
“Timing Closure by Design,” A High Frequency
Microprocessor Design Methodology

S. Posluszny, N. Aoki, D. Boerstler, P. Coulman1, S. Dhong, B. Flachs2, P. Hofstee, N. Kojima,

O. Kwon, K. Lee3, D. Meltzer4, K. Nowka, J. Park5, J. Peter, J. Silberman4, O. Takahashi,
P. Villarrubia1

IBM Austin Research Lab, Austin, TX

(512) 838-6508
poslus@us.ibm.com

ABSTRACT

This paper presents a design methodology emphasizing early and
quick timing closure for high frequency microprocessor designs.
This methodology was used to design a Gigahertz class PowerPC
microprocessor with 19 million transistors. Characteristics of
“Timing Closure by Design” are 1) logic partitioned on timing
boundaries, 2) predictable control structures (PLAs), 3) static
interfaces for dynamic circuits, 4) low skew clock distribution, 5)
deterministic method of macro placement, 6) simplified timing
analysis, and 7) refinement method of chip integration with early
timing analysis.

Keywords

Timing closure, microprocessor, methodology, chip integration,
CAD, timing analysis, PLA, dynamic circuits.

1. INTRODUCTION
Timing closure for large microprocessor designs is becoming
more and more difficult as 1) chip complexity increases, 2) cross-
chip wire delays become more significant, 3) dynamic circuits
become more prevalent, and 4) cycle times shorten. Just as
“Correct by Construction” techniques reduce introduction of
layout errors in chip designs, “Timing Closure by Design”
techniques reduce introduction of timing problems. These timing
problems can not be typically found or fixed until late in the
design process making it difficult to meet required frequency
targets. The “Timing Closure by Design” methodology has the
goals of 1) achieving the highest possible processor frequency,
and 2) reducing the design time to achieve that desired frequency.
The main themes of this methodology are early timing planning
with an eye towards the physical implementation, and using

components and design techniques with predictable timing
characteristics. This methodology was used to design an
experimental 19 million transistor PowerPC microprocessor that
was designed to operate at 1.0 Gigahertz (1.62V, 85oC) [1]. The
chip was manufactured in IBM’s 0.12 micron Leff, 3.5nm Tox, 6
layer copper interconnect process technology. As a testament to
the efficiency of the overall design methodology and timing
closure process, the chip was designed in only 18 months with
approximately 15 designers. A previous 1.0 Gigahertz integer
processor [2,3,7] was built using many of the same concepts
described in this paper.

Many other approaches to the timing closure problem concentrate
on enhancing and integrating DA tools, such as combining
synthesis, placement and timing analysis [6]. Our approach is
much more deterministic using predictable components and
techniques, and relies less on optimization tools. This approach
forces the microarchitect and logic designer to consider
implementation timing from the start and avoids back-end tools
that can mess up the designed timing relationships. The key
points of “Timing Closure by Design” are as follows:

•= Early delay planning and partitioning of the high level
design on timing boundaries. Stable timing and drive
requirements of component macros.

•= Predictable implementation of dataflow and control
circuits, for example dynamic PLAs.

•= Quasi-static interfaces between dynamic macros by
stretching pulses into the next cycle.

1IBM Server Division, Austin, TX
2Motorola, Austin, TX
3Sun Microsystems, CA
4IBM Watson Research Lab, Yorktown, NY
5Samsung, Korea

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

 CONTROL
 200ps 8-way MUX-Latch
 470ps Dynamic PLA, Comparator
 140ps Single Stage Logic, Repower, Wire Delay
 140ps Latch SELECT Setup Time
 +50ps Clock Skew and Jitter
 1000ps

 DATAFLOW
 200ps 8-way MUX-Latch
 610ps Functional Block
 140ps Repower, Wire Delay
 0ps Latch DATA Setup Time
 +50ps Clock Skew and Jitter
 1000ps

•= Clock distribution with low skew and jitter.

