
Towards Transforming OpenFlow Rulesets to Fit Fixed-Function
Pipelines

Richard Sanger

University of Waikato

rsanger@wand.net.nz

Matthew Luckie

University of Waikato

mjl@wand.net.nz

Richard Nelson

University of Waikato

richardn@waikato.ac.nz

ABSTRACT
OpenFlow feature support differs between devices due to device-

specific hardware constraints. OpenFlow places the burden of ad-

dressing these differences on the controller, which increases de-

velopment cost and restricts device interoperability. This paper

investigates reducing this burden by algorithmically transforming

an existing ruleset to fit an incompatible fixed-function pipeline

to improve device interoperability. Existing rule-fitting schemes in

the literature require metadata to link rules between tables into a

path through the pipeline, but not all pipelines support metadata.

We developed a novel approach that does not rely on any partic-

ular pipeline features, like metadata, and considers the pipeline’s

constraints, including both the matches and actions available. This

paper presents our implementation, including ruleset preprocessing

techniques, methods of transforming rules, and how we use a par-

tially constrained boolean satisfiability problem to select from these

transformations and build the final ruleset. While future work re-

mains towards real-world deployment, our approach demonstrates

fitting rulesets to fixed-function pipelines without metadata is fea-

sible, and our techniques to reduce the size of the problem are

beneficial.

CCS CONCEPTS
•Networks→Programming interfaces; Programmable networks;
• Theory of computation→ Constraint and logic programming.

1 INTRODUCTION
Fixed-function pipelines remain common in industry because all ma-

jor network vendors continue to maintain a range of network hard-

ware based on both fixed-function and programmable pipelines [16,

25]. To program a fixed-function pipeline, an OpenFlow controller

must be aware of the layout and function of tables in the pipeline

because each table is specialized. For example, Figure 1 shows

a typical fixed-function switching table, which can only match

the Ethernet destination and the VLAN of a packet and apply a

forwarding destination. Currently, most methods of supporting

fixed-function pipelines require a developer to write code to tar-

get every new pipeline, which is time-consuming and error-prone.

In state-of-the-art production controllers, developers write device
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Figure 1: The rule-fitting problem. An OpenFlow controller
cannot directly install an existing ruleset if it does not fit the
target pipeline. The rule-fitting solver transforms the rule-
set to fit the target pipeline.

drivers to transform high-level objectives from applications into

device-specific rules [26]. Researchers have suggested other ap-

proaches including software and hardware developers agreeing on

a common virtual pipeline between controller and switch [9, 28]

which requires the hardware manufacturer write the device driver;

the development of high-level languages which compile to low-

level languages including OpenFlow [21, 23, 27], but not specific

devices; and algorithmic methods of converting existing rulesets to

fit specific device pipelines [18, 19].

Our research expands on that last category, the rule-fitting ap-
proach. The rule-fitting approach does not require modification to

either the OpenFlow application or switch. It thus allows a net-

work operator to deploy an otherwise incompatible application to a

switch easily. Figure 1 shows, by example, the rule-fitting problem.

The rule-fitting solver has split the match and action components

of each existing rule between the two tables in the target pipeline

in a way that preserves the original forwarding behavior. Previous

approaches to the problem, such as FlowAdapter [18] and FlowCon-

vertor [19], create paths through the target pipeline linked using

metadata and put all actions in the final rule of this path. This ap-

proach fails in pipelines that do not support metadata, or support a

restricted set of actions for rules in the final table.

We contribute a novel rule-fitting approach which we designed

and implemented to target complex fixed-function pipelines that

https://doi.org/10.1145/3373360.3380844
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lack metadata support and restrict actions. Our high-level design

considers the rule-fitting problem in two parts, (1) generating pos-

sible transformations of each rule and (2) finding a combination of

these transformations without conflicts. Additionally, we present

new techniques that reduce the problem size, including a compres-

sion method, which reduces the size of the input ruleset, and a

means to filter out transformations that are likely to conflict early.

We demonstrate our approach can fit rulesets in synthetic scenarios

where the target pipeline does not support metadata and restricts

the matches and actions available to a rule. We release an open-

source implementation to transform OpenFlow 1.3 rulesets [1] and

our evaluation artifacts [2].

This paper is structured as follows; §2 introduces pertinent de-

tails of OpenFlow, the Broadcom OF-DPA pipeline, and Table Type

Patterns (TTPs). §3 presents our high-level algorithm design. §4

details transforming a rule to fit a pipeline and §5 details select-

ing a valid combination of these transformations. §6 evaluates our

technique and discusses real-world limitations. Finally, §7 provides

related work, and §8 concludes.

2 BACKGROUND
2.1 OpenFlow 1.3 Forwarding Model
The OpenFlow 1.3 forwarding model presents a multi-table pipeline,

in which all packets are processed by rules in the first table and

follow a path through subsequent tables specified by the goto-

table instructions of matching rules. Each table contains a priority-

ordered list of match-action rules, where each rule specifies the

set of packets to match and the corresponding actions to apply.

A switch finds the highest-priority matching rule in a table and

applies its actions. A rule canmatchmultiple values of a header-field

by masking which bits of a field the match considers. OpenFlow

defines metadata as a special header-field associated with a packet

to carry information between tables which rules can match and

modify. A controller may use metadata to identify the last rule that

processed a packet to create paths through the pipeline.

The actions available to an OpenFlow rule include forwarding a

packet and modifying its header-fields. A rule can specify actions

in three different ways: apply-actions, write-actions, and indirectly

via groups. A switch executes apply-actions immediately, and subse-

quent tables see the modified packet. A switch adds write-actions to

an action-set carried with each packet, which the switch executes

on encountering a rule without a goto instruction, i.e. the end of

the pipeline. An action-set can be overwritten or cleared by subse-

quent rules. Rather than adding actions directly to a rule, OpenFlow

allows multiple rules to reference a group that contains the desired

actions. When a switch is executing actions and encounters a group

action, it executes the group referenced. OpenFlow groups contain

buckets; each bucket is a set of actions which the switch executes

on a copy of the current packet.

2.2 The OF-DPA Fixed-Function Pipeline
We introduce the Broadcom OpenFlow Data Plane Abstraction

(OF-DPA) pipeline [5] as a real-world example of the constraints

that are present in a fixed-function pipeline. Broadcom’s OF-DPA is

an OpenFlow 1.3 interface for programming their switching chips.

Broadcom’s switching chips are popular merchant silicon, with an
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Figure 2: Nine of the 33 tables that OF-DPA2.0 exposes; these
support bridging and routing.

80% market share [12], which many vendors use, including Edge-

Core, Quanta, Pica8, Dell, Cisco, and HPE [16, 25]. The OF-DPA

pipeline presents specialized tables to efficiently perform funda-

mental network operations, including switching and routing. The

OF-DPA pipeline contains one general table, the policy ACL table,

which has the most well-rounded OpenFlow support compared

to all other tables in the pipeline. However, the ACL table has a

limited rule capacity, due to supporting wide maskable matches, an

expensive combination to support in hardware [13, 20].

