Enabling Event-Triggered Data Plane Monitoring

Jan Kucera
CESNET
jan.kucera@cesnet.cz

Andrew Moore
University of Cambridge
andrew.moore@cl.cam.ac.uk

ABSTRACT

We propose a push-based approach to network monitoring that
allows the detection, within the dataplane, of traffic aggregates.
Notifications from the switch to the controller are sent only if
required, avoiding the transmission or processing of unnecessary
data. Furthermore, the dataplane iteratively refines the responsible
IP prefixes, allowing the controller to receive information with
a flexible granularity. We implemented our solution, Elastic Trie,
in P4 and for two different FPGA devices. We evaluated it with
packet traces from an ISP backbone. Our approach can spot changes
in the traffic patterns and detect (with 95% of accuracy) either
hierarchical heavy hitters with less than 8KB or superspreaders with
less than 300KB of memory, respectively. Additionally, it reduces
controller-dataplane communication overheads by up to two orders
of magnitude with respect to state-of-the-art solutions.

CCS CONCEPTS

« Networks — Network monitoring; Network measurement;
Programmable networks; In-network processing.

KEYWORDS

Network measurements, traffic aggregates, Elastic Trie, P4.

ACM Reference Format:

Jan Kuéera, Diana Andreea Popescu, Han Wang, Andrew Moore, Jan Kofenek,
and Gianni Antichi. 2020. Enabling Event-Triggered Data Plane Monitoring.
In Symposium on SDN Research (SOSR ’20), March 3, 2020, San Jose, CA, USA.

ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3373360.3380830

1 INTRODUCTION

Network management practices can be performed efficiently if high-
volume traffic clusters are promptly detected [20, 24, 32, 39, 48].
Indeed, spotting a single source or destination that sends or receive
a significant amount of data (heavy hitter) is beneficial for account-
ing [21, 24], or traffic engineering [6, 25]. In contrast, detecting a
source that reaches multiple distinct destinations (superspreader) is
needed for worm or scan detection [50, 51]. Finally, finding which
flow contributes the most to the traffic pattern changes in a short

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SOSR °20, March 3, 2020, San Jose, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7101-8/20/03...$15.00
https://doi.org/10.1145/3373360.3380830

Diana Andreea Popescu
University of Cambridge
diana.popescu@cl.cam.ac.uk

Jan Kofenek
Brno University of Technology
Centre of Excellence IT4Innovations

Han Wang
Barefoot Networks
hanwang@barefootnetworks.com

Gianni Antichi
Queen Mary University of London
g.antichi@qmul.ac.uk

period of time (change detection) is of paramount importance in the
context of anomaly detection [36, 37]. All of the aforementioned
events exhibit high-volume traffic clusters in a different way: while
in the context of heavy hitters the “cluster” relates to packets or
bytes arrival rate, for superspreaders the interest shifts to the flows
arrival rate.

In the past, the detection of those events were performed out-
side the dataplane in software collectors. Switches, to lower over-
heads and data collection bandwidth at the cost of estimation accu-
racy [14, 22, 40], employed packet sampling and exported statistics
using well known protocols such as NetFlow [16] or sFlow [2].
Lately, the advent of programmable switches [8] has enabled the
possibility of extending dataplane functionality with more advanced
traffic analysis features. Nonetheless, current devices have con-
strained resources, requiring clever solutions to deal with both
computation and memory limitations. Such restrictions have led
the research community to deal with a specific trade-off: while
a single use-case can be easily enabled in the dataplane, scaling
to more requires the help of a central controller. Indeed, recent
proposals that push more computation in the switch focus only
on one specific goal: detection of the top-k heavy hitters [48] or
microbursts [13]. In contrast, solutions that aim for a more generic
approach aggregate traffic information in probabilistic data struc-
tures, i.e, sketches [30, 39, 52, 54], which are then entirely exported
to a controller for analysis. Despite the use of sketches results in
a very flexible and generic approach to network monitoring, the
controller still needs to receive the generated information from the
dataplane at a fixed time interval, and then estimate the various
application-level metrics of interest. Such an architecture has simi-
lar drawbacks to that of the OpenFlow (OF) protocol: the ability to
apply network policy updates based on the received data depends
on the switch-controller’s interactions capabilities of collecting
statistics at short time scales [20].

In this paper we start from the observation that important net-
work management practices [20, 24, 32, 39, 48], i.e., traffic engineer-
ing, security, benefit if heavy hitters, superspreaders and traffic
pattern changes are promptly detected. We thus build a solution
which is capable of detecting the mentioned network events entirely
in the dataplane, by iteratively tracking the responsible IP prefixes
and only subsequently informing the controller. We designed a
new data structure, Elastic Trie, with the constraints of emerging
programmable switches in mind, and present its implementation
in both P4 and for two different FPGA devices. The idea is to build
in the switch a prefix tree that continuously grows or collapses to
focus only on the prefixes that account for a “large enough” share
of the traffic.


https://doi.org/10.1145/3373360.3380830
https://doi.org/10.1145/3373360.3380830

SOSR 20, March 3, 2020, San Jose, CA, USA

‘ Network event ‘ Management task ‘

(Hierarchical) accounting [21, 24],

Heavy Hitters traffic engineering [6, 25]
Changes in .

traffic patterns anomaly detection [36, 37]

Superspreaders | worm [51], scan [50], DDoS detection [54]

Table 1: Three network events for many use-cases.

This enables the detection of either (hierarchical) heavy hitters
or superspreaders, and at the same time by looking at its growing
rate it is possible to identify changes in the traffic patterns. Elastic
Trie (ET) shares some high level principles with recent solutions
for network monitoring such as Marple [42] and Sonata [28], but
it is fundamentally different. Marple focuses mostly on flow per-
formance metrics and not on traffic aggregates. In contrast, Sonata
enables operators to get insights on traffic volumes and anomalies,
but both requires a central controller to iteratively refine the query
to efficiently capture only the traffic that pertains to the operator’s
query. ET performs such a refinement within the dataplane, thus
completely offloading the control path.

The main contributions of the paper are as follows:

e We propose a push-based approach to network monitoring,
where the dataplane informs the control plane only when a
specific network event is detected.

e We present a data structure that enables the detection of
changes in network traffic and, at the same time, detects
either hierarchical heavy hitters or superspreaders entirely in
the dataplane. Our solution iteratively refines the responsible
prefixes so that the controller receives a finer or coarser
grained information depending on the desired reporting
time.

e We implemented our idea in P4 using match-action tables
and for two different FPGA devices. We finally demonstrate
its performance in terms of throughput and latency, and its
detection capabilities by evaluating it through trace-driven
simulations.

The remainder of the paper is organized as follows. We first
provide a generic definition of high-volume traffic aggregates and
related events (§2). We then concentrate on challenges in the aggre-
gate detection motivating a new solution (§3) and discuss its desired
properties (§4). We then present ET, our solution (§5), alongside
the prototype implementation (§6) and the experimental evalua-
tion (§7). Finally, we cover related works (§8) and conclude the
paper (§9).

2 THREE PRIMITIVES, MANY USE-CASES

A broad spectrum of use-cases can be enabled with the detection
of (hierarchical) heavy hitters, superspreaders and changes in the
traffic patterns. This section provides a generic definition for traffic
clusters and discusses how those events are related, while Tab. 1
links them to the specific use-case.

Jan Kuéera, Diana Andreea Popescu, Han Wang, Andrew Moore, Jan Kofenek, and Gianni Antichi

Threshold = 10

© Hierarchical traffic aggregate Hokok

Q Traffic aggregate
0**

Figure 1: Example of pure (gray nodes) and hierarchical
(double circle nodes) traffic aggregates following the generic
definition. Each node represents a prefix p with associated
amount of traffic.

2.1 High-volume traffic clusters

A high-volume traffic cluster (or aggregate) can be defined as a
prefix exceeding a pre-determined threshold in a time window [19].
Assuming the use of the source IP address as a key, the goal of
the clusters detection problem is to find the source IP prefixes that
contribute with a traffic volume, in terms of bytes, packets or flows,
larger than a threshold T during a time interval ¢. The threshold
T can be also specified as a percentage of the total number of
inputs. However, in real live monitoring, it is not possible to know
the number of inputs in advance, thus the threshold T has to be
estimated, e.g., based on the number of inputs during the previous
time interval .

Fig. 1 depicts an example of traffic aggregate prefixes following
the previous definition. Each node of the tree represents a prefix
p in a reduced 3-bit model domain of IP addresses and its asso-
ciated amount of traffic. Terminal nodes express only the traffic
volume produced by full IP addresses. Non-terminal nodes sum-
marize the traffic of a prefix p. The contribution of each prefix is
represented as a number in each node. Considering the use of a
threshold T = 10, nodes 010, 100, 11* and all their ancestors are
identified as high-volume aggregates. For example, each child of
the 11 node contributes independently less than the threshold T,
but in total both children contribute enough to exceed the threshold
and report the 11 prefix as an aggregate.

