

Edinburgh Research Explorer

Hermes: a Fast, Fault-Tolerant and Linearizable Replication
Protocol
Citation for published version:
Katsarakis, A, Gavrielatos, V, Katebzadeh, MRS, Joshi, A, Dragojevic, A, Grot, B & Nagarajan, V 2020,
Hermes: a Fast, Fault-Tolerant and Linearizable Replication Protocol. in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). ASPLOS '20, Association for Computing Machinery (ACM), Lausanne, Switzerland, pp. 201-
217, 25th International Conference on Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, 16/03/20. https://doi.org/10.1145/3373376.3378496

Digital Object Identifier (DOI):
10.1145/3373376.3378496

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 18. Apr. 2024

https://doi.org/10.1145/3373376.3378496
https://doi.org/10.1145/3373376.3378496
https://www.research.ed.ac.uk/en/publications/c8bd74e1-5612-4b81-87fe-175c1823d693

Hermes: a Fast, Fault-Tolerant and Linearizable
Replication Protocol

Antonios Katsarakis, Vasilis Gavrielatos, M. R. Siavash Katebzadeh,
Arpit Joshi∗, Aleksandar Dragojevic†, Boris Grot, Vijay Nagarajan

University of Edinburgh, ∗Intel, †Microsoft Research

Abstract
Today’s datacenter applications are underpinned by data-
stores that are responsible for providing availability, con-
sistency, and performance. For high availability in the pres-
ence of failures, these datastores replicate data across several
nodes. This is accomplished with the help of a reliable replica-
tion protocol that is responsible for maintaining the replicas
strongly-consistent even when faults occur. Strong consis-
tency is preferred to weaker consistency models that cannot
guarantee an intuitive behavior for the clients. Furthermore,
to accommodate high demand at real-time latencies, datas-
tores must deliver high throughput and low latency.

This work introduces Hermes1, a broadcast-based reliable
replication protocol for in-memory datastores that provides
both high throughput and low latency by enabling local reads
and fully-concurrent fast writes at all replicas. Hermes cou-
ples logical timestamps with cache-coherence-inspired inval-
idations to guarantee linearizability, avoid write serialization
at a centralized ordering point, resolve write conflicts locally
at each replica (hence ensuring that writes never abort) and
provide fault-tolerance via replayable writes. Our implemen-
tation of Hermes over an RDMA-enabled reliable datastore
with five replicas shows that Hermes consistently achieves
higher throughput than state-of-the-art RDMA-based reli-
able protocols (ZAB and CRAQ) across all write ratios while
also significantly reducing tail latency. At 5% writes, the tail
latency of Hermes is 3.6× lower than that of CRAQ and ZAB.

CCS Concepts • Computer systems organization →
Cloud computing; Reliability; Availability; • Software and
its engineering → Consistency;

Keywords Fault-tolerant; Replication; Consistency; Avail-
ability; Throughput; Latency; Linearizability; RDMA

ACM Reference format:
Antonios Katsarakis, Vasilis Gavrielatos, M. R. Siavash Katebzadeh,
Arpit Joshi∗, Aleksandar Dragojevic†, Boris Grot, Vijay Nagarajan.
2020. Hermes: a Fast, Fault-Tolerant and Linearizable Replication
Protocol. In Proceedings of Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Lan-

1The name is inspired by the immortal Olympian figure, who was the
messenger of the gods and a conductor of souls into the afterlife.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
2020. ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378496

guages and Operating Systems, Lausanne, Switzerland, March 16–20,
2020 (ASPLOS ’20), 17 pages.
https://doi.org/10.1145/3373376.3378496

1 Introduction
Today’s online services and cloud applications rely on high-
performance datastores2, such as key-value stores (KVS) and
lock services, for storing and accessing their dataset. These
datastores must provide high throughput at very low laten-
cies while offering high availability, as they are deployed on
failure-prone commodity infrastructure [27]. Keeping the
dataset in-memory and exploiting high-performance data-
center networking (e.g., RDMA) is essential, but not sufficient.
Data replication is a fundamental feature of high perfor-

mance and reliable datastores. Data must be replicated across
multiple nodes to increase throughput because a single node
often cannot keep up with the request load [23]. Replica-
tion is also necessary to guarantee that a failure of a node
or a network link does not render a portion of the dataset
inaccessible. Maintaining the replicas strongly-consistent, to
ensure that the services running on the datastore operate
correctly, is a challenge, especially in the presence of fail-
ures. A reliable replication protocol is responsible for keeping
the replicas of a datastore strongly-consistent – even when
faults occur – by determining the necessary actions for the
execution of reads and writes.