•= Macros placed in a deterministic and repeatable manner.

•= Simplified static timing analysis techniques used early
and often.

•= Chip integration methodology, which refines the design
and provides quick turnaround from logic to full chip
timing results.

The rest of the paper will describe in detail the key points listed
above. The combination of specific design concepts and
techniques with tailored CAD tool flows is what makes our
“Timing Closure by Design” methodology unique.

PLANNING AND LOGIC PARTITIONING
A complete and detailed timing plan at the beginning of the
project is critical to achieve quick timing closure at the end of the
project. The timing plan should have a delay budget for dataflow
and control portions of the design and include buffering and wire
delays to move signals across the chip. To have an efficient
design, it is important to balance all the execution and control
paths to have approximately the same delay. It is also important to
recognize the contribution of clock skew and jitter and recognize
how important it is to reduce their effect on the timing closure
process. Figure 1 illustrates the timing budgets used on our 1.0
Gigahertz microprocessor [1]. Notice that there is only one major
component in each of the control and dataflow paths, a dynamic
PLA or functional block. This major component needs to be
implemented as a single physical macro and can be designed
independently from the other macros on the chip.

The partitioning of the high level logic must be on cycle
boundaries. Even the control should be partitioned on cycle
boundaries allowing the control to merge with the dataflow only
at the end of the cycle. The microarchitecture designer needs to
know up front what functions can be implemented in one cycle
and the general placement of macros on the chip, accounting for
wire delays between macros. Partitioning on timing boundaries
achieves 1) early recognition of over or under specification of
function for a particular cycle, 2) stable arrival times for macro
inputs, 3) stable drive strength and delay requirements for macro
outputs, and 4) eliminates the delay apportionment problem of
timing paths that traverse multiple macros. This type of
partitioning also insulates the macro designer from needing to
adjust their design due to changes in other macros. Typically a
single circuit designer owns a complete macro and therefore the
major delay element of the complete cycle. The macro scope,
ownership, and independence from other requirements
significantly improve the timing closure process.

Figure 1 Timing Budget

2. PREDICTABLE CONTROL AND
DATAFLOW CIRCUITS
Using structured circuit and layout approaches can eliminate some
of the timing uncertainty in the macro design process. For
example, we used dynamic PLAs and comparator structures for all
of our control logic [3]. The dynamic PLA provides 1) high
frequency operation, 2) quick logic personalization, 3) predictable
area and delay, and 4) early recognition of excess logic for one
cycle. As compared to a standard cell approach, no heuristic logic
synthesis or auto placement is required with PLAs or comparators.
Those tools may require many runs and adjustments to input
parameters to achieve timing requirements, as well as inject
uncertainty late in the design process when last minute logic
changes are necessary. The PLAs have exclusive latch drivers
(one fanout), which are placed adjacent to the PLAs, minimizing
input wire delays and consequently input skews. Due to the high
performance of the PLAs (300-470ps delay), a single level static
or dynamic gate can be connected to the PLA outputs, increasing
functionality without significantly adding delay uncertainty.
Figure 2 illustrates a template for interfacing different
configurations of control PLAs, compare macros and individual
gates with the dataflow path.

Dataflow macros were built using delayed-reset domino circuits
[5]. The delayed reset helps to spread the clock load throughout
the cycle and reduces VDD degradation. Most macros were also
designed to have an equal number of logic stages for each path
through the macro. This helped to ensure proper timing of pulses
within the macro. Given the short cycle requirements, macros
were limited to 2-5 dynamic logic levels. This up front design
limit of logic levels actually helped timing closure by identifying
circuit implementation problems early in the process.

