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Abstract

In this paper we address the problem of pipe-
lining FSMs by extending wave-steering
scheme from combinational to sequential
realm. A unified approach employs direct map-
ping of State Transition Graph into a circuit
realization. Experimental results on MCNC
benchmarks show performance improvement
of 2 to 4 times at the cost of an average area
increase of 2.9 times.

1.0  Introduction and Motivation
Pipelining is a commonly used technique when cycle time is
pushed to a limit. In the majority of cases the pipelined circuits are
combinational. Efforts to implement pipelining schemes in
sequential circuits have been limited, and very few papers
addressed [11] the issue of a general design method to pipeline
FSMs. Applicability range of such machines is not at all negligi-
ble. They are needed in vast areas of communication as digital fil-
ters, convolutional and variable-length decoders [7], and also in
control dominated applications [10]. In general high throughput
FSMs are desirable for all applications where it is less important to
reduce the latency between inputs and outputs than it is to reduce
the time interval between two consecutive legal outputs. The work
[11] identifies the key problem of pipelining FSMs in the presence
of iteration bound. The basic observation is that a sequential
machine, by its very nature, has a memory of the past imposing
order relations between past and future signals that can’t be satis-
fied by a naive pipelining of the combinational portion of the logic.
The studies which address the problem [7][11] tend to target spe-
cific designs or classes of designs. In this work we propose a meth-
odology that is not restricted to FSMs for a specific class of
applications, and is potentially applicable to all sequential
machines that can be conveniently described by State Transition
Graphs (STGs). The key idea involves a direct mapping of one-hot
encoded STG. The one-hot encoding scheme helps to decouple
interactions between different states. In order for the methodology
to be viable we need the flexibility to manipulate the pipeline at
the bit level. The technique ofwave steering[12], which is very
suitable for design automation, fits perfectly into the scheme.

2.0  Wave steered combinational circuits
Extending pipelining techniques from architectural to bit-level ha
led to aggressively fast designs, especially when applied
dynamic logic circuits. However, lack of a widespread desig
methodology has confined the use of these otherwise powe
techniques to designs where performance is the primary goal (l
data-paths of processors) justifying a full custom approach.

The new approach ofwave steering[12], that has already shown
some of its potential, implements micro-pipelining in a differen
fashion than it is done for the classic dynamic circuits. The cent
idea is to allow several signal waves co-exist in a combination
circuit, each wave collecting information on different variables a
it proceeds towards the output. If we consider a BDD in figure 1
we can see that, traversing it bottom up, and choosing the p
according to the values of the variables, we progressively push
information about the lower variables towards the top of the di
gram. The implementation consists of mapping each BDD node

a Pass Transistor Logic multiplexer followed by a buffer (like i
figure 1b, where the buffers are not shown) [3][4][14][15] an
pipelining it. The pipelining is achieved not by the use of clocks
the signal evaluation path but only by skewing the inputs throu
appropriate fast dynamic flip-flops. The skew is obtained throu
the asymmetrical arrangements of flip-flops, called feeders, so t
the signals arrive at the pass transistor gates in the sequence c
each delayed by half a clock period from its predecessor. In t
way at each clock cycle every other level can be active and co
puting information relative to a different output vector. This yield
an extremely fine-grained pipeline, operating at the level of a s
gle bit, allowing for very short clock periods. On the other han
the use of BDDs renders the method homogeneously applicabl
any type of problems, with a unified methodology that require
small or no manual intervention to ensure functionality of th
design. Furthermore, the attainable performance does not req
any complex optimization process on transistors’ dimensions
features of the layout. Recent experiments show extremely go
improvements in clock frequency (2 to 8 times) for combination
designs with respect to their standard cell implementation, at
expense of an increase in area (1.2 to 3 times) that is accepta
for performance-dominated applications.