When it comes to performance, recent works on reliably-
replicated datastores focus on throughput [96] and tend to
ignore latency. Meanwhile, latency is emerging as a critical
design goal in the age of interactive services and machine
actors [16]. For instance, Anwar et al. [7] note that a deep
learning system running on top of a reliable datastore is
profoundly affected by the latency of the datastore.
Today’s replication protocols are not designed to handle

the latency challenge of in-memory reliable datastores. Chain
Replication (CR) [98], a state-of-the-art high performance re-
liable replication protocol [7] is a striking example of trading
latency for throughput. Our detailed study of CRAQ [96], the
state-of-the-art CR variant, reveals that whilst CRAQ can of-
fer very high throughput, it is ill-suited for latency-sensitive
workloads. CRAQ organizes the replicas in a chain. While
reads can be served locally by each of the replicas, writes
expose the entire length of the chain. Moreover, when a read
2Weuse the term datastore broadly to encompass awide range of in-memory
storage systems with an API for reading and writing objects (keys).

https://doi.org/10.1145/3373376.3378496
https://doi.org/10.1145/3373376.3378496

local
reads

load-balanced

decentralized
inter-key concurrentwrites
fast (e.g., few RTTs)

Table 1. Replication protocol features for high-performance

hits a key for which a write is in progress, the read incurs
an additional latency as it waits for the write to be resolved.
With high-latency writes, and mixed-latency reads, CRAQ
fails to provide predictably low latency.

This work addresses the challenge of designing a reliable
replication protocol that provides both high throughput and
low latency within a datacenter. To that end, we identify key
features necessary for high performance, which are summa-
rized in Table 1. For reads, this means the ability to execute
a read locally on any of the replicas. For writes, high perfor-
mance mandates the ability to execute writes in a decentral-
ized manner (i.e., any replica can initiate and drive a write
to completion without serializing it through another node),
concurrently execute writes to different keys, and complete
writes fast (e.g., by minimizing round-trips).

Based on these insights, we introduce Hermes, a strongly-
consistent fault-tolerant replication protocol for in-memory
datastores that provides high throughput and low latency.
At a high level, Hermes is a broadcast-based protocol for
single-key reads, writes and RMWs that resembles two-phase
commit (2PC) [40]. However, 2PC is not reliable (§7) and is
overkill for replicating single-key writes. In contrast, Hermes
is highly optimized for single-key operations and is reliable.

Hermes combines two ideas to achieve high performance.
The first is the use of invalidations, which is a form of light-
weight locking inspired by cache coherence protocols. The
second is per-key logical timestamps implemented as Lam-
port clocks [62]. Together, these enable linearizability, local
reads and fully-concurrent, decentralized, and fast writes.
Logical timestamps further allow each node to locally estab-
lish a single global order of writes to a key, which enables
conflict-free write resolution (i.e., writes never abort3 – an-
other difference from 2PC) and write replays to handle faults.
To summarize, the contributions of this work are as follows:
• IntroducesHermes, a reliable replicationprotocol that
utilizes invalidations and logical timestamps to achieve
high performance and linearizability. Any replica in Her-
mes allows for efficient local reads and fast fully-concurrent
writes. Hermes handles message loss and node failures by
guaranteeing that any write can always be safely replayed.

• Formally verifies Hermes in TLA+ [63] for safety and
absence of deadlocks in the presence of crash-stop failures,
message reorderings and duplicates.

• Implements a high-performanceRDMA-based reliable
KVS incorporating Hermes withWings, our efficient RDMA
RPC library. Our evaluation of Hermes shows that it outper-
forms the state-of-the-art RDMA-optimized virtual Paxos [50]

3Read-Modify-Writes (RMWs) in Hermes may abort (§3.6).

protocol by an order of magnitude. Moreover, Hermes
achieves higher throughput than the highly-optimized
RDMA-based state-of-the-art ZAB [53] and CRAQ [96] repli-
cation protocols across all write ratios while significantly
reducing the tail latency. At 5% writes, the tail latency of
Hermes is at least 3.6× lower than that of CRAQ and ZAB.

2 Background
2.1 In-Memory Distributed Datastores
This work focuses on a replication protocol that can be de-
ployed over datastores, replicatedwithin a local area network
such as a datacenter. Clients typically interact with a datas-
tore by first establishing a session through which they issue
read and write requests. These datastores keep the applica-
tion dataset in-memory and employ efficient communication
primitives (e.g., RDMA or DPDK) to achieve high through-
put at very low latencies. One example of such datastores
is key-value stores (KVS) [23, 31, 32, 60, 70] that serve as
the backbone for many of today’s data-intensive online ser-
vices, including e-commerce and social networks. Another
example is lock services, such as Apache Zookeeper [48] and
Google’s Chubby [24], which provide an API to the clients
that allows them to maintain critical data, including locks.

