
Automatic Inference of High-Level Network Intents
by Mining Forwarding Patterns

Ali Kheradmand
University of Illinois at Urbana-Champaign

ABSTRACT
There is a semantic gap between the high-level intents of network
operators and the low-level configurations that achieve the intents.
Previous works tried to bridge the gap using verification or synthe-
sis techniques, both requiring formal specifications of the intended
behavior which are rarely available or even known in the real world.
This paper discusses an alternative approach for bridging the gap,
namely to infer the high-level intents from the low-level network
behavior. Specifically, we provide Anime, a framework and a tool
that given a set of observed forwarding behavior, automatically
infers a set of possible intents that best describe all observations.
Our results show that Anime can infer high-quality intents from
the low-level forwarding behavior with acceptable performance.

CCS CONCEPTS
• Networks → Network reliability; Network management; • Infor-
mation systems → Data mining.

KEYWORDS
Intent Inference, Invariant Inference, PolicyMining, Summarization

ACM Reference Format:
Ali Kheradmand . 2020. Automatic Inference of High-Level Network Intents
by Mining Forwarding Patterns. In Symposium on SDN Research (SOSR
’20), March 3, 2020, San Jose, CA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3373360.3380831

1 INTRODUCTION
As a computer network becomes more complex over time, its cor-
rectness becomes an increasingly important concern for the or-
ganization operating it. The way most of today’s networks are
configured is that given an informal high-level description of how
the network should operate, a network administrator configures
the network devices to achieve that. These descriptions implicitly
define networking intents. Intents are usually network-wide prop-
erties of the network forwarding behavior and are simple enough
to be expressed and comprehended by humans, e.g. the traffic re-
ceived from the Internet destined to IP x must reach node A, or the
SSH traffic from node B to node C must go through a DPI device
and be resilient to any 2-link failures. The administrator converts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSR ’20, March 3, 2020, San Jose, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7101-8/20/03. . . $15.00
https://doi.org/10.1145/3373360.3380831

these high-level intents into low-level device configurations, of-
ten manually. Consequently, there is a significant gap between the
high-level intents of network operators and the low-level config-
urations [4]. This gap is a source of many misconfigurations and
network problems, leading to catastrophic consequences including
network outages and breaches that often make news headlines [4].

As a result, there has been significant research progress towards
network verification tools [3, 12, 13, 15, 16, 19, 21] that given a set
of network-wide intents, check whether the configured network
satisfies the intents. There has also been progress towards network
programming/configuration synthesis [1, 4, 9, 22] tools that given
the intents described in a domain-specific language, synthesize data
plane entries or control plane configurations that satisfy the intents.

These tools rely on the ability of an administrator to provide a
formal specification of the desired behavior. However, such spec-
ifications do not usually exist in practice for current networks.
Administrators often inherit an already working legacy network
and are asked to maintain it. In the real world, administrators hesi-
tate to touch the network they operate very often due to concerns
over breaking the network [7]. Such networks being so complex,
it is practically challenging to manually identify the unwritten
high-level intents by looking at the low-level configurations.

In this paper, we take an alternative approach to bridge the gap.
We present Anime (Automatic Network Intent Miner), a framework
and a prototype tool to infer high-level intents by mining the com-
monalities among the forwarding behavior in the network. The
output can be used for human comprehension, continuous verifica-
tion and anomaly detection, automatic migration to SDN, etc.

After introducing objective measures of quality for intent infer-
ence, we accordingly formalize the intent inference problem in a
framework that fits the hierarchical nature of networks such as in
topological and address hierarchies. We then provide a heuristic
solution to the problem based on clustering techniques. The result,
Anime, takes as input a set of forwarding behavior observed in one
or more snapshots of the network expressed using various features
such as the packet header information, devices along the path, time
of path observation, device or link state, etc. Given a limit on the
number of inferred intents, Anime produces a set of intents that
collectively describe all observed behavior with high precision. The
results also predict unobserved but possible behavior.

We evaluate the effectiveness and performance of Anime for a
use case where the goal is to only summarize observed network
behavior for human comprehension. We also evaluate the tool in
settings where not all possible behavior is observed and some needs
to be predicted. As a baseline, we compare the results to the closest
related work (Net2Text[5]), though the goal of that work is not
intent inference (Section 6). The results demonstrate Anime’s ability
in inferring higher quality intents with acceptable performance.

27

https://doi.org/10.1145/3373360.3380831
https://doi.org/10.1145/3373360.3380831
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3373360.3380831&domain=pdf&date_stamp=2020-03-04

SOSR ’20, March 3, 2020, San Jose, CA, USA Ali Kheradmand

U1 U2 U3

FW1 FW2

S1 S2
(a) Example 1

R1

R3 R4

R5

AS2
R2

AS1

(b) Example 2

Figure 1: Example network setups

2 MOTIVATION
In this section, we show how intents can be inferred from low-level
forwarding behavior and discuss the applications of doing so.

2.1 Illustrative Examples
We provide two examples illustrating how forwarding behavior
can be used to infer possible intents. The examples are inspired
by the ones in network verification literature [4, 12, 23]. In these
examples, the information from forwarding paths across various
devices, packet headers, and data plane snapshots are used to derive
higher-level information about the collection of the paths.