The OF-DPA pipeline has five key features that present chal-

lenges to rule-fitting algorithms.

2.2.1 Restricted Matches and Actions. The tables in fixed-function

pipelines are designed to support network functions as cheaply

as possible, by using specialized tables that only support narrow

exact matches and a subset of actions. Figure 2 shows the OF-DPA

2.0 bridging and routing pipeline [6]. For example, the termination

MAC table matches the Ethernet destination of a packet to deter-

mine if it should be routed, so that the routing tables do not match

the Ethernet destination and, therefore, have a narrower match.

Correctly splitting forwarding logic across specialized tables is

difficult due to the limits these tables impose on rules.

2.2.2 Prescribed Pipeline. OF-DPA prescribes that rules must al-

ways goto a specific table next. For example, a rule-fitting algorithm

cannot install a routing rule in the routing table and end pipeline

processing, instead the rule must direct packets to the ACL table.

This is challenging as a rule-fitting algorithm must ensure that the

ACL rules do not unintentionally override this routing decision.

2.2.3 No Metadata Support. OF-DPA does not support OpenFlow

metadata. This adds difficulty to the rule-fitting problem as it limits

the ability to carry context with a packet through the pipeline, such

as the last rule matched.

2.2.4 Overwrites the Action-Set. As Figure 2 shows, the policy ACL
table is at the end of the OF-DPA pipeline; after the Routing and

Bridging tables that support forwarding decisions. In this design, a

controller must add rules to the forwarding tables with a forward-

ing decision as a write-action, regardless of whether the controller

wants to forward all matching packets. This forwarding decision is

carried in each packet’s action-set. To apply policy, the controller

must install a rule in the ACL table that clears or overwrites the

forwarding decision in the corresponding packet’s action-set. This
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complicates rule-fitting. Consider a policy rule which drops pack-

ets; the rule-fitting solver must first install rules with placeholder

forwarding actions in the forwarding tables, and then install a rule

in the ACL table to clear the action-set and drop the packets.

2.2.5 No Direct Output Actions. The OF-DPA pipeline does not

support output actions in the write-actions or apply-actions of a

rule. Instead, to output a packet, a rule must include a group action

that, in turn, contains the output action. This requires a rule-fitting

solver to interpret groups and move output actions into groups.

2.3 Table Type Patterns
A Table Type Pattern (TTP) [9] is a machine and human-readable

description of a logical OpenFlow pipeline, most often encoded

in JSON. A TTP describes the types of rules the pipeline supports

in a table, the header-fields a rule can match, and the instructions

and actions a rule can apply. Additionally, a TTP lists built-in rules

which describe the default behavior of a pipeline, such as default

table-miss behavior. A TTP also describes the types of groups the

pipeline supports, and the actions available to these groups.

A TTP comprehensively describes the requirements of a pipeline.

Examples include the match and actions a rule requires, the maska-

bility of a match (exact only, wildcard, prefix, or arbitrarily mask-

able), valid next tables, and restrictions on the value of a match or

action. Examples of a restricted value include an output action only

being able to output to the controller, or an Ethernet match that

must match a multicast address.

Adoption of the TTP standard is limited; few vendors publicly

provide TTP representations of their pipelines. However, theOF-DPA

pipeline includes a TTP. We created our own TTP library and tools

for this research because there were no existing tools available to

verify that a rule fits a TTP or to fit a rule into a TTP.

3 HIGH-LEVEL ARCHITECTURE
Figure 3 shows a design overview of our rule-fitting solver. The

rule-fitting solver takes two inputs: (1) a description of forwarding

behavior as an OpenFlow 1.3 ruleset [10] and (2) a description of

the target pipeline as a TTP [9]. The rule-fitting solver returns an

OpenFlow 1.3 ruleset that is compatible with the target pipeline and

has forwarding equivalent to the input ruleset. The solver has two

main stages, where each stage is a separate problem with unique

challenges. The first stage transforms individual rules into the target

pipeline, while the second stage searches for a combination of these

transformed rules with the desired forwarding.

In the first stage, ruleset preprocessing converts the input ruleset

to a single-table (§4.1.1), removes unreachable rules (§4.1.2), and

compresses the ruleset into a smaller set of representative rules

(§4.1.3) to simplify the rule-fitting problem. Using this preprocessed

ruleset, the solver generates a comprehensive set of transformations

for each input rule with the same isolated forwarding behavior in

the target pipeline. A transformation maps an input rule to place-
ments, aka rules, in the target pipeline. This step addresses pipeline

complexities, such as moving actions between apply-actions, write-

actions, and groups and adding placeholder actions to traverse the

pipeline (§2.2.4).

The second stage of the solver (§5) builds the final ruleset by

selecting one transformation to represent each input rule, which is

Input Ruleset Target Pipeline

§4.1 Preprocess Ruleset

§4.2 Find Transformations

§5.2 Build Initial SAT Problem

§5.3 Run SAT Solver

Solved? Unsolvable

N

§5.3 Build Candidate Ruleset

Y

Equivalent?

Solution Ruleset

Y

§5.4 Refine SAT Problem

N

Stage 1

Preprocessing a
ruleset and

transforming rules

Stage 2
Finding a valid combination

of transformations

Figure 3: The design of our rule-fitting solver. The first stage
preprocesses the input ruleset and transforms each input
rule, in isolation, into the target pipeline. The second stage
produces a solution ruleset with a combination of these
transformations that has the same forwarding behavior as
the input ruleset.

difficult as their placements often conflict. Conflicts are caused by

shadowing: when two placements in the same table match a com-

mon set of packets, which prevents these packets from reaching the

lower priority rule. A conflict occurs when one placement shadows

another placement with different actions and results in incorrect

overall forwarding behavior. Existing work uses metadata to avoid

such conflicts [11, 18, 19, 27]; however, not all pipelines support

metadata (§2.2.3). Note, not every instance of shadowing causes

incorrect forwarding behavior, in-fact shadowing is needed in all

non-trivial OpenFlow rulesets.

Naïvely checking all combinations of transformations is intractable

for non-trivial problems. So the second stage uses a partially con-

strained boolean satisfiability (SAT) problem to generate combina-

tions likely to have the correct forwarding for further verification.

We were unable to fully constrain the SAT problem to return only

correct combinations, as our attempts to do so all amounted to

checking all combinations. So instead, the second stage first iden-

tifies placements that we know will conflict or be redundant and

builds an initial SAT problem that disallows these conflicts and
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redundancies (§5.2). Next, it runs the SAT solver, which returns

either a combination of transformations or that the problem is un-

solvable. From these transformations, the rule-fitting solver builds

and verifies the candidate ruleset for equivalence with the input

ruleset (§5). If equivalent, the candidate ruleset is a solution to the

rule-fitting problem and is returned. Otherwise, our method adds

additional constraints to the SAT problem by analyzing forwarding

conflicts (§5.4), before rerunning the SAT solver.

