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Abstract

Radical membership testing, resp. its special case of Hilbert’s Nullstel-
lensatz (HN), is a fundamental computational algebra problem. It is NP-
hard; and has a famous PSPACE algorithm due to effective Nullstellensatz
bounds. We identify a useful case of these problems where practical algo-
rithms, & improved bounds, could be given— When transcendence degree
r of the input polynomials is smaller than the number of variables n. If d
is the degree bound on the input polynomials, then we solve radical mem-
bership (even if input polynomials are blackboxes) in around dr time. The
prior best was > dn time (always, dn > dr). Also, we significantly improve
effective Nullstellensatz degree-bound, when r ≪ n.

Structurally, our proof shows that these problems reduce to the case of
r + 1 polynomials of transcendence degree > r. This input instance (cor-
responding to none or a unique annihilator) is at the core of HN’s hardness.
Our proof methods invoke basic algebraic-geometry.

1 Introduction

Given a set of polynomials f1, . . . , fn, there is a natural certificate for the ex-
istence of a common root, namely the root itself. Hilbert’s Nullstellensatz
[Rab30, Zar47, Kru50] states that there is also a natural certificate for the nonex-
istence of a common root, when the underlying field is algebraically closed. For-
mally, the theorem states that the polynomials have no common root if and
only if there exist polynomials g1, . . . , gn such that 1 =

∑
figi. We refer to

the latter type of certificate as a Nullstellensatz certificate. These certificates are
not polynomial sized: every common root can have exponential bit complex-
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ity, and every set of witness polynomials gi can have exponential degrees. This
problem is naturally of computational interest, since the generality of the state-
ment affords reductions from many problems of interest. Effective versions
of the Nullstellensatz have been extensively studied [Jel05, KPS+01, KPS99,
Som99, Som97, BS91, Kol88, Bro87], and they allow the decision problem of ex-
istence of common roots (called HN) to be solved in polynomial space. Koiran
[Koi96] proved that under generalized Riemann Hypothesis, HN can be solved
in AM [AB09, Ch.8], for fields of characteristic zero.

In this work, we relate the complexity of HN to the transcendence degree
of the input polynomials. The transcendence degree of polynomials f1, . . . , fm
is defined as the size of any maximal subset of the polynomials that are al-
gebraically independent. This notion is well defined since algebraic indepen-
dence satisfies matroid properties [Oxl06]. We show that HN can be solved in
time single-exponential in transcendence degree This can be seen as a gener-
alization of the fact that HN can be solved in time exponential in the number
of polynomials (or variables) in the system. We state our result in terms of the
question of radical membership: f0 ∈?

√

〈f1, . . . , fm〉. Note that the standard al-
gorithms for both ideal membership [Her26] and radical computation [Lap06]
are far slower than ours.

Given a set of polynomials f1, . . . , fm with transcendence degree at most r, as
blackboxes, we can perform radical membership tests for the ideal generated by f1, . . . , fm
in time polynomial in dr,m,n, where d is the degree-bound on the polynomials and n

is the number of variables.
We also relate the transcendence degree of the input polynomials to the

degrees of the Nullstellensatz certificates, that is the degrees of gi in
∑

figi =

1; improving the best bounds by [Jel05].
Given a set of polynomials f1, . . . , fm with transcendence degree r and without any

common roots, there exist polynomials gi of degree at most dr+1 such that
∑

figi =

1.
We also give an output-sensitive algorithm to compute the transcendence

degree of polynomials. Slightly more formally, we show:
Given a set of polynomials f1, . . . , fm, we can compute their transcendence degree

in time polynomial in dr and m,n.

1.1 Previously known results

All three of the problems stated above have been extensively studied. We there-
fore only list some of the previously known results, and direct readers to the
surveys [May97, BS91].

Nullstellensatz. The decidability of the ideal membership problem was es-
tablished by Hermann [Her26] when she proved a doubly-exponential bound
on witnesses to ideal membership. A lower bound of the same complexity
by Mayr and Meyer [May89, MM82] showed that this problem is EXPSPACE
complete. A number of different algorithms were developed for operations on
ideals, most prominently the method of Gröbner basis [Buc65]. The proof of
single-exponential bounds for the Nullstellensatz (discussed below) allowed
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special cases of the ideal membership problem, such as the case of unmixed
and zero dimensional ideals to be solved in single-exponential time [DFGS91].
It also allowed the general Nullstellensatz problem to be solved in PSPACE.
Giusti and Heintz [GH94] proved that the dimension of a variety can be com-
puted by a randomized algorithm in single-exponential time, with the expo-
nent being linear in n, which gives an algorithm of the same complexity for
HN (by testing if the dimension is −1). All of the above results are indepen-
dent of the underlying field characteristic. In 1996, Koiran [Koi96] gave an AM
protocol (conditioned on GRH) for the Nullstellensatz problem, when the un-
derlying field is C and the polynomials have integer coefficients. His method
is completely different from the previous methods (of using the effective Null-
stellensatz to reduce the system to a linear one). The positive characteristic case
is an open problem, and the best known complexity remains PSPACE.

Effective Nullstellensatz. The projective version of the effective Nullstel-
lensatz follows from the fundamental theorem of elimination theory [Laz77].
An affine version was first proved by Brownawell [Bro87] in characteristic 0 us-
ing analytic methods. It was later improved by Kollár [Kol88] who used local
cohomology to improve the bounds and remove the condition on the character-
istic. A more elementary proof that used bounds on the Hilbert function was
given by Sombra [Som97], who also gave improved bounds based on some
geometric properties of related varieties [Som99]. An even more elementary
and significantly shorter proof was given by Jelonek [Jel05], who obtained im-
proved bounds when the number of polynomials is lesser than the number of
variables.