A hierarchical aggregate is a special case of traffic aggregate [19].
It is a prefix p, which exceeds a threshold T after excluding the
contribution of all its high-volume descendants!. In Fig. 1, only
prefixes 010, 100, @** and 11 are hierarchical aggregates. The
amount of traffic of each aggregate prefix without the impact of
its hierarchical descendants is shown in brackets. In this example,
the 11* node is a hierarchical aggregate, as none of its children
contributes enough to exceed the threshold T, but the amount
of traffic from both children exceeds the threshold. In contrast,
the 1% prefix is not hierarchical because a significant part of its
contribution originates from its descendants 100 and 11*, which
are already hierarchical aggregates and must be excluded. It is
worth noting that, while the detection of hierarchical aggregates
requires the knowledge of pure high-volume traffic clusters, the

The descendant prefixes need to satisfy the definition of high-volume traffic aggregate.



Enabling Event-Triggered Data Plane Monitoring

opposite is not true. Reporting the hierarchical aggregates to a
controller guarantees minimum overhead, while providing all the
necessary information. Taking Fig. 1 as an example, a switch capable
of detecting traffic aggregates would export the following prefixes:
0%%*, 1%%,01%,10%, 11%,010 and 100. In contrast, a switch reporting
just hierarchical aggregates would provide 0*x, 11*, @10 and 100.
In both cases the amount of useful information is the same?, but
with hierarchical aggregates we export less data.

2.2 Traffic clusters events

Given the previous definition of high-volume traffic clusters, we
show how heavy hitter, change detection and superspreader net-
work events fit into it.

a) Heavy hitter. A heavy hitter (HH) [19] is defined to be a host
that sends or receives at least a given number of packets (or bytes)
over a short period of time. It is a traffic cluster in terms of packets
(or bytes) per second.

b) Change detection. Change detection is the practice of find-
ing which flows contribute the most to the traffic pattern changes
over two consecutive time intervals [12]. The method detects traffic
anomalies by deriving a model of normal behavior based on the past
traffic history and looking for significant changes in short-term
behavior that are inconsistent with the model [35]. It is a traffic
cluster in terms of packets (or bytes) per second.

c¢) Superspreader. A superspreader (SS) is defined to be a host
that contacts at least a given number of distinct destinations over a
short time period. It is a traffic cluster in terms of unique flows per
second. In addition, if the same spread detection is applied to the
destination, this analysis allows Denial of Service (DDoS) victim
detection [54].

3 MOTIVATING A NEW SOLUTION

State-of-the-art solutions that allow the detection of high-volume
traffic clusters, periodically export aggregated flow counters to a
controller which ultimately is in charge of estimating the metrics of
interest [30, 39, 52, 54]. Nevertheless, such an architectural choice
requires a careful controller-dataplane coordination.

The reporting time dilemma. When shall I export my data
structure to a central controller? We ran a first experiment to esti-
mate the importance of setting the correct reporting time. In the
context of heavy flow detection, let us assume a flow is indexed only
through the packet source IP and the switch has enough memory to
keep track of every flow. Let us also assume that the switch exports
periodically the counters, and the controller, in charge of the detec-
tion, considers heavy the flows that exceed 1% of the total traffic.
Finally, let us consider a reporting time of 20 seconds, as suggested
by state-of-the-art solutions [39, 48]. We analyzed four one-hour
packet traces from CAIDA [9, 10] and we split them into 720 chunks
of 20 seconds each. We then computed the heavy flows based on the
previous definition. Finally, we decreased the reporting time and
we calculated which of the heavy flows could have been detected
earlier. Fig. 2 reports the CDF of reported heavy flows varying the
reporting time. Interestingly, on average, more than 60% of the
heavy flows could have been detected within one second. Note that

2Some of the reported high-volume traffic aggregates are just prefixes of more specific
hierarchical traffic aggregates.

SOSR 20, March 3, 2020, San Jose, CA, USA

6 ————
1 o g | NoviSwitch 1132 ---@- )
3 o
0.8 5’.’,4 Edgecore 100BF —-<-— .-
[0}
€ s
|.|_0'6 = 3 -
Go4 o2 .
@ R
0.2 3: 1 L o
0 0 #=
0 5 10 15 20 0 10 20 30 40 50 60 70 80

Time (sec) Number of hardware counters (kilo)

Figure 2: CDF for heavy flow
detection time.

Figure 3: Time to retrieve
hardware counters.

the results are based on offline analysis of packet traces only and
thus do not contain false positives. This test suggests that, in theory,
the reporting time should be set as low as possible. However, in
practice, it is important to take into account the switch-controller
capabilities of collecting statistics at short time scales, which we
quantify in the next experiment.

The cost of statistics collection. Is it just about exporting the
data structure at very short timescales? We ran an experiment to mea-
sure the amount of time it takes to retrieve an increasing number
of hardware counters from a switch. We used two different hard-
ware based systems. An OpenFlow-enabled switch, NoviSwitch
1132 [43], which has been designed for use in high bandwidth and
flow-intensive network deployments, and a P4-enabled device, the
Wedge 100BF-32X, a white box from Edgecore. We connected the
switches to a server running a controller and we built an application
that allows to request an increasing number of flow counters. The
switches were idle when the counters were pulled. Fig. 3 shows the
results we obtained. Although the use of probabilistic data struc-
tures, i.e., sketches, can help in reducing the number of counters
to be exported, past research has shown that from around 60K to
150K counters are still required to provide useful information to a
controller [39, 52]. In this context, the NoviSwitch needs at least 5
seconds, and the Edgecore 2.5 seconds. The lesson learned is that
retrieving a large amount of data from hardware is time consuming
and requires time scales of seconds. This finding has two major im-
plications: (1) given that the statistics retrieval process is performed
periodically, the operation needs to be dimensioned with respect to
the switch capabilities: the reporting time cannot be lower than the
time needed to collect the statistics; (2) in the worst case scenario,
a controller can apply appropriate network updates only seconds
after a specific event has happened. Therefore, performing traffic
analysis in the controller might introduce delays that depending
on the specific use-case are not acceptable, e.g., (D)DoS detection.
On the other hand, pushing notifications to a controller as soon as
an event is detected in the dataplane would allow a reaction in a
more timely fashion.

The limited memory access. Would a push-based sketch work
then? Programmable switches based on match-action architectures,
i.e., RMT [8], process packets in a pipeline and for stateful process-
ing (aggregation of flow counters) use a small amount of SRAM that
persists across consecutive packets. To guarantee high throughput,
the complexity of pipeline stages is limited: this impacts the number
of memory accesses. Only one or a few addresses in the memory
block can be read or written from a dataplane algorithm, but due



SOSR 20, March 3, 2020, San Jose, CA, USA

to per-stage timing constraints not the entire memory region [4, 8].
Hence, it is not possible to package the entire counter-based or
sketch-based data structure in a single In-Band Network Telemetry
(INT) style packet [27, 31]. Such a limitation opens up a specific
question:

Is it possible to design a data structure, well-suited for a push-
based design, that would access only a small memory block
and expose a single entry upon the detection of a network
event?

4 DESIRED PROPERTIES

Fig. 4 surveys the design space for the detection of high volume
traffic clusters and places our solution, Elastic Trie, in the context by
following the thick red lines through the design tree. This section
describes the insights that inform our major design decisions.

Push-based friendly. Given today’s constraints of programmable
switches, only a very small memory block can be read at once and
sent to a controller with a single digest packet [4, 8]. Thus, to sup-
port push-based notifications, the design of the data structure is of
paramount importance: it needs to quickly locate the memory ad-
dress where the prefix to be announced to a controller is stored. Let
us take a sketch data structure as an example: in order to find the
most populated bucket and send its related information in a digest
packet, a program should first scan all the possible entries. This
is clearly not optimal. Indeed, current sketch-based architectures
work with a poll-based mode [30, 39, 52, 54], where the controller
retrieves the whole data structure from the dataplane. In Elastic Trie
(ET), we seek for a solution where with limited memory accesses,
the dataplane program can find the IP responsible for the traffic
cluster and send the related information with a digest packet to a
controller.

Optimization for network management. Dividing the time
in fixed intervals simplifies the network events detection. At the
end of each time window;, it is possible to identify the flows that
consume more than a fraction T of the link capacity, i.e., heavy
hitter, or determine the host that contacts more than a number of
unique destinations, i.e., superspreader. For this reason, current
solutions for network monitoring typically operate by exporting
counters or specific data structures, e.g., sketches, to the controller
at fixed time scales [38, 39, 53]. However, this approach tightly
bounds the reactive capabilities of the network with the dataplane
statistics reporting time, as it needs to be (at least) comparable to
traffic variations [3, 6]. If this last condition is met, solutions like
dynamic routing of heavy flows [6, 20, 45] or dynamic flow sched-
uling [47] can be implemented. However, state-of-the-art solutions
adopt a fairly large reporting time (typically 20 seconds [39, 48])
to overcome the limitations shown in §3, thus limiting network
reaction capabilities. Instead, we propose to start tracking a coarse-
grained approximation of the prefix responsible for our supported
network events and iteratively refine it over the time. Then, de-
pending on user settings, the controller receives a finer or coarser
prefix information with bounded time delay.