MUX

PLA Comparator

Static
Gate

Custom

Macro

Static Gates (NAND, NOR, INV) or
Single Dynamic Gate

Buffer Buffer

CONTROL DATAFLOW

MUX

MUX MUX MUX
Latch Latch Latch Latch

Latch

Figure 2 Control Template

Static inverters and 2-way NAND gates were automatically
generated. The inputs to the generation process were NFET and
PFET sizes and the input bus width. A naming convention was
used to identify the gate characteristics. For example,
INV64_30_78, referred to a 64-bit inverter with 30 micron
NFETs and 78 micron PFETs. Being able to generate any size
inverter or NAND was helpful to tune the critical paths. Having
the device sizes built into the block name was also helpful in
analyzing the VHDL and timing reports.

3. QUASI-STATIC INTERFACES
Dynamic circuits are typically faster than static circuits, but pose
certain drawbacks: 1) they are susceptible to noise glitches, 2)
there are strict pulse overlap requirements on inputs, 3) both true
and complement signals are required to be generated throughout
the logic tree, and 4) reset signals need to be provided at proper
times. It can be very difficult to guarantee pulse overlaps once the
signals are outside the confines of a single macro and are routed
with an automated tool. We therefore contain dynamic pulses
within a macro with the exception of pulse outputs of a dynamic
latch feeding directly into a macro. The trailing-edge of a macro
output pulse is triggered by the clock. This stretches the pulse into
the following cycle. Pulse stretching essentially makes the output
signal quasi-static and reduces the possible HOLD time problems
that can be seen at the receiving macro or latch, which ensures
operation independent of frequency. Figure 3 illustrates the timing
relationships of the global clock, macro inputs, and stretched
macro outputs. Noise on global signals is addressed by placing a
redrive inverter near the receiving macro to filter out noise

glitches. We have reduced the amount of dual-rail signaling
within a dynamic macro by requiring only a single-rail pulse-
stretched output to be generated from the macro. Using only a
single-rail output also reduces the number of global wires that
need to be routed across the chip. The cost of only distributing
single-rail signals is the addition of a True/Complement generator
within the latch.

Clock

Macro
Input

Stretched
Macro
Output

Figure 3 Pulse Stretching

4. LOW SKEW CLOCK DISTRIBUTION
By generating a clock with a very low skew and jitter (less than
20ps), we can discount the clock delay when performing our
timing analysis. This isolates the clock generation and distribution
problem from the timing closure problem of the rest of the chip.
We used a grid-tree approach (similar to [4]) to distribute the
clock. Specifically we used one central buffer driving two
partition buffers, which then drove 16 sector buffers. The sector
buffers drove a chip wide grid (approximately 0.5 micron pitch).
A second and third clock grid were superimposed on the left and
right side of the chip to provide a 200ps delayed clock signal to
the memory management units. Three sector buffers drive each of
these two delayed grids. The wire widths in the H-trees were
adjusted based on sector loading to achieve the minimum skew.
These H-trees were also shielded with power and ground lines to
control capacitance and inductance effects. This provided
predictable clock delay regardless of surrounding macros and
global wires. “Twig” wiring was used to connect from the grid to
the macro clock pins. These twig wires were automatically
inserted as direct and shortest possible connections between the
grid and macro pins. The clock tree, grid and twig wires were
treated as blockages for the power grid generator and global
routing. Figure 4 illustrates the clock distribution, showing the H-
tree, grid and twig wires.

Figure 4 Clock Distribution
A large part of the clock distribution is included as part of the
large custom macros. Each macro’s clock distribution was
designed to match the delay of the 64-bit latch clock distribution
with three levels of inversion. This part of the clock distribution is
accurately simulated with the rest of the macro. Another method
to reduce the effect of clock skew is to distribute and use only one
global clock. Using multiple clock phases in a design only
exacerbates the clock skew problem and excess margin needs to
be built into the design to ensure enough clock overlap time.
Timing closure is improved when the clock is well designed (low
skew and jitter), the affect of clock delay and skew is minimized
(single global clock), and the clock distribution is largely
automated.