Transcendence degree. Algebraic independence was studied in computer
science by [DGW07] in their study of explicit extractors. They proved that the
rank of the Jacobian matrix is the same as the transcendence degree for fields
of characteristic zero (or large enough) which gives an efficient randomized
method for computing the transcendence degree. The problem was studied
further in [Kay09], where the condition on the characteristic for the above al-
gorithm was relaxed, and some hardness results were established. [GSS18]
showed that the problem is in coAM ∩ AM, making it unlikely to be NP-hard,
and conjecturing that the problem is in coRP for all characteristics. Algorithmi-
cally, the best known method for computing the transcendence degree in fields
of positive characteristic still has PSPACE complexity, by using the bounds of
Perron [Per51, Pł05] to reduce the problem to solving an exponential sized lin-
ear system. This method takes time polynomial in dr2

using the methods of
[Csa75]. We refer the reader to the thesis [Sin19] for an exhaustive survey of
related results; and applications in [ASSS12, PSS16].

Certain radical membership methods were developed by Gupta [Gup14] in
his work on deterministic polynomial identity testing algorithms for heavily
restricted depth-four circuits. The focus there however was on a deterministic
algorithm for the above problem. Further, he restricts his attention to systems
where the underlying field is C.
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1.2 Our results

Our algorithms will be Monte Carlo algorithms. We assume that our base field
k is algebraically closed, but our algorithms only use operations in the field in
which the coefficients of the inputs lie, which we denote by ki. For example,
ki might be Fp, and k would then be Fp. By time complexity we mean opera-
tions in ki, where operations include arithmetic operations, finding roots, and
computing GCD of polynomials. Our results are valid for any field where the
above procedures are efficient, for example finite fields.

We relate the complexity of radical membership, and the degree bounds in
effective Nullstellensatz, to the transcendence degree of the input set of poly-
nomials. We do this by showing that given a system of polynomials, we can
reduce both the number of variables and the number of polynomials to one
more than the transcendence degree, while preserving the existence (resp. non-
existence) of common roots. In particular, when the transcendence degree of
the input polynomials is constant, we get efficient algorithms for these prob-
lems.

Theorem 1.1 (Radical membership). Suppose f1, . . . , fm and g are polynomials, in
variables x1, . . . , xn, of degrees d1, . . . ,dm and dg respectively, given as blackboxes.
Suppose that trdeg (f1, . . . , fm) 6 r. Define d := max(maxi di,dg).

Then, testing if g belongs to the radical of the ideal generated by f1, . . . , fm can be
done in time polynomial in n,m and dr, with randomness.

Remarks:
(1) The tr.deg r can be much smaller than n, and this improves the complex-

ity significantly to dr from the prior dn [LL91]. On the other hand, the usual
reduction from SAT to HN results in a set of polynomials with transcendence
degree n, due to the presence of polynomials x2

i − xi (that enforce the binary
0/1 values).

(2) We also show that the tr.deg itself can be computed in time dr, indepen-
dent of the characteristic (Theorem 1.3). In the above statement therefore, we
can always pick r = trdeg (f), and we can assume that r is not part of the input.

(3) The transcendence degree is upper bounded by the number of polyno-
mials, and therefore we generalize the case of few polynomials. It is surprising
if one contrasts this case with that of ideal membership— where the instance
with three polynomials (i.e. transcendence degree = 3) is as hard as the general
instance making it EXPSPACE-complete. 1

Next, we show that taking constant-free random linear combinations pre-
serves the zeroset of the polynomials, if the number of linear combinations is
at least one more than the transcendence degree. This allows us to get bounds
on the Nullstellensatz certificates that depend on the transcendence degree.

1 Suppose g ∈ 〈f1, . . . , fm〉 is an instance of ideal membership. This is equivalent to zm1 zm2 g ∈
〈

zm+1
1 ,zm+1

2 ,
∑

i fiz
i
iz

m−i
2

〉

. Here, z1,z2 are fresh variables. This reduces the general instance of

ideal membership to an instance where the ideal is generated by 3 elements. This transformation
is from [Sap19].
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Theorem 1.2 (Effective Nullstellensatz). Suppose f1, . . . , fm are polynomials in
x1, . . . , xn, of degrees d1 > · · · > dm respectively, with an empty zeroset. Suppose
further that trdeg (f1, . . . , fm) = r.

Then, there exist polynomialshi such that deg fihi 6
∏r+1

i=1 di that satisfy
∑

fihi =

1.

Remark: The prior best degree-bound for the case of ‘small’ transcendence
degree is

∏m
i=1 di [Jel05]. Our bound is significantly better when the transcen-

dence degree r is ‘smaller’ than the number of polynomials m.

Finally, as stated before, we show that the transcendence degree of a given
system of polynomials can be computed in time polynomial in dr (and m,n),
where d is the maximum degree of the input polynomials, and r is their tran-
scendence degree. The algorithm is output-sensitive in the sense that the time-
complexity depends on the output number r.

Theorem 1.3 (Transcendence degree). Given as input polynomials f1, . . . , fm, in
variables x1, . . . , xn, of degrees at most d, we can compute the transcendence degree r
of the polynomials in time polynomial in dr,n,m.

Remark: In the case when the characteristic of the field is greater than dr,
there is a much more efficient (namely, randomized polynomial time) algo-
rithm using the Jacobian criterion [BMS13]. The algorithm presented here is
useful when the characteristic is ‘small’; whereas the previous best known
time-complexity was > dr2

if one directly implements the PSPACE algorithm.
Eg. for d = O(1) and r = O(logn) our complexity is polynomial-time unlike
the prior known algorithms.
A motivating example where our results are better than the known results is
when the input blackboxes are implicitly of the form fi(h1, . . . ,hr), i ∈ [m], for
r ≪ n, where each hi is an n-variate polynomial, and m = n + 1. Here, fi’s
have transcendence degree r. Thus, our algorithms take time dr; significantly
less than dn.

