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ABSTRACT 

This paper presents a design methodology emphasizing early and 
quick timing closure for high frequency microprocessor designs. 
This methodology was used to design a Gigahertz class PowerPC 
microprocessor with 19 million transistors. Characteristics of 
“Timing Closure by Design” are 1) logic partitioned on timing 
boundaries, 2) predictable control structures (PLAs), 3) static 
interfaces for dynamic circuits, 4) low skew clock distribution, 5) 
deterministic method of macro placement, 6) simplified timing 
analysis, and 7) refinement method of chip integration with early 
timing analysis. 
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1. INTRODUCTION 
Timing closure for large microprocessor designs is becoming 
more and more difficult as 1) chip complexity increases, 2) cross-
chip wire delays become more significant, 3) dynamic circuits 
become more prevalent, and 4) cycle times shorten. Just as 
“Correct by Construction” techniques reduce introduction of 
layout errors in chip designs, “Timing Closure by Design” 
techniques reduce introduction of timing problems. These timing 
problems can not be typically found or fixed until late in the 
design process making it difficult to meet required frequency 
targets. The “Timing Closure by Design” methodology has the 
goals of 1) achieving the highest possible processor frequency, 
and 2) reducing the design time to achieve that desired frequency. 
The main themes of this methodology are early timing planning 
with an eye towards the physical implementation, and using 

components and design techniques with predictable timing 
characteristics. This methodology was used to design an 
experimental 19 million transistor PowerPC microprocessor that 
was designed to operate at 1.0 Gigahertz (1.62V, 85oC) [1]. The 
chip was manufactured in IBM’s 0.12 micron Leff, 3.5nm Tox, 6 
layer copper interconnect process technology. As a testament to 
the efficiency of the overall design methodology and timing 
closure process, the chip was designed in only 18 months with 
approximately 15 designers. A previous 1.0 Gigahertz integer 
processor [2,3,7] was built using many of the same concepts 
described in this paper.   
 
Many other approaches to the timing closure problem concentrate 
on enhancing and integrating DA tools, such as combining 
synthesis, placement and timing analysis [6]. Our approach is 
much more deterministic using predictable components and 
techniques, and relies less on optimization tools. This approach 
forces the microarchitect and logic designer to consider 
implementation timing from the start and avoids back-end tools 
that can mess up the designed timing relationships.  The key 
points of “Timing Closure by Design” are as follows: 
 

•= Early delay planning and partitioning of the high level 
design on timing boundaries. Stable timing and drive 
requirements of component macros. 
 

•= Predictable implementation of dataflow and control 
circuits, for example dynamic PLAs. 
 

•= Quasi-static interfaces between dynamic macros by 
stretching pulses into the next cycle. 
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         CONTROL 
     200ps    8-way MUX-Latch 
     470ps    Dynamic PLA, Comparator 
     140ps    Single Stage Logic, Repower, Wire Delay 
     140ps    Latch SELECT Setup Time 
     +50ps    Clock Skew and Jitter 
    1000ps 
 
        DATAFLOW 
     200ps    8-way MUX-Latch 
     610ps    Functional Block 
     140ps    Repower, Wire Delay 
         0ps    Latch DATA Setup Time 
     +50ps    Clock Skew and Jitter 
    1000ps 
 

•= Clock distribution with low skew and jitter. 
 

•= Macros placed in a deterministic and repeatable manner. 
 

•= Simplified static timing analysis techniques used early 
and often. 
 

•= Chip integration methodology, which refines the design 
and provides quick turnaround from logic to full chip 
timing results. 

 
The rest of the paper will describe in detail the key points listed 
above. The combination of specific design concepts and 
techniques with tailored CAD tool flows is what makes our 
“Timing Closure by Design” methodology unique. 
 