2.1.1 Example 1: Data center network. Consider the network in
Figure 1a resembling part of a very simple data center network. The
network contains three user machines (U1, U2, U2), two firewalls
(FW1, FW2), and two servers (S1, S2). The green and red arrows in
the figure denote the forwarding paths for packets with destination
IP addresses 10.0.1.2 and 10.0.1.3 respectively.

Let’s consider two out of the three green paths destined to
10.0.1.2, U1.FW1.S1 and U2.FW1.S1. The only difference between
the two paths is their starting node (U1 vs. U2). Looking at these
paths we could say that the intent of the administrator is to enforce
all packets starting from the user nodes destined to 10.0.1.2 to go
through firewall FW1 and reach server S1. We represent this guess
as: dstIP : 10.0.1.2, start : User ,waypoint : FW1, end : S1.

Let us now consider the third green path, namelyU3.FW2.S1, in
addition to the previous two. This path also starts from a user node
and ends in S1, but it goes through FW2 instead of FW1. Note that
FW2 is also a firewall. So we refine our initial guess of the intent
to dstIP : 10.0.1.2, start : User ,waypoint : Firewall, end : S1,
i.e. packets originating from the user nodes destined to 10.0.1.2
will traverse a firewall node and reach server S1. If we repeat this
process for the paths destined to 10.0.1.3 (the red arrows), we get
dstIP : 10.0.1.3, start : User ,waypoint : Firewall, end : S2.

Our two guesses for the green and red paths only differ in the last
hop (S1 vs. S2). Both nodes are servers. So if we combine the infor-
mation from all the paths, we can say that for packets destined to the
prefix 10.0.1.2/31 originated at a user node, the packet will traverse
a firewall and end up in a server node: dstIP : 10.0.1.2/31, start :
User ,waypoint : Firewall, end : Server .

2.1.2 Example 2: ISP network. Figure 1b illustrates another example
network that resembles part of a very simple ISP. The routers in the
blue cloud show the network of an Autonomous System (AS) under
our administration connected to two other ASes, namely AS1 and
AS2. The red arrows show the forwarding path for packets received
from AS1 that are destined to a specific IP prefix P observed in a
snapshot of the data plane taken in the morning:AS1.R1.R2.R5.AS2.

Now let’s assume that the link R1 − R2 goes down and the con-
trol plane installs a new path for packets destined to P , namely
AS1.R1.R3.R4.R5.AS2 in the next snapshot taken in the evening.
By looking at these two paths obtained from the two data plane
snapshots across time, we can say what has remained invariant
between the two paths is that the path destined to P received
from AS1 will hit R1, traverse some internal nodes and reach AS2
through R5. This can be denoted as snapshot : Any,dstIP : P,path :
AS1.R1.Internal+.R5.AS2 where + denotes ≥1 repetitions.

2.2 Applications
Here we discuss some of the main applications of intent inference.

Enabling intent-based networking: The immediate application of
the inferred intents is to produce inputs for network verification
and synthesis tools as, even if known, it is a tedious task to manually
provide all intents for a large legacy network. Generally, inferred
intents can be used as input to any intent-based networking tool and
streamline new applications including automatic migration from
legacy networks to SDN or cloud paradigms, transparent network
optimizations [20], automatic network repair [25], etc.

Network behavior summarization: Current network management
relies heavily on human in the control loop. Consequently, human
insight is fundamental for network debugging [5] and management
in general. Due to the complexity of large networks, an automatic
tool to summarize relevant network behavior and present it in a
comprehensible form can greatly help the process.

Anomaly detection: Another important application is to detect
anomalies in forwarding behavior as a way to detect data plane
or control plane bugs or misconfigurations. This is in contrast
with traffic based anomaly detection techniques [2, 10, 18, 24] for
intrusion and DoS attack detection purposes.

Anime is useful in either application, though we focus on the
first two in this paper (Sec. 5). Our framework is also more general
and more expressive than the related works that solely focus on
summarization [5] or network invariant inference [6, 11] (Sec. 6).

3 ANIME FRAMEWORK
Using the classic precision/recall notions, we first define objective
quality measures for intent inference (3.1). We then provide a frame-
work to express network behavior and intents via features with
hierarchical values to control the precision-recall trade-off, fitting
the hierarchical nature of networks. We use it to formally define
intent inference as an NP-hard constrained cost optimization prob-
lem related to our quality measures (3.2). We heuristically solve the
problem by grouping relevant behavior using clustering techniques
with the cost function as a distance measure and finding the most
specific intent that represents all behavior per each group (3.4).

3.1 Measures of quality
In our abstract view of the intent inference process (Fig. 2), there is
a set of actual intents that govern the network behavior. Applied to
the target network, the intents allow a set of possible forwarding
behavior in the form of a set of forwarding paths in the network.1
A collector then collects a subset of these paths by data plane or

1Here, we assume a white-listing model meaning that any path not explicitly allowed
by any intent in a set of intents is disallowed by that set.

28

Automatic Inference of High-Level Network Intents by Mining Forwarding Patterns SOSR ’20, March 3, 2020, San Jose, CA, USA

Collection

Intent
Inference

Actul
Intents

Possible
Paths

Observed
Paths

Inferred
Intents

Figure 2: An abstract view of intent inference process
control plane configuration analysis [3, 12, 13, 19], observing the
actual network traffic, etc. The collection mechanism is orthogonal
to our work but we emphasize that the collector may not be able
to observe all possible paths. For example, a traffic-based collector
may miss behavior not exercised by the traffic, or some possible
behavior may only be visible during link failures (as in Example
2), etc. The observed paths are then fed into an intent inference tool
which consequently generates a set of inferred intents.