5. DETERMINISTIC PLACEMENT
Since wire delays are more and more prominent in timing paths,
correct macro placement is more critical in achieving chip
frequency targets. Automated placement programs can simplify
the task of placing macros on the chip and optimize area
utilization and wire lengths, but they introduce uncertainty in wire
delays between macros. Timing closure can be better achieved by
manually placing macros relative to each other, locking in inter-
macro wire delays. A feature in our internal floorplanning tool
(ChipBench), allowed us to define a text file listing horizontal and
vertical groups of macros. This placement file was used to place
macros relative to each other. When macro images moved from
early estimates to actual layouts, the placement file was reloaded
and macros were automatically shifted based on the new macro
sizes. Again, by using relatively large custom macros and dynamic
PLAs instead of standard cells, we reduced the number of
placeable objects on the chip, simplifying the task of manual
placement. Figure 5 illustrates the chip floorplan, showing actual
macro placements for the prototype chip.

There was only one level of design hierarchy exposed to the chip
integration process, namely the chip level instantiating leaf level
custom macros. This contained the problem of proper pin
placement to the custom macros. We avoided the task of unit level
pin assignments, and consequently, refinements due to timing and
routing problems.

Figure 5 Chip Floorplan

6. TIMING ANALYSIS
Fast and efficient full chip timing analysis aids timing closure by
speeding the refinement process and allows more design iterations
to be evaluated. Simplified timing rules were hand written for
each macro [3] using the Delay Calculator Language (DCL).
These rules grouped input buses together and used the worst case
delay for all the bits of the bus. This type of abstraction was
possible because of the partitioning on timing boundaries
discussed earlier. The abstraction drastically reduces the number
of timing segments through a macro and the number of timing
tests for the macro inputs. Figure 6 illustrates two rule
abstractions, one with all paths specified and the other with just
the worst-case delay specified. These simplified rules allowed us
to analyze the full chip in less than ten minutes, from loading the
netlist and parasitics to writing out a timing report. This reduction
in analysis time also enabled us to interactively and incrementally
run timing analysis while floorplanning the chip. The timing
impacts of modifying macro placement could immediately be
checked and verified.

A typical timing path as reported by the static timing tool
(Einstimer), has a driving latch, dynamic macro, two redrive
inverters, and the receiving latch. Since the majority of the chip
path delay resides at the macro level, the macro delay will be the
main factor determining the chip’s final cycle time. Macro timing
was analyzed using detailed simulation. Even before layout was

started, wire models were added to the transistor schematics to
accurately calculate the macro delay. At the chip level, the main
lever we have to affect timing closure is optimizing wire delays.
The wire delays were controlled by modifying placement,
manually adding redrive inverters, and defining a preference of
wire levels, widths and spacing to the router. We modeled global
wire delays in three ways: 1) Elmore delays from Steiner tree
estimates, 2) 3-D estimation from initial chip tile routing, and 3)
3-D extracted final wires. The Steiner tree estimates were done
during floorplanning, providing quick turnaround, but poor
accuracy. The wire delay accuracy from the initial tile routes and
estimated congestion proved to be very close to the final 3-D
extracted delays, yet required much less CPU time to compute.
Therefore we used the wire delays from the initial tile routes to
hone in on the final timing.

N um . o f S egm en ts :
Inputs * O utpu ts

N um . o f S egm ents :
Inputs + O utputs

P o in t-to -P o in t
A ll P aths S pec ified

Inpu ts G rouped
W ors t-C as e D e lay

Figure 6 Timing Rule Abstraction Comparison

7. CHIP INTEGRATION FLOW
The chip integration process has been broken down into four
stages. Each successive stage requires more detailed and complete
information and takes more time to iterate through. Consequently
the majority of the design schedule is within stage one and only at
the very end, about a week before sending to manufacturing, does
chip integration move to stage four. Below are the attributes of
each stage. Gross timing problems are found in stage one and the
majority of the detail timing closure happens in stage two.
Depending on the number of modifications, stage one takes on the
order of hours to cycle through, stage two takes about a day, stage
three takes about two days and stage four only takes a few hours.