Historical network trend awareness. Change detection is the
process of identifying flows that contribute the most to traffic

Jan Kuéera, Diana Andreea Popescu, Han Wang, Andrew Moore, Jan Kofenek, and Gianni Antichi

Legacy
(e.g., Sample & Hold)
estimation errors
due to sampling

SDN-based

Control plane analysis
(e.g., Univmon, Marple,
Flowsense, Payless)
suboptimal reaction to
network events

Dataplane analysis

AN

Control plane assisted
(e.g., Devoflow, Sonata,
Hashpipe, Elastic Sketch)
requires the controller to either
refine the prefix or perform
additional operations

Event-driven push-based
(Elastic Trie)
detects (H)HHs, superspreaders
and changes in the traffic patterns
and reports them to the controller

Figure 4: Design space in traffic aggregates detection.

change over two consecutive time intervals [12]. Previous solu-
tions [28, 39] rely on the controller to compute the differences from
multiple intervals. With ET instead, we seek a solution capable to
directly compute such an operation within the dataplane at the
expense of minimal memory consumption. This allows to minimize
as much as possible the amount of data to be exported.

5 ELASTIC TRIE

ET enables the detection of network events associated with high-
volume traffic clusters from within the dataplane without the need
to be coordinated by a controller. It works in a packet-driven manner
and can be implemented using match-action based architectures
such as RMT.

In this section, we describe how ET works taking HHH detection
as an example and show that it can also be used to spot superspread-
ers and network traffic changes. We then discuss the user interface
exposed from an ET-enabled switch to a network operator and show
how ET can be used in the context of network-wide monitoring.

5.1 Data Structure & Algorithm

Let us use hierarchical heavy hitter (HHH) detection as an example
to explain how ET works. In this scenario, we need to take into
account packets (or bytes) to identify an aggregate. When we de-
signed ET, we decided to use a tree-based data structure for the
following reasons: (1) IP addresses are naturally organized accord-
ing to prefixes into a hierarchy and (2) if aggregates are indexed in
a tree, then by using standard longest-prefix matching techniques,
it is possible to quickly find the small memory block where the
prefix is stored, and then create the digest packet.

Each node of the prefix tree (trie) consists of three elements:
the counter associated to the left child, the one associated to the
right child and a timestamp. The counters represent the amount
of traffic, i.e., packets, bytes or flows, for each of the node’s direct
subprefix, while the sum of the counters represents the amount of
traffic sent by the prefix itself. The timestamp specifies the time
when the node was created or the last time when the counters were
reset. The starting condition is associated to a trie composed by
a single node, corresponding with the zero-length prefix *. The
idea behind the proposed solution is to have a trie that grows or
collapses to focus on the prefixes that account for traffic aggregates.



Enabling Event-Triggered Data Plane Monitoring

LPM
BACKEY Classification

Invalidate
the node

Collapse
the node

Keep Jf

Update the
node counter

Expand
the node

AN

Figure 5: Flowchart showcasing input packet processing of
the Elastic Trie detection algorithm.

To achieve this, we defined two timers: active timeoutt 5 and inactive
timeout t7, where t4 < t1. The active timeout t4 is the upper bound
interval after which the prefix is evaluated and possibly reported
as (H)HH to the controller. The inactive timeout ¢; defines instead
the interval after which the node is considered inactive and its
counters outdated. This configuration has the advantage that ET
is not limited to a fixed time window and nodes are expanded and
invalidated asynchronously: when using sketches, the whole data
structure has to be zeroed by the controller at the end of each time
window;, this is not the case for ET. Fig. 5 depicts the key steps of
ET algorithm. For every incoming packet, the LPM (corresponding
node) is looked up. Let us denote by ¢ and ¢ the left and the right
child counters of the node. The node timestamp (t57) is compared
against the packet arrival timestamp (tp). Based on the comparison,
node counter values and timeouts ¢4, t, there are five possible
cases to be considered:

Invalidating the node. If the inactive timeout t; has expired
(t; < tp — tN), then the node has been inactive for a long time. The
values of the counters are outdated and not relevant anymore for
the detection. This happens when the source stops sending packets
for a while. Because the detection process is built on a packet-driven
basis, such situation cannot be evaluated in a different way. The
inactive timeout mechanism handles the situation when the packets
belonging to a source prefix start to flow again and the old values
must be invalidated. Fig 6a illustrates this case. Regardless of the
counter values, the tree node is simply removed and the counter
values discarded.

Expanding the node. This is the case when both the active
and inactive timeouts have not expired (tp — ty < t4 < t5), but
one of the counters (let us assume, for example, cp) exceeds the
threshold T that is used to discriminate heavy prefixes (co > T). In
this case, the subprefix associated with cy is (optionally) reported to
the controller as HH but not as HHH yet. Fig. 6b depicts this case:
the data structure automatically starts the refinement of the prefix
(10%) by creating a new child (100) corresponding to cp. According
to the definition of hierarchical cluster, the original c¢) must be set
to zero to remove the contribution of the newly created descendant.
Since, we do not have any records for the newly created child yet, its
node will have the timestamp set to the current packet timestamp
and both its counters set to zero.

Keeping the node. This is the case when the inactive timeout
t1 has not expired, but the active timeout t4 has (t4 < tp—tn < t7),

SOSR 20, March 3, 2020, San Jose, CA, USA

and the sum of counters exceeds the threshold T (co + ¢1 > T), but
none of the counters contributes enough to reach the threshold
individually (cop < T; ¢; < T). The case is shown in Fig. 6c. The
prefix 11* is a HHH, because it exceeds the threshold T and none of
its children exceed to threshold individually. The node is reported
to the controller, its timestamp updated with the packet timestamp
value and the counters are reset.

Collapsing the node. If the inactive timeout ¢ has not expired,
the active timeout t4 has expired (t4 < tp — tN < t7) and the sum
of counters does not exceed the threshold T (¢ + ¢; < T), the node
is collapsed (Fig. 6d). The node (10%) is removed from the structure,
and it is replaced by the nearest parent. The counters of the parent
node (1x*) are zeroed and the timestamp set to the current packet
timestamp. This is in contrast with the node invalidation case,
where the nearest parent is not reinserted or renewed. Note that
collapsing a node can happen only when the node has either none
or one child because a node with two children does not match LPM.

Updating the node counter. This is performed when both the
active and inactive timeouts have not expired (tp — tN < tg < t)
and none of the counters exceed the threshold T (cy < T; ¢; < T).
In this scenario, the counter corresponding to the packet subprefix
is updated and the trie structure does not change. Note the counter
is also updated after other actions when the node is kept, expanded
or collapsed. In these cases the newly created node or the nearest
parent counters are updated instead of the current node counter.

5.2 Elastic Trie with the other events

In this section we show how ET supports also the detection of
superspreaders (DDoS victims) and network traffic changes.

Superspreaders detection. As introduced in §2, SS is a host
that contacts at least a given number of distinct targets. Thus, to
enable such a detection, it is important to keep track of the number
of destinations contacted by each source prefix. To address this
challenge we used a standard Bloom filter [7], a memory-efficient
probabilistic data structure commonly used to test for set member-
ship. Specifically, we deployed the filter to test if a packet belongs
to a new unique flow or not. The key to index the filter consists of
the source IP prefix looked up during LPM classification phase and
destination IP address of the packet.

The control logic that adjust the hierarchical structure is the
same, but a test-and-set operation on the filter is performed for
each incoming packet and the node counters are updated only if a
new unique flow is detected.

Change detection. Changes in the traffic patterns can be de-
tected by modeling the normal traffic behavior based on the past
history and looking for significant changes that are inconsistent
with the model itself. By tracking the number of nodes expanded
or collapsed over an active timeout interval ¢4, it is possible to spot
sudden changes.

We added an integer counter which is incremented and decre-
mented when any node of the tree is expanded or collapsed, respec-
tively. When the traffic is steady, the number of nodes expanded
and collapsed should be similar. Thus the counter value should
vary around zero. When it is not the case, significant changes in
the short-term traffic behavior have happened and are promptly
reported to a controller.



SOSR 20, March 3, 2020, San Jose, CA, USA

T=10 1**

11*

(0) -» (10)

100

(0)

(a) Invalidating the node.

(b) Expanding the node.

100 ta=t—ty<t,

Jan Kuéera, Diana Andreea Popescu, Han Wang, Andrew Moore, Jan Kofenek, and Gianni Antichi

1 T=10
(9) € (0)

(0) > (0)

co+c12T

(c) Keeping the node. (d) Collapsing the node.

Figure 6: The core cases of Elastic Trie refinement, assuming the threshold T = 10. Each node represents a prefix and builds the
data structure. Node counters are shown in brackets on the sides.

Limitations. A single ET instance cannot track HHH and SS at
the same time. To detect both events, it is necessary to deploy two
individual structures side-by-side. While the HHH detection needs
to use counters to track the number of packets, the SS detection
tracks unique flows. On the other hand, the change detection can
be freely combined with both packet or flow aggregates and built
independently on top of HHH or SS detection trie.

5.3 User Interface

ET can detect the network events discussed in this paper without
the need of any specific query from the operator. When an event is
detected, a digest message is sent from the switch to the controller.
It is still possible though to alter the behavior of the dataplane by
changing T and ¢: recall that a traffic cluster is defined as the IP
prefixes that contribute with a traffic volume, in terms of either
bytes, packets or flows, larger than a threshold T during a time
interval t.

Level of aggregation. The first parameter is the threshold (T).
It directly impacts the number of reported prefixes and the memory
requirements of the data structure, as shown in the evaluation sec-
tion (§7): the higher the threshold, the less prefixes will be reported
- they aggregate more traffic.