In this context, we define the quality measures of intent infer-
ence. For a given set P of paths and a set I of intents, we define
the number of true positives (TPP), false negatives (FNP), and false
positives (FPP) to be the number of paths in P that are represented
(i.e. allowed) by at least one intent from I , paths in P that are not
represented by any intents from I , and paths that are represented
by the intents in I that are not in P , respectively. This way we are
able to objectively measure the quality of intent inference through
PrecisionP ≜ TPP /(TPP + FPP) and RecallP ≜ TPP /(TPP + FNP)

which respectively correspond to the specifity (exclusion of incor-
rect behavior) and coverage (inclusion of correct behavior) of its
results. Clearly, both metrics must be considered to assess quality.

Our goal in this paper is to be able to represent all (observed)
behavior with as much precision as possible. So we view the intent
inference problem as the problem of inferring a set of intents with
the recall of 100% (on observed behavior) that maximize precision.
We note a special use case of intent inference, called summarization,
where the set of possible paths is equal to the set of observed paths
(perfect observation) and for human readability, the number of
inferred intents is limited by a parameter (k). Without the limit k ,
one can simply list all observed paths as the inferred intents and
achieve perfect precision and recall. We also consider and evaluate
our tool in cases of imperfect observations as well, where k is
interpreted as a parameter to avoid over-fitting and under-fitting.

3.2 Formal setup
In Anime, forwarding behavior is expressed through features. Each
feature captures some aspect of forwarding behavior. Examples in-
clude packet header information (e.g. source/destination IP address,
port, protocol), device information such as start and end points,
waypoints, ingress, egress, entire forwarding paths, the observation
timestamp, device or topology state (e.g link status), etc. In Example
1 we used a tuple of destination IP, start, waypoint, and end features.
In Example 2 we used a tuple of time of observation, IP destination
prefix, and entire forwarding path features.

Each feature can have a set of possible feature values or labels
associated with it. One of the main insights of this paper is to
capture the hierarchies among feature labels that naturally fit net-
working environments. For example, 10.0.1.2 and 10.0.1.3 are both
included in 10.0.1.2/31 which itself is a subset of, say, 10.0.1.0/24.
Also in Example 1, both FW1 and FW2 are Firewalls. By supporting
hierarchical values, Anime allows for finer grained precision-recall
trade-off control, resulting in higher quality intents (Section 4).

To capture this, we formally define a feature type F as the tuple
((ΣF , ⊆), δF) where ΣF is the set of possible labels for F and δF :
ΣF → R is a cost associated with each label. We interpret the
labels in Σ as labeled sets of values which are partially ordered by
the subset (⊆) relation. F can essentially be represented by a DAG
where nodes are labels in ΣF and edges are transitive reduction
of the subset relation. Figures 3a and 3b show example feature
types for the set of devices used in Examples 1 (Ddc) and 2 (Disp),
respectively. The number to the right of each label shows the cost
of that label. For example δDdc (Firewall) = 2. Note how traversing
from the bottom of these hierarchies to the top, the labels get less
specific (lower precision) but cover more values (higher recall). We
assign a higher cost to higher loss of precision (see below).

Any label of ΣF that is not a superset of any other label is
called a concrete label of F , i.e. concrete labels are the leaves of
the DAG representing F (denoted by σF). For label l , σF (l) denotes
the subset of σF included in the set labeled by l – e.g., σDdc =

{U1,U2,U3, FW1, FW2, S1, S2} = σDdc (Any),σDdc (Server) = {S1, S2}.
A feature is simply an instance of a feature type with a name.2

We provide a library of features types that can be used (Section 3.3)
to encode forwarding behavior. One can also design additional
feature types according to the definition above. The library in-
cludes a feature type for a tuple of multiple other feature types.
We used the feature (dstIP, start,waypoint, end) as an instance of
Tuple⟨IPPrefix,Ddc,Ddc,Ddc⟩ in Example 1.

Within this setup, for a feature F , a path is simply a value
from σF and an intent is a value from ΣF . For a set of intents
I = {i1, ..., ik } and a set of paths P = {p1, ...,pn }we say I represents
P iff P ⊆

⋃
i ∈I σF (i). For instance (10.0.1.2,User , Firewall, S1) rep-

resents {(10.0.1.2,U1, FW1, S1), (10.0.1.2,U3, FW2, S1)}.
We formalize the intent inference problem in this framework:

Definition 3.1 (Intent inference problem). For a given feature F ,
a set of paths P , and a limit on the number of inferred intents (k),
find the set of intents I∗ = {i1, ..., ik ′} (k ′ ≤ k) (the inferred intents)
that represents P and minimizes δF (I∗) =

∑
i ∈I ∗ δF (i).

For example for feature Ddc , P = {U1,U3, S1}, for limits of 3, 2,
and 1, it is easy to see the set of inferred intents are {U1,U3, S1},
{User , S1}, and {Any} with the costs of 3, 4, and 7, respectively.

To understand the relation between this definition and the intu-
ition provided in the last section, note that if we set the cost of each
label to the number of concrete values it represents (as we mostly
do in our feature library3), for any I in the set of all sets of intents
representing P (IP), δF (I) approximates the number of paths that
the intents in I collectively represent, i.e. TP + FP4. Also, note that
TP is the same for any such I . So δF (I) is inversely related to the
precision of I . Also for any such I , recall (on observed paths) is 1.