4 PREPROCESSING RULESETS AND
TRANSFORMING RULES

This section details the first stage of the rule-fitting solver, trans-

forming OpenFlow rules. Transforming rules includes preprocess-

ing the input ruleset to reduce the complexity of the problem (§4.1),

and transforming each rule in isolation into placements (rules) in

the target pipeline (§4.2) with equivalent forwarding behavior. The

placements found in this phase of the solver are used by the second

stage (§5), which finds a combination of these placements that do

not conflict with each other.

4.1 Ruleset Preprocessing
Before finding transformations for rules, the solver preprocesses

the ruleset to simplify the problem. The solver first converts the

ruleset to a single table, then removes unreachable rules, and finally

compresses the ruleset.

4.1.1 Conversion to a Single-Table. To simplify the problem, the

solver first converts the multi-table input ruleset to an equivalent

single-table ruleset. A single-table ruleset represents each path

through the input ruleset as a single rule containing the entire

forwarding decision. Single-table input simplifies the rule-fitting

problem because the solver only needs to consider splitting rules

across tables, compared to a multi-table input where the solver

must consider combinations of both merging and splitting rules.

There is no additional overhead to convert the ruleset to a single-

table because we use the library from [22] to verify the equivalence

of our result, which already requires conversion to a single-table.

A single-table ruleset typically has more rules than the original

multi-table ruleset as it is the Cartesian product of these tables, so

the solver has more rules to fit. However, in practice, we find the

ruleset compression (§4.1.3) preprocessing step reduces the number

of rules to alleviate this issue.

4.1.2 Removing Unreachable Rules. At first glance, every rule in

the input ruleset has a purpose, and therefore, the solver must

represent every rule in the output ruleset. However, this is an

incorrect assumption because rulesets may contain unreachable

rules. Conversion to a single-table commonly results in unreachable

rules with action combinations that the solver cannot place. Besides

making a problem solvable, eliminating unreachable rules also

improves the performance of the solver because there are fewer

rules to consider. A rule is unreachable when higher-priority rules

prevent any packets from reaching the rule, i.e. the rule is fully-

shadowed.

To find unreachable rules, the solver considers the single-table

representation of the input ruleset in descending priority order and

adds the packets each rule matches to a set representing the packets

matched by all higher-priority rules. This set begins empty. The

solver checks if higher-priority rules fully-shadow the rule by calcu-

lating the union of the set built so far with the set of packets the rule

matches. If the resulting set is unchanged, this rule is unreachable,

and the solver removes the rule; otherwise, the solver keeps the

rule. Our implementation uses Binary Decision Diagrams (BDDs)

to represent sets of packets efficiently for this calculation [22].

4.1.3 Ruleset Compression. Ruleset compression is a novel tech-

nique we developed to reduce the size of the input ruleset to the

rule-fitting problem. Most non-trivial rulesets will contain multiple

rules that perform the same network function, for example, a ruleset

may contain a forwarding rule for every host learned. Intuitively,

such rules will be similar to each other, as they come from the

same code path in the controller, and the rule-fitting solver should

fit them to the same place in the target pipeline. The idea behind

compression is to select one representative rule to replace a group

of similar rules to reduce the size of the ruleset.

The compression algorithm first creates coarse groups of ‘similar’

rules which have the: (1) same match mask (i.e. match the same

bits of the packet header), (2) same action types, and (3) same

priority. Next, the algorithm ensures these groups represent the

relationships between the rules they contain by ensuring all rules

in a group have the same inter-group dependencies. A rule holds a

dependency with another rule when their matches overlap (shadow)

and holds an inter-group dependencywith the corresponding group.

The compression algorithm iteratively splits groups where rules

hold different inter-group dependencies until all rules within the

same group hold the same inter-group dependencies. Finally, the

algorithm builds the compressed ruleset by considering each group

in priority ascending order and picking one rule to represent each,

which, for each inter-group dependency, holds a dependency with

the corresponding rule picked so far (if any). This process is similar

to the abstraction refinement in Bonsai [4].

A compressed ruleset contains fewer rules than the original, so it

is faster for the rule-fitting solver to fit, but it has different forward-

ing behavior. Therefore, any solution must be mapped back to the

original ruleset. The solver maps the solution back to the original

ruleset by applying the solution found to fit each representative

rule back to the original rules in the same group.

4.2 Finding Rule Transformations
Given an input ruleset as a single-table and a TTP, the solver finds

ways to transform each input rule into the target pipeline. A trans-

formation is a mapping from one input rule to one or more place-

ments in the target pipeline. A transformation’s placements must

have forwarding equivalent to the input rule for the packets that

the input rule matches. The next stage of the solver is responsible

for selecting a combination of transformations, one per input rule,

which do not conflict with each other and result in the correct

overall forwarding behavior.

4.2.1 Generating Rule Placements. Our algorithm begins by gener-

ating all possible placements of an input rule into the target TTP on

a per-table basis. These placements are building blocks that we use

next to build transformations. Our algorithm generates a placement

for all combinations of the input rule’s matches and actions that
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a table supports. There are two resulting types of placements: full

and partial. A full placement has the same match and actions as

the input rule; otherwise, it is a partial placement. A full placement

will match the same packets and apply the same forwarding as the

original rule. However, partial placements, if missing a match, will

match more packets than the original, and if missing an action, will

apply different forwarding behavior.

Beyond trying to place actions precisely as they appear in the

input rule, we consider variations on these actions. Because some

pipelines only support actions in one of apply-actions, write-actions,

or groups (§2.2.4 & §2.2.5), we allow actions to move between apply-

actions, write-actions, and groups when generating placements.

Because some pipelines require placements which clear the action-

set (§2.2.4), we generate variations of placements both with and

without the clear-actions instruction. To explore all paths through

the pipeline (§2.2.2), we generate variations of placements with all

tables they can go to next, including no next table.

4.2.2 Placement Priorities. The relative priorities of rules deter-
mine which rule the switch chooses to process a packet. The prepro-

cessed single-table input, for which the solver finds transformations,

is priority-ordered and contains shadowing. The placements the

solver generates retain the same priority as the input rule. §4.2.6

provides a mechanism to lower these priorities when a transforma-

tion builds a path through an unsuited table, often via a table-miss

rule which does not modify packets, while still allowing more spe-

cific rules which use the functionality of that table to override the

table-miss rule.

4.2.3 A Direct Transformation. A direct transformation maps an

input rule to one placement in a table with the same matches and

actions. The solver generates a direct transformation for each full

placement of an input rule. The solver can find multiple direct

placements in the same table due to the action variations.

Direct placements find placements for policy rules, such as drop-

ping a traffic class, because they can generate a placement in an

ACL table independent of how packets reach that table. The next

stage of the solver determines a combination of transformations

that directs the correct traffic to reach such a placement.