1.3 Proof ideas

Pf. idea Theorem 1.1: We first use the Rabinowitsch trick to reduce to HN: the
case g = 1. Next, we perform a random linear variable-reduction. We show
that replacing each xi with a linear combination of r new variables zj preserves
the existence of roots. This is done by using the fact that a general linear hy-
perplane intersects a variety properly (Lemma 3.1). Once we are able to re-
duce the variables, we can interpolate to get dense representation of our poly-
nomials, and invoke existing results about testing nonemptiness of varieties
(Theorem 2.6).

Pf. idea Theorem 1.2: For the second theorem, we show that random linear
combinations of the input polynomials, as long as we take at least r+1 many of
them, preserve the zeroset. For this, we study the image of the polynomial map
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defined by the polynomials. We again use the theorem regarding the hyper-
plane intersection (Lemma 3.1). In order to get the degree bounds, we must al-
low these hyperplanes to depend on fewer variables, and allow their equations
to be constant free. Once this is proved, we can use a bound (Theorem 2.5) on
the Nullstellensatz certificates for the new polynomials (which is better since
the polynomials are fewer in number) to obtain a bound for the original poly-
nomials.

Pf. idea Theorem 1.3: The image of the polynomial map defined by the poly-
nomials is such that the general fibre has codimension equal to the transcen-
dence degree. We first show that a random point, with coordinates from a
subset which is not ‘too large’, satisfies this property. In order to efficiently
compute the dimension of this fibre, we take intersections with hyperplanes;
and apply Lemma 3.1 and Theorem 2.6.

2 Notation and preliminaries

2.1 Notation

We reserve n for the number of variables (x1, . . . , xn), m for the number of
polynomials (f1, . . . , fm) in our inputs. The polynomials have total degrees
d1, . . . ,dm. We assume that the polynomials are labeled such that d1 > d2 >

· · · > dm.
We use boldface to denote sequence of objects, when the indexing set is

clear; for example, x denotes x1, . . . , xn and f denotes f1, . . . , fm. The point
(0, . . . , 0) will be represented by 0. We use k to denote the underlying field
which we assume is algebraically closed, and ki to denote the field in which
the coefficients of the inputs lie. We use An to denote the n dimensional affine
space over k. Given a variety X, we use k [X] to denote its coordinate ring, and
when X is irreducible we use k(X) to denote its function field. We use An and
Pn to denote the n dimensional affine and projective spaces respectively, and
Pn
∞ to denote the hyperplane at infinity.

2.2 Algebraic-geometry facts

We use elementary facts from algebraic-geometry, for which [CLO07, SR13]
are good references. We do not assume that our varieties (or zerosets) are irre-
ducible. We will use the Noether normalization lemma. The following statement
is useful, as it characterizes the linear maps which are Noether normalizing.

Theorem 2.1. [SR13, Thm.1.15] If X ⊆ PN is a closed subvariety disjoint from an
ℓ-dimensional linear subspace E ⊆ P

N then the projection π : X → P
N−ℓ−1 with

centre E defines a finite map X → π(X).

Here, by projection with center E we mean that the coordinate functions of the
map are the same as a set of defining linear equations for E. By the above theo-
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rem, proving that a given map is Noether normalizing for a particular variety
reduces to proving that the variety is disjoint from a linear subspace.

We will also use the following two statements from dimension theory, namely
the theorem on the dimension of intersections with hypersurfaces, and the the-
orem on the dimension of fibres.

Theorem 2.2. [SR13, Thm.1.22] If a form F is not zero on an irreducible projective
variety X then dim(X ∩ V(F)) = dimX− 1.

Theorem 2.3 (Fibre dimension). [SR13, Thm.1.25] Let f : X → Y be a surjective
regular map between irreducible varieties. Then dimY 6 dimX, and for every y ∈ Y,
the fibre f−1(y) satisfies dim f−1(y) > dimX − dimY (equiv. codim f−1(y) 6

dimY).
Further, there is a nonempty open subset U ⊂ Y: for every y ∈ U, dim f−1(y)

= dimX− dimY (equiv. codim f−1(y) = dimY).

The above theorem also holds if we replace surjective by dominant. Every
fibre either is empty (if the point is not in the image) or has the above bound on
the dimension. We sketch a proof of a special case of the above in appendix A
since we require an intermediate statement in the proof of Theorem 1.3.

We will also require the Bézout inequality. The definition of degree we use
is the version more common in computational complexity. The degree of a va-
riety is the sum of the degrees of all its irreducible components, as opposed
to just the components of highest dimension. For irreducible varieties, the de-
gree is the number of points when intersected with a general linear subspace
of complementary dimension. This definition affords the following version of
the Bézout inequality [Hei83], which holds without any conditions on the type
of intersection.

Theorem 2.4 (Bézout [Hei83]). Let X, Y be subvarieties of An. Then deg(X ∩ Y) 6
degX · deg Y.

Following is a recent version of effective Nullstellensatz [Jel05].

Theorem 2.5. [Jel05, Thm.1.1] Let f1, . . . , fm be nonconstant polynomials, from the
ring k [x1, . . . , xn] with k algebraically closed, that have no common zeros. Assume
deg fi = di with d1 > · · · > dm, and also m 6 n. Then, there exist polynomials hi

such that deg fihi 6
∏m

i=1 di satisfying
∑

fihi = 1.

