
A Web-CAD Methodology for IP-Core Analysis and
Simulation

Alessandro Fin Franco Fummi
DST Informatica, Università di Verona

Verona, ITALY

fin,fummi@sci.univr.it

ABSTRACT
An e�ective selection of the more suited IP-core, available
for a particular design, should be based on some sim ula-
tion sessions. Ho w ever, sim ulation models cannot be close
enough to the real models of the core to protect the intellec-
tual property. This paper proposes a Web-CAD methodol-
ogy for IP-core analysis based on a client/serv er sim ulation
architecture. The core vendor can make available to the
public even the core models used for core syn thesis with-
out disclosing IP information. On the other side, the core
user can sim ulatethe remote core in the local sim ulation
environment in the same way a local library component is
sim ulated. To achiev e this result, some problems concern-
ing the non equivalence of the event driv en semantic and the
message driven semantic ha ve been analyzed and solved.

1. INTRODUCTION
The use of intellectual propert ycores can sensibly reduce
the dev elopment time of a design, thus allo wingto satisfy
the strategic goal of the time-to-market. Ho w ever, if design
complexity can be reduced by integrating already produced
and optimized parts, design management becomes more and
more critical, thus absorbing a considerable part of the en-
tire design e�ort [1]. A critical aspect of design management
concerns the identi�cation of the more suited core to be inte-
grated in the design. An extensive trade-o� analysis betw een
cost and performance should be performed to maximize the
adv an tages of using cores.

The majority (perhaps the entirety) of the core vendors have
sophisticated Web sites, which pro vide some information on
the cores they are selling (e.g., pins, functionality, pow er dis-
sipation, etc.). Ho w ever, such an information is usually not
enough when a core must be ev aluated combined with the
rest of the design and some sim ulationsessions should be
performed. T o complete this task, some simulatable views
of the core should be available, possibly at the di�erent ab-
straction lev els (beha vioral, RT, gate, switch). An hardware
description language such as VHDL [2] is able to eÆciently
cover all such views, but the distribution of such descrip-

tions cannot be safely performed if the intellectual property
m ust be preserved. Cryptographic techniques for delivering
sim ulation models have been proposed [3, 4, 5], but they do
not seem to completely solve the problem, since they are ex-
tremely simulator dependent and they require a considerable
e�ort for the core vendors to maintain the coherence of the
di�erent versions of the cores and to upgrade the delivered
�les.

This paper proposes to concentrate the source of simulations
directly in the Web server of the core vendor, by propos-
ing a t ypical client-server architecture, where the core users
perform distributed simulations by connecting their simula-
tion en vironment to the simulation environment of the core
vendor. This idea has been already analyzed in the litera-
ture [7, 8, 9], by proposing the use of ad-hoc languages, such
as Ja va, to model the core functionality and allowing cooper-
ative working. The main disadvan tage of suc h approaches is
the need of a remodeling phase, by the core designer, which
does not usually use Java-based tools to design cores. Ev en
disregarding the necessary extra work, there is a high pos-
sibility of introducing discrepancies and di�erences betw een
the Ja va models and the design models.

On the contrary, the proposedWeb-based simulation method-
ology directly uses design languages, such as Verilog or
VHDL, thus giving to the core pro vider the possibilit yof
safely making available the real design models used to de-
velop the core. In fact, the core user has only the view of
the core in terface (b y using VHDL this is theentity) and
the answers from the server sim ulatorin relation to each
input vector submitted. No internal model information is
disco vered, thus preserving the intellectual propert y. The
sim ulation methodology is based on standard techniques and
tools, that is, on a VHDL/Verilog simulator, on the Internet
protocols and on a socket-based [11] interface. In this way:

� original models used to design the core can be made
available on the core-vendor Web serv er, without writ-
ing ad-ho csim ulation models;

� new versions of the core can be made available b y the
core v endor, by simply updating the server instead of
upgrading delivered �les;

� the core user simulates the core embedded in the ar-
chitecture, by using the same simulation environment
used for the rest of the design;

� di�erent abstraction levels can be investigated b y the
core user, by simply changing the server socket port
and without changing other aspects of the simulation
environment.