3.0  Extensions to sequential systems
The technique of wave steering cannot be applied without mod
cations to sequential circuit synthesis. The presence of feedbac
any circuit causes the iteration bound [11].
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Figure 1. Function ab+c and its wave-steered implementation.
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A state machine computes the next state as a combinational func-
tion of the present state and the present input. Any pipelining
scheme (wave steering included) would increase the throughput of
the single partial stages of computation, leaving unchanged (or
possibly worsening) the overall latency. However, the data depen-
dency between present and future state imposes that, for the next
computation to begin, the previous computation be completed (see
figure 2a and 2b).

In practice, no matter how fast the partial computations of the next
state are performed, the global speed of the machine is given by
the latency of next state computations, and the pipeline stages
would remain idle for most of the time. The iteration bound
imposes a limit on the performance of any FSM implementation of
1/τ, τ being the time necessary to compute the next state informa-
tion. A closer analysis of the problem shows that the bound is not
so strict as it seems at a first sight. The value ofτ in the iteration
bound formula is independent of the computation time related to
the primary input variables. Therefore, if there is a way to decou-
ple the primary input variables from the state variables in the com-
putation of the next state, the throughput can be increased. In
figure 2d it is shown that this can be achieved by pushing the state
variables (distributed in all stages in figure 2c) as late as possible in
the pipeline stages. An advantage of the wave-steering scheme is
that it offers a uniform technique to re-arrange pipeline stages. It is
sufficient to choose the order of variables such that the state vari-
ables are positioned at the top of the BDDs representing the transi-
tion functions.

Even if this allows the iteration bound to be somewhat relaxed, it
can be still too high to compete with classically optimized circuits.
One solution is to reduce the mutual dependency between state
bits, in such a way that any particular next state bit can be com-
puted on the basis of a smaller number of present state bits. This
implicitly calls for a decomposition of the monolitic transition
function into smaller communicating blocks. We investigated the
applicability of classical decomposition theory ([1][9]) with good
results on some machines. In this paper, however, we concentrate
on a different technique that can be applied to any machine
(regardless its decomposability), and has the attractive feature of
mapping the State Transition Graph directly to a feasible imple-
mentation.

4.0 Direct mapping of State Transition Graphs
Consider an FSM described by its State Transition Graph shown in
figure 3. The transitions between states are labeled by their trigger-
ing inputs. After minimal length state encoding has taken place,
this representation is only loosely related to the functional descrip-
tion of the State Transition Function.

This, however, is not the case when one-hot encoding is chos
When every state is assigned its own bit, the resulting transiti
functions can be directly read from the STG. The relation
between the present and next states can be immediately read f
the STG by looking at all incoming edges of a state; e.g. the fi
equation is equivalent to the sentence:The next state will be state A
iff (present state is A AND input i is 1) OR present state is C.

If each state bit is implemented by a separate circuit, the numbe
variables needed by each next state computation is no longer de
mined by the total number of state bits, but only by those bits th
are needed for that particular state. Their number equals the nu
ber of incoming arcs to the node representing the state in ST
Even if the one-hot encoding greatly increases the number of s
bits (from log2(N) to N), the single iteration bound is given by th
maximum number of incoming transitions, which can be (and us
ally are, besides some special states such as reset states) a
fraction of the number of states.

Figure 4 shows a BDD mapped, wave steered implementation
states A and B from fig.3. Note that some signals are generated
the same circuits that use them later as inputs. In fig. 4a we de
the starting point when A is the present state and the active clo
period is φ1. We use the pictorial convention that the similarly
shaded areas correspond to active nodes related to the same te
ral slice. In this instant, the input i has value 1. The value 1 w
eventually appear at the output and from the STG in figure 3 w
know that this means that in the nextφ1 phase the active state will
have to be A again. At the moment, the input i is such that node
evaluates to 1, node m to 0. In the next phase (fig. 4b) the inform
tion propagates to the next level (node n=1, node o=0), while st
bit is stored in the two flip-flops (black squares). At the nextφ1
phase the state information and the input information final
appear at the top of the diagrams. At the same time in the bott
level, next input (i=0) is evaluated and this time will propagate b
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Figure 2. FSMs and pipelining.
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Figure 3. STG description of an FSM
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Figure 4. BDD implementation of part of previous FSM
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1 to node m. This will eventually lead to state B being selected.
Even if all BDDs perform simultaneously their computations, from
the logical point of view the structure behaves as if a control token,
representing the present state, were subsequently passed between
the different states, giving them the power to fire the next transi-
tion.