PLANNING AND LOGIC PARTITIONING 
A complete and detailed timing plan at the beginning of the 
project is critical to achieve quick timing closure at the end of the 
project. The timing plan should have a delay budget for dataflow 
and control portions of the design and include buffering and wire 
delays to move signals across the chip. To have an efficient 
design, it is important to balance all the execution and control 
paths to have approximately the same delay. It is also important to 
recognize the contribution of clock skew and jitter and recognize 
how important it is to reduce their effect on the timing closure 
process.  Figure 1 illustrates the timing budgets used on our 1.0 
Gigahertz microprocessor [1].  Notice that there is only one major 
component in each of the control and dataflow paths, a dynamic 
PLA or functional block. This major component needs to be 
implemented as a single physical macro and can be designed 
independently from the other macros on the chip. 
 
The partitioning of the high level logic must be on cycle 
boundaries. Even the control should be partitioned on cycle 
boundaries allowing the control to merge with the dataflow only 
at the end of the cycle. The microarchitecture designer needs to 
know up front what functions can be implemented in one cycle 
and the general placement of macros on the chip, accounting for 
wire delays between macros. Partitioning on timing boundaries 
achieves 1) early recognition of over or under specification of 
function for a particular cycle, 2) stable arrival times for macro 
inputs, 3) stable drive strength and delay requirements for macro 
outputs, and 4) eliminates the delay apportionment problem of 
timing paths that traverse multiple macros. This type of 
partitioning also insulates the macro designer from needing to 
adjust their design due to changes in other macros. Typically a 
single circuit designer owns a complete macro and therefore the 
major delay element of the complete cycle. The macro scope, 
ownership, and independence from other requirements 
significantly improve the timing closure process. 
 
 
 

Figure 1 Timing Budget 
 

2. PREDICTABLE CONTROL AND 
DATAFLOW CIRCUITS 
Using structured circuit and layout approaches can eliminate some 
of the timing uncertainty in the macro design process. For 
example, we used dynamic PLAs and comparator structures for all 
of our control logic [3]. The dynamic PLA provides 1) high 
frequency operation, 2) quick logic personalization, 3) predictable 
area and delay, and 4) early recognition of excess logic for one 
cycle. As compared to a standard cell approach, no heuristic logic 
synthesis or auto placement is required with PLAs or comparators. 
Those tools may require many runs and adjustments to input 
parameters to achieve timing requirements, as well as inject 
uncertainty late in the design process when last minute logic 
changes are necessary. The PLAs have exclusive latch drivers 
(one fanout), which are placed adjacent to the PLAs, minimizing 
input wire delays and consequently input skews. Due to the high 
performance of the PLAs (300-470ps delay), a single level static 
or dynamic gate can be connected to the PLA outputs, increasing 
functionality without significantly adding delay uncertainty. 
Figure 2 illustrates a template for interfacing different 
configurations of control PLAs, compare macros and individual 
gates with the dataflow path.  
 
Dataflow macros were built using delayed-reset domino circuits 
[5].  The delayed reset helps to spread the clock load throughout 
the cycle and reduces VDD degradation. Most macros were also 
designed to have an equal number of logic stages for each path 
through the macro. This helped to ensure proper timing of pulses 
within the macro. Given the short cycle requirements, macros 
were limited to 2-5 dynamic logic levels. This up front design 
limit of logic levels actually helped timing closure by identifying 
circuit implementation problems early in the process.   
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Figure 2 Control Template 
 
Static inverters and 2-way NAND gates were automatically 
generated. The inputs to the generation process were NFET and 
PFET sizes and the input bus width. A naming convention was 
used to identify the gate characteristics. For example, 
INV64_30_78, referred to a 64-bit inverter with 30 micron 
NFETs and 78 micron PFETs. Being able to generate any size 
inverter or NAND was helpful to tune the critical paths. Having 
the device sizes built into the block name was also helpful in 
analyzing the VHDL and timing reports. 
 