We will need the following algorithm for checking if a variety has dimen-
sion 0 (dim is an integer in the range [−1,n]). The statement assumes that the
polynomials are given in the monomial (also called dense) representation. We
only state the part of the theorem that we require. A discussion is provided
in Appendix B. We note that the below theorem itself invokes results from
[Laz81], section 8 of which proves that the operations occur in a field exten-
sion of degree at most dn of the field ki.

Theorem 2.6. [LL91, Part of Thm.1] Let f1, . . . , fm be polynomials of degree at most
d in n variables. There exists a randomized algorithm that checks if the dimension of
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the zeroset of f1, . . . , fm is 0 or not, in time polynomial in dn,m. The error-probability
is 2−dn

.

We will also require a bound on the degrees of annihilators of algebraically
dependent polynomials. We refer to this bound as the Perron bound. It also
plays a crucial role in the new proofs of effective Nullstellensatz (Theorem 2.5).

Theorem 2.7 (Perron bound). [BMS13, Cor.5] Let f1, . . . , fm be algebraically de-
pendent polynomials of degrees d1, . . . ,dm. Then there exists a nonzero polynomial
A(y1, . . . ,ym) of degree at most

∏m
i=1 di such that A(f1, . . . , fm) is identically zero.

We note that the theorem statement in [BMS13] has the bound as (maxdi)
m,

however their method of constructing a linear faithful homomorphism and
then applying the bound from [Pł05] actually gives the above mentioned bound
(even for the weighted-degree of A).

In the course of our proof, we will study the image of the polynomial map
whose coordinate functions are f1, . . . , fm. We list some properties of this im-
age.

Lemma 2.8 (Polynomial map). Let f1, . . . , fm be polynomials of degrees at most d,
in variables x1, . . . , xn. Set r := trdeg (f1, . . . , fm). Let F : An → Am be a polynomial
map defined as

F(a1, . . . ,an) = (f1(a1, . . . ,an), . . . , fm(a1, . . . ,an)).

Let Y be the (Zariski) closure of the image of An under F, that is Y := F(An). Then,

1. Y is irreducible.
2. dimY = r.
3. deg Y 6 dr.

Proof of Lemma 2.8. The first statement is a consequence of the fact that Y is
the image of an irreducible set (namely An) under a continuous map. Since
k [Y] = k [f1, . . . , fm], we have trdeg (k (Y)) = r, whence dimY = r by defini-
tion. Here we used the fact that the dimension of an irreducible variety is the
transcendence degree of its function field over the ground field. A proof of the
third part can be found in [BCS97, 8.48].

3 Main Results

We require a bound on the probability that a random linear hyperplane inter-
sects a variety of a given dimension properly, that is such that the dimension
of the variety decreases by exactly one. It is well known that the set of such
hyperplanes form a Zariski open set in the space of all hyperplanes. We use an
explicit bound on the probability of such an intersection based on the degree of
the variety, both for the projective and the affine case. We will require that our
intersecting hyperplanes have some structure: that their defining equations
depend only on a few variables, depending on the dimension of the variety to
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be intersected. We establish all these facts in the next subsection. In the three
subsections following that, we use this lemma to prove our three main results–
Theorem 1.1, Theorem 1.2, and Theorem 1.3.

3.1 Intersection by a hyperplane

Lemma 3.1. Let V ⊆ Pn be a projective variety of dimension r and degree D. Let S
be a finite subset, of the underlying field k, not containing 0. Let ℓ be a linear form in
x0, x1, . . . , xn−r with each coefficient picked uniformly and independently from S. Let
H be the hyperplane defined by ℓ. Then, with probability at least 1 − D/ |S| we have
dimV ∩H = dimV − 1.

Analogously, if V ⊆ An is affine, ℓ is a linear polynomial in x1, . . . , xn−r+1 and H

its hyperplane; then dimV ∩H = dimV − 1 with probability at least 1 − 2D/ |S|.

Proof of Lemma 3.1. First we prove the projective case. Let ℓ := c0x0 + · · · +
cn−rxn−r, where the ci are the coefficients picked uniformly at random from
S. Let∪d

j=1Vj be the decomposition of the dimension-r part of V into irreducible
components. Then by definition, degV >

∑
degVj, and hence d 6 D. Pick

a point pj in Vj, for each j. We can always pick pj so that not all of its first
n − r + 1 coordinates are zero: if this was not possible then Vj would have to
be contained in the variety defined by x0 = x1 = · · · = xn−r = 0, which has
dimension only r − 1. By Theorem 2.2, dimH ∩ dimVj = dimVj if and only if
Vj ⊆ H (since Vj and H are irreducible), and otherwise dimH∩Vj = dimVj−1.
The probability that this happens is upper bounded by the probability that
pj ∈ H. For a fixed j, this is equivalent to ℓ(pj) = 0. Since not all of the
first n − r + 1 coordinates of pj are zero, the above is bounded by 1/ |S|, by
fixing all but one of the coordinates. By a union bound, with probability at
most d/ |S|, there exists some j where dimH ∩ Vj = dimVj. Therefore, with
probability at least 1 − D/ |S|, we get dimVj ∩ H = dimVj − 1 for every j,
whence dimV ∩H = dimV − 1.

Now suppose V is affine. The difference from the projective case is that
the intersection V ∩ H might be empty, and we need to bound the probabil-
ity of this event. Let Vp be its projective closure. Then dimVp = dimV and
degVp = degV . By the previous part, we have dimVp∩Hp = dimVp−1 with
probability 1 −D/ |S|. Then, the case V ∩H = ∅ only happens if dimVp ∩Hp ∩
Pn
∞ = dimVp − 1, where Pn

∞ is the hyperplane x0 = 0 in Pn. The irreducible
components of V are in bijection with those of Vp, and hence Vp has no irre-
ducible component contained in Pn

∞. Therefore, dimVp ∩ Pn
∞ = dimVp − 1.