Tree building speed. The second parameter is the time interval
(¢). This allows the operator to effectively control the speed at which
the tree is built and events reported. As shown in the evaluation
section (§7), low values negatively affect the memory requirements
of the data structure but allow the operator to react in a more
timely fashion. On the other hand, high values allow ignoring
transient events. As described in detail in the algorithm section
(§5.1), we, introduce two time intervals parameters: active timeout
t4 and inactive timeout ty to distinguish between node reporting and
invalidation time. In §5.4 we further define variable active timeout
mechanism which beneficially allows setting different intervals for
different tree levels.

5.4 Discussion

In this section we discuss an optimization that accelerates the trie
building mechanism, thus speeding up the detection process, and
show how ET could be used to perform network-wide monitoring
operations.

Variable active timeout. The starting condition for the struc-
ture is associated to a trie composed by the zero-length prefix *.
Depending on the packet flow, the trie is then built to focus on the

heavy prefixes. Although the refinement process, as explained in
§5.1, does not depend on the selected active timeout, the process of
deciding if a specific prefix is a traffic aggregate and the potential
reporting to the controller does. This means that in the worst case
scenario a full IP address is reported after 32 X t4 seconds: the
upper bound for building the tree from the root to the lowest level.
To mitigate this, we propose a variable active timeout mechanism
which sets different intervals and corresponding thresholds for dif-
ferent prefix lengths, i.e., smaller timeout and threshold for shorter
prefixes and vice versa.

Network-wide monitoring. The digests received by different
ET-enabled switches can be used by a central controller to perform
network-wide traffic analysis. Besides the obvious network-wide
heavy hitter detection [29] use case, which is inherently possible
by setting the appropriate threshold T in the switches and aggre-
gating the received notifications in the control plane, others are
also feasible. Specifically, the superspreader notifications received
by different switches can be used by a central controller to perform
the degree histogram estimation [46], commonly adopted practice
to detect botnets involved in coordinated scans [26]. Furthermore,
the controller can leverage the (H)HH primitive with an appro-
priate threshold T to detect global network icebergs [57]. Those
are particularly difficult to detect within a single system, as the
responsible packets might come from a large number of hosts and
thus traverse different paths. We leave the evaluation of our system
in a network-wide context to future work.

6 IMPLEMENTATION

This section discusses the implementation of ET on programmable
hardware, using FPGA and the P44 language [18].

6.1 P4 prototype

Fig. 7 depicts a high-level view of the architecture and illustrates
the operations performed for each incoming packet. The structure
is organized around three main building blocks: (A) the LPM classi-
fication stage, (B) the main memory and bloom filter used to gather
traffic statistics alongside related timestamps and (C) the control
logic to dynamically adjust the hierarchical data structure and to
report results of the detection to an external controller.



Enabling Event-Triggered Data Plane Monitoring

Packet
1) Flow Key
(Source IP) A

Trie Structure
(LPM classification)

Configuration Report
API registers aggregate

Control Logic

Bloom filter Main memory to store
(for SS only) counters and timestamps

Figure 7: Elastic Trie dataplane architecture.

Each incoming packet is first parsed to extract the desired flow
key, i.e., source IP3. Then, the hierarchical tree structure is accessed
to find the LPM (step 1). The result of this stage is an index that is
used to access the main memory, where the data structure of the
associated node is stored (step 2). Optionally for SS also an item
presence is tested in the Bloom filter. The read values are compared
with the packet timestamp (step 3) and the user settings, ie., T,
t. The appropriate operation is computed (step 4) following the
specifications described in the previous section. Specifically, the
comparison can trigger an update of the main memory (step 4a), an
update of the LPM classification scheme (step 4b), setting an item
in the Bloom filter (step 4c) or a push notification to the controller
(step 4d). In the following, we provide a more detailed description
of the mapping between the three main building blocks and P41¢
match-action constructs.

LPM classification stage. Although P4 offers built-in match
tables supporting LPM, we could not utilize them for implementa-
tion of the trie structure, since the latest P4 specification does not
support modifications of these tables directly from the dataplane,
even though some targets like FPGAs may support it. As this fea-
ture is essential for our architecture, we opted for a custom LPM
implementation. We used a hash table for each prefix length (Fig. 8),
thus requiring 32 hash tables to support each IPv4 prefix?. Each
hash table is implemented as a register array. Upon packet arrival,
all the hash tables are read in parallel, by hashing the associated
prefix of the flow key. We use hash extern API with CRC32 as an
algorithm to generate hash values to access the registers. Hash
tables referring to short prefix values usually require less memory,
as they need to store information for a smaller number of results.
Thus, depending on the amount of memory preallocated to each
hash table, we use a direct access based only on the prefix value
itself (the IDENTITY algorithm in P4 API) for some of the shortest
prefix tables. Each hash table lookup result can then be represented
as a single bit value, 1 (found), @ (not found) respectively. We then
concatenate these bits to form a bitvector, which serves as input key
for a static ternary match table implementing a priority encoder.

Main memory access mechanic stage. The hash value of the
resulting LPM is used as address to access a register array that
stores the required node structure information for that specific

3While Elastic Trie is oblivious to the specific packet field used as flow key, the source
IP address is commonly used for SS and (H)HH detection.

4Using less hash tables and supporting only a subset of prefixes comes at the cost
of node complexity. Indeed, each node needs to store a counter for each associated
subprefix. This means that if we use only hash tables for just the prefixes \8, \ 16, \24
and \32, we need to construct nodes with 256 counters each.

SOSR 20, March 3, 2020, San Jose, CA, USA

Source IP
H1 H2 H31 H32
v ¥ v
| Tab1 | [ Tab2 | ... [Tab31 | | Tab32 |

— o J T |

Priority Encoder I————)

Figure 8: The LPM classification stage in P4.

prefix, i.e., two packet counters and a timestamp. We use 32-bit
wide packet counters and 48-bit wide timestamp as it is available
in the packet metadata structure in P4. To detect hash collisions in
our implementation of LPM classification stage in P4, we further
extended the node data structure with a up to 32-bit wide flow
key field (IPv4 prefix). Note that we do not need to store the prefix
length because we use a separate hash table for each length. Thus,
the size of each node structure is 144 bits (112 bits for the node
and 32 bits for the IP address). In the case of a hash collision, the
nearest shorter prefix node is used. The Bloom filter can be also
easily implemented in P4 as a combination of a register-based bit
array and a set of hash functions.

Control logic. This stage compares the packet timestamp with
the node timestamp and applies the logic described in §5.1. The node
collapse or expansion is performed by updating the appropriate
hash table storing the specific prefix that needs to be adjusted, while
the push-based mechanic is implemented by generating a packet
digest (digest extern object in P4 API) containing the IP prefix
detected as traffic aggregate alongside its node information such as
the sum of the counters and the timestamp.

6.2 Potential limitations and challenges

Although we successfully implemented ET in P4 and compiled
the code in the behavioral model [17], this does not guarantee
ET being efficiently implementable in any high-speed P4 target
available today. As briefly mentioned in §3, the main constraint of
programmable switches is the number and the pattern of accesses
to on-chip registers. Unfortunately, at the time of working on the
paper, we did not have access to one to provide a full implemen-
tation on an actual hardware target. This section thus discusses
the adopted pattern of accesses to on-chip registers, the potential
limitations of the ET data structure and challenges in porting our
code to commercially available P4-enabled switches.

The core part of the ET algorithm uses a register array to store
the nodes of the tree. In the worst-case scenario, ET requires at
most only two memory reads and writes (reading and updating
a single node and optionally reading and updating its parent or
child node). This could be a problem if the target does not support
multiple accesses into the register array. However, the array can be
eventually split into two parts, to store nodes in even and odd levels
of the tree separately. This trick can guarantee a single read/write
pattern per packet.

Another specific drawback of the ET algorithm is the need for
a custom LPM implementation, which requires 32 hash tables to
support each prefix length. Hash tables are implemented as a single
register array requiring 32 reads and at most one write (inserting
or removing a node in the tree), in contrast to the tree nodes, each



SOSR 20, March 3, 2020, San Jose, CA, USA

LUTs
Logic ‘ Memory
Virtex 7 110838 23880 14104
Virtex US+ | 9135 2641 14103

Chip Regs | Frequency

172.4 MHz
307.9 MHz

Table 2: HW resources used and frequency achieved by Elas-
tic Trie FPGA implementation.

hash tables stores only a single bit information. Using the same trick
the array can be optionally split to have a register for each table. If
a P4 target enables only a limited number of independent reads in
a single stage, hash table registers can be eventually separated into
more consecutive stages.

Finally, the custom LPM implementation forces spreading of the
ET algorithm across multiple pipeline stages and thus introduces un-
desirable read/write dependencies, e.g., the memory index acquired
from the LPM hash tables is used to access the node information
which can result back in updating the LPM hash tables in case of a
node collapse or expansion. In fact, the LPM hash table registers
need to be accessed from the first stage to acquire the index, but
also from the second stage to write the updates. However, this could
potentially be a challenge for some of today’s P4 targets if a set of
registers is strictly bound to a single stage, effectively forcing the
compiler to put all the registers in a single stage.