2.2 Replication and Consistency
Datastores typically partition the stored data into smaller
pieces called shards and replicate each shard to guarantee
fault tolerance. A fault-tolerant replication protocol is then
deployed to enforce consistency and fault tolerance across all
replicas of a given shard. The number of replicas for a shard is
the replication degree, and it presents a trade-off between cost
and fault tolerance: more replicas increase fault tolerance, but
also increase the cost of the deployment. A replication degree
between 3 to 7 replicas is commonly considered to offer a
good balance between safety and cost [48]. Thus, although a
datastore may span numerous nodes, the replication protocol
need only scale with the replication degree.
Whenever data are replicated, a consistency model must

be enforced. While weak consistency can be leveraged to in-
crease performance, it can also lead to nasty surprises when
developers or clients attempt to reason about the system’s
behavior [100]. For this reason, this work focuses on reli-
able replication protocols that offer the strongest consistency
model: Linearizability (Lin) [46], which mandates that each
request appears to take effect globally and instantaneously
at some point between its invocation and completion. Lin
has intuitive behavior, is compositional, and allows for the
broadest spectrum of applications [45, 99].

2.3 High Performance
Maintaining high performance under strong consistency and
fault tolerance is an established challenge [11, 98]. In the con-
text of in-memory datastores, high performance is accepted

2

to mean low latency and high throughput. Requirements for
achieving high performance differ for reads and writes.
Reads The key to achieving both low latency and high
throughput on reads is (1) being able to service a read on any
replica, which we call load-balanced reads, and (2) completing
the read locally (i.e., without engaging other replicas). While
seemingly trivial, load-balanced local reads (referred to as
just local reads from now on) are a challenge formany reliable
protocols, which may require communication among nodes
to agree on a read value (e.g., ABD [9, 74] and Paxos [64])
or that mandate that only a single replica serve linearizable
reads for a given key (e.g., Primary-backup [5]).
Writes Achieving highwrite performance under strong con-
sistency and fault tolerance is notoriously difficult. We iden-
tify the following requirements necessary for low-latency
high-throughput writes:
≻ Decentralized: In order to reduce network hops and pre-
serve load balance across the replica ensemble, any replica
must be able to initiate a write and drive it to completion (by
communicating with the rest of the replicas) whilst avoiding
centralized serialization points. For instance, both ZAB and
CR require all writes to initiate at a particular node, hence
failing to achieve decentralized writes.
≻ Inter-key concurrent: Independent writes on different keys
should be able to proceed in parallel, to enable intra- and
multi-threaded parallel request execution. For example, ZAB
requires all writes to be serialized through a leader, thus
failing to provide inter-key concurrency.
≻ Fast: Fast writes require minimizing the number of mes-
sage round-trips, avoiding long message chains (e.g., in con-
trast to CR), and shunning techniques that otherwise increase
write latency (e.g., performing writes in lock-step [75, 88]).

2.4 Reliable Replication Protocols

Failure model We consider a partially synchronous sys-
tem [34] where processes are equipped with loosely syn-
chronized clocks (LSCs)4 and crash-stop or network failures
may occur (as in [25]). In this model, processes may fail by
crashing and their operation is non-Byzantine. Additionally,
network failures can manifest as either (1) message reorder-
ing, duplication and loss, or (2) link failures that may lead to
network partitions.

Reliable replication protocols capable of dealing with fail-
ures under the above failure model can be classified into
two categories:majority-based protocols, which are typically
variants of Paxos [64], and protocols that require a stable
membership of live nodes (membership-based protocols).
Majority-based protocols This class of protocols requires
the majority of nodes to respond in order to commit a write,
making it naturally tolerant to failures provided that a ma-

4 Some reliable replication protocols can maintain safety and liveness with-
out LSCs. We discuss one such variant of our Hermes protocol in §8.

Figure 1. Comparison of reliable membership-based protocols
in terms of throughput and latency.

jority is responsive. However, majority-based protocols pay
the price in performance since – in the absence of responses
from all replicas – there is no guarantee that a given write
has reached all replicas, which makes linearizable local reads
fundamentally challenging. Thus, most majority-based pro-
tocols give up on local reads but may support decentralized
or inter-key concurrent writes [64, 74, 78]. Majority-based
protocols that allow for local reads either serialize indepen-
dent writes on a master (e.g., ZAB) or require communication-
intensive per-key leases (§7); problematically, both approach-
es hurt performance even in the absence of faults.
Membership-based protocols Protocols in this class re-
quire all operational nodes in the replica group to acknowl-
edge each write (i.e., read-one/write-all protocols [51]). In
doing so, they assure that a committed write has reached
all replicas in the ensemble, which naturally facilitates lo-
cal reads without necessarily hindering write performance.
Thus, in the absence of faults, membership-based protocols
are naturally free of performance limitations associated with
majority-based protocols.