Further, by Bézout’s theorem we have degVp ∩ Pn
∞ 6 degVp.

Now Hp∩Pn
∞ is a hyperplane in Pn

∞ defined by the nonconstant part of ℓ. In
particular, it is a hyperplane whose defining equation has coefficients picked
uniformly and independently and we can apply the projective version of this
lemma on Pn

∞. Therefore the probability that its intersection with Vp∩Pn
∞ does

not result in a reduction in the dimension is at most D/ |S|. By a union bound,
with probability at least 1 − 2D/ |S| it holds that dimVp ∩Hp = dimV − 1 and
dimVp∩Hp∩Pn

∞ = dimV−2, whence dimV ∩H = dimV−1 as required.
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An important fact to note is that our choice of variables for the linear form
is arbitrary. The lemma works for any choice of n − r + 1 variables, and this
will be important when we use the lemma. Also, note that the above lemma
works when our linear form involves more that n− r + 1 variables.

Repeated applications of the above allow us: (1) to reduce a variety to di-
mension 0 by taking hyperplane sections, and (2) to find a linear subspace that
avoids the variety.

3.2 Radical membership: Proof of Theorem 1.1

Using the above lemma, we complete the proof of the main theorem:

Proof of Theorem 1.1. We first assume g = 1, which is the Nullstellensatz prob-
lem HN. Define D :=

∏m
i=1 di, and V := V(〈f〉). The set of common zeroes

of these polynomials is the fibre of the point 0 under the map F defined in
Lemma 2.8. The problem HN is thus equivalent to testing if a particular fibre of
a polynomial map is nonempty. By the fibre dimension theorem (Theorem 2.3),
the codimension of the zeroset—if it is nonempty—is bounded above by the
dimension of the image of the map, which by Lemma 2.8 is r. The zeroset
V is therefore either empty, or has dimension at least n − r. Assume that
V is nonempty. By repeated applications of Bézout’s theorem (Theorem 2.4),
degV 6 D. Let S be a subset of the underlying field ki (or an extension) of size
at least 6(n − r)D that does not contain 0. We can sample from S in time poly-
nomial in d,n,m, since S has size exponential in these parameters. Further,
if we were required to go to an extension to form S, the degree of the exten-
sion would be polynomial in d,n,m. Pick n − r random linear polynomials
ℓ1, . . . , ℓn−r with coefficients from S, and call their zero sets H1, . . . ,Hn−r re-
spectively. By Lemma 3.1, the intersection V ∩ H1 has dimension r − 1 with
probability at least 1 − 1/(3(n − r)). Further, by Bézout’s theorem we get
degV ∩ H1 6 degV 6 D, since each Hi has degree one. Again by Lemma
3.1, the intersection (V ∩H1) ∩H2 has dimension r− 2 with probability at least
1 − 1/(3(n− r)), and degV ∩H1 ∩H2 6 D. Repeating this for all Hi and using
the union bound, we get dimV ∩H1 ∩ · · · ∩Hn−r > 0 with probability at least
2/3.

Therefore, when the polynomials f have nonempty zeroset and are restricted
to the r dimensional affine subspace ∩Hi, the new zeroset has dimension at
least 0, and in particular is nonempty. If the zeroset of the polynomials was
empty to begin with, then the restriction to the linear subspace also results in
an empty zeroset.

This restriction can be performed by a variable reduction, as follows. Treat-
ing An as a vector space of dimension n over k, let H0 be the linear subspace
corresponding to the affine subspace H := ∩Hi. H0 has dimension r, and hence
has basis a1, . . . ,ar. Further, let vector b be such that H = H0 +b. Define linear
forms c1, . . . , cn in new variables z1, . . . , zr as ci :=

∑r
j=1 ajizj + bi, where aji

is the ith component of aj. Define f ′i := fi(c1, . . . , cn). Then by construction,
the zeroset of f ′1, . . . , f ′m is equal to V ∩ (∩Hi). Further, deg f ′i = deg fi, and
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these polynomials are in r variables. Also, the construction of these f ′i can be
done in a blackbox manner, given blackboxes for fi. This construction takes
time polynomial in m, r,n.

We now repeatedly invoke Theorem 2.6 to check if f ′is have a common root.
First we must convert them to a sparse representation. The polynomial f ′i has
at most

(

r+di

r

)

many monomials, and therefore we can find every coefficient
in time polynomial in

(

r+di

r

)

by simply solving a linear system. Applying
Theorem 2.6, we can test whether the dimension of the zeroset of f ′1, . . . , f ′m
is 0 or not. However, we want to check if the dimension is at least 0. For this,
we randomly sample r more hyperplanes H ′

1, . . . ,H ′
r as in the previous part

of the proof, this time in the new variables z1, . . . , zr. Let V ′ be the zeroset
of f ′1, . . . , f ′m. We first use Theorem 2.6 to check if V ′ has dimension 0. If not,
then we check if V ′ ∩ H ′

1 has dimension 0. If not, then we check V ′ ∩ H ′
1 ∩ H ′

2,
and so on. We return success if any one of the above iterations returns success
(implying that the corresponding variety has dimension 0). Performing calcu-
lations similar to the ones earlier in the proof, we see that with high probability
each intersection reduces the dimension by 1. If V ′ originally had dimension
r ′, then after intersecting with r ′ hyperplanes, the algorithm of Theorem 2.6
returns success. If V ′ was empty, then the algorithm does not return success
in any of the above iterations. This allows us to decide if V ′ has dimension at
least 0. Finally, using the fact that the dimension of the zeroset of f ′1, . . . , f ′m is
at least 0 if and only if dimV > 0, we get the required algorithm for HN.