4.2.4 A Split Transformation. The method in §4.1.1 converted the

original ruleset to a single-table by merging rules spread across

different tables into one rule. A split transformation is the oppo-

site of this merge operation; it splits an input rule into multiple

placements which form a path through the target pipeline. Figure 4

shows how rule a○ can be split into placements b○ and c○. The

individual placements of a split transformation will often match

a broader set of packets than the original rule and apply only a

portion of the original actions. Consider the split transformation

shown in Figure 4, a○ is split into b○ and c○, both of which match a

broader set of packets than the original rule. Therefore, placement

c○ applies the output action from a○ to all IP packets; however, a○
only matched packets that were both IP packets and had a VLAN

of 2. The solver’s next stage determines a combination of transfor-

mations that avoids these broad placements conflicting with other

placements.

Single-Table Input Ruleset
VLAN IpDst Actions

1 1.0.0.0/8 PopVlan, Out:1

2 1.0.0.0/8 PopVlan, Out:1

1 2.0.0.0/8 PopVlan, Out:2

2 2.0.0.0/8 PopVlan, Out:2

1 0.0.0.0/0 PopVlan, Out:10

a○2 0.0.0.0/0 PopVlan, Out:10

Split
y xMerge

Table 0
VLAN Actions

1 PopVlan, Goto:1

b○2 PopVlan, Goto:1

Table 1
IpDst Actions

1.0.0.0/8 Out:1

2.0.0.0/8 Out:2

c○ 0.0.0.0/0 Out:10

Figure 4: A demonstration of splitting a single-table input
ruleset to fit a multi-table pipeline. A split transformation
fits a○ into the target pipeline as two placements b○ and c○.
Whereas, joining b○ and c○ to form a○ is themerge operation
preprocessing uses to create a single-table.

Placed Portion Unplaced Portion

VLAN Actions VLAN IpDst Actions

2 PopVlan, Goto:1 — 0.0.0.0/0 Out:10

2 Goto:1 — 0.0.0.0/0 PopVlan, Out:10

2 PopVlan — 0.0.0.0/0 Out:10

2 — — 0.0.0.0/0 PopVlan, Out:10

— PopVlan, Goto:1 2 0.0.0.0/0 Out:10

— Goto:1 2 0.0.0.0/0 PopVlan, Out:10

— PopVlan 2 0.0.0.0/0 Out:10

— — 2 0.0.0.0/0 PopVlan, Out:10

Figure 5: Partial placements of rule a○ into Figure 4 Table
0. There are no full placements because all placements have
unplaced portions. Rule a○ matches VLAN:2, IpDst:0.0.0.0/0
and applies the actions PopVlan, Out:10. Where Table 0 can
optionally match VLAN, apply a PopVlan action, and goto-
table 1. The solver generates partial placements with Goto:1
as a variation it tries.

The solver generates split transformations using the partial place-

ments of the input rule. Figure 5 shows an example of partial place-

ments of a○ into Figure 4 Table 0. The solver finds all valid paths

through these partial placements, starting from a placement in the

first table, following each placement’s goto instruction, and select-

ing one rule in each table following. If a path applies the same

forwarding as the original rule, for the packets the original rule

matched, we say the path has the same isolated forwarding and

generate a split transformation.

4.2.5 Filtering Split Transformations. The number of paths that the

solver checks when generating a split transformation is the product

of the partial placements it finds for each table. The number of

paths to check is large for long pipelines. Reducing this number

without excluding valid solutions benefits solver performance.
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Input Ruleset
IpDst TcpDst Actions

d○ 192.168.1.0/24 22 Drop

e○ 192.168.1.0/24 — Out:1

Target Pipeline Requirements
Routing Table (0): Must match an IpDst subnet. Actions can add

an output to the action-set;must goto ACL table.

ACL Table (1): Can include any arbitrary match. Actions can
clear the action-set.

Split Transformations (per-rule)
Routing Table (0)

IpDst Apply-Actions

d○ 192.168.1.0/24 Goto:1

e○ 192.168.1.0/24 Out:1, Goto:1

ACL Table (1)
IpDst TcpDst Clear-Actions

192.168.1.0/24 22 Yes

192.168.1.0/24 — No

Figure 6: An example where d○’s split transformation place-
ment needs a placeholder action to avoid conflicting with
e○’s placement in the routing table. If the solver was to in-
stall both transformations, d○’s placement in the routing ta-
ble takes priority over e○’s placement. Therefore the default
forwarding decision in e○ is lost, and forwarding is incorrect.
However, if d○’s placement in the routing table was replaced
with e○’s placement, then the forwarding is correct.

Instead of building paths with all possible partial placements, the

solver only builds paths using the partial placement with the most

specific match for each unique set of actions per table. Consider the

partial placements shown in Figure 5. Because the VLAN match is

optional in the target pipeline, each placement has a variation with

and without the VLAN match. The variations without the VLAN

will match packets with any VLAN, and are more likely to conflict

with other placements. Therefore, the solver only builds paths with

the first four partial placements in Figure 5, which include the

VLAN match.

More precisely, the solver filters partial placements before gen-

erating split placement paths. The solver removes any partial place-

ments which have the exact same actions as another and where the

match is a superset of the other placement’s match. The superset

constraint ensures the solver does not remove placements where

the match fields are orthogonal.

4.2.6 Adding Additional Placeholder Actions. As discussed in §2.2.4,
some fixed-function pipelines use the packet’s action-set to store

the default forwarding decision and require a rule in a later table

to override this decision. Figure 6 shows a simplified portion of the

OF-DPA pipeline, which demonstrates why the solver must gener-

ate split transformations in which placements include a placeholder

action. Consider the single-table input ruleset shown; it contains

two rules: d○ a policy rule, and e○ a forwarding rule. The policy

rule shadows the forwarding rule for TCP destination port 22 and

drops these packets. Because the routing table can only match the

IPv4 destination, d○ has no forwarding decision (output action),

and split transformations maintain their original priority; the place-

ment of d○ completely shadows the placement of e○ in the routing

table and drops all packets. The next stage of the solver picks one

transformation per input rule. Thus, if this stage of the solver only

found the two transformations listed, the next stage must pick both,

which results in the wrong overall forwarding behavior.

The solution is to substitute d○’s placement in the routing table

with e○’s placement. A substitution is acceptable if it retains the

same isolated forwarding as the input rule. Note that in this simple

case, a direct transformation of a○ in the ACL table also solves this

problem.