It is possible to show the intent inference problem as defined
above is NP-hard by a reduction from the set cover problem.We pro-
vide a heuristic polynomial solution to the problem in Section 3.4.
3.3 Feature types library
Inspired by [13], we provide a template library of feature types.
Depending on the type of network, collection mechanism, intended
2When it is clear from the context, we use feature and feature type interchangeably.
3See Sec. 3.3. One can also alter the costs to guide the inference.
4The imprecision is due to over-counting overlapping intents. We penalize overlap to
encourage inferring disjoint intents.

29

SOSR ’20, March 3, 2020, San Jose, CA, USA Ali Kheradmand

Any:7

Server:2

S2:1S1:1

Firewall:2

FW2:1FW1:1

User:3

U3:1U2:1U1:1

(a) Ddc

Any:7

External:2

AS2:1AS1:1

Internal:5

R5:1R4:1R3:1R2:1R1:1

(b) Disp

Figure 3: Device labeling hierarchy used in our examples

application, domain-knowledge, etc, different type templates in
the library can be instantiated to encode the forwarding behavior.
One can also design additional feature types. The following are
examples of templates supported in our library:

DAG⟨V , E⟩ where V and E are nodes and edges of an arbitrary
DAG, is a feature type where any label v ∈ V is interpreted as the
set of leaves reachable from v . Ddc is an example of this type.

Flat⟨S⟩, where S is a set of concrete values, is a feature type
defined by a DAG with a single root (Any) connected to |S | leaves
each corresponding to a member of S . An intent can either be a
concrete value or anything, with no hierarchy in between. In the
ISP example, we used Flat⟨{Morninд, Eveninд}⟩.

TBV ⟨n⟩ is a feature defined over Ternary Bit Vectors (TBV) of
length n. A TBV is a generalization of bit-vectors where arbitrary
bits can be wildcards. A TBV is interpreted as the set of bit-vectors it
represents, e.g. 0x ≡ {00, 01}. IPPrefix is a specialization ofTBV ⟨32⟩
where wildcards can only happen at the end of TBVs.

Ranдe . Integer ranges form a feature type suitable for fields like
IP and port ranges or constraints like number of link failures.

HRE⟨F ,d⟩ is a variant of regular expressions over hierarchical
alphabet useful for representing entire forwarding paths (Sec. 3.3.1).

Tuple⟨F1, ..., Fn⟩ is used to combine multiple features to create
more complex features. Σ = ΣF1 × ... × ΣFn , and for any a,b ∈ Σ,
a ⊆ b iff

∧
i ∈[1,n] ai ⊆ bi . Finally δ (a) =

∏
i ∈[1,n] δFi (ai).

For all of these features (except HRE) ∀l ∈ Σ : δ (l) = |σ (l)|.
3.3.1 Representing entire forwarding path. As an exemplar of a
complex feature, we describe a feature type designed to represent
entire forwarding paths, such as the ones used in the ISP example.

Our idea is to use regular expressions to represents sets of such
paths. Specifically, we focus on a very limited class of regular expres-
sions that seems to be a proper fit for representing network paths.
The grammar of such regular expressions is shown in Figure 4.
An HRE is defined over another feature type F and its alphabet is
ΣF . We slightly generalize the notion of acceptance in our regular
expressions to account for the hierarchy of labels we introduced.
We call these Hierarchical Reduced Regular Expressions (HRE).

Here, a path is a string over σF . We say a path p is represented
by an HRE h iff there exists a string s obtained by replacing a subset
of the labels in p with another label from the set of ancestors of that
label in ΣF and s is accepted by h interpreted as a normal regex. We
denote by AccdF (h) the set of all strings over σF of length ≤ d repre-
sented by h. In the ISP example, the path p = AS1.R1.R3.R4.R5.AS2
is accepted by the HRE h = AS1.R1.Internal+.R5.AS2 because
s = AS1.R1.Internal .Internal .R5.AS2 which is obtained by replac-
ing R3 and R4 in p by the label Internal (ancestor to both device
names in Disp), is accepted by interpreting h as a normal regex.
For a feature type F , and a limit d on length of strings, we define
HRE⟨F ,d⟩ as ((ΣH , ⊆), δH)where ΣH is the set of all HREs over ΣF
with length ≤ d . We interpret each h ∈ ΣH as the set AccdF (h) and
the hierarchy is formed according to the subset relation among these

HRE ::= l | l+ | HRE.HRE l ∈ ΣF
Figure 4: Grammar of Hierarchical Reduced Regular Expressions

sets, e.g. h0 = AS1.R1.R2.R5.AS2 ⊂ h1 = AS1.R1.Internal .R5.AS2 ⊂

h2 = External .Internal+.External ⊂ h3 = Any+ (d ≥ 5).
By the argument in Sec. 3.2 we should set δH (h) = |σH (h)| =

|AccdF (h)|. However, computing |AccdF (h)| is expensive. Instead, we
roughly approximate the value bymF (h)

d wheremF (h) is the the
geometric mean of cost of labels of HRE h over field F (i.e. the
average number of concrete labels of F each label inh represents). In
Example 2, δH forh0, ...,h3 are 1d , 1.38d , 2.71d , and 7d , respectively.
Note how less precise intents received higher costs.

