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ABSTRACT
We introduce a new fault representation mechanism for dig-
ital circuits based on fault tuples. A fault tuple is a simple
3-element condition for a signal line, its value, and clock
cycle constrain t. AND-OR expressions of fault tuples are
used to represent arbitrary misbehaviors. A fault simulator
based on fault tuples was used to conduct experiments on
benc hmark circuits. Simulation results show that a 17% re-
duction of average CPU time is achiev ed when performing
sim ulation on all fault types simultaneously, as opposed to
individually. We expect further improvements in speedup
when the shared characteristics of the various fault types
are better exploited.

1. INTRODUCTION
The classical single stuck-line (SSL) fault model is the most
commonly used fault model in digital systems testing. The
SSL fault model assumes that any single circuit line is sus-
ceptible to a permanent stuck-at logic v alue of 0 or 1. Among
the many reasons for its continued appeal are: (a) the n um-
ber of SSL faults is linearly related to the number of lines
in the circuit, (b) the model maps well to the gate level, (c)
the SSL tests have traditionally done a good job of detecting
non-SSL misbehavior, and (d) there exist many commercial
test generation and fault sim ulationtools based on single
stuck-line misbehavior.

Ho w ever, previous work has shown that real defects do not
beha ve like SSL faults, thus making tasks like diagnosis dif-
�cult. Moreover, the SEMATECH experiment [6] and other
similar experiments [11] ha ve shown that SSL tests alone
are not su�cient for obtaining high defect coverage. As
a result, other fault models that accurately re
ect realis-
tic circuit failures ha ve been explored [2] [13] [14] [15] [3].
In addition, approaches lik e inductive fault analysis [9] [7],
specify a realistic fault set by investigating the physical de-
fects that lead to a failure. Stuc k-at tests are therefore,
typically augmented b y tests that target other fault t ypes
(bridging, delay, etc.) in order to improve defect co verage.

It is likely that this trend of augmenting stuc k-at tests with
other t ypes of tests will continue due to the on-going changes
in technology.

In an ticipationof the abo ve situation,w e areproposing a
fault modeling mechanism that allows many arbitrary mis-
beha viors to be represented using expressions of primitives
w e callfault tuples. A fault tuple is a 3-element subfault pro-
viding conditions for a signal line, its value, and clock cycle
constrain t.AND-OR expressions of fault tuples, that we call
macrofaults, can be used to represent various misbehaviors.
The use of fault tuples allow both existing and emerging
fault models to be represen tedusing one common mecha-
nism. The main advan tages of this common representation
are (a) simultaneous analysis of di�erent misbehaviors, (b)
exploitation of common information among various misbe-
ha viors, and (c) a single method for analyzing misbehaviors.

In another approach [12], the authors present a library-based
modeling mechanism used for the simulation of non-classical
faults at the gate level. For a giv en cell library , the e�ects of
realistic defects are investigated. These e�ects are mapped
to gate-lev el faults and stored in a fault library. For a giv en
circuit under test, a realistic target fault set is obtained from
the library and fault simulation is performed on this fault
set. The main drawback of this approach is that the misbe-
ha viors considered are limited by the fault e�ects stored in
the fault library.
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Figure 1: (a) Current point tools used for test anal-
ysis (i.e. fault simulation, A TPG,etc.) for vari-
ous fault types versus (b) our proposed method for
primitive fault tuples.

Due to the di�erent misbehaviors exhibited by various fault
types, a separate test tool is typically constructed for each
fault model. By using the fault tuple mechanism for repre-
senting fault t ypes, one comprehensive tool can be used to
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simultaneously perform fault simulation and test generation
for many types of faults as illustrated in Figure 1.

The rest of the paper is organized as follows. In Section
2, fault tuples are de�ned and notation is introduced. Sec-
tion 2 also illustrates how fault tuples can be used to repre-
sent various misbehaviors. In Section 3, the fault simulation
methodology is presented and in Section 4, we present our
experiment methodology and fault simulation results using
our tuple-based fault simulator. Finally, we draw conclu-
sions and describe future work in Section 5.