6.3 FPGA prototype

To demonstrate the general feasibility of implementing ET data
structure on existing programmable targets and to quantify its
requirements in terms of hardware resources, we at least created
a pure VHDL implementation of ET for two different FPGAs, i.e.,
Xilinx Virtex 7 (model XC7VH580T) and Virtex UltraScale+ (model
XCVU7P). We merged the LPM stage and main memory records into
one memory block and utilized distributed memory to implement
it as 32 parallel hash tables. Tab. 2 shows the chip occupancy and
frequency of our design for both platforms. The latency introduced
by the design is 7 clock cycles. Considering the achieved frequency,
the latency is 40.6 ns for Virtex 7 and 22.75 ns for UltraScale+. The
architecture is capable to process a new packet every 4 clock cycles
(the first 3 out of 7 stages are pipelined). This results in an overall
throughput of 43.10 Mpps for Virtex 7, and almost twice as much,
76.97 Mpps, for the UltraScale+ platform.

7 EVALUATION

Following a common practice adopted in evaluating P4 enabled
solutions [39, 48, 52], we implemented a C++ simulation model to
assess our approach against real traffic traces from an ISP backbone
network. Additionally, the two FPGA prototypes (§6.3) provide
insights about expected performance on real hardware and by com-
piling the P4 code in the behavioral model [17], we verified its
correctness. In this section, we first describe our setup and we eval-
uate the trade-offs of ET. Then, we discuss its detection accuracy
against the supported network events (Tab. 3 summarizes them all).
We also evaluate ET varying memory occupancy and data structure
configuration and compare it with state-of-the-art solutions. Finally,

Jan Kuéera, Diana Andreea Popescu, Han Wang, Andrew Moore, Jan Kofenek, and Gianni Antichi

we analyze the controller-dataplane communication overheads and
our detection speed.

Traces. We used four different one-hour packet traces from
CAIDA [9, 10] recorded from 10 Gbps backbone links in San Jose and
Chicago in 2009 and 2016 (both directions A and B). Each of the trace
contains between 1.6 and 2.4 billion packets with mean transmission
rates in range 440k-640k pkts/s (2.3-3.9 Gb/s) and flow rates up
to 61k flows/s. The traces are distributed in one minute chunks
and each chunk contains on average 30M packets with around
840K unique IP addresses. For further and detailed statistics for the
individual CAIDA traces we refer to [11]. Unless otherwise stated,
all the following results in the section are indicated as an average
evaluated over the continuously replayed chunks of all four CAIDA
traces. Unfortunately, we could not use the newer datacenter traces
from the Facebook Network Analytics Data Sharing program [1], as
they are sampled. Other publicly available datacenter traces from
2009 [5] have been anonymized without prefixes being preserved,
which also makes them inappropriate for the type of tests needed
in this paper.

Setup. We first set the primary measurement reporting time (ac-
tive timeout t4 in our case) to 20 seconds and the inactive timeout
t7 to 5 minutes. Then, when assessing the variable active timeout
behavior (discussed in §5.4), we set it differently for each trie level.
Specifically, we used an exponential function that specifies the
value of the timeout for each of the trie level: the closer the node to
the root, the lower the timeout. This allows to have much smaller
timeouts for shorter prefixes, thus enabling a quicker tree build.
In fact, the refinement process does not directly depend on the
selected active timeout. It can be better understood as an upper
bound for the delay between two reports, especially when there
are no changes in detected aggregates. During the refinement pro-
cess new aggregates are always reported immediately when the
threshold is exceeded, thus the real reporting time is effectively
much smaller and proportional to the rate of the threshold being
reached. The threshold T, used to discriminate the prefixes that are
“large enough”, has been set to be 1%, 5% and 10% of the maximum
amount of traffic (packets or flows).

Metrics. We evaluated the number of required nodes and the
trie depth varying the configuration parameters. Then, to estimate
its network event detection capabilities, we used the F; score met-
ric [52]. Assuming Tp (true positives), Fp (false positives) and Fy
(false negatives), F1 = 2Tp/(2Tp + Fp + Fn'). Unless otherwise stated,
the F; score is always indicated as the average over the chunks of
the traces.

Prefix comparison. We define two ways assessing ET detection
capabilities: (1) can ET report the exact prefix? (2) can ET report
at least a 2 bit shorter (coarser grained) version of the prefix? As
by construction, ET starts reporting an approximation of the re-
sponsible prefix and iteratively refine it over time, we believe this
is a good metric to better grasp the trade-off between fast detection
and accuracy.

Memory allocation. ET has been architected to be implemented
in hardware where allocation or de-allocation of memory at runtime
is not possible. Thus, we statically pre-allocate a specific amount
of memory for our data structure. An invalidation or collapsing of
nodes is mostly used to track the traffic changes, not to manage the



Enabling Event-Triggered Data Plane Monitoring

Network event | Event definition

[ Implementation using Elastic Trie

SOSR 20, March 3, 2020, San Jose, CA, USA

| Management tasks

Identify hosts/prefixes which contribute with a traffic

(Hierarchical) | h defined threshold T duri . Node counters to count volume of specific prefixes. Expand and keep accounting, traffic
Heavy Hitters Yotumelmoret an a defined thresho uring a time node events to identify exceeding the threshold T. engineering
interval.
A superspreader is a host that contacts at least a given | Bloom filter to identify distinct destinations. Node counters to count dof
Superspreaders | number of distinct destinations over a short time pe- | distinct destinations. Expand and keep node events to identify source sclans, slzlreta t(')
malware detection

riod (spread detection applied to source hosts).

prefixes exceeding a predefined threshold.

DDoS victims
applied to destination hosts).

A DDoS victim is a host that is contacted at least by | Bloom filter to identify distinct sources. Node counters to count distinct
a given number of distinct sources (spread detection | sources. Expand and keep node events to identify destination prefixes
exceeding a predefined threshold.

DDoS detection

Identify hosts/prefixes which contribute the most to
the traffic changes over the last time interval.

Changes in
traffic patterns

Tracking a difference of number of expanded and collapsed nodes to
detect this event. Expand, collapse node events to identify specific
prefixes/hosts involved.

anomaly detection,
DoS detection

Table 3: Implementation of different network events detections using Elastic Trie algorithm.

30 e @120 [ pams  wid 220 a e
S fpm— e NN e W 1o el
£25 1 R T e e e g . | 5%’9? 09%%e%% S5 |l
S "pung, an"s, ) s 15 T -V o 2 >
220 ff g . 2 | " 5 F»?!'_: g | e
sl CADA1% O E 60 CADA1% O a0l 0.2 capa-nt m | Eqo o
5 " e
§10 _/ CAIDA5% m 2w CAIDA 50/0 M § . A 2 /. © o w
£ capAton o | § CAIDA10% O g, CADA.3 e | s Y o c::g:-:e o
g 20 lm g , :
5 z 20 un . caDA-fed o | & [SH- CAIDA-13 @
o N o ee00s0e 0 i i i 0 CAIDA-fixed | &
0 500 1000 1500 2000 2500 3000 3500 O 500 1000 1500 2000 2500 3000 3500 0 50 100 150 200 250 300 O 5 10 15 20 25

Time (sec) Time (seconds)

(a) Fixed active timeout, varying threshold T.

Time (sec) Time (seconds)

(b) Variable active timeout varying function.

Figure 9: Trie depth and number of nodes varying threshold and timeout behavior.

memory. The lack of memory, thus, results only in worse detection
accuracy due to more hash collisions.

7.1 Data structure properties

Fig. 9a shows ET’s average depth and average number of nodes over
time for CAIDA traces varying the threshold. The threshold T was
set to 1%, 5% and 10% of the amount of traffic in terms of packets.
The depth and number of nodes are as expected proportional to the
selected threshold: the lower the threshold, the larger the depth and
the number of nodes, since more prefixes are detected as heavy. It
is also possible to see the learning phase of the trie at the beginning
of the trace, when the trie has to build up from the less specific
prefix. After this phase, the trie reaches a steady state that reflects
the current traffic behavior. Fig. 9b offers, for the threshold of 5%, a
more detailed view on the learning phase and compare the impact of
variable active timeout with different exponential functions. Using
a variable active timeout mechanism, we can speed up the learning
phase by 93%, going from 300 seconds needed for fixed timeout
to 20 seconds needed using the most aggressive function fi. In
contrast, aggressive functions are much more sensitive to traffic
patterns, resulting in potential fluctuations of the trie.

7.2 HHH detection

In this section we first present the HHH detection capabilities with-
out resource constraints, then our implementation driven results.
The former does not take into account the impact of implementa-
tion details such as amount of available memory or potential hash
collisions. This allows us to get an understanding of the behavior of
our solution in the best case scenario. The latter takes into account
limitations in memory availability, as well as hash collisions that
might happen during the classification stage. This allows us to get

an understanding of the trade-offs between memory and detection
results.