3.4 Solving the intent inference problem
Our heuristic solution to the intent inference problem divides it into
two related sub-tasks: single intent inference and path selection.
3.4.1 Single intent inference. This is a specialization of the intent
inference problem with k = 1: find a single intent that represents
all input paths with the lowest cost. For a feature F , we define the
function ⊔F : 2σF → ΣF (called the join function) as the answer to
the single intent inference problem. In practice (Sec. 3.4.2) we use
⊔F : Σ2F → ΣF where ⊔F (a,b) = ⊔F (σF (a) ∪ σF (b)).

For most of the feature types in our library, computing join of two
labels is straightforward and efficient: ⊔DAG (a,b) is their least cost
common ancestor, ⊔Flat (a,b) is a if a = b else Any, ⊔T BV (a,b) = c
where ci = ai if ai = bi else ci = x . ⊔Ranдe ([a,a′], [b,b ′]) =
[min(a,b),max(a′,b ′)],⊔Tuple(a,b) = (⊔F1 (a1,b1), ...,⊔Fn (an,bn)).
Computing join for HRE⟨F ,d⟩ is more complex and requires dy-
namic programming (O(d3 |ΣF |2)). We omit the details due to space
limits. For example,⊔Ddc (U1,U2) = User ,⊔Ddc (U1, FW2) = Any and
the join of the two paths in Example 2 is AS1.R1.Internal+.R5.AS2

Observation: Because of the way we defined label costs, we can
use δ (⊔(P)) as a measure of similarity/relatedness of the paths in a
set P . Higher cost means we have to lose more precision to represent
all paths together using a single intent, hence the paths are probably
not related to each other, i.e. do not come from the same intent.
3.4.2 Path selection. Having a solution for single intent inference,
the next task is to decide which subset of paths should be fed
into the single intent inference problem. Following the observation
above, we treat the general intent inference problem roughly as a
clustering problem where the goal is to put the more similar paths
into the same clusters and then feed these clusters as inputs to the
single intent inference problem to infer one intent per cluster. In
our clustering, the similarity measure mentioned above can be used
to define the distance between paths and clusters of paths.

Specifically our clustering approach is inspired by the Hierar-
chical Agglomerative Clustering (HAC) technique [17]. In HAC,
each object (i.e. path) is considered as a separate cluster initially.
The clusters are then iteratively merged with each other until a
single cluster remains. At each iteration, the clusters with the min-
imum distance are selected to be merged with each other. In our
approach we terminate the iteration once at most k clusters re-
main. We define the distance d(ci , c j) between clusters ci and c j as
the amount of increase in the cost of representation by merging
the clusters compared with the sum of cost of individual clusters:
d(ci , c j) ≜ δ (⊔(ci ∪ c j)) − (δ (⊔(ci)) + δ (⊔(c j))).

As an optimization we approximate ⊔(ci ∪ c j) by ⊔(⊔(ci),⊔(c j)).
⊔(ci) and ⊔(c j) are approximated recursively during clustering.

30

Automatic Inference of High-Level Network Intents by Mining Forwarding Patterns SOSR ’20, March 3, 2020, San Jose, CA, USA

This way, the join function is applied to only two labels at a time. As
another optimization, after forming each new cluster cn , instead of
computing the distance of cn to all other clusters, we only compute
it for a random subset of them with a configurable size b. With
these optimizations, the complexity of our solution for N paths is
O(JbN logN) where J is the complexity of join (for two inputs).

4 EVALUATION
We implemented a prototype of our framework in 1K lines of Python
code. As our baseline, we re-implemented Compass, a heuristic algo-
rithm for Net2Text’s [5] formulation of the network summarization
problem (Sec. 6). In our experiments, we assess the performance
of Anime and the quality of its inferred intents and compare it
with Compass. Particularly, we study the effect of the clustering
algorithm, parameters b and k , flat vs. hierarchical labeling, HREs,
and perfect vs. imperfect observation. All experiments ran on a
Macbook Air, 1.6GHz Intel Core i5, 8GB 1600MHz DDR3 RAM.

4.0.1 Comparison with Net2Text. We reuse Net2Text’s own evalua-
tion dataset used in [5]. The dataset uses real-world topologies, IPv4
RIB, and AS-to-organization information. It simulates the forward-
ing state in a simplified ISP network. Each dataset entry contains
various information about a path traversing through the ISP from
an ingress to an egress. Because Net2Text can not effectively deal
with entire forwarding paths or hierarchical values (Section 6),
we only focus on the ingress device and egress devices and the
destination organization of each path to have a fair comparison.
Specifically, we use the feature (orдanization, inдress, eдress) as an
instance of Tuple⟨Flat⟨O⟩, Flat⟨D⟩, Flat⟨D⟩⟩⟩ where D is the set of
network devices andO is the set of organizations. We experimented
with various topologies with varying nodes, egresses, and desti-
nations. Figure 5a shows a representative result using the AT&T
topology with 25 nodes, 5 egresses, and 100 destinations, resulting
in near 2500 paths. The x and y axes show the limit on the number
of inferred intents (k) and the precision, respectively. Recall rate
(same for all k) and average runtime (over all k) are reported in
the legend. As expected, Anime’s precision increase as we increase
k . The batch size (b) has a great impact on the rate of increase in
precision (and performance). In any case, Anime’s recall is 100%.
This is due to the fundamental design decision of representing all
observed behavior, which is encoded in our problem definition and
approach. Net2Text’s Compass algorithm has a fixed precision and
recall of near 26%. By increasing k , Compass produces new intents
that are subsets of previous intents, thus no increase in precision or
recall. Compass tries to optimize Net2Text’s scoring function which
is designed according to Net2Text’s goals and assumptions (Sec-
tion 6), not directly the precision and recall, although the scoring
function is related to these two factors in an ad-hoc way.