2. FAULT TUPLES
A fault tuple1 f is de�ned as a 3-tuple represented as<l; v; t>,
where l is a signal line, v is a value, and t is a clock cycle
constraint. The value set for each of the elements is given
as follows:

l 2 flinesg

v 2 f0; 1; D;Dg

t 2 fi; i+N; i >; i �; :::g

A tuple f =<l; v; t> is satis�ed if and only if the signal line
l is controlled to the value v in a clock cycle described by
t and the corresponding error (if any) is propagated to an
observable point. The tuple elements l and v and their cor-
responding value sets are well-known, however the element
t needs elaboration. If v 2 f0; 1g, then the signal l must be
controlled to v within the clock cycle range described by t.
For example, t = i means that the tuple is satis�ed if l is
controlled to v in any clock cycle i. If v 2 fD;Dg, then t
describes the range of clock cycles where a signal line must
be activated and the resulting error discrepancy (D or D)
manifests. Satisfaction of a tuple in this case also requires
that the error be propagated to an observable point any-
time in the future. The value t = i + N , where N is some
integer, means the tuple must be satis�ed in the Nth clock
cycle after some reference clock cycle i. Satisfaction must
occur in a clock cycle j before a reference clock cycle i if
t = i<. Other t values such as f>;�;�; 6=g are similarly
explained. The values assignable to the tuple element tj for
a particular tuple fj are variables themselves that can be
instantiated either by another tuple or set to a particular
value N by the user.

Combinations of tuples allow the representation of arbitrary
misbehaviors. A product P is de�ned as an AND expression
of tuples. For example, product P1 =<f1><f2> is an AND
expression of the tuples <f1> and <f2>. A product is sat-
is�ed if and only if all the tuples within the product are
satis�ed2. Thus, P1 =<f1><f2> is satis�ed only if both
tuples <f1> and <f2> are satis�ed. A macrofault M is
an OR expression of products, and therefore is an AND-OR
expression of tuples. The macrofault M1 = f<f1><f2>
j <f3><f4>g is a disjunctive expression of the products
P1 =<f1><f2> and P2 =<f3><f4>, where the symbol j is
used to denote the OR relation between products. A macro-
fault M is detected if and only if one or more of its products

1A fault tuple will simply be referred to as tuple in the rest
of the paper.
2A product that contains more than one tuple with v 2
fD;Dg is satis�ed if one or more of the discrepancies are
made observable.
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Figure 2: Various fault types described using fault
tuples: (a) MSL fault (A/1, C/0); (b) AND-bridging
fault between lines B and C; (c) OR-gate pattern
fault 11!(1,0); (d) N-transistor of gate G1 con-
nected to line B is stuck-open; (e) Slow-to-rise
NAND gate transition fault E"; (f) Slow-to-fall ro-
bust path delay fault AEF#.

are satis�ed. Thus, M1 is detected if and only if the product
P1 =<f1><f2> is satis�ed or product P2 =<f3><f4> is
satis�ed.

The fault tuple is fault modeling mechanism that allows for
the representation of a signi�cant number of fault types.
Consider an SSL fault f = a=1 (i.e. signal line a is perma-
nently stuck-at 1). This can be represented using the tuple
format as: f<a;D; i>g, which indicates that fault f is de-
tected if in any clock cycle i, a value 0 is applied to line a
and the error discrepancy D due to f is propagated to an
observable point. These are exactly the conditions for de-
tecting the SSL fault f . Other fault types can also be easily
represented. Figures 2a, 2b and 2c illustrate how the tuple
mechanism can be used to represent a multiple stuck-line
(MSL) fault, an AND-bridging fault and a pattern fault [8],
respectively. The MSL and AND-bridging faults can be de-
tected in multiple ways as indicated by the disjunction of
the tuple product expressions. For example, the MSL fault
M = fA=1; C=0g is detected if and only if the faulty circuits
with both SSL faults A=1 and C=0 is detected, or A = 1 and
C=0 is detected, or A=1 is detected and C = 0. The use of
the same clock cycle variable t = i for the MSL and bridging
faults indicates that the tuples are not independent, that is,
all the tuples of a product have to be satis�ed in the same
clock cycle i. Transistor stuck-open (TSO) faults [15] can
also be represented using the tuple representation mecha-
nism (Figure 2d).