We now estimate the time taken. Computing the dense representation takes
time polynomial in dr and m. Each of the at most r applications of Theorem 2.6
also take the same amount of time. The sampling steps take time polynomial in
lognD (in turn polynomial in d,m) and only requires an extension of degree
polynomial in n and logd. The total time taken is therefore polynomial in
m,dr.

Now assume that g is an arbitrary polynomial. We reduce the problem to
the case of g = 1 using Rabinowitsch trick [Rab30]. The polynomial g belongs
to the radical of the ideal 〈f〉 if and only if the polynomials f, 1 − yg have no
common root (here y is a new variable). Further, if f have transcendence degree
r, then the set f, 1−yg has transcendence degree r+ 1. We therefore reduce the
radical membership problem to HN problem, with a constant increase in the
transcendence degree, number of polynomials and the number of variables. By
the result in the previous paragraph, we can solve this in time polynomial in
n,m and dr.

3.3 Effective Nullstellensatz: Proof of Theorem 1.2

We now prove that by taking random linear combinations of the input poly-
nomials, we can reduce the number of polynomials to be one more than the
transcendence degree while preserving the existence of roots. This reduction
gives degree bounds for the Nullstellensatz certificates. Note that this reduc-
tion does not help in Section 3.2’s root-testing procedure, since we will only be
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saving a factor in m if we reduce the number of polynomials.

Theorem 3.2 (Generator reduction). Let f1, . . . , fm be polynomials, in x1, . . . , xn,
of degrees atmost d and of transcendence degree r. Let g1, . . . , gr+1 be polynomials
defined as gi :=

∑m
j=i cijfj, where each cij is randomly picked from a finite subset S

of k. Then with probability at least 1 − d(r+1)m/ |S|, we have V(〈f〉) = V(〈g〉).

That we pick the linear combinations so that the first involves all polyno-
mials, the second involves all except f1, the third involves all except f1, f2 and
so on is crucial for the improvement in the degree bounds.

Proof of Theorem 3.2. We prove this by studying the set Y defined in Lemma 2.8.
Let F : An → Am be the map with coordinate functions fi. Let Y := F(An), the
closure of the image of F in A

m. We use y1, . . . ,ym to denote the coordinate
functions of Am. By Lemma 2.8, Y has dimension r, and degree at most D := dr.
Let Yp be the projective closure of Y. Then Yp also has dimension r and degree
at most D. Let ℓ1, . . . , ℓr+1 be the linear polynomials ℓi :=

∑
i6j6m cijyj.

Consider the subspace defined by y0, ℓ1, . . . , ℓr in Pm. The variety Yp ∩ Pm
∞ ,

which is the intersection of Yp with the hyperplane at infinity defined by y0 =

0, has dimension r − 1. Since ℓ1, . . . , ℓr are random linear polynomials and
Yp ∩ Pm

∞ is a variety of, degree at most D and, dimension r− 1, we can repeat-
edly apply Lemma 3.1 to get a bound on the probability of proper intersections.
Let Hi be the hyperplane defined by ℓi. We apply Lemma 3.1 starting from Hr.
The equation ℓr has m − r + 1 coefficients, and therefore satisfies the condi-
tions required for the lemma. By Bézout’s theorem, the intersection has degree
bounded by D, and dimension decreased by one. We then apply the theorem
with Hr−1 and so on, as in the proof of Theorem 1.1. In each iteration the va-
riety considered has one less dimension than the previous iteration, but our
linear polynomial has one more variable, and therefore we will always satisfy
the conditions of Lemma 3.1.

We can now invoke Theorem 2.1 to say that the map Pm → Pr with coor-
dinate functions (y0, ℓ1, . . . , ℓr) is Noether normalizing for Yp. We call this map
L′. We use z0, . . . , zr to denote the coordinate functions of Pr. The map L′ sends
the affine chart y0 6= 0 to the affine chart z0 6= 0. Let L be the restriction of L′ to
this affine chart. Then L defines a map from Am to Ar, which is Noether nor-
malizing for the variety Y; we also call this restricted map L. More explicitly,
the map L has coordinate functions (ℓ1, . . . , ℓr). Also, let the map Am → Ar+1

with coordinate functions (ℓ1, . . . , ℓr+1) be labelled M.
Since the map L is Noether normalizing, it has finite fibres. Let Q be the fi-

bre of 0 in Y. We bound the size of this set. The map L is Noether normalizing,
and hence it is surjective. The image Ar is normal, and hence the cardinal-
ity |Q| of the fibre is bounded by the degree of the map [SR13, Theorem 2.28].
Here, by the degree of the map we mean the degree of k (Y) over the pullback
L∗(k (Ar)). Note that k (Y) = k(f1, . . . , fm), and L∗(k (Ar)) = k(ℓ1(f), . . . , ℓr(f))
after applying the same isomorphism. By Perron’s bound, for each i there ex-
ists an annihilator of fi, l1(f), . . . , lr(f) of degree at most dr+1. The degree of the
extension, and hence |Q|, is bounded by dm(r+1).
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Further, no point of Q, other than 0, has all of the last m − r coordinates
as zero. This follows from the fact that L−1(0) is a linear space of dimension
m − r, and its intersection with yr+1 = yr+2 = · · · = ym = 0 has dimension 0.
Consider now the linear form ℓr+1. For every 0 6= q ∈ Q, the probability that
ℓr+1(q) = 0 is at most 1/ |S|. Therefore, with probability at least 1−dm(r+1)/ |S|,
the polynomial ℓr+1 is nonzero on every nonzero point of Q.