4.0.2 Effect of hierarchies. To show the effects of hierarchical val-
ues on the quality of inferred intents, we use a synthetic dataset
resembling simplified network access control policies. For a net-
work with n endpoints (assuming each is a servers in a data-center),
we randomly partition the servers into д groups of random size
between min and max . All groups are subsets of Any. We then
randomly generatem intents each of the form “server or group a
can communicate with server or group b”. We generate the set of all
server pairs represented by the intents as input for our experiment.

We experiment with two types of features for Anime, namely
Tuple⟨Flat⟨D⟩, Flat⟨D⟩⟩ and Tuple⟨Dac,Dac⟩ where D is the set of
servers andDac is the feature type defined by the DAG representing
the hierarchy we described above. We also test Compass.

Figure 5b shows the result of a representative experiment with
n = 100,д = 5,min = 5,max = 30, i = 10 resulting in 435 paths.
Anime with flat label has worse precision than Compass but 10x bet-
ter recall. However, hierarchical labeling guides Anime to achieve
both good precision and recall (even for small values of k).
4.0.3 Imperfect observations. We assess Anime’s effectiveness in
the face of imperfect observations by repeating the previous experi-
ments with random subsets of the original input. We then compute
precision and recall according to the original input. In this setting, k
is interpreted as parameter one can tune to avoid over/under-fitting.

Figure 5c shows the precision (x-axis) recall (y-axis) tradeoff for
different values of k in the ATT experiment where only 60% of the
original paths are observed. As expected, an increase in k results
in higher precision and lower recall rates. Anime strikes a better
balance between precision and recall than Compass.

Figure 5d shows the results of similar experiments with the
access control dataset. The x-axis shows k and the y-axis shows the
F-score of the result which is defined as the harmonic average of
precision and recall. Ask gets smaller, hierarchical labeling achieves
better recall without scarifying precision thus achieves better F-
score. Higher recall for flat labeling significantly sacrifices precision,
thus its F-score declines. Hierarchical labeling achieves near-perfect
F-score (1 FN, 0 FP) for k ∈ [10, 26] where 9/10 of the actual intents
are inferred. For k < 10, hierarchical labeling starts to underfit and
its precision and F-score fall sharply. For the optimal k , with either
labeling, Anime achieves >4x better F-score than Compass.
4.0.4 Experiment with HREs. To showcase the use of HREs we
create a synthetic data center topology consisting of c clusters,
each containing f firewalls connected to p spine switches which
are themselves connected to l leaf switches. Each leaf connects r
racks, each containing s servers. The firewalls are connected to
д gateway routers shared among the clusters. The gateways are
connected to i ISPs providing Internet connectivity5. We consider
the following actual intents: The servers within each cluster can
talk to each other and to the internet. Internet can talk to the servers
in a special cluster called DMZ. DMZ cluster servers can talk to
servers in any other cluster. The set of possible paths are all shortest
paths allowed by the intents. We take a subset of possible paths
where only one random path among all allowed paths between any
two points is observed. We feed the observed paths to Anime with
feature HRE⟨Dft, 8⟩ where Dft is the hierarchy described above.
We run an experiment with c, f ,p, s,д, i = 2; r = 1 resulting in 75
observed paths (750 possible paths). Below is an example output for
k = 9 achieving precision and recall of 20% and 100%, respectively.
1:Server.Leaf.Spine.Firewall.Gateway.Internet,
2:Internet.Gateway.DMZFirewall.DMZSpine.DMZLeaf.DMZServer,
3:DMZServer.DMZLeaf.DMZSpine.DMZFirewall.Gateway.Cl1Firewall.Cl1Spine.Cl1Leaf.Cl1Server,
4:Cl1Server.Cl1Leaf.Cl1Spine.Cl1Leaf.Cl1Server, 5:Cl1Server.Cl1Leaf.Cl1Server, 6:Cl1Server,
7:DMZServer.DMZLeaf.DMZSpine.DMZLeaf.DMZServer, 8:DMZServer.DMZLeaf.DMZServer, 9:DMZServer

The imprecision is due to intents partly representing non-optimal or
impossible paths, e.g. 4 includes paths between servers connected to
the same leaf that go through a spine. Figure 5e shows the precision,
recall, and F-score of the results. F-score is near its peak value (0.75)
for k ∈ [20, 25], and falls as we move away from that range.
5The full topology and hierarchy of device labels are available in [14].

31

SOSR ’20, March 3, 2020, San Jose, CA, USA Ali Kheradmand

0 500 1000 1500 2000 2500

Limit on length of description (k)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Compass,R:0.26,T:0.3s

Anime,b:1e1,R:1,T:0.8s

Anime,b:1e2,R:1,T:7.0s

Anime,b:1e3,R:1,T:47.0s

Anime,b:1e4,R:1,T:63.0s

(a) ATT, 100% observation

0 100 200 300 400

Limit on length of description (k)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

N2T Compass, R:0.1, T<0.1s

Anime flat, b:1e3, R:1, T:2s

Anime hrchcl, b:1e3, T:4s

(b) Access cntrl., 100% obsrv.