Timing or dynamic faults can also be easily captured by the
tuple mechanism. Figures 2e and 2f illustrate transition and
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robust path delay faults, respectively. These macrofaults
use relational values, like the TSO fault of Figure 2d, for the
tuple element t. The slow-to-rise NAND gate transition fault
(Figure 2e) is detected if the transition is intialized (E = 0)
by �rst test vector and the slow transition represented by the
error discrepancy D appearing on line E is propagated to an
observable point by the second test vector. This sequence
of test vectors is captured by the time values i and i+ 1.

From the expressions for the macrofaults, it can be observed
that tuple sharing exists among various fault types. For ex-
ample the tuple <C;D; i> is present in the expression for
the MSL and the AND-BF macrofaults of Figure 2. Tuple
sharing is exploited by tracking the corresponding macro-
faults when tuples are analyzed (simulated).

3. FAULT TUPLE SIMULATION
A fault simulator based on the fault tuple modeling mech-
anism has been developed. The core of the fault simula-
tor is based on the concurrent event-driven fault simulation
method [1]. Figure 3 shows the pseudocode for the com-
plete fault simulation algorithm. A fault simulation begins
by identifying an initial set of tuples from an input list of
macrofaults. After simulation of each test vector, the macro-
fault list is updated based on the set of tuples satis�ed (Fig-
ure 4). Speci�cally, macrofault update determines if any

fault tuple simulation(C, V, M);
/* C = Circuit under test */
/* V = Test vectors for simulation */
/* M = Macrofaults to be simulated */
begin

curr sim id = 1
/* Form the initial list of tuples to be simulated */
/* Macrofaults added for update */
initial list tuples(M, curr sim id)
for v: all test vectors of V

/* Perform concurrent fault simulation of tuples */
concurrent fault sim(v)
/* Update macrofaults using tuple satisfaction */
for m: all macrofaults to be updated

/* For the current clock cycle */
update macrofault(m, curr sim id)

end for on m
end for on v
report macrofault coverage

end

Figure 3: Pseudocode for performing fault simula-
tion using the fault tuple representation mechanism.

macrofault has been detected or if additional tuples have
to be simulated for macrofault detection. In order to facili-
tate macrofault update, a product Pj is further broken into
states, where the number of states for Pj is equal to the
number of di�erent time element values found in Pj . For
example, Pj =<a; 0; i><b; 0; i><a;D; i + 1> contains two
states (i and i+ 1).

4. FAULT SIMULATION RESULTS
A fault simulator based on fault tuples, called FaTSim,
has been implemented with approximately 5000 lines of C
code. FaTSim currently performs fault simulation of combi-
national circuits only. It was used to perform experiments on
the ISCAS85 benchmark circuits [4], a 64-bit ALU, and part
of the CMU56K DSP ITC'99 benchmark circuit [5](i.e. the

update macrofault(M, PID, SID);
/* M = Macrofault to be updated */
/* PID = Identi�cation no. (ID) for product P 2M*/
/* SID = ID for state S 2 P */
begin

prod = product of M with product PID
s = tuples of prod with SID
detected = TRUE /* Initialize 
ag */
while (detected == TRUE)

for f : all fault tuples of s
if (f is a tuple with v 2 fD;Dg)

/* Check if tuple's faulty machine is satis�ed */
if (f is not satis�ed)

detected = FALSE
break

else /* A tuple with v 2 f0; 1g */
/* Check the value of the line given in f */
if (f is not satis�ed)

detected = FALSE
breakg

end if
end if

end for on f
end while
if (detected is TRUE)

s = tuples of prod with ID=SID+1
if (s is NULL)