Results without resource constraints. Fig. 10a shows the
HHH detection capabilities. We used a threshold of 5% and gener-
ated the results using both exact and relaxed prefix comparison.
Since the basic behavior of ET is to build a trie that focuses on the
prefixes that account for a large share of the traffic, sometimes it
might happen that due to a transient event the system does not have
enough time to finalize the building process and to fully identify
the responsible traffic aggregate. However, reporting a partial and
approximate result can still be very useful for the network oper-
ator. Indeed, the figure shows that the accuracy with exact prefix
detection is significantly lower than its only 2 bit coarser grained
prefix version. The effect of variable active timeout can also be seen
in Fig. 10a. When using a more aggressive variable timeout the Fy
score increases, due to a smaller false negative rate. In contrast, the
precision decreases causing a higher false positives rate. This is a
direct effect of smaller active timeouts that lead the system to de-
tect more prefixes including the previously mentioned short-term

1 |Exact =3 2 bits & 3 R
0.8 I S Eﬁ@mﬁ&%—:ﬂr;ﬁ—A
o X e ok IR HK— - K — K]
§0-6 r */'/*_efariable timeout (exact) - -+ -7
04t Q Variable timeout (2 bits) ---X--|
02| Fixed timeout (exact) —»— |
‘Fixed timgout (2 bigs) - --

Fixed f3 f2 f1 0 10 15 20
Timeout behavior Memory (KB)
(a) Variable active timeout. (b) Available memory.

Figure 10: HHH detection capabilities.



SOSR 20, March 3, 2020, San Jose, CA, USA

Jan Kuéera, Diana Andreea Popescu, Han Wang, Andrew Moore, Jan Kofenek, and Gianni Antichi

1 ! 1 [Exact === 2 bits ¢ 3
Elastic I. (Rt b : >2e-§ S _'?b,)ﬁ ,i’% . g
e S HashPipe —x— PPy o 08 on 00O O
CF lastic Sketch - % - |\ o o Foatd e
%0 st UnivMon - —£1-- L ] 80.6 3 ] _',-ir“(
e 34 UnivMon - —£3-- a e AT
2 xX A o 2 o ;
Lo4 o » I Elastic Trie ---+:-- 0.4 ‘ 3
QZ&X(* = HashPipe —x— 02 ® F  Exact —+ |
0.2 iz( ey Elastic Sketch ¥~ . o * 2 bits - —® - -
0 n ! . .
0 40 80 120 160 600 650 700 750 O 40 80 120 160 600 650 700 750 Fixed f3 f2 f1 0 50 100 150 200 250
Memory (KB) Memory (KB) Window behavior Memory (KB)

(a) Exact prefix comparison.

Figure 11: Comparison between Elastic Trie, HashPipe, Elastic Sketch

and UnivMon of (H)HH detection capabilities.

aggregates. In this scenario, the F; score is always between 0.9 and
1.0. Using different functions for variable active timeout, it is then
possible to fine tune the trade-off between recall and precision to
maximize the F; score metric.

Implementation driven results. We assess the impact of the
amount of available memory over the F; score. We find that our
solution can successfully detect, with approximately 0.75 F; score,
the exact HHH prefix using a fixed active timeout and less than
20KB (Fig. 10b). If a coarser grained prefix is accepted, which is less
precise by only two bits, then the F; score jumps to 0.9. Again, this is
the consequence of the nature of the data structure: it might happen
that it does not have enough time to build properly. When using
a variable timeout (Fig. 10b), the results improve sensibly. In this
case, it is possible to detect the exact HHH prefix with 0.85 F; score
with less than 8KB. Moreover, if a 2 bit coarser grained HHH prefix
is accepted, the F; score jumps to 0.98. Increasing the available
memory does not significantly improve the detection capabilities of
the system, because it is bounded by the ability of the trie to react
and build up according to the input traffic patterns.

In Fig. 11, we compare the HHH detection capabilities of ET
against state-of-the-art solutions: UnivMon [39], Elastic Sketch [52]
and HashPipe [48]. All of them are able to detect HH only as full
length prefixes (addresses). Moreover, UnivMon and HashPipe use
an alternative definition for HH detection, named the “top-k prob-
lem”. Instead of reporting prefixes that are larger than a given
threshold, they report the top-k sources, no matter the amount of
traffic they are actually sending. To perform a fair comparison, and
align their results with the one produced by our system (which
follows the classic HHH definition), we aggregated their output
addresses into prefixes and considered only the ones that carry
traffic above the fixed threshold T.

Fig. 11a shows the results using exact prefix comparison. To
reach a F; score around 0.5-0.6, HashPipe needs a lower amount
of memory (~144KB) than Elastic Sketch (~320KB), which is still
much lower than the amount needed by UnivMon (~800KB). In
contrast, ET significantly outperforms other solutions. This is also
confirmed by the results obtained when a coarser grained prefix is
permitted (Fig. 11b). Nevertheless, the memory requirements of the
four solutions represent a fair comparison metric. HashPipe, Elastic
Sketch and ET have similar memory requirements, but HashPipe
can only detect Heavy Hitters, while our solution enables, at the
same time, also traffic pattern changes detection. UnivMon is not
restricted to a single network event, but requires 90% more mem-
ory to work. Finally, Elastic Sketch in its heavy flows mechanism

(b) Relaxed prefix comparison.

(a) Variable active timeout. (b) Available memory.

Figure 12: Superspreader detection capabilities.

ignores mice flows. In contrast, ET can, thanks to the adopted trie-
based data structure, aggregate these flows into shorter prefixes,
which results in more accurate HHH detection.

7.3 Superspreader detection

As in the HHH case, we first introduce the results without tak-
ing into account available memory or hash collisions. Then, we
show the trade-offs between available memory and superspreader
detection capabilities.

Results without resource constraints. Fig. 12a shows the su-
perspreader detection capabilities without the impact of available
memory or hash collisions using CAIDA traces and varying the
active timeout behavior. In contrast to the same evaluation carried
for the HHH detection, the results show that the system performs
better using a fixed timeout. In this case, it is clear that the trie
cannot build in time, as F; score grows sensibly when we use a 2
bit coarser grained superspreader prefix. Overall, for fixed active
timeout the detection capabilities are still good, as F; is around 0.9.

Implementation driven results. In Fig. 12b we show the im-
pact of available memory over the detection capabilities, taking into
account our P4 implementation. For this test, we used a fixed active
timeout, 25KB of preallocated memory for prefix trie structure, and
we varied the amount of memory available for the Bloom filter.
We find that superspreaders can be successfully detected with an
F; score of approximately between 0.72 and 0.87 with less than
250KB of allocated memory. Among the considered solutions al-
ready available in the literature, i.e., UnivMon, Elastic Sketch and
HashPipe, only the former theoretically supports superspreader
detection. However, its current implementation does not allow to
reproduce such a test. We were thus unable to compare it against
our system.

7.4 Change detection

To demonstrate the traffic change detection capabilities of ET, we
artificially injected network traffic simulating a sudden heavy flow
and a scanning into one of the CAIDA traces. The attack has been
emulated after 2500 seconds since the beginning of the trace. A
sudden HH and scanning are two types of attacks that can poten-
tially change traffic patterns. At the same time, they are also pretty
different: while a HH is typically a source that sends a huge amount
of traffic to a designated destination, the scan is a source contacting
many random destinations. Fig. 13a shows the time on the x-axis
and a moving average of trie changes (difference between number



Enabling Event-Triggered Data Plane Monitoring

SOSR 20, March 3, 2020, San Jose, CA, USA

‘ ‘ ‘ j J T | C T T T
3 g I DoS attack --a-- 2 g | Scan attack —-@-— 2 g I DoS attack --m--
24 Scan attack —e-— _, 2 4 | Normal condition \ 2, Scan attack — e —
3 i o 3 | ® - L B
‘6 3 | Normal condition & 53 Ui ‘6 3 | Normal condition ‘q
§ 2 : § 2 R i § 2 1%
21 ; e 2 i Q1 s gy
20 Mg\ 20 MWWW‘W’! 20
ey - B =1 A
_2 1 L L L _2 Il I _2 i i !

500 1000 1500 2000 2500 3000 3500 500
Time (seconds)

(a) Fixed active timeout, (H)HH.

(b) Fixed active timeout, superspreaders.

1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500
Time (seconds)

Time (seconds)

(c) Variable active timeout, (H)HH.

Figure 13: Change detection capabilities varying active timeout and trie building behavior.

z Oe o i Univmon - — -
Sy 4 o P el HashPipe —-— |
£ 28 a® YO Elastic Sketch - - - -
> Qé)/ . 4 \ .
S 24 4 Dn2 Lo T~ ET -=---
o s 10 S R
L B l; e S B
& ET-H @] £, 1 et
% 16 Aff | B10 Sy EE e
e ETH2 -0~ =
12 P12 g h
2 ETH3 -~ =] £ 17%
5 8 ET-Fixed @] Zot [ “veel .
& 4 Others O B I
i S S S 102
0 10 20 30 40 50 60 70 0 5 10 15 20

Time (seconds) Reporting time (sec)

(a) Detection speed. (b) Bandwidth utilization.

Figure 14: Comparison of detection speed and bandwidth
utilization between ET and other approaches.

of expanded and collapsed nodes) on the y-axis. Note that tree
is built based on HHH detection using a fixed active timeout of
ta = 20 seconds. In the figure we can distinctly see differences
during normal conditions and the state under DoS attack or scan. In
Fig. 13b, we repeated the same test but from a different perspective.
Now the trie is built on top of the SS detection. In this case, the
HH is not detected at all, because it represents a communication
with only one distinct destination. On the other hand, the scan, as a
typical case of superspreader, is much more significant now. Finally
in Fig. 13¢ we run again the same test and build the trie for HHH
detection using the variable active timeout mechanism. Due to the
accelerated trie construction, there are many more changes in the
trie over a short time period. This allows to highlight small changes
in the traffic patterns, as shown when comparing the scan behavior
for Fig. 13a and Fig. 13c.