In order to avoid such conflicts, the rule-fitting solver generates

new split transformations by substituting a placement in a split

transformation with a placement from another input rule. A sub-

stitution is valid if the placement: (1) is in the same table, (2) goes

to the same table, (3) has the same match as the original place-

ment, and (4) results in the same isolated forwarding as the input

rule when substituted into the existing split transformation. This

process retains the original, and normally lower, priority of the

substituted rule, and will substitute placements which only differ

by priority. Lowering the priority in this way makes intuitive sense

as d○ can only install the IPv4 part of its match in the routing table,

so it should do so at a lower-priority to allow a placement with a

more specific match to override d○. That is, lowering the priority

reverses the process of merging a ruleset into a single-table, which

adds the rules’ priorities along a path to form a single rule.

Our solver only considers deviations of one placement changed

from the original split transformation. Doing otherwise would in-

crease the space the solver searches for possible solutions, but unfor-

tunately, results in a substantial expansion in compute time. Future

research is required to find more efficient ways of generating and

representing these equivalent variations of split transformations.

5 FINDING A VALID COMBINATION OF
TRANSFORMATIONS

The first stage of our rule-fitting solver outputs a list of possible

transformations for each input rule. In isolation, each transforma-

tion applies the correct forwarding. However, when our solver

combines these transformations, their placements can conflict. For

example, when a placement shadows another or when a place-

ment is in an unreachable table. The main challenge is that for

any non-trivial input ruleset, naïvely verifying all combinations is

intractable. Our method uses a SAT problem to return the combi-

nations of transformations where valid solutions are most likely.

§5.1 introduces the SAT problem and provides an overview of our

implementation. §5.2 details how our solver creates an initial set of

SAT constraints to remove combinations that are very unlikely to

result in the correct forwarding. The rule-fitting solver gives these

constraints to the SAT solver, which returns a combination of trans-

formations. §5.3 describes how our solver builds the corresponding

candidate ruleset and checks the forwarding equivalence against

the input ruleset. If a candidate is not equivalent, §5.4 describes

how our solver adds constraints for the specific placements with

conflicting forwarding, then reruns the SAT solver.

5.1 Boolean Satisfiability (SAT)
Consider the boolean expression (A ∧ B) ∨C . When A = T , B = T ,
andC = F , this expression is said to be satisfied because it evaluates

to true. The SAT problem asks if it is possible to satisfy a boolean
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Figure 7: An overview of the SAT expression the rule-fitting solver constructs. Elliptical nodes represent boolean variables.
Labeled edges describe the relationship between variables. Groups describe the constraints between the enclosed variables.
Input rules are not variables in the SAT expression, but their transformations from the first stage of the rule-fitting solver are.

expression; therefore, to determine if an assignment of the variables

A,B, and C exists where the expression evaluates to true.

Our rule-fitting solver uses the SATisPy [15] library to build the

boolean expression in the de-facto standard DIMACS [7] format

and MiniSat 2 [8] as the SAT solver. Figure 7 shows an overview of

the SAT expression our rule-fitting solver builds. We designed the

SAT constraints to reduce the search space by preventing candidate

solutions that are duplicates or extremely likely to have incorrect

forwarding behavior. Direct and split transformations from the

first stage map directly to SAT variables. The following sections

logically define how our method derives all other variables and

constraints. The rule-fitting solver generates the majority of the

SAT clauses once, as initial constraints. The exception to this is the

refinements that the rule-fitting solver adds to each iteration (§5.4).

5.2 The Initial SAT Expression
This section details the initial constraints of the rule-fitting problem

and how our method encodes these into a SAT expression. Appen-

dix A lists the boolean and set operations we use in the following

sections to define clauses. The SAT solver returns solutions which

satisfy all clauses, i.e. clauses are logically AND’d together. The

order of this section follows Figure 7 from left to right.

5.2.1 Include a Transformation of Every Rule. After preprocess-
ing, the input ruleset does not contain any redundant rules, which

means a valid solution to the rule-fitting problem needs to repre-

sent every rule. Therefore, the rule-fitting solver needs to select

a transformation of every rule to create an equivalent ruleset. It

is generally wrong to pick more than one transformation. Place-

ments from two or more transformations in different tables are

likely to apply the wrong forwarding by incorrectly applying the

same action twice. Further, such placements in the same table are

redundant as a packet can only match one.

∀r ∈ ruleset : onehot

(
transformations of r

)
(1)

Therefore, the solver adds a constraint to pick exactly one transfor-

mation for each rule. For every input rule, r , Equation (1) creates a

clause using onehot to ensure all solutions contain precisely one

transformation, either direct or split.

5.2.2 Placement Variables. A transformation maps an input rule

to concrete placements in the target pipeline. In order to add con-

straints to these placements, we map transformations to their cor-

responding placements. It is common for multiple transformations

to map to the same placement, such as a split transformation using

a table-miss rule that passes packets through a table unaltered.

∀t ∈ transformations :

∀p ∈ placements of t : t → p (2)

Equation (2) links, using implication, each transformation t ,
to each corresponding placement, p. A placement p represents a

unique rule in the final ruleset with the same match, priority, table,

instructions, and actions.

∀p ∈ placements :

p →
∨

{t ∈ transformations where p ∈ placements of t} (3)

Equation (2) is not sufficient by itself, as a placement can be true

without any corresponding transformations selected. Equation (3)

adds a clause for each placement variable, p, to ensure it is true

only when at least one corresponding transformation, t , is true.

5.2.3 Disallow Same-Priority Conflicting Placements. OpenFlow
rules at the same priority with overlapping matches but with differ-

ent instructions (which include actions) have undefined forwarding

behavior [10] as it is unclear which takes priority.
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∀p1 ∈ placements,∀p2 ∈ placements where
p1 , p2 ∧

priority(p1) = priority(p2) ∧

table(p1) = table(p2) ∧

match(p1) ∩ match(p2) , ∅ ∧

instructions(p1) , instructions(p2) :

¬(p1 ∨ p2) (4)

Equation (4) shows the clauses the solver generates to disallow

such conflicts. The equation considers all pairs of placements at

the same priority with an intersecting match, and disallows any

combination with different instructions.

5.2.4 Disallow Placements with Conflicting Instructions. A switch

applies only the highest priority matching rule in a table to a packet.

Thus if a placement is fully-shadowed by a higher-priority place-

ment, the higher-priority placement must be a valid substitute for

the shadowed placement. The first stage of the solver generates

a new transformation for all valid substitutions when consider-

ing placements with placeholder actions (§4.2.6). Therefore, for all

valid substitute placements, the SAT solver will choose another

transformation with that placement.

∀plo ∈ placements,∀phi ∈ placements where
priority(plo ) < priority(phi ) ∧

table(plo ) = table(phi ) ∧

match(plo ) ⊆ match(phi ) ∧

instructions(plo ) , instructions(phi ) :

¬(plo ∧ phi ) (5)

Therefore, the rule-fitting solver adds clauses to disallow a combina-

tion of placements within the same table with the same match but

different instructions, including actions. For all conflicting, fully-

shadowed placements, plo , and the corresponding higher priority

rule, phi , Equation (5) creates a clause to disallow both placements

together. As a result, the final SAT expression is only satisfied when

all fully-shadowed placements have the same instructions as the

placement hit instead.