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

597

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F337292.337590&domain=pdf&date_stamp=2000-06-01

The rest of the paper is organized as follows. The Web-based
simulation methodology is presented in Section 2. Section 3
discusses all features and problems related to the distribu-
tion of a VHDL/Verilog simulation across the Internet. An
application example is described in Section 4 to underline
advantages and drawbacks of the proposed methodology. Fi-
nally, Section 5 is devoted to feature works and concluding
remarks.

2. IP-CORE ANALYSIS METHODOLOGY
The proposed methodology for IP-Core analysis and simula-
tion can be described by considering the point of view of the
two cooperating parts: the core vendor and the core user.

main () {

}

C CORE-STUB
ARCHITECTURE

CLIENT SUITE

http://WWW.CORE-VENDOR.COM

CORE DATASHEET

 CLICK HERE TO DOWNLOAD
 THE CLIENT-SUITE TO TRY
 THE CORE

entity CORESTUB is

end CORE-STUB;

VHDL CORE-STUB
ENTITYDownload

CLIENT COMPUTER

Figure 1: Client-suite download process.

2.1 Core Vendor
The task of the core vendor is the setup of a simulation
server, which allows each core user to remotely simulate the
cores without discovering their internal descriptions. We
propose to make a simulation server for each core based on
the following components:

� The VHDL/Verilog simulator of the core.
It simulates the VHDL/Verilog core models that have
been used to design the core. The simulator must be
able to integrate VHDL/Verilog models with C proce-
dures. This is a feature, for instance, of the Model-
technology simulation environment [10].

� The socket-based interface.
It accepts remote simulation sessions and transmits
(receives) signal values to (from) the VHDL/Verilog
simulator. This part is automatically built as described
belove.

� Models retrieval.
The Web server of the core vendor allows the core user
to retrieve the simulation suite for each core (see Fig-
ure 1). This suite is composed of the core interface
(e.g., a VHDL entity) and the socket interface (e.g., a
C-language architecture).

� Simulation server activation.
The simulation server can be always active waiting for
connections on di�erent ports, or the core user can
explicitly ask the server to activate the particular sim-
ulator related to the core under analysis.

The socket-based interface is the unique component that
must be built for each core. This operation can be automat-
ically performed starting from the VHDL entity of the core
(see Figure 2).

2.2 Core User
The core user must at �rst verify the general characteristics
of the core, by consulting the textual information reported
in the Web site of the core vendor. Whenever, this �rst
analysis has been positively terminated, the core user must
verify more accurately the core characteristics by running
some simulation sessions.

entity CORE is

end CORE;

VHDL CORE

ENTITY

entity CORE-STUB is

end CORE-STUB;

VHDL CORE-STUB

ENTITY

main () {

}

C CORE-STUB

ARCHITECTURE

main () {

}

C SERVER-STUB

ARCHITECTURE

entity CORE-STUB is

end CORE-STUB;

VHDL SERVER

STUB ENTITY

SERVER SUITE

CLIENT SUITE

LEDA
TOOLS

Figure 2: Socket-based interface generation.

Note that, the delivery of the core stub as a C source does
not release IP information, since it is composed only of a
set of procedures implementing the socket-based communi-
cation. The VHDL entity of the core is the unique IP infor-
mation released, but this is performed whenever the set of
input/output ports of the core is made available.

3. IP-CORE REMOTE SIMULATION
The remote simulation is guaranteed by the client/server
architecture, which has been introduced in the previous sec-
tion. All involved parts, from the client and the server side,
are reported in Figure 3.

