions in the generalization-set; iii)
measure the learning and generalization errors. The proce-
dure has been repeated varying the learning-set cardinality.
For each learning-set size, 100 di�erent, randomly selected,
learning-sets have been used. The mean learning and gener-
alization errors are shown in the graph of �gure 2 for the In-
tel i80486DX processor. Similar results have been obtained
for the other processors. Despite the random choice of the
100 subsets used in the analysis, the accordance between
actual currents and estimated currents is good. This pro-
cedure has been repeated for 500 times for each processor

Functionality F&D Br WrReg A&L Ld&St
Current(mA) 421 355 228 228 505

Table 5: Functionality currents of i480486DX

Processor if1 if2 if3 if4 if5

ARM7 mA 5.7 14.3 13.0 18.3 13.9
STD 1.1 0.7 0.5 0.6 0.7

i960JF mA 362.0 261.9 302.2 320.0 380.6
STD 8.5 13.1 8.0 8.1 8.9

i960HD mA 970.4 692.8 804.8 775.4 1026.3
STD 17.9 28.4 18.5 18.6 46.5

SPARC mA 218.2 0.0 194.7 175.9 190.6
STD 9.0 0.0 19.2 18.7 21.4

Table 6: Currents and standard deviations
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Figure 2: Generalization error for i80486DX

leading to the results summarized in �gure 3. Note that,
since the errors tend to compensate, their mean value is
very close to zero (� 10�10): for this reason the absolute
value of the errors has been used to assess the accuracy of
the methodology. The graph reports the average, computed
over all processors and over all 500 di�erent estimates, of
the mean error on the learning-set and generalization-set,
plotted against the size of the learning-set. Figure 3 shows
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Figure 3: Learning and generalization relative error

that the mean of the absolute value of the errors computed
on the generalization-set is less than 9%, con�rming the gen-
eralization capability of the model.

3.5 General processor model
The aim of this section is to show that the model is capable
of �tting and generalizing power data coming from di�erent
microprocessors without any change to the rationale behind
the functional characterization of each instruction. Let P
be the set of available processors whose cardinality is p =
5 and PL � P be the processors-learning-set. Let PL;h

be a generic processors-learning-set with cardinality ph andcIFrel;q be the estimated model parameters computed using
all available instructions of the q-th processor. The general
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model parameters computed on the basis of the processors-
learning-set PL;h are given by:

cIFrel;h =
1

ph

Pph
q=1

cIFrel;q (25)

The parameters cIFrel;h have been computed for all 25 � 1
possible processors-learning-sets and have been used to es-
timate the current consumption on all processors in the
processor-generalization-set PG = P �PL. Figure 4 reports
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Figure 4: General model mean error

the trend of the mean error, conservatively computed as the
absolute value of the di�erence between the actual data and
the estimates, for all processor-learning-sets with cardinality
ph ranging from 1 to 5. Each point in the graph represents
the mean of average errors calculated over the processors in
PG. The �rst point of the series 1 corresponds to the set
PL;1 = f SPARClite MB86934 g, the second point corre-
sponds to PL;2 = f Intel i80486DX g, etc. The �rst point in
the second series corresponds to the set PL;6 = f SPARClite
MB86934, Intel i80486DX g and so on. The plot con�rms
that the model is adequately precise and general and that
the variance of the mean error decreases as the number of
processors in the learning set increases. As an example,
consider a general model built using the parameters of the
Intel i80486DX and ARM7TDMI architectures to estimate
the power consumption of the SPARClite MB86934. The
accordance between actual data and estimated data, shown
in �gure 5, is satisfactory.
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Figure 5: Generalization error of SPARClite

4. CONCLUSIONS
An approach to model the instruction energy consumption
of 32-bit microprocessors has been proposed. Di�erently
from the strategies in literature, this method estimates the
current for each instruction by means of a linear combina-
tion of values associated with a set of disjoint functionali-
ties. As con�rmed by the experiments performed, the pro-
posed model, based on �ve functionalities, shows notable
accuracy and good generalization properties, both intra-
processor and inter-processor, and allows extrapolating the
power consumption of uncharacterized instructions. The fol-
lowing table shows the values and the estimated standard

deviations of the �ve functionalities of the general model
obtained on the �ve available processors [6; 7; 8; 9]. By con-

Functionality F&D Br WrReg A&L Ld&St

Current 0.51 0.40 0.47 0.52 0.61
STD 0.007 0.004 0.006 0.006 0.007

Table 7: Relative functionality currents

struction, the adopted approach allows the de�nition of the
static aspects of the power consumption of each instruction.
In this context, the inter-instruction e�ects are deliberately
neglected. Two main considerations have driven this choice.
First of all, the e�ects corresponding to the measurement
errors and the modeling inaccuracy mask the contribution
related to the state of the processor. Other e�ects, such as
those connected with pipes and caches, are related to the
dynamic components of the relation between instructions
(in general, more than two) and they have to be considered
by suitably characterizing the computation and the target
architecture. The proposed model can thus be considered a
basis for a general power estimation framework considering
also higher-level aspects of code execution; its main value
lays in the possibility to easily model and compare di�erent
processors with limited measurement e�ort.
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