5.2.5 Require a Table-Miss Rule. In OpenFlow, a table-miss rule is

placed at the lowest priority in each table to match all packets not

matched by other rules. Rather than rely on default switch behavior,

we explicitly install a table-miss in all reachable tables. Requiring an

explicit table-miss rule reduces the search space because a ruleset

with an explicit table-miss rule with the switch’s default table-miss

action is equivalent to a ruleset without a table-miss rule, but are

different rulesets.

∀p ∈ {placements where p has a goto instruction} :

p → trx where trx represents the next table x

and
tr0 ▷ table 0 is always reached (6)

First, Equation (6) maps every placement to the corresponding table

it goes to, trx . Thus, when true, trx represents that packets reach

table x . Additionally, because a switch begins processing all packets

in the first table, its corresponding variable tr0 must always be true.

∀trx ∈ tables-reached :

trx →
∨

{p ∈ table-miss placements where table(p) = x} (7)

Second, Equation (7) requires that all reachable tables have a table-

miss rule.

5.2.6 Hit Placement Variables. A switch only applies the high-

est priority placement in a table. Therefore, if placement a fully-

shadows placement b, placement b does not affect forwarding.

Changing only these shadowed placements does not change for-

warding, so considering such cases is unproductive. Therefore, we

create hit placement variables in the SAT problem to track place-

ments that affect forwarding. Hit placements variables uniquely

define a candidate solution, which the method in §5.4 ensures the

SAT solver does not return again on subsequent iterations.

∀px ∈ placements :

{p0,p1...pn } ∈ placements where
match(px ) ⊆ match(pn ) ∧

table(px ) = table(pn ) ∧

priority(px ) < priority(pn ) :

(px ∧ ¬p0 ∧ ¬p1 ∧ ... ∧ ¬pn ) ↔ hx (8)

For each placement, px , Equation (8) maps the corresponding hit

placement variable hx to be true only when hit. px is hit when it

is true itself (i.e. selected for the candidate solution) and no higher

priority placements that fully-shadow it are true ({p0,p1...pn }).

5.2.7 Built-In Rules. Our method maps rules built into a pipeline,

as per the TTP, as direct placements that the SAT expression always

selects. Because built-in rules cannot be removed, our method in

§5.2.4 does not consider built-in rules to have conflicting instruc-

tions with other placements, as the only way to override a built-in

rule is with a placement with conflicting instructions.

5.3 Verifying the Candidate Ruleset
The rule-fitting solver gives the initial SAT expression to the SAT

solver, which either returns a solution or that the boolean expres-

sion is unsatisfiable. If unsatisfiable, the rule-fitting problem is

unsolvable. Otherwise, the SAT solver returns a solution with all

variables assigned to a concrete value, either true or false.

The rule-fitting solver collects all selected transformations and

builds the corresponding candidate ruleset. The solver then verifies

if the candidate ruleset has equivalent forwarding to the input

ruleset using the library from [22]. If forwarding is equivalent, the

rule-fitting solver has found a valid solution which it can return.

Otherwise, the candidate ruleset was not equivalent, so the rule-

fitting solver refines the SAT expression (§5.4) and reruns the SAT

solver. The rule-fitting solver repeats this process until it finds a

valid solution or determines the problem is unsatisfiable.
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Figure 8: The 5-table pipeline and the corresponding ruleset used in this evaluation. This 5-table simplification of the OF-DPA
pipeline retains most OF-DPA complexities, such as write-actions in the routing and switching tables. The TCP filtering table
can clear these write-actions. The lowest-priority table-miss rule in each table is built into the pipeline. In addition to what
is shown, rules in the routing table rewrite a packet’s Ethernet address; otherwise, tables support only the features, including
the specific next table, listed.

5.4 Refining the SAT Expression
This section defines the clauses the rule-fitting solver adds to the

SAT expression when the last candidate ruleset was invalid, before

rerunning the SAT solver.

5.4.1 Ensure a New Solution. As described in §5.2.6, the hit place-

ment variables represent a unique candidate ruleset. Once the SAT

solver returns a solution, the rule-fitting solver adds a clause to pre-

vent that same solution, i.e. combination of hit placements, again,

shown in Equation (9).∨{
∀h ∈ hit-placements :

¬h, if h = True
h, if h = False

}
(9)

5.4.2 Disallowing Forwarding Conflicts. Beyond calculating if a

candidate ruleset has equivalent forwarding, the verification pro-

cess also returns the set of packets that observe incorrect forward-

ing. For these packets, the rule-fitting solver creates a mapping from

the input rule which processed these packets to the correspond-

ing incorrect path, i.e. placements, in the candidate solution. At

least one placement must be from another input rule and shadows

packets from reaching a placement of the input rule. Thus, we add

a clause to prevent this conflict again in future solutions, which

reduces the overall search space.

∀(ri ,pathr ) ∈ forwarding conflicts :

Let t = selected transformation of ri

Let {h1...hn } = hit placements of pathr

¬(t ∧ h1 ∧ ...hn ) (10)

Equation (10) prohibits selecting the same transformation t with
the same conflicting hit placements {h1...hn } again. All new so-

lutions must either exclude a conflicting hit placement or select a

new transformation of the input rule, ri .

6 EVALUATION
This section presents an evaluation of our rule-fitting solver. We

first evaluate the effectiveness of ruleset compression and our SAT

constraints, separately, at bringing the rule-fitting problem down

to a tractable size. For this evaluation, we used two synthetic rule-

sets and pipelines, one of which we based on OF-DPA to capture

its complexities. Then we discuss the complexities of real-world

rulesets and pipelines and give insight into the weaknesses of our

approach.

TCP Filtering
Match: TcpDst
Apply-Actions: —
Miss: Goto Forwarding

Forwarding
Match: EthSrc, EthDst, InPort, IpDst
Apply-Actions: Output, Set EthSrc, Set
EthDst

Miss: —

Figure 9: The 2-table pipeline. A simple pipeline compatible
with the 5-table pipeline shown in Figure 8.We designed the
pipeline to contrast with the 5-table pipeline, such that con-
version between pipelines requires the extensive transfor-
mation of the ruleset.

6.1 Measurement Methodology
All performance testing was performed on a Ubuntu 16.04 machine,

with an Intel i7-4790@ 3.6Ghz (boost 4.0Ghz), with 8GB of RAM and

the Linux 4.15 kernel. Our rule-fitting solver implementation [1]

is a single-threaded Python application, which we ran on Python

2.7. We used a script to collect performance results and repeat each

test 10 times. Each test was preceded by a warm-up run to load

files the test accesses into memory. We report the mean along with

the 95% confidence interval (CI). The rule-fitting solver measures

its own total run-time and excludes the time to load Python and

supporting libraries, which took 0.6s. Internally, the solver uses

unordered data structures, and run-to-run may explore different

candidate solutions before finding a valid solution.