0.0 0.2 0.4 0.6 0.8 1.0

Precision

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

N2T Compass, T<0.1s

Anime, b:1e3, T:38s

(c) ATT, 60% observation

0 100 200 300 400

Limit on length of description (k)

0.2

0.4

0.6

0.8

1.0

F
-s

co
re

N2T Compass, T<0.1s

Anime flat, b:1e3, T:0.5s

Anime hrchl., b:1e3, T:1.4s

(d) Access cntrl., 60% obsrv.

0 20 40 60

Limit on length of description (k)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on
/R

ec
al

l/
F

-s
co

re

F-score

Precision

Recall

b:1e2,T:132s

(e) DC HRE., 10% obsrv.
Figure 5: Anime experimental results. In the legends, b, R, and T , stand for the batch size, recall rate, and average runtime.

4.0.5 Performance. Anime’s performance is significantly influ-
enced by (1) value ofb, (2) number of input paths, and (3) complexity
of its features. (1): In the ATT experiments, 10x and 100x larger
values of b (compared to b = 10, 0.3s) incur 20x (7s) and 150x (47s)
slowdown, respectively. (2): For the same b, 40% reduction in input
size corresponds to 21% speedup (38 vs 47s) in ATT. (3): The hier-
archical feature caused 2x (4s vs 2s) slowdown in access control
experiment. Also the data center HRE experiment is 1.2K times (2m
vs. 0.1s) slower than an experiment with the same input size and
b for ATT as HRE join is computationally very expensive. Finally,
Anime’s performance is only slightly influenced by (4) the value of
k – e.g. 55s vs. 34s for min and max k in ATT, b = 1000.

Compass is faster than Anime as it is almost linear in the number
of inputs while Anime is almost quadratic for large values of b – e.g.
0.3s vs 46s in ATT, b=1000. Still, Anime’s performance is acceptable
given its intent inference quality. Here we focus on the intent
inference framework itself and leave performance optimizations
(e.g. by using other clustering techniques) as future work.
5 DISCUSSION
Expressiveness.Our formalism can express/infer important classes of
functional intents incl. reachability and waypointing under various
(temporal, topological, header, etc.) conditions. It is not designed to
explicitly infer negative behavior such as in isolation intents. This
can be alleviated by encoding negative behavior as positive behav-
ior, e.g. packet drop as reachability to a special node, or using labels
representing complemented sets (e.g non-firewall or !{TCP, UDP}).

Feature engineering and parameter tuning We do not necessarily
expect the end-user (network operator) to be in charge of these
tasks. A front-end layer betweenAnime and the end-user – designed
for specific application, network type, collector, etc. – can abstract
the low-level details, though the user may be given direct/indirect
(see below) control for better results. The layer can also employ
automatic techniques for feature selection/parameter tuning – e.g.
in summarization, it can suggest promising values for k using the
elbow method; for prediction, k can be tuned via cross-validation.

Incorporating user feedback. An interesting future direction is to
make the inference process more interactive: the system proposes
some intents, and the user selects intents that make sense or marks
the ones that do not seem correct. She may also directly provide a
negative intent, which can be used as explicit negative labels for the
paths represented by it. The system then infers new intents that
respect the user feedback for example by tuning label costs, etc.

Faulty behavior. Anime can be used to detect faulty behavior by
summarizing all forwarding behavior in a human-comprehensible
form. User can inspect the results for anomalous behavior. While
we did not address automatic anomaly detection, our framework is
useful for designing such a method, a major future work direction.

Real-world experiments and user study. We leave larger scale and
more real-world experiments as future work. In addition, although
we have devised objective measures of quality for intent inference,
the perceived quality is determined by the end-user. Therefore,
another important direction for future work is to perform user
studies on the usefulness of Anime for network operators.

6 RELATEDWORK
Nex2Text addresses the problem of summarizing network traffic
“as much as possible” [5]. Net2Text’s formal setup can be thought
of as a special case of Anime’s where the only allowed feature type
is of the form Tuple⟨Flat⟨S1⟩, ..., Flat⟨Sn⟩⟩. The authors assign a
score to each summary (= set of inferred intents in Anime) that
essentially awards representing more paths/traffic and using labels
other than Any. The score is proportional to precision and recall
in an ad-hoc way. The paper provides an approximate algorithm
(Compass) that, for a limit on the length of description, produces a
summary with max score. Unlike Anime, Net2Text cannot handle
hierarchies. As demonstrated in Sec. 4, this limitation significantly
affects the quality of inferred intents. Net2Text cannot handle entire
paths either. These limitations prevent Net2Text from effectively
representing intents such as the ones in our motivating examples.

Anime is also related to a work [11] aimed at finding forwarding
invariants by observing the reachability relation among network
devices for each header equivalence class [12] and intersecting this
relation over snapshots of the network obtained over time (e.g. after
link failures). The same basic idea has also recently been used in
Config2Spec [6]. These works are inspired by software spec. mining
literature, particularly dynamic invariant inference [8].Our work is
a generalization of this idea in the sense that in addition to consider-
ing invariants over time/snapshots, we also consider invariants over
other dimensions such as network devices, packet header fields,
etc. and infer the ones that best express all observations across all
dimensions. E.g. [6, 11] cannot infer any higher-level information
from a single snapshot like in Example 1, while Anime can.

7 CONCLUSION
Anime framework enables a novel approach towards bridging the
semantic gap between high-level network intents and low-level
behavior by inferring the former from the later. Our experiments
on various datasets demonstrate the effectiveness of our approach
in inferring high-quality intents with acceptable performance.