Component 2

Component 3

CORE STUB

CLIENT ARCHITECTURE

SERVER
STUB

CORE

Component1

CORE-PROVIDER ARCHITECTURE

Component 4

I
N
T
E
R
N
E
T

VHDL Architecture Component C Architecture Component

Figure 3: Client/server architecture for remote sim-
ulation.

This client/server architecture is based on two stubs, written
in C, which allow the conversion of signal values into Internet
packets and vice versa. This implementation requires the use
of a VHDL simulator able to link C objects. At simulation
time, the simulator links all compiled VHDL modules and
all compiled C modules and simulate them concurrently.

Let us now analyze the main components of the client/server
architecture.

3.1 Server stub
The VHDL entity of this component has an input port for
each output port of the core and an output port for each
input port of the core. This component is connected to the
core design entity (see Figure 3), which is simulated on the
server. The architecture of the core can describe it at dif-
ferent abstraction levels. The main task of this component
is the communication with the core stub instantiated in the
design of the core user. The communication is based on
messages exchanged on the Internet. Each message includes
the values of the signals to be assigned and some temporal
information as described belove.

3.2 Core stub
This component has the same VHDL entity of the core and
an architecture written in C. The core user includes the core

598

stub in the project as it would be the real core. The core stub
behaves exactly as the original core, since it communicates
with the server stub via messages exchanged on the Internet.
Every time there is an event on an input port of the core
stub, the corresponding signal value is transmitted to the
server stub and produces an event in the server simulator.
The real core is accordingly simulated and if there is at least
a modi�cation of an output port of the real core, this value is
sent back from the server stub to the core stub, which assigns
the value to its corresponding output port. This assignment
produces an event on the client simulator, which reacts in
the correct way.

3.3 Concurrent processes
The architectures of both the server stub and core stub are
composed of two concurrent processes: one for message send-
ing and one for message receiving. Two processes are neces-
sary since the two activities must be independent to guar-
antee the correct interface of server and client. In the core
stub, the sending process is activated from the simulator ev-
ery time an event happened on an input port of the core.
This is guaranteed by the simulator since all input ports
of the core have been inserted in the sensitivity list of this
process.

The receiving process should be always active to monitor
the socket interface, waiting for a message arriving from the
server stub. The proposed solution is based on the insertion
of the signal selfin in the sensitivity list of this process.
This signal is connected to the signal selfout, which is as-
serted by the process itself by using the following instruction:

selfout <= NOT selfin AFTER WAKEUP ns;

This allows the client simulator to wake up the process every
WAKEUP time unit of simulation. The same problem does
not a�ect the two processes of the server stub. In fact, the
sending process is activated by the server simulator every
time an event happened on the output ports of the core.

3.4 Simulators synchronization
The synchronization of the client and server seems to be a
non relevant problem, since it is solved by the socket. On the
contrary, there are some hidden problems originating from
the di�erences between the semantic of the VHDL simulator
(event driven) and the semantic of the socket interface (mes-
sage driven). In the proposed client/server architecture, at
every VHDL event corresponds a message sending (for both
the core stub and server stub), while the opposite is not al-
ways true (a message arrives to the server stub, but the core
simulation does not produce an event on the core output
ports). This is the reason of the addition of the selfin and
selfout signals, which guarantee to always generate events
on the client simulator even if a message is not sent by the
server simulator.

Moreover, the simulation time of the server simulator and
the client simulator must evolve coherently to guarantee the
correct synchronization of both simulators. To achieve this
result, exchanged messages are composed of the following
�elds:

� signalID. It identi�es the signal transmitted by using
a code, which has been de�ned during the automatic
generation of the server stub and the core stub.

� signal value. Value of the transmitted signal.

� time-stamp. Simulation time in the server simulator,

or in the client simulator, of the event of the transmit-
ted signal.

� type. It di�erentiates the INERTIAL delay model (de-
fault) from the TRANSPORT delay model.