3. QUASI-STATIC INTERFACES 
Dynamic circuits are typically faster than static circuits, but pose 
certain drawbacks: 1) they are susceptible to noise glitches, 2) 
there are strict pulse overlap requirements on inputs, 3) both true 
and complement signals are required to be generated throughout 
the logic tree, and 4) reset signals need to be provided at proper 
times. It can be very difficult to guarantee pulse overlaps once the 
signals are outside the confines of a single macro and are routed 
with an automated tool. We therefore contain dynamic pulses 
within a macro with the exception of pulse outputs of a dynamic 
latch feeding directly into a macro. The trailing-edge of a macro 
output pulse is triggered by the clock. This stretches the pulse into 
the following cycle. Pulse stretching essentially makes the output 
signal quasi-static and reduces the possible HOLD time problems 
that can be seen at the receiving macro or latch, which ensures 
operation independent of frequency. Figure 3 illustrates the timing 
relationships of the global clock, macro inputs, and stretched 
macro outputs. Noise on global signals is addressed by placing a 
redrive inverter near the receiving macro to filter out noise 

glitches. We have reduced the amount of dual-rail signaling 
within a dynamic macro by requiring only a single-rail pulse-
stretched output to be generated from the macro. Using only a 
single-rail output also reduces the number of global wires that 
need to be routed across the chip. The cost of only distributing 
single-rail signals is the addition of a True/Complement generator 
within the latch.  
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Figure 3 Pulse Stretching 
 

4. LOW SKEW CLOCK DISTRIBUTION 
By generating a clock with a very low skew and jitter (less than 
20ps), we can discount the clock delay when performing our 
timing analysis. This isolates the clock generation and distribution 
problem from the timing closure problem of the rest of the chip. 
We used a grid-tree approach (similar to [4]) to distribute the 
clock. Specifically we used one central buffer driving two 
partition buffers, which then drove 16 sector buffers. The sector 
buffers drove a chip wide grid (approximately 0.5 micron pitch). 
A second and third clock grid were superimposed on the left and 
right side of the chip to provide a 200ps delayed clock signal to 
the memory management units. Three sector buffers drive each of 
these two delayed grids. The wire widths in the H-trees were 
adjusted based on sector loading to achieve the minimum skew. 
These H-trees were also shielded with power and ground lines to 
control capacitance and inductance effects. This provided 
predictable clock delay regardless of surrounding macros and 
global wires. “Twig” wiring was used to connect from the grid to 
the macro clock pins. These twig wires were automatically 
inserted as direct and shortest possible connections between the 
grid and macro pins. The clock tree, grid and twig wires were 
treated as blockages for the power grid generator and global 
routing. Figure 4 illustrates the clock distribution, showing the H-
tree, grid and twig wires. 



 

Figure 4 Clock Distribution 
A large part of the clock distribution is included as part of the 
large custom macros. Each macro’s clock distribution was 
designed to match the delay of the 64-bit latch clock distribution 
with three levels of inversion. This part of the clock distribution is 
accurately simulated with the rest of the macro. Another method 
to reduce the effect of clock skew is to distribute and use only one 
global clock. Using multiple clock phases in a design only 
exacerbates the clock skew problem and excess margin needs to 
be built into the design to ensure enough clock overlap time. 
Timing closure is improved when the clock is well designed (low 
skew and jitter), the affect of clock delay and skew is minimized 
(single global clock), and the clock distribution is largely 
automated. 
 

5. DETERMINISTIC PLACEMENT 
Since wire delays are more and more prominent in timing paths, 
correct macro placement is more critical in achieving chip 
frequency targets. Automated placement programs can simplify 
the task of placing macros on the chip and optimize area 
utilization and wire lengths, but they introduce uncertainty in wire 
delays between macros. Timing closure can be better achieved by 
manually placing macros relative to each other, locking in inter-
macro wire delays. A feature in our internal floorplanning tool 
(ChipBench), allowed us to define a text file listing horizontal and 
vertical groups of macros. This placement file was used to place 
macros relative to each other. When macro images moved from 
early estimates to actual layouts, the placement file was reloaded 
and macros were automatically shifted based on the new macro 
sizes. Again, by using relatively large custom macros and dynamic 
PLAs instead of standard cells, we reduced the number of 
placeable objects on the chip, simplifying the task of manual 
placement. Figure 5 illustrates the chip floorplan, showing actual 
macro placements for the prototype chip. 
 