For this evaluation, we constructed two pipelines and corre-

sponding rulesets. We perform this analysis on these small rulesets,

as without all SAT constraints or ruleset compression, the size of the

problem grows immensely, and larger problems become intractable.

Figure 8 shows the first pipeline, the 5-table pipeline, which we

based on the OF-DPA bridging and routing pipeline. The main dif-

ference from the original OF-DPA pipeline is that we have removed

VLAN matches. We retain the other complexities of the pipeline.

Figure 8 also shows the ruleset we used to evaluate SAT constraints.

We crafted the other pipeline, the 2-table pipeline, shown in

Figure 9, with a contrasting table layout while still supporting

the same forwarding. This pipeline performs all forwarding in the

second table using apply-actions, unlike the 5-table pipeline, which

uses write-actions spread over multiple tables. To convert rules

between these two pipelines, the rule-fitting solver must make

significant transformations to the rules. For brevity, we omit the

equivalent 2-table ruleset and instead release it along with our

evaluation artifacts [2].
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Figure 10: The rule-fitting solver performance comparing
compressed vs. uncompressed rulesets when fitting the 5-
table ruleset back into the 5-table pipeline. In all cases, rule-
set compression significantly reduced the solver run-time.

6.2 Ruleset Compression Performance
To quantify the trade-off between the overhead of compressing

(§4.1.3) a ruleset and the resulting speed-up to the rule-fitting solver,

we ran an experiment to compare the performance of the rule-fitting

solver with and without compression for rulesets of different sizes.

The experiment compared the performance of fitting the 5-table

ruleset, after conversion to a single-table, back into itself (Figure 8).

We configured the solver to find the first valid solution. We changed

the size of the ruleset by varying the number of learned hosts. For

each host learned, we placed a corresponding rule in both the

Switching and Learning table. Figure 8 shows the ruleset with 3

hosts (...:0a, ...:0b, and ...:0c) learned.

Figure 10 plots the result of this experiment; 95% CIs are too

small to show, so the run-time is predictable for this experiment.

In all cases, we found that ruleset compression was beneficial and

reduced the overall solve time. With no hosts learned, solving took

86ms compressed compared to 213ms uncompressed, and with 50

hosts learned, 6.1s compared to 12min 38s.

6.2.1 Compression of Real-world Rulesets. Our synthetic test case
is a near best-case scenario. With 50 hosts learned, the uncom-

pressed ruleset as a single-table contained 2,721 rules (due to the

Cartesian product expansion of the tables) and compressed down

to just 10 rules. We have compared compression on two real-world

rulesets. The first ruleset was collected from a switch controlled

by Faucet [3] and contained 1,937 rules in the original multi-table

pipeline, 3,901 rules as a single-table, and 94 rules once compressed.

The second ruleset was collected from a router controller by Faucet

and contained 582 rules, 5,281 rules as a single-table, and 902 rules

once compressed. In both cases, compression significantly reduced

the size of the single-table ruleset; for the switch ruleset, compres-

sion removed 97.6% of the rules, and for the router, compression

removed 82.9% of the rules.

6.3 Effectiveness of SAT Constraints
This section presents an evaluation of the effectiveness of the SAT

constraints described in §5. We configured the solver to return

all solutions it could find and limited the solver to consider only

10,000 candidate solutions. Our evaluation started from the least

constrained SAT problem, picking one transformation per rule,

then cumulatively added the constraints from §5. In order, we begin

with: One Transformation (§5.2.1), then added, Placements (§5.2.2),
Placement Conflicts (§5.2.3 & §5.2.4), Table-Miss (§5.2.5), Hit Place-
ments (§5.2.6), and finally Forwarding Conflicts (§5.4.2) from the

refinement step. With only the one transformation constraint, the

solver naïvely tries all combinations of transformations; once we

added placements (and later hit placements), these define a unique
solution, which the SAT solver will not return again (§5.4.1).

Table 1 shows the performance results when converting the

5-table ruleset to the 2-table pipeline, and Table 2 shows the re-

verse direction. For both directions, we observed that adding SAT

constraints either significantly decreased the total solve time by

reducing the number of candidate solutions, or incurred negligible

overhead. Table 2 shows without constraints, the solver reached

the 10,000 candidate solution limit and took 13.3s, and with all

constraints, the solver verifies all 10 candidate solutions in 128ms.

Table 1 shows without constraints, the solver verified 16 candidate

solutions in 188ms, and with all constraints, the solver verified 4

candidate solutions in 135ms.

To verify that our SAT constraints only remove either invalid

or duplicate candidate solutions, we recorded the number of valid

solutions the solver found and how many of those were unique. We

found that our constraints successfully prevented the SAT solver

from returning the same candidate solution to be verified more

than once since the number of valid solutions equaled the number

of unique solutions when we added all constraints. We found that

our SAT constraints have not incorrectly removed valid solutions

since the number of unique solutions found remained constant

regardless of the constraints, with one exception, the first row of

Table 2. The experiment in the first row of Table 2, with only one

transformation constraint, reached the candidate solution limit, so

the solver only found seven unique solutions rather than ten.

6.4 Real-World Considerations
So far, we have evaluated against our handcrafted rulesets and

pipelines where we can be sure that a solution to the rule-fitting

problem exists. However, rule-world rulesets and pipelines bring

with them a scale and complexity that makes evaluation challeng-

ing. In the general case, it is impossible to know if a solution exists.

Due to the complexity of rule-world pipelines and rulesets, manu-

ally fitting a ruleset is unfeasible and algorithmically checking all

solutions is intractable. To give some perspective, the OF-DPA TTP

is over 12,000 lines of JSON, and real-world rulesets have thousands

of rules.

Real-world pipelines can also use non-standard OpenFlow exten-

sions. As an example, OF-DPA provides the VRF field as specialized

metadata to carry routing information. Also, the learning table

(shown in Figure 2) shares the same lookup table and mirrors the

rules in the bridging table. Our implementation does not utilize

non-standard extensions.

Fixed-function pipelines usually require redundant operations.