The receiving processes of both the server stub and the core
stub are responsible of the correct synchronization of the
two simulators. Every time a message is received, the time-
stamp is compared to the current-time of the simulator and
one of the following two actions is executed:

� If current-time > time-stamp the simulation is aborted
since there is no longer synchronization between the
two simulators.

� If current-time � time-stamp a signal assignment
(INERTIAL or TRANSPORT) of signal value is performed
on the signal identi�ed by the signalID with a delay
equal to current-time - time-stamp time units.

Let us analyze �rst case corresponding to an error. The
activation and execution of the sending processes does not
modify the simulation time of both server and client since
these processes do not assign signals. On the contrary, the
receiving processes allow the increasing of simulation time
since they assign signals to a scheduled time. All processes
consume real time to implement the transmission. More-
over, the receiving process of the core stub works in a polling
way to check if messages are available on the socket inter-
face. For this process the following temporal constraint has
to be checked:

2Tt + Tcore � Tclient

where Tt is the real time used by the message to traverse
the network and to reach the other side of the client/server
architecture, Tcore is the real time used by the core to even-
tually produce an event on the output ports of the core and
Tclient measures the real time between the sending of two
messages of the client. This constraint certi�es that the
client simulator receives all messages from the server simu-
lation in time for scheduling events in the client server. If
this constraint is not satis�ed, the correct relation between
inputs and outputs would be lost and the values on the out-
put lines of the core stub would be propagated with a wrong
delay respect to the input values that have generated them.

The importance of the WAKEUP time derives from this
problem. In fact, by accordingly setting this parameter it
is possible to satisfy the above constraint. Reducing the
WAKEUP time increases Tclient, since more time is spent
by the client simulator to activate the receiving process of
the core stub. Therefore, it is possible to have a correct sim-
ulation even in presence of a slow connection. However, a
low WAKEUP time increases the real time wasted by the
polling cycle of the receiving process of the client simula-
tor. To minimize the real simulation time, maintaining the
correctness of it, it has to minimize the di�erence between
2Tt + Tcore and Tclient. The simulation starts with a low
WAKEUP time and then it is dynamically increased dur-
ing the simulation, in relation to the connection speed, but
preserving the correctness of the simulation.

4. APPLICATION EXAMPLE
The proposed methodology for the analysis and remote sim-
ulation of IP cores is applied in this section to a a public do-
main load/store CPU available at the RT and logic levels [6].
The Modeltecnology VHDL simulation environment [10] has

599

Simulation Type Real Time User Time System Time NReal Time NUser Time NSystem Time

Local 21.2 8.9 1.1 1 1 1
Local with socket 1411.9 68.4 8.2 66.6 7.7 7.5
Intranet 1422.4 72.1 8.8 67.1 7.9 8.0
Internet 1518.0 77.8 10.8 71.6 8.7 9.8

Table 1: Simulation times and normalized times for the di�erent kinds of simulation.

been used, since it allows the mixed simulation of VHDL and
C modules.

The VHDL simulation of the overall architecture is per-
formed to verify the e�ectiveness of the selected core and its
correct integration in the design. We performed four kinds
of simulation to measure the applicability of the proposed
simulation methodology:

� Local simulation with the VHDL description of the
core embedded into the global architecture. It corre-
sponds to the simulation of a core, which is directly
provided in VHDL.

� Local with socket simulation. Both client and server
are running on the same machine and they are inter-
faced via socket. This simulation measure the over-
head of the socket interface disregarding network prob-
lems.

� Intranet remote simulation. Both client and server
belong to the same internet domain and they are con-
nected trough a 100Mbit Ethernet connection. This
simulation is related to the use and distribution of a
core in the same company, where a design group can
only use the results of another design group without
disclosing the intellectual property.