There was only one level of design hierarchy exposed to the chip 
integration process, namely the chip level instantiating leaf level 
custom macros. This contained the problem of proper pin 
placement to the custom macros. We avoided the task of unit level 
pin assignments, and consequently, refinements due to timing and 
routing problems. 
 

 

Figure 5 Chip Floorplan 

6. TIMING ANALYSIS 
Fast and efficient full chip timing analysis aids timing closure by 
speeding the refinement process and allows more design iterations 
to be evaluated. Simplified timing rules were hand written for 
each macro [3] using the Delay Calculator Language (DCL). 
These rules grouped input buses together and used the worst case 
delay for all the bits of the bus. This type of abstraction was 
possible because of the partitioning on timing boundaries 
discussed earlier. The abstraction drastically reduces the number 
of timing segments through a macro and the number of timing 
tests for the macro inputs. Figure 6 illustrates two rule 
abstractions, one with all paths specified and the other with just 
the worst-case delay specified. These simplified rules allowed us 
to analyze the full chip in less than ten minutes, from loading the 
netlist and parasitics to writing out a timing report. This reduction 
in analysis time also enabled us to interactively and incrementally 
run timing analysis while floorplanning the chip. The timing 
impacts of modifying macro placement could immediately be 
checked and verified.  
 
A typical timing path as reported by the static timing tool 
(Einstimer), has a driving latch, dynamic macro, two redrive 
inverters, and the receiving latch. Since the majority of the chip 
path delay resides at the macro level, the macro delay will be the 
main factor determining the chip’s final cycle time. Macro timing 
was analyzed using detailed simulation. Even before layout was 



started, wire models were added to the transistor schematics to 
accurately calculate the macro delay. At the chip level, the main 
lever we have to affect timing closure is optimizing wire delays. 
The wire delays were controlled by modifying placement, 
manually adding redrive inverters, and defining a preference of 
wire levels, widths and spacing to the router. We modeled global 
wire delays in three ways: 1)  Elmore delays from Steiner tree 
estimates, 2) 3-D estimation from initial chip tile routing, and 3) 
3-D extracted final wires. The Steiner tree estimates were done 
during floorplanning, providing quick turnaround, but poor 
accuracy. The wire delay accuracy from the initial tile routes and 
estimated congestion proved to be very close to the final 3-D 
extracted delays, yet required much less CPU time to compute. 
Therefore we used the wire delays from the initial tile routes to 
hone in on the final timing.  
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Figure 6 Timing Rule Abstraction Comparison 
 

7. CHIP INTEGRATION FLOW 
The chip integration process has been broken down into four 
stages. Each successive stage requires more detailed and complete 
information and takes more time to iterate through. Consequently 
the majority of the design schedule is within stage one and only at 
the very end, about a week before sending to manufacturing, does 
chip integration move to stage four. Below are the attributes of 
each stage. Gross timing problems are found in stage one and the 
majority of the detail timing closure happens in stage two. 
Depending on the number of modifications, stage one takes on the 
order of hours to cycle through, stage two takes about a day, stage 
three takes about two days and stage four only takes a few hours. 