As an example, internally, the OF-DPA pipeline requires all packets

to include a VLAN header. A rule-fitting solver needs to know to

assign a VLAN to all untagged packets and then later pop it, even
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Timing (ms) Number of Solutions

SAT Constraints Stage 1 Stage 2 Solver

(Cumulative) Total Build SAT Solve SAT Verify Sln. Total Candidate Valid Unique

One Transformation 32 ±3% 6.7 ±4% 2,325 ±2% 10,960 ±1% 13,323 ±1% 10,000
a

8,229 7

Placements 32 ±5% 8.3 ±4% 60 ±16% 338 ±3% 439 ±3% 240 155 10

Placement Conflicts 31 ±2% 8.3 ±5% 19 ±12% 142 ±2% 200 ±2% 64 49 10

Table Miss 32 ±5% 8.7 ±5% 15 ±10% 131 ±3% 187 ±3% 49 49 10

Hit Placements 32 ±3% 10 ±16% 4.0 ±10% 88 ±7% 134 ±6% 10 10 10

Forwarding Conflicts 32 ±3% 9.0 ±4% 3.9 ±9% 84 ±3% 128 ±3% 10 10 10

a
The experiment was limited to the first 10,000 candidate solutions out of 4 million

Table 1: The performance of the rule-fitting solver converting from the 5-table ruleset to the 2-table pipeline when cumu-
latively adding SAT constraints. Each row shows a breakdown of the solver’s run-time and the total number of candidate
solutions, valid solutions, and, of those valid solutions, howmany were unique. Reading downwards, as we added constraints,
the time to build the SAT problem increased slightly; however, the number of candidate solutions and, therefore, the time
spent verifying candidates decreased. Overall, the reduced time spent verifying solutions dominated the increased time to
build the SAT expression resulting in better performance.

Timing (ms) Number of Solutions

SAT Constraints Stage 1 Stage 2 Solver

(Cumulative) Total Build SAT Solve SAT Verify Sln. Total Candidate Valid Unique

One Transformation 63 ±3% 5.6 ±5% 4.9 ±14% 188 ±3% 262 ±2% 16 1 1

Placements 60 ±0% 6.5 ±3% 6.2 ±6% 176 ±1% 248 ±1% 16 1 1

Placement Conflicts 60 ±1% 6.7 ±4% 2.1 ±6% 62 ±1% 130 ±1% 4 1 1

Table Miss 60 ±1% 7.2 ±4% 2.1 ±7% 62 ±1% 131 ±1% 4 1 1

Hit Placements 60 ±1% 7.8 ±3% 2.1 ±7% 62 ±2% 132 ±1% 4 1 1

Forwarding Conflicts 61 ±1% 7.8 ±2% 3.1 ±7% 63 ±1% 135 ±1% 4 1 1

Table 2: The performance of the rule-fitting solver converting from the 2-table ruleset to the 5-table pipeline comparing
different SAT constraints. After adding placement variables, all additional constraints failed to reduce the number of candidate
solutions. After which, the run-time increased slightly due to the overhead required to add SAT constraints.

when the original rule does not reference VLANs. As an example,

when fitting the Faucet switch ruleset described in §6.2.1 into the

OF-DPA pipeline, our solver completes after 5-10 minutes without

finding a solution. One cause of the failure is that our solver cannot

fit a policy rule applied to both tagged and untagged packets into

the OF-DPA ACL table because rules in the ACL table cannot match

untagged packets and our solver is not aware all packets entering

the ACL table have a VLAN. This problem is solvable by adding

the appropriate transformations like those we described in §4.2.6

for the case that the pipeline uses the action-set and requires we

add placeholder actions and clear-actions.

Our method is not suitable for flexible pipelines. By design, to

explore all possible solutions, our method finds all possible place-

ments of an input rule. Exploring all possibilities works well with

constrained pipelines because the number of choices is low, as is

often the case with fixed-function pipelines. However, for less con-

strained pipelines, the number of placements grows too large and

exhausts system memory. Further research is required to find the

best balance between searching all possible solutions and keeping

the problem size tractable when targeting less constrained pipelines.

7 RELATEDWORK
Most similar to our work, FlowConvertor [19] (a successor to

FlowAdapter [18]) presented an online rule-fitting approach, which

used incremental algorithms to maintain the ruleset as a directed

acyclic graph. The authors found that the overhead of FlowCon-

vertor was in the order of 1ms when fitting synthetic rulesets to

a real-world 2 table pipeline and two synthetic pipelines. While

our implementation is not fast enough for online deployment, com-

pared to FlowConvertor, our approach does not require metadata,

considers where the target pipeline supports an action, and verifies

the equivalence of the solution.

NOSIX [28] and TTPs [9] suggested an alternative architecture

to solve device interoperability, where both application developer

and vendor agree on a common virtual pipeline yet do not provide

algorithms to convert to this common pipeline. TableVisor 2.0 [11]

presented an architecture to expose multiple switches, each with

limited capabilities, as one more capable switch.

Other research has explored how to split forwarding between

multi-table pipelines, without considering device limitations. Sun

et al. [24] looked at fitting multiple virtual network tenants into a

multi-table pipeline with full OpenFlow support. Similarly, high-

level language compilers [21, 27, 28] target multi-table OpenFlow
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pipelines independent of any particular switch. Our research com-

plements these approaches with the device conversion layer.

Recent research has looked at formalizing aspects of the rule-

fitting problem and multi-table pipelines. Leet et al. [14] defined

a common space to represent the capabilities of SDN programs

and hardware pipelines together in the same domain, to check if

hardware can realize an SDN program. Németh et al. [17] applied

relational database and formal language theory to transform the

table structure of match-action pipelines into more compact forms.

8 CONCLUSION
This paper has presented a novel method to fit existing rulesets into

fixed-function pipelines without relying on metadata. This method

preprocessed the ruleset and next found the possible transforma-

tions of each input rule in isolation. From these transformations,

the method used a SAT problem to search for candidate solutions

and verified these solutions equivalence against the input ruleset.

We implemented this method in our rule-fitting solver and have

released the source code [1] and evaluation artifacts [2]. We eval-

uated our solver with a synthetic ruleset and pipeline based on

OF-DPA, which showed this approach is a viable way to address

the complexities of fixed-function pipelines. Towards reducing the

size of the problem, we found that our method of compressing the

ruleset significantly improved the performance of our solver. In one

experiment, with a synthetic ruleset with 50 hosts learned, compres-

sion reduced the time to solve from 12min 38s to 6.1s. Additionally,

we demonstrate that ruleset compression applies to real-world rule-

sets and compressed two rulesets by 97.6% and 82.9%. We evaluated

the effectiveness of our SAT expression at reducing the problem

size and found our SAT constraints excluded only invalid solutions

and generally improved the performance of the solver.

Finally, we discussed the difficulties remaining when fitting real-

world rulesets and pipelines. In particular, how there is no general

way to know if a solution exists, which means if a rule-fitting solver

cannot find a solution, it is in general impossible to verify that

result.
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A BOOLEAN AND SET NOTATION
Boolean Operators

Name Symbol
Negation ¬

And (Conjunction) ∧

Or (Disjunction) ∨

Exclusive or (Xor) ⊕

Implies →

Equivalence ↔

Set Operations
Name Symbol
Union ∪

Intersection ∩

Element In ∈

Subset ⊆

For All ∀

Boolean Set Flattening
Name Symbol Description
Big And

∧
{...}

∧
{a,b, c} is equivalent to a ∧ b ∧ c

Big Or

∨
{...}

∨
{a,b, c} is equivalent to a ∨ b ∨ c

One Hot onehot({...}) Satisfied if only one item is true
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