The delays between the input and the evaluation of its correspond-
ing state change will not reduce the throughput. However, states
with many incoming edges will stall the pipeline, as shown in fig. 5
(the equally shaded areas represent nodes evaluating signals in the
same time slice). In this case the state S has a fanin of 3. This
means that one of the state bits must feed the third level from the
top (here the bit coming from the state T). We can follow the sig-
nals as they progress in the pipeline. State bit valid in 5(a) is stored
in a flip flop 5(b), enters the third level 5(c), and only after a total
of 2 clock cycles it will be able to influence the next state. This
explains why the next valid level 3 input cannot appear simulta-
neously with the valid output (as it was the case in fig. 4a), but it
has to be delayed by 1 cycle (from snapshot 5(a) to snapshot 5(c)).
Only this guarantees a correct synchronization of the state and
input signals. The pipeline has to be stalled by M/2 clock periods,
M being the number of incoming state
bits.

It is possible to process a pair of bits in the BDDs without stalling
the pipeline. FSMs with STGs whose states have fanins of (at
most) two can run at the maximum speed. Any FSM can be trans-
formed into an FSM where this condition holds, by adding
“dummy states”. The concept is explained in the following figure.
The diagram of figure 6a can be transformed into that of figure 6b
by substituting the state s with fanin of 4 with a tree of 3 states,
each with fanin of 2. This results in adding two dummy states,
whose purpose is to hold the information regarding the incoming
transitions for one clock cycle, before it can be completely pro-
cessed. Each of the dummy nodes contains a partial information
about the next state s. If and only if one of them is active, the logi-

cal next state must be s. This means that, in the next clock peri
state s can be effectively computed and this information used
the rest of the machine. When any of the “dummy states” is m
the machine delays its computation by one clock period. In ord
to guarantee a correct behavior, an equal number of dummy sta
must be added in front of all states, even when this is not stric
necessary. With this methodology, the performance degradatio
reduced from M/2 to log2(M)/2, M being the maximum number o
incoming edges.

5.0  Circuits and Physical Design
The necessity of evaluating one state variable at a time causes
the presence of states with high “state fanin” jeopardizes all t
advantages of pipelined computation. A careful analysis, thoug
shows that there are no fundamental reasons why all state varia
have to be evaluated sequentially. Due to the choice of one-
encoding, only one state variable can be active in a given clo
period. It is possible to compute the next state information by ev
uating all the incoming state bits at the same time, through the u
of a precharged logic at the top of the diagrams. Spice simulatio
show that the circuit works at the same high clock rate as th
achieved by the rest of the diagram, up to a reasonable limit
fanin states and output loading. When that limit is reached, t
strategies illustrated in the previous section can be used.

6.0  Experimental results and comparisons
To evaluate the feasibility of the method we performed expe
ments with the .kiss format FSMs in the MCNC benchmark suit
For each of the considered state machines, we built the BD
needed to compute each transition and mapped them into BDD
cuits, which were placed and routed, and we took into accou
loading and electrical effects. SPICE simulations verify that th
circuits can run at a clock cycle of 1.6 ns, when implemented in
0.5µm technology and all parasitic and coupling effects are tak
into account. Simulation included dynamic part of the circuit in th
presence of long wires, up to 500µm, to ensure connections
between blocks. Then we used a commercial tool to place a
route different blocks. After obtaining the results, we checked
the loading constraints were satisfied. In the figures, areas incl
the logic needed to compute outputs. The comparison was m
with respect to a standard cell implementation of the sam
machines (in the same technology)using a commercial tool,
FSMs being previously optimized for performance and mapped
SIS (using a combination of script_rugged and script_delay). T
tool performed static timing analysis, providing the speed figur
reported.

Table 1 shows that the standard cell implementation of t
machines is always more economical area-wise, the wave-stee
implementation are 1 to 5 times larger, with an average of 2.85.