� Internet remote simulation. This is the more gen-
eral case, where a local client is connected to a remote
server located in any part of the Internet. In this case,
client and server have been located in di�erent labora-
tories of north of Italy and the measurement has been
performed in the rush hours. Due to the low band-
width of the Internet connections in the north of Italy,
this situation is not faraway from the localization, for
instance, of a client in Europe and a server in north
America, or vice versa.

A very detailed gate-level core description has been selected
for the analysis. Table 3.4 shows the time necessary to run
the simulation of the entire architecture with the embed-
ded core. Times are expressed in seconds. In the last three
columns there are the normalized simulation times with re-
spect to the times of the local simulation.

The local simulation without socket interface is obviously
the fastest solution, and the socket interface increases of 60-
70 times the real time, while only of one order or magnitude
the CPU time.

There is a small di�erence between the Local with socket,
Intranet and Internet simulation methods, thus showing the
real possibility of performing remote simulations across In-
ternet. In fact, the remote simulation mechanism is limited
by the conversion of simulation events into data packets and
it is only partially limited by their transmission. Thus, a di-
rect integration of this conversion mechanism into the simu-
lation environment will probably reduce this overhead, thus
making e�ective the remote simulation of a core.

5. CONCLUDING REMARKS
A Web-CAD methodology for IP-Core analysis and simu-
lation has been presented in the paper. It allows the core
vendor to make available very detailed core models without
disclosing IP information. This is possible since the pro-
posed client/server architecture allows the core user to in-
tegrate in the project a design entity, representing the core,
which interfaces the client simulator to the server simulator.
In this way, the core user simulates the core by using very
detailed models in the same way the simulation of a local
library component is performed.

The proposed client/server architecture is based on two
VHDL (or Verilog) simulators (one working as server and
one as client) and on the socket interface to connect and
synchronize the two simulators. Problems concerning the
di�erences between the event-driven semantic of the simula-
tor and the message-driven semantic of the socket interface
have been analyzed and solved, thus guaranteeing the cor-
rect remote simulation of the core in the local environment.
Moreover, the eÆciency of the proposed client/server archi-
tecture is acceptable as shown on an application example.

6. REFERENCES
[1] J. Notbauer, T. Albrecht, G. Niedrist and

S. Rohringer. Veri�cation and management of a
multimillion-gate embedded core design. Proc.
ACM/IEEE DAC, pages 425{428, 1999.

[2] IEEE standard VHDL language reference manual.
IEEE Sid 1076-1993, The Institute of Electrical and
Electronic Enginnerings, Inc., New York, NY, 1993.

[3] M.J. Silva and R.H. Katz. The case for design using
the World Wide Web. Proc. ACM/IEEE DAC, pages
579{585, 1995.

[4] LEDA VHDL*Verilog System user's manual. VHDL
Compiler Version 4.1, 1993.

[5] S. Hauck and S. Knoll. Data security for Web-based
CAD. Proc. ACM/IEEE DAC, pages 788{793, 1998.

[6] SPeedCHART Project Designer User's Manual,
Version 3.2.0 Speed S.A., 1996.

[7] R. HelaiHl and K. Olukotun. Java as a Speci�cation
Language for Hardware-Software Systems. Proc. IEEE
ICCAD, pages 690{697, 1997.

[8] M. Dalpasso, A. Bogliolo and L. Benini. VSpeci�cation
and Validation of distributed IP-based designs with
JavaCAD. Proc. IEEE DATE, pages 684{688, 1999.

[9] M. Dalpasso, A. Bogliolo and L. Benini. Virtual
Simulation od Distributed IP-based Design. Proc.
ACM/IEEE DAC, pages 50{55, 1999.

[10] ModelSim user's manual. Model Technology, 1998.
[11] L. Peterson and B. Davie. Computer Networks: A

System Approach. Morgan Kaufmann, 1996.
[12] C. Patchett and M. Wright. CGI Cookbook. John

Wiley and Sons, 1997.
[13] D.L. Perry. VHDL. McGraw-Hill, Inc., 1990.

600