Acknowledgements. We especially thank Prof. Brighten God-
frey for his great guidance.We also thank Prof.Madhu. Parthasarathy,
Prof. Matthew Caesar, Santhosh Prabhu, our shepherd Muhammad
Shahbaz, and the anonymous reviewers of SOSR for their comments
and suggestions. This work is supported by NSF grant CNS-1513906.

32

Automatic Inference of High-Level Network Intents by Mining Forwarding Patterns SOSR ’20, March 3, 2020, San Jose, CA, USA

REFERENCES
[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations
for Networks. In POPL. 113–126.

[2] M Ali Aydın, A Halim Zaim, and K Gökhan Ceylan. 2009. A hybrid intrusion
detection system design for computer network security. Computers & Electrical
Engineering 35, 3 (2009), 517–526.

[3] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A general
approach to network configuration verification. In SIGCOMM. 155–168.

[4] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.
2016. Don’t mind the gap: Bridging network-wide objectives and device-level
configurations. In SIGCOMM. ACM, 328–341.

[5] Rüdiger Birkner, Dana Drachlser-Cohen, Laurent Vanbever, and Martin Vechev.
2018. Net2Text: Query-Guided Summarization of Network Forwarding Behaviors.
In USENIX NSDI. Renton, WA, USA.

[6] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin Vechev.
2020. Config2Spec: Mining Network Specifications from Network Configurations.
In USENIX NSDI.

[7] Nikolaj Bjørner, Garvit Juniwal, Ratul Mahajan, Sanjit A Seshia, and George
Varghese. 2016. ddnf: An efficient data structure for header spaces. In Haifa
Verification Conference. Springer, 49–64.

[8] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. Science of computer programming 69, 1-3 (2007),
35–45.

[9] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. 2011. Frenetic: A network programming
language. ACM Sigplan Notices 46, 9 (2011), 279–291.

[10] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique
Vázquez. 2009. Anomaly-based network intrusion detection: Techniques, systems
and challenges. computers & security 28, 1-2 (2009), 18–28.

[11] Alexander Horn and Ali Kheradmand. 2019. Network Analysis, US Patent
10,439,926 B2.

[12] Alex Horn, Ali Kheradmand, and Mukul R Prasad. 2017. Delta-net: Real-time
Network Verification Using Atoms. In NSDI. 735–749.

[13] Alex Horn, Ali Kheradmand, and Mukul R. Prasad. 2019. A Precise and Expressive
Lattice-theoretical Framework for Efficient Network Verification. In 2019 27st
IEEE International Conference on Network Protocols (ICNP). IEEE.

[14] Ali Kheradmand. 2020. Anime supplemental material. https://tinyurl.com/
anime-supp-sosr20

[15] Ali Kheradmand and Grigore Rosu. 2018. P4K: A Formal Semantics of P4 and
Applications. CoRR abs/1804.01468 (2018). arXiv:1804.01468

[16] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P Brighten
Godfrey. 2013. VeriFlow: Verifying network-wide invariants in real time. InNSDI.

[17] Fionn Murtagh and Pierre Legendre. 2014. Ward’s hierarchical agglomerative
clustering method: which algorithms implement Ward’s criterion? Journal of
classification 31, 3 (2014), 274–295.

[18] Animesh Patcha and Jung-Min Park. 2007. An overview of anomaly detection
techniques: Existing solutions and latest technological trends. Computer networks
51, 12 (2007), 3448–3470.

[19] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and
Matthew Caesar. 2020. Plankton: Scalable network configuration verification
through model checking. In NSDI.

[20] Santhosh Prabhu, Mo Dong, Tong Meng, P Godfrey, and Matthew Caesar. 2017.
Let me rephrase that: Transparent optimization in sdns. In SOSR. 41–47.

[21] Santhosh Prabhu, Ali Kheradmand, Brighten Godfrey, and Matthew Caesar. 2017.
Predicting Network Futures with Plankton. In APNet. ACM, 92–98.

[22] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya
Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang.
2015. Pga: Using graphs to express and automatically reconcile network policies.
In ACM SIGCOMM Computer Communication Review, Vol. 45. ACM, 29–42.

[23] Shambwaditya Saha, Santhosh Prabhu, and P Madhusudan. 2015. NetGen: Syn-
thesizing data-plane configurations for network policies. In SOSR. ACM, 17.

[24] Alexander G Tartakovsky, Aleksey S Polunchenko, and Grigory Sokolov. 2013.
Efficient computer network anomaly detection by changepoint detectionmethods.
IEEE Journal of Selected Topics in Signal Processing 7, 1 (2013), 4–11.

[25] Wenxuan Zhou, Jason Croft, Bingzhe Liu, and Matthew Caesar. 2017. NEAt:
Network error auto-correct. In SOSR. 157–163.

33

https://tinyurl.com/anime-supp-sosr20
https://tinyurl.com/anime-supp-sosr20
http://arxiv.org/abs/1804.01468

	Abstract
	1 Introduction
	2 Motivation
	2.1 Illustrative Examples
	2.2 Applications

	3 Anime Framework
	3.1 Measures of quality
	3.2 Formal setup
	3.3 Feature types library
	3.4 Solving the intent inference problem

	4 Evaluation
	5 Discussion
	6 Related Work
	7 Conclusion
	References