/* No more states left so, macrofault detected */
mark macrofault detected
return

else f/* There are more states */
/* Add tuples from state for fault simulation */
add tuples with ID=SID+1 for simulation
schedule macrofault for update(M, PID, SID+1)

end if
else /* Some tuples were not satis�ed */

add tuples with SID=0 for simulation
schedule macrofault for update(M, PID, 0)

end if
end

Figure 4: Pseudocode for updating a macrofault.

largest combinational portion of the data-path). To demon-
strate e�ciency of performing fault simulation using the
fault tuple mechanism, the following fault types were ana-
lyzed: SSL, AND-NFBF (non-feedback bridging), TSO and
MSL. More speci�cally, we used a collapsed set of SSL faults,
TSO faults generated by the test generator SOPRANO [10],
and a randomly-chosen set of MSL and AND-NFBF faults.
Test sets generated by SOPRANO were used for fault sim-
ulation, and all experiments were performed on a 300MHz
Ultra SPARC-II SUN workstation with 1.0 GB of memory.

Table 1 shows the CPU execution times for performing fault
simulation using FaTSim. First, each fault type was fault
simulated individually using test sets of the size listed in col-
umn 2. The sum of the individual execution times is shown
under the column \Total". All the fault types were then
fault simulated together using the same test set. The CPU
execution time for this one comprehensive fault simulation
is shown in the \All" column. Note, the fault coverage of
the individual simulations match that of the comprehensive
simulation.

As indicated in Table 1, the fault simulation time for all the
faults types together shows a 10-37% (an average of 17% for
the benchmarks considered) reduction in CPU time com-
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SSL AND-NFBF TSO MSL
CPU CPU CPU CPU % CPU

Benchmark No. of test % common time time time time Total All time
name vectors tuples4 (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) reduction3

c432 145 26.22 0.36 0.26 0.55 0.13 1.30 0.81 38.0
c499 205 15.93 0.75 0.33 0.91 0.21 2.20 1.97 10.5
c880 189 27.57 1.25 0.72 1.77 0.47 4.21 3.13 25.7
c1355 345 32.57 2.71 3.05 3.73 2.10 11.59 9.58 17.3
c1908 393 28.28 4.10 5.08 7.43 33.97 50.58 39.90 21.1
c2670 397 30.83 5.11 3.83 9.35 2.65 20.94 17.38 17.0
c3540 685 32.51 18.63 12.13 49.50 18.07 98.33 85.23 13.3
c5315 608 33.18 15.92 12.01 37.90 12.42 78.25 70.28 10.2
c6288 252 27.10 19.51 7.78 26.43 13.06 67.14 58.53 12.8
c7552 795 30.84 30.45 23.15 64.15 188.35 306.10 266.41 13.0
alu64 516 30.01 28.33 19.20 51.17 94.71 193.41 167.11 13.6

CMU56K 810 31.98 60.13 50.42 99.90 53.83 266.26 234.9 11.8

Table 1: CPU execution times (in seconds) for fault simulation of various fault types for benchmark circuits.

pared to the sum of the individual times3. We believe this
is due to the fact that there exists common tuple information
(column 3)4 among the various fault types.

5. CONCLUSIONS
Obtaining an accurate defect coverage typically means that
SSL test patterns have to be augmented with tests that are
aimed at other fault types. In this work, instead of proposing
another fault model, we have developed a new fault mod-
eling mechanism that allows arbitrary misbehaviors to be
represented as AND-OR expression of simple faults, we call
fault tuples.

Using the fault tuple mechanism, we demonstrated fault
simulation of various fault types within one comprehensive
tool. Exploitation of common information among various
fault types resulted in a 17% average reduction of CPU
run times. We expect a more signi�cant speedup when:
(1) macrofaults are represented using minimal information
and, (2) collapsing is performed across macrofaults of vari-
ous types.

Future work will focus on developing theory for fault col-
lapsing across macrofaults of various types, and adding ca-
pability for handling sequential circuits. In addition, we
will also explore ways of using the fault tuple mechanism
for high-level testing.
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