 
7.1 Stage One - Early Placement, No Routing 

•= Structural VHDL entry, instantiate latches and 
component macros 

•= Code delay rules (DCL) using predicted delays 

•= Code physical rules with planned pin locations and 
macro size 

•= Manually place macros using placement file 

•= Run wire delay estimation code only using Steiner trees 

•= Run full chip timing analysis 
 

7.2 Stage Two - Estimated Routing 
•= Refine structural VHDL 

•= Refine delay rules with simulated results 

•= Generate PLA schematics and layouts from VHDL and 
Espresso files 

•= Generate physical rules (size, pin locations, blockages) 
from actual layout 

•= Refine placement using placement file 

•= Run clock distribution generation (grid-tree) 

•= Run power grid generation 

•= Run initial “tile” routing and use results to estimate wire 
delays 

•= Run full chip timing analysis 
 

7.3 Stage Three - Detailed Routing, Full Wire 
Extraction 

•= Refine structural VHDL 

•= Generate any new or modified PLAs 

•= Generate physical rules for any new or modified macros 

•= Refine placement using placement file 

•= Run clock distribution generation and twig routing 

•= Run power grid generation  

•= Specify any wiring preferences (extra wide or thick 
wires) 

•= Run complete, full chip routing 

•= Run 3-D extraction for accurate wire delays 

•= Run full chip timing analysis 
 

7.4 Stage Four - Incremental Updates 
•= Make only wiring changes to VHDL 

•= Extract the netlist changes, Engineering Change Order 
(ECO) 

•= Remove any deleted wires and reroute only new or 
modified wires 

•= Run 3-D extraction for accurate wire delays 

•= Run full chip timing analysis 
 
Having the ability to do quick timing analysis of the full chip at 
the very earliest stages of design with incomplete data, aids the 
timing closure process. The refinement nature of this process 
helps to reduce the number of timing surprises found late in the 
project. 
 



8. CONCLUSIONS 
We have shown how efficient timing closure can be achieved for a 
high frequency microprocessor design by using a structured, 
timing oriented methodology. The “Timing Closure by Design” 
methodology requires 1) early planning and timing based logic 
partitioning, 2) delay predictable components such as PLAs, 3) 
static global interfaces for dynamic circuits, 4) a low skew, single 
global clock distribution, 5) deterministic macro placement, 6) 
simplified timing analysis, and 7) a quick and easy design 
refinement process. This “Timing Closure by Design” 
methodology was instrumental in designing a 19 million transistor 
microprocessor and achieving its 1.0 Gigahertz frequency target 
with a small team on a tight schedule. 
 

9. ACKNOWLEDGMENTS 
We would like to thank the complete prototype design team for 
their tireless effort and contributions to this design methodology. 
We would also like to thank the IBM internal CAD groups for 
developing excellent tools and helping to incorporate those tools 
into our methodology. Special thanks to P. T. Patel for his 
insights into the chip integration process and help with our 
routing program. 
 

10. REFERENCES 
[1]  Hofstee, P., et al., ”A 1GHz Single-Issue 64b 

PowerPC Processor”, ISSCC Digest of Technical 
Papers, p. 92, Feb. 2000.  

[2]  Silberman, J., et al., “A 1.0GHz Single-Issue 64b 
PowerPC Integer Processor”, ISSCC Digest of 
Technical Papers, p. 230, Feb. 1998. 

[3] Posluszny, S., et al., “Design Methodology for a 1.0 
Ghz Microprocessor,” ICCD98, p.17. 

[4] Northrop, G., et al., “600 MHz G5 S/390 
Microprocessor”, ISSCC Digest of Technical Papers, 
p. 88, Feb. 1999. 

[5] Nowka, K and T. Galambos, “Circuit Design 
Techniques for a Gigagertz Integer Microprocessor”, 
ICCD98, p.11. 

[6]  Hojat, S. And P. Villarrubia, ”An Integrated 
Placement and Synthesis Approach for Timing Closure 
of PowerPC Microprocessors,” ICCD97, p 206-210, 
1997. 

[7]  Hofstee, P., et al., “Designing for a Gigahertz,” IEEE 
Micro, May-June 1998. 

 

 


	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index