Consider the polynomials g1, . . . , gr+1, and let G be the polynomial map
An → Ar+1 with coordinate functions gi. By the choice of ℓi in the previous
paragraph, the map G is exactly the composition of the map F : An → Am

with M : Am → Ar+1. Let Q be as defined earlier, the fibre of 0 under L.
By construction, the set M−1(0) is a subset of Q. But since the polynomial
ℓr+1 is nonzero on every nonzero point of Q, the set M−1(0) consists only of 0.
Therefore, F−1(M−1(0)) = F−1(0). Since G = M ◦ F we get G−1(0) = F−1(0);
which is the same as V(〈f〉) = V(〈g〉).

We use the above to prove our 2nd main result:

Proof of Theorem 1.2. Using Theorem 3.2, there exists polynomials g1, . . . , gr+1

of degrees d1, . . . ,dr+1 that do not have a common root. By Theorem 2.5, there
exist h ′

1, . . . ,h ′
r+1 such that deggih

′
i 6

∏r+1
i=1 di such that

∑
gih

′
i = 1. In

this equation, substitute back the linear-combination of f1, . . . , fm for each gi;
whence we get the required hi’s.

3.4 Computing transcendence degree: Proof of Theorem 1.3

We give a method of ‘efficiently’ computing the transcendence degree of input
polynomials f1, . . . , fm. By Lemma 2.8 and the second part of Theorem 2.3, the
transcendence degree can be computed if we know the dimension of a gen-
eral fibre. We need to get a bound on the points that violate the equality in
Theorem 2.3. For this we follow the classical proof of the theorem and give ef-
fective bounds wherever required. For convenience we have provided a proof
sketch in appendix A, for the special case we need.

Lemma 3.3. Let h1, . . . ,hm be polynomials of degree at most d in n variables, and let
W be the Zariski closure of the image of the map h with coordinates hi. Let S ⊂ k be
of size 6ndn. If a1, . . . ,an are randomly picked from S, then with probability at least
5/6, the fibre of (h1(a), · · · ,hm(a)) has codimension exactly dimW.

Proof. First assume that the hi are algebraically independent. Then W = Am.
Let the input variables be labelled such that x1, . . . , xn−m,h1, . . . ,hm are al-
gebraically independent, and let Aj(z0, z1, . . . , zn−m,w1, . . . ,wm) be the (mini-
mal) annihilator of xj over this set of variables, that is Aj(xj, x1, . . . , xn−m,h1, . . . ,hm) =

0. By the proof of Theorem 2.3 (appendix A), a sufficient condition for point
a1, . . . ,an to be such that h(a) has fibre of dimension exactly n − m is that
Aj(xj, x1, . . . , xn−m,h1(a), . . . ,hm(a)) is a nonzero polynomial. The polynomial
Aj, when treated as polynomials in variables z0, . . . , zn−m with coefficients in
k [w1, . . . ,wm] are such that the leading monomial has coefficient a polynomial
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in w1, . . . ,wm of weighted-degree at most
∏m

i=1 di (by Perron bound). By the
polynomial identity lemma [Ore22, DL78, Sch80, Zip79], if we pick each ai ran-
domly from a set of size 6

∏m
i=1 di then, with probability at least 5/6, none of

the polynomials Aj(xj, x1, . . . , xn−m, h1(a), . . . ,hm(a)) is zero. In this case, the
codimension of the fibre of h(a) is exactly m as claimed.

In the general case, the hi may be algebraically dependent, and W is a sub-
variety of Am. Suppose dimW = trdeg (h) =: s. Then we take s many random
linear combinations gi of the hi, as in the proof of Theorem 1.2. The map de-
fined by the gi is dense in As and therefore the gi (i ∈ [s]) are algebraically
independent. By the previous paragraph, point a picked coordinatewise from
S is such that the fibre of g(a) has codimension s. The fibre of h(a) is a sub-
set of the fibre of g(a), and therefore it has codimension at least s. Finally, by
Theorem 2.3, the fibre has codimension at most s, whence the fibre of h(a) has
codim = s as required.

Proof of Theorem 1.3. For each i, upwards from 1 to n, we do the following
steps. We iterate till i reaches transcendence degree r of the m polynomials. In
the i-th iteration, we intersect An with n − i random hyperplanes ℓ1, . . . , ℓn−i,
as in the proof of Theorem 1.1 (Sec.3.2). Here, the coefficients are picked from
a set S of size at least n · 18

∏m
i=1 di. We therefore reduce the problem to i

variables.
Randomly pick point a where each coordinate (of the n many) is picked

randomly from S. By Lemma 3.3 (& 3.1), with error-probability 6 1/6n, the
point f(a) has intersected fibre of dimension (n − r) − (n − i) = (i − r). We
need to check this algorithmically; which is done by interpolating the polyno-
mials f after hyperplane intersections, and then using Theorem 2.6 (as detailed
in Sec.3.2). If the intersected fibre dimension is zero, we have certified tran-
scendence degree = i = r; so we halt and return i as output. Else, we move to
the next i 7→ i+1. The interpolation step above is performed by solving a linear
system which has size polynomial in di which is the count of the monomials
of degree at most d in i variables.

Note that for i < r, with error-probability 6 1/6n, the fibre of f(a) has an
empty intersection with ℓ1, . . . , ℓn−i; which is dim= −1 and hence gets verified
by Theorem 2.6.