7.5 Controller-dataplane communication

In this section, we asses how fast our data structure can provide
useful results to an external controller alongside the involved over-
heads. We used the same setup as in the previous change detection
case, and injected a sudden HH into a CAIDA trace. However, this
time we focused on the events reported to the controller, especially
on the delay to detect the first coarse-grained approximation of the
prefix, and later the final prefix responsible for the attack. Fig. 14a
shows the prefix length reported on y-axis with respect to the time
from the beginning of the HH on x-axis. It can be seen that immedi-
ately after the start of the HH the coarse grained prefix is reported
and then continuously refined over time. The figure also shows the
effect of a variable active timeout. When using the most aggressive

variable timeout function, the final responsible prefix is detected in
less than 5 seconds, and then reported regularly every 20 seconds.
The active timeout parameter can thus be understood as an upper
bound for the delay between two reports. If there is no change
detected when the timeout expires, the current prefix will be re-
ported again. In the figure, we also include the reports generated
periodically by state-of-the-art solutions such as Univmon, Elastic
Sketch and HashPipe. Although, an external controller can be in-
structed to retrieve those data structures at shorter timescales, it is
important to dimension the statistic retrieval process coherently
with the actual time needed to get the hardware information (as
shown in Fig. 3). Specifically, in the case of Univmon, Elastic Sketch
and HashPipe, consecutive requests cannot be lower than the time
needed to retrieve the data from the hardware. This effectively
creates a lower bound in the detection speed for those systems.
The same does not apply for ET, as it does not need the external
controller to retrieve the full data structure to detect a certain event.

Finally, Fig. 14b compares the amount of data exchanged between
a single switch and an external controller when either ET, Univmon,
Elastic Sketch and HashPipe are in place. Varying the reporting time
window (x-axis), we calculated the required bandwidth assuming
800KB size for the Univmon data structure, 140KB for the Elastic
Sketch data structure and 100KB for the HashPipe data structure
(default values according to respective papers). For ET we set 12B
as the size of a single prefix report, which is enough to report
the prefix, the length and also the associated sum of counters and
timestamp. We then calculated the average number of HHH reports
per second from CAIDA traces running ET with a threshold of 5 %.
The figure shows that in comparison to the other solutions, ET can
save a significant amount of control plane traffic (more than two
orders of magnitude).

8 RELATED WORK

In the past many SDN-based monitoring solutions which rely on
OF-based statistics retrieval from switches have been proposed [15,
49, 53]. They suffer from important limitations: (1) coupling be-
tween forwarding and monitoring rules, (2) the controller needs
to know in advance which flows have to be monitored in the dat-
aplane and (3) as the dataplane exposes just simple counters, the
controller needs to do all the processing to determine the network
state. In contrast, our solution reports to the controller the network
events of interest as soon as they happen, without the need of cen-
tral coordination. To speed up the identification process, iterative



SOSR 20, March 3, 2020, San Jose, CA, USA

refinement of the traffic of interest is done directly in the dataplane,
to avoid expensive control plane interactions, contrary to solutions
in [32, 41, 56]. Although algorithms that use iterative refinement
of flows to determine heavy hitters [55] and anomalies [34] have
been proposed in the past, they were not targeted for match-action
type architectures. Dynamic trie-based data structures have been
used for many years [19, 23, 33]. However, in contrast to them, our
solution is time-based and hardware-friendly. The main difference
is the way that nodes are expanded and invalidated based on stored
timestamps, so the event reports are not limited to periodic time
windows.

More recently, a number of monitoring frameworks leveraging
P4 programmability have been proposed [30, 38, 39, 44, 48, 52].
FlowRadar [38] keeps track of all the flows in the network, their
associated counters, and exports this information periodically to
a remote collector, which ultimately uses them for various moni-
toring applications targeted to datacenters. In contrast, our aim is
to offload as much as possible the controller, by directly exporting
processed traffic information. UnivMon [39], ElasticSketch [52] and
SketchLearn [30] use sketch-based data structures in the dataplane
to record network traffic statistics and export them at fixed time
intervals to the control plane which is in charge to perform a num-
ber of measurement tasks. Although some of these solutions apply
optimizations to compress as much as possible the data structure, as
demonstrated in §3, the interaction between control and dataplane
can be very expensive and imply delays that are not acceptable.
HashPipe [48] determines the top-k heavy hitters in the dataplane,
while Popescu et a. [44] presents a solution for hierarchical heavy
hitters detection. They both cover one single measurement task,
while our solution is more generic. Finally, Sonata [28] proposes
a query interface for network telemetry, uses sketches in the dat-
aplane, and zooms-out the network traffic of interest by refining
the network query, starting from the finest level. The refinement is
done by the controller, while in our case, directly in the dataplane.

9 CONCLUSION

We proposed a push-based approach to network monitoring, where
the dataplane informs the control plane only when specific condi-
tions are met. To achieve this, we presented a new data structure,
Elastic Trie, that enables the detection of traffic pattern changes
and either (hierarchical) heavy hitters or superspreaders within the
dataplane. Our solution has been designed with the constraints
of emerging programmable switches in mind, as it works in a
packet-driven manner, and can be implemented using common
match-action based architectures such as RMT.

Elastic Trie uses a hash table based prefix tree that grows or
collapses to focus only on the prefixes that account for a “large
enough” share of the traffic. This enables the detection of either
(hierarchical) heavy hitters or superspreaders, and at the same time
by looking at its growing rate it is possible to identify changes in
the traffic patterns. We prototype our solution in P4 and for two
different FPGA targets. From our FPGA implementations we pro-
vide information about expected performance on real hardware and
from our C++ model we show that Elastic Trie achieves high accu-
racy in detecting the targeted events with the memory constraints
imposed by today’s switches.

Jan Kuéera, Diana Andreea Popescu, Han Wang, Andrew Moore, Jan Kofenek, and Gianni Antichi

ACKNOWLEDGMENTS

We thank our shepherd Mina Tahmasbi Arashloo and Ran Ben
Basat, Theophilus Benson and anonymous reviewers for their valu-
able comments that helped us to improve the paper. This work
was supported by the National Programme of Sustainability (NPU
1I), project IT4Innovations excellence in science — LQ1602, by the
project Reg. No. CZ.02.1.01/0.0/0.0/16_013/0001797 co-funded by
the Ministry of Education, Youth and Sports of the Czech Republic
and European Regional Development Fund and by the UK’s Engi-
neering and Physical Sciences Research Council (EPSRC) under the
EARL project (EP/P025374/1).

REFERENCES

[1] 2018. Data Sharing on traffic pattern inside Facebook’s datacenter net-
work. https://research.fb.com/data-sharing- on-traffic- pattern-inside-facebooks-
datacenter-network/.

[2] 2018. sFlow. http://www.sflow.org/about/index.php.

[3] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. 2010. Hedera: Dynamic Flow Scheduling for Data Cen-
ter Networks. In Networked Systems Design and Implementation (NSDI). USENIX.

[4] Ran B. Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2018. Efficient
Measurement on Programmable Switches Using Probabilistic Recirculation. In
International Conference on Network Protocols (ICNP). IEEE.

[5] Theophilus Benson. 2010. Data Set for IMC 2010 Data Center Measurement.
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html.

[6] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. Mi-
croTE: Fine Grained Traffic Engineering for Data Centers. In COnference on
Emerging Networking EXperiments and Technologies (CONEXT). ACM.

[7] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable
Errors. In Communications of the ACM (CACM), Volume: 13, Issue: 7. ACM.

[8] PatBosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin

Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:

Fast Programmable Match-action Processing in Hardware for SDN. In Special

Interest Group on Data Communication (SIGCOMM). ACM.

CAIDA. 2018. Anonymized Internet Traces 2009 — 17th September 2009. http:

//www.caida.org/data/passive/passive_2009_dataset.xml.

[10] CAIDA. 2018. Anonymized Internet Traces 2016 — 17th March 2016. http:

//www.caida.org/data/passive/passive_2016_dataset.xml.

CAIDA. 2020. Statistical information for Anonymized Internet Traces. http:

//www.caida.org/data/passive/passive_trace_statistics.xml.

Christian Callegari, Stefano Giordano, Michele Pagano, and Teresa Pepe. 2012.

Detecting Anomalies in Backbone Network Traffic: A Performance Comparison

Among Several Change Detection Methods. International Journal of Sensor

Networks, Volume: 11, Issue: 4.

Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and Ori Rot-

tenstreich. 2018. Catching the Microburst Culprits with Snappy. In Workshop on

Self-Driving Networks (SelfDN). ACM.

Baek-Young Choi, Jaesung Park, and Zhi-li Zhang. 2003. Adaptive random sam-

pling for traffic load measurement. In International Conference on Communications

(ICC). IEEE.

Shihabur R. Chowdhury, Md. Faizul Bari, Reaz Ahmed, and Raouf Boutaba. 2014.

PayLess: A low cost network monitoring framework for Software Defined Net-

works. In Network Operations and Management Symposium (NOMS). IFIP/IEEE.

B. Claise. 2018. Cisco Systems NetFlow Services Export Version 9.  https:

//tools.ietf.org/html/rfc3954.