The throughput of all listed machines is 1.6ns and is 2 to 4 tim
better (2.8 on average) than that of standard cell realizations. D
to this substantial gain, the average latency of the pipelin
machines is generally very close to (and in many cases - repor
in bold - less than) the standard cell delay. The significance of t
result, we believe, has to be measured also on the fact that con
logic usually tends to result in very shallow and fast implement
tions, and classical multilevel synthesis algorithms (as those c

φ2

φ1

φ1

φ2

φ1

φ1 φ2

φ1

φ1

a)

b)
c)

Figure 5. Multiple fanins can stall the pipeline
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tained in SIS) perform extremely well on the random logic that

results. It is therefore interesting that a pure mapping of transitions

into a netlist, with few efforts to minimize the logic, can be com-
pared with standard cell, at least on the performance-area
tradeoffs.

We list only those machines for which we could guarantee the
maximum timing performance. This fixed the limit on circuits
dimensions. If this or a similar method is considered in the future
for implementation of bigger state machines, an appropriate

decomposition technique has to be devised to guarantee the “
rect by construction” performance that we believe is one of t
most attractive features of this methodology.

7.0  Conclusion and future work
In this work we proposed a pipeline scheme for one-hot encod
FSMs. The proposed method is simple, applicable to any machi
and yields meaningful performance improvements. However,
suffers from the problem of not being easily scalable in its origin
form, thus limiting its scope to small and medium machines. W
think, though, that the use of decomposition techniques and ot
encoding schemes can alleviate and possibly solve the probl
We are currently working at these issues. We also study placem
and routing schemes which can improve the performance and c
trol the noise problem of the designs.
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FSM
#S
sta
tes

S C Area
(103µm2)

W. S.

Area (103

µm2)

S C
cycle

S C/
W S
cycle

 W.S.
Latenc

y

bbara 10 11.5 42.4 3.6 2.2 5.6

bbsse 16 26.7 72.5 5.5 3.4 6.4

bbtas 6 8.5 13.5 3.0 1.9 3.2

beecount 7 6.7 18.2 3.6 2.3 4.8

cse 16 42.5 168.6 6.6 4.1 8.8

dk14 7 20.9 56.1 6.1 3.8 4.8

dk15 4 15.9 42.2 5.1 3.2 4.8

dk16 27 49.6 145.1 8.8 5.5 5.6

dk17 8 13.1 34.9 6.0 3.7 3.2

dk27 7 7.2 12.9 2.5 1.6 3.2

dk512 15 14.6 28.2 4.5 2.8 3.2

ex2 19 17.4 68.6 4.8 3 4.8

ex3 10 8.1 15.2 3.8 2.4 3.2

ex4 14 16.3 34.7 3.9 2.4 4.8

ex5 9 14.1 13.3 3.1 1.9 3.2

ex6 8 21.7 53.5 5.4 3.4 3.2

ex7 10 7.4 13.3 3.7 2.3 3.2

kirkman 16 34.0 49.0 5.2 3.3 11.2

lion 4 8.0 8.5 2.5 1.6 3.2

lion9 9 5.2 9.3 3.0 1.9 3.2

mark1 15 19.6 66.3 4.3 2.7 4.0

mc 4 4.8 8.3 4.0 2.5 3.2

opus 10 19.5 34.3 4.5 2.8 6.4

pma 24 53.9 156.4 7.1 4.4 4.0

s208 18 22.2 96.4 4.1 2.6 9.6

s27 6 10.2 28.7 3.3 2.1 4.8

s386 13 28.2 79.4 4.9 3.1 4.8

s420 18 19.2 63.5 4.4 2.8 9.6

s1488 48 123 377.5 6.3 3.94 9.6

shiftreg 8 6.4 11.6 2.9 1.8 1.6

sse 16 26.2 63.9 5.1 3.2 6.4

tav 4 8.0 16.4 2.8 1.8 4.8

tma 20 34.0 179.4 6.5 4.1 6.4

train11 11 6.0 9.0 2.3 1.4 3.2

train4 4 8.4 13.0 3.3 2.1 3.2

739 2104.1 4.47 2.8 5.01
4
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