7.1 Stage One - Early Placement, No Routing

•= Structural VHDL entry, instantiate latches and
component macros

•= Code delay rules (DCL) using predicted delays

•= Code physical rules with planned pin locations and
macro size

•= Manually place macros using placement file

•= Run wire delay estimation code only using Steiner trees

•= Run full chip timing analysis

7.2 Stage Two - Estimated Routing
•= Refine structural VHDL

•= Refine delay rules with simulated results

•= Generate PLA schematics and layouts from VHDL and
Espresso files

•= Generate physical rules (size, pin locations, blockages)
from actual layout

•= Refine placement using placement file

•= Run clock distribution generation (grid-tree)

•= Run power grid generation

•= Run initial “tile” routing and use results to estimate wire
delays

•= Run full chip timing analysis

7.3 Stage Three - Detailed Routing, Full Wire
Extraction

•= Refine structural VHDL

•= Generate any new or modified PLAs

•= Generate physical rules for any new or modified macros

•= Refine placement using placement file

•= Run clock distribution generation and twig routing

•= Run power grid generation

•= Specify any wiring preferences (extra wide or thick
wires)

•= Run complete, full chip routing

•= Run 3-D extraction for accurate wire delays

•= Run full chip timing analysis

7.4 Stage Four - Incremental Updates
•= Make only wiring changes to VHDL

•= Extract the netlist changes, Engineering Change Order
(ECO)

•= Remove any deleted wires and reroute only new or
modified wires

•= Run 3-D extraction for accurate wire delays

•= Run full chip timing analysis

Having the ability to do quick timing analysis of the full chip at
the very earliest stages of design with incomplete data, aids the
timing closure process. The refinement nature of this process
helps to reduce the number of timing surprises found late in the
project.

8. CONCLUSIONS
We have shown how efficient timing closure can be achieved for a
high frequency microprocessor design by using a structured,
timing oriented methodology. The “Timing Closure by Design”
methodology requires 1) early planning and timing based logic
partitioning, 2) delay predictable components such as PLAs, 3)
static global interfaces for dynamic circuits, 4) a low skew, single
global clock distribution, 5) deterministic macro placement, 6)
simplified timing analysis, and 7) a quick and easy design
refinement process. This “Timing Closure by Design”
methodology was instrumental in designing a 19 million transistor
microprocessor and achieving its 1.0 Gigahertz frequency target
with a small team on a tight schedule.

9. ACKNOWLEDGMENTS
We would like to thank the complete prototype design team for
their tireless effort and contributions to this design methodology.
We would also like to thank the IBM internal CAD groups for
developing excellent tools and helping to incorporate those tools
into our methodology. Special thanks to P. T. Patel for his
insights into the chip integration process and help with our
routing program.

10. REFERENCES
[1] Hofstee, P., et al., ”A 1GHz Single-Issue 64b

PowerPC Processor”, ISSCC Digest of Technical
Papers, p. 92, Feb. 2000.

[2] Silberman, J., et al., “A 1.0GHz Single-Issue 64b
PowerPC Integer Processor”, ISSCC Digest of
Technical Papers, p. 230, Feb. 1998.

[3] Posluszny, S., et al., “Design Methodology for a 1.0
Ghz Microprocessor,” ICCD98, p.17.

[4] Northrop, G., et al., “600 MHz G5 S/390
Microprocessor”, ISSCC Digest of Technical Papers,
p. 88, Feb. 1999.

[5] Nowka, K and T. Galambos, “Circuit Design
Techniques for a Gigagertz Integer Microprocessor”,
ICCD98, p.11.

[6] Hojat, S. And P. Villarrubia, ”An Integrated
Placement and Synthesis Approach for Timing Closure
of PowerPC Microprocessors,” ICCD97, p 206-210,
1997.

[7] Hofstee, P., et al., “Designing for a Gigahertz,” IEEE
Micro, May-June 1998.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