P4 Language Consortium. 2018. P4 Switch Behavioral Model. https://github.

com/p4lang/behavioral-model.

The P4 Language Consortium. 2018. P4;¢ Language Specification, version 1.0.0.

http://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf.

[19] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. 2008.
Finding Hierarchical Heavy Hitters in Streaming Data. In Transactions on Knowl-
edge Discovery from Data, Volume: 1, Issue: 4. ACM.

[20] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet
Sharma, and Sujata Banerjee. 2011. DevoFlow: Scaling Flow Management for
High-performance Networks. In Special Interest Group on Data Communication
(SIGCOMM). ACM.

[21] Nick Duffield, Carsten Lund, and Mikkel Thorup. 2001. Charging from Sampled
Network Usage. In Internet Measurement Workshop (IMW). ACM.

[22] Cristian Estan, Ken Keys, David Moore, and George Varghese. 2004. Building a
Better NetFlow. In Special Interest Group on Data Communication (SIGCOMM).
ACM.

—_
2

[11

[12

(13

=
&

[15

[16

(17

[18


https://research.fb.com/data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/
https://research.fb.com/data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/
http://www.sflow.org/about/index.php
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://www.caida.org/data/passive/passive_2009_dataset.xml
http://www.caida.org/data/passive/passive_2009_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_trace_statistics.xml
http://www.caida.org/data/passive/passive_trace_statistics.xml
https://tools.ietf.org/html/rfc3954
https://tools.ietf.org/html/rfc3954
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
http://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

Enabling Event-Triggered Data Plane Monitoring

[23

[24

[25]

[26]

[27

[28]

[29]

[30]

[31]

[32]

[33

[34]

[35]

[36

[37]

[38

[39

[40

[41]

[42

[43

[44

N
&

[46

Cristian Estan, Stefan Savage, and George Varghese. 2003. Automatically inferring
patterns of resource consumption in network traffic. In Special Interest Group on
Data Communication (SIGCOMM). ACM.

Cristian Estan and George Varghese. 2002. New Directions in Traffic Mea-
surement and Accounting. In Special Interest Group on Data Communication
(SIGCOMM). ACM.

Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jennifer Rexford,
and Fred True. 2001. Deriving Traffic Demands for Operational IP Networks:
Methodology and Experience. In Transactions on Networking, Volume: 9, Issue: 3.
IEEE/ACM.

Yan Gao, Yao Zhao, Shobha V. Schweller, Yan Chen, Sawn Song, and Ming-Yang
Kao. 2007. Detecting stealthy attacks using online histograms. In International
Workshop on Quality of Service (IWQoS). IEEE.

The P4.org Applications Working Group. 2018. In-band Network Telemetry
(INT) Dataplane Specification. https://github.com/p4lang/p4-applications/blob/
master/docs/telemetry_report.pdf.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: Query-driven Streaming Network Telemetry. In
Special Interest Group on Data Communication (SIGCOMM). ACM.

Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018. Network-
Wide Heavy Hitter Detection with Commodity Switches. In Symposium on SDN
Research (SOSR). ACM.

Qun Huang, Patrick P. C. Lee, and Yungang Bao. 2018. Sketchlearn: Relieving
User Burdens in Approximate Measurement with Automated Statistical Inference.
In Special Interest Group on Data Communication (SIGCOMM). ACM.
Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim,
and David Maziéres. 2014. Millions of Little Minions: Using Packets for Low
Latency Network Programming and Visibility. In Special Interest Group on Data
Communication (SSIGCOMM). ACM.

Lavanya Jose, Minlan Yu, and Jennifer Rexford. 2011. Online Measurement of
Large Traffic Aggregates on Commodity Switches. In Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE). USENIX.

Nils Kammenhuber and Lukas Kencl. 2005. Efficient statistics gathering from
tree-search methods in packet processing systems. In International Conference on
Communications (ICC). IEEE.

Faisal Khan, Nicholas Hosein, Chen-Nee Chuah, and Soheil Ghiasi. 2011. Stream-
ing Solutions for Fine-Grained Network Traffic Measurements and Analysis. In
Architectures for Networking and Communications Systems (ANCS). IEEE Com-
puter Society.

Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. 2003.
Sketch-based Change Detection: Methods, Evaluation, and Applications. In Inter-
net Measurement Conference (IMC). ACM.

Anukool Lakhina, Mark Crovella, and Christophe Diot. 2004. Diagnosing
Network-wide Traffic Anomalies. In Computer Communication Review, Volume:
34, Issue: 4. ACM.

Anukool Lakhina, Mark Crovella, and Christophe Diot. 2005. Mining Anomalies
Using Traffic Feature Distributions. In Computer Communication Review, Volume:
35, Issue: 4. ACM.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better
NetFlow for Data Centers. In Networked Systems Design and Implementation
(NSDI). USENIX.

Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow
Monitoring with UnivMon. In Special Interest Group on Data Communication
(SIGCOMM). ACM.

Jianning Mai, Chen-Nee Chuah, Ashwin Sridharan, Tao Ye, and Hui Zang. 2006.
Is Sampled Data Sufficient for Anomaly Detection?. In Internet Measurement
Conference (IMC). ACM.

Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. 2014. DREAM:
Dynamic Resource Allocation for Software-defined Measurement. In Special
Interest Group on Data Communication (SSIGCOMM). ACM.

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-Directed Hardware Design for Network Performance Monitoring. In
Special Interest Group on Data Communication (SSGCOMM). ACM.

Noviflow. 2018. Noviswitch 1132 product guide.  https://noviflow.com/wp-
content/uploads/NoviSwitch-1132-Datasheet-V2.0.pdf.

Diana Andreea Popescu, Gianni Antichi, and Andrew W. Moore. 2017. Enabling
Fast Hierarchical Heavy Hitter Detection Using Programmable Data Planes. In
Symposium on SDN Research (SOSR). ACM.

Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter, Kanak Agarwal,
John Carter, and Rodrigo Fonseca. 2014. Planck: Millisecond-scale Monitor-
ing and Control for Commodity Networks. In Special Interest Group on Data
Communication (SIGCOMM). ACM.

Vyas Sekar, Michael K. Reiter, and Hui Zhang. 2010. Revisiting the Case for a
Minimalist Approach for Network Flow Monitoring. In Internet Measurement
Conference (IMC). ACM.

[47

(48

[49

[51

[52

[53

[55

[56

[57

]

SOSR 20, March 3, 2020, San Jose, CA, USA

Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin
Katti, and Nick McKeown. 2016. Programmable Packet Scheduling at Line Rate.
In Special Interest Group on Data Communication (SIGCOMM). ACM.
Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-
nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data
Plane. In Symposium on SDN Research (SOSR). ACM.

Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali. 2010. OpenTM: Traffic
Matrix Estimator for OpenFlow Networks. In Passive and Active Measurement
(PAM). Springer-Verlag.

Shobha Venkataraman, Dawn Song, Phillip B. Gibbons, and Avrim Blum. 2005.
New Streaming Algorithms for Fast Detection of Superspreaders. In Network and
Distributed System Security Symposium (NDSS). Internet Society.

Yinglian Xie, Vyas Sekar, David A. Maltz, Michael K. Reiter, and Hui Zhang. 2005.
Worm Origin Identification Using Random Moonwalks. In Security and Privacy
(SP). IEEE Computer Society.

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive and Fast Network-
wide Measurements. In Special Interest Group on Data Communication (SIGCOMM).
ACM.

Curtis Yu, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and
Harsha V. Madhyastha. 2013. FlowSense: Monitoring Network Utilization with
Zero Measurement Cost. In Passive and Active Measurement (PAM). Springer-
Verlag.

Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-
ment with OpenSketch. In Networked Systems Design and Implementation (NSDI).
USENIX.

Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. 2007. ProgME: Towards
Programmable Network Measurement. In Special Interest Group on Data Commu-
nication (SIGCOMM). ACM.

Ying Zhang. 2013. An Adaptive Flow Counting Method for Anomaly Detection
in SDN. In Conference on Emerging Networking Experiments and Technologies
(CoNEXT). ACM.

Qi (George) Zhao, Mitsunori Ogihara, Haixun Wang, and Jun (Jim) Xu. 2006.
Finding Global Icebergs over Distributed Data Sets. In Principles of Database
Systems (PODS). ACM.


https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report.pdf
https://noviflow.com/wp-content/uploads/NoviSwitch-1132-Datasheet-V2.0.pdf
https://noviflow.com/wp-content/uploads/NoviSwitch-1132-Datasheet-V2.0.pdf

	Abstract
	1 Introduction
	2 Three primitives, many use-cases
	2.1 High-volume traffic clusters
	2.2 Traffic clusters events

	3 Motivating a new solution
	4 Desired Properties
	5 Elastic Trie
	5.1 Data Structure & Algorithm
	5.2 Elastic Trie with the other events
	5.3 User Interface
	5.4 Discussion

	6 Implementation
	6.1 P4 prototype
	6.2 Potential limitations and challenges
	6.3 FPGA prototype

	7 Evaluation
	7.1 Data structure properties
	7.2 HHH detection
	7.3 Superspreader detection
	7.4 Change detection
	7.5 Controller-dataplane communication

	8 Related Work
	9 Conclusion
	References