By a union bound therefore, with error-probability 6 1/6, the above algo-
rithm gives the correct answer. For each i, the time complexity of the above
steps is polynomial in di,m, which is the time taken for the interpolation step
and to verify zero-dimension of the fibre. Therefore the algorithm as a whole
takes time polynomial in dr,n,m as claimed.

4 Conclusion

We give algorithms for radical membership and transcendence degree of sys-
tems of polynomials, in time that depends on the transcendence degree. In
both cases, our algorithms generalize the cases of ‘few’ input polynomials. We
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further give bounds on the degree of the Nullstellensatz certificates that de-
pend on the transcendence degree of the input polynomials. In all three cases,
our bounds are significantly better than the previously known results in the
regime when the transcendence degree is much smaller than the number of
variables and the number of polynomials.

Our work leaves the natural open problem of designing efficient algorithms
when the transcendence degree is ‘larger’.

• For the blackbox radical membership problem, given the NP-hardness of
HN, it is unlikely that a significantly better algorithm exists (unless other
restrictions are put on the input polynomials).

• Could our methods, and the core hard instance thus identified, help in
proving that HN is in AM? Currently, this is known only partially [Koi96].

• For the transcendence degree problem however, we know that the prob-
lem is in coAM ∩ AM, making it unlikely to be NP hard. It is therefore
likely that there is an efficient randomized algorithm whose time com-
plexity is polynomial in n and m. This is already known in the case
when the field has large/zero characteristic, and it is an open problem
to extend this to other fields. A first step might be to give a subexponen-
tial time algorithm for the problem that works without any assumptions.
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A Effective proof of fibre dimension theorem for a

dominant map

In this section, we sketch a proof of Theorem 2.3 and show that the condition
on Aj in the proof of Theorem 1.3 is indeed sufficient. We follow the proof
in [SR13]. We only sketch the proof in the case when Y = AM and X = AN;
however we do not need ‘surjectivity’ and only assume a dominant f.

Let (b1, . . . ,bM) ∈ AM be a point in the image of f. This point is defined by
the equations y1 −b1, . . . ,yM−bM. If f1, . . . , fM are the coordinate functions of
f, then the fibre f−1(b) is defined by the equations fi − b in AN. The nonempty
fibre is defined therefore by M equations; thus by Theorem 2.2, every compo-
nent has dimension at least N−M.

Now we prove the second part. Since the map f is dominant, the induced
map f∗ : k [Y] → k [X] is injective, and we identify k (Y) with its image in k (X)

via f∗. Then by dimension definition, k (X) has transcendence degree N − M
over k (Y). Let y1, . . . ,yM ∈ k (Y) be the generators of k (Y) over k and let
x1, . . . , xN be the generators of k (X) over k. Let them be numbered so that
x1, . . . , xN−M,y1, . . . ,yM are algebraically independent, and let Aj be the an-
nihilator of xj over this set. The fibre f−1(b) of a point has coordinate ring
generated by the restrictions of x1, . . . , xN to the fibre. Suppose the point b
is such that the annihilators Aj are nonzero polynomials when we substitute
b for y. Then Aj continue to be annihilators of the restrictions of xj over the
restrictions of x1, . . . , xN−M. This shows that the fibre has dimension at most
N −M, and combining this with the previous part, the fibres have dimension
exactly N−M.

Therefore, the sufficient condition for the fibres to have this dimension is
that all the Aj remain nonzero polynomials when evaluated at the given point
b. This completes our proof sketch.

B Tools for zero-dimension testing

We briefly discuss Theorem 2.6. The two main tools used here are Lazard’s
algorithm [Laz81] for computing a multiple of the U-resultant [Mac02], and
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Canny’s [Can90] study of this U-resultant.
Given input polynomials f1, . . . , fm, first the polynomials are reduced to

n + 1 many polynomials, by taking random linear combinations. This does
not change the root set, and we assume n = m. The polynomials are then
deformed and homogenized: set hi to be the homogenization of the polynomial
fi + sx

degfi
i . Here s is a new variable. This is due to [Can90], and is useful

because it gives control over the newly introduced roots at the hyperplane at
infinity due to homogenization.

The next step is to use the algorithm of [Laz81] to compute matricesM0, . . . ,Mn

(with each entry a polynomial in s) that are such that the determinant of
∑

uiMi

is the U-resultant up to a multiple. To compute these matrices, first the matrices
of multiplication by xi considered as a map between the homogeneous degree
D − 1 and degree D :=

∑
di − n components of the coordinate ring of the ze-

roset is considered. A simultaneous base change is performed on these matri-
ces, and then a subset of the columns of each matrix is returned as M0, . . . ,Mn.
The computation of these matrices is the most expensive step in the algorithm.
Since the number of n-variate monomials of degree D is dO(n), the algorithm
takes time just polynomial in dn,m.

The coefficient of the lowest degree term (in s) in the above determinant is
a product of linear forms (in u), whose coefficient correspond to the isolated
zeros (that is, zeroes not part of a higher dimension component) of the original
polynomial [Can90]. However, computing this coefficient is prohibitively ex-
pensive, and therefore some specializations of the U-resultant are computed.
It is at this specialization stage that the algorithm decides the zero dimension-
ality. First, a change of basis is done to ensure that all the roots of the homoge-
nized polynomials have distinct first coordinates. The variables U0, . . . ,Un are
specialized to (y, 1, 0, . . . , 0) where y is a new variable. The determinant of the
matrix

∑
UiMi is now a polynomial in y and s, and the coefficient of the low-

est degree term is nonzero in y if and only if the original system of polynomials
has zeroset of dimension exactly 0. This last test can be done just by studying
the characteristic polynomial of the matrix M1M

−1
0 , and this can also be done

in time polynomial in dn,m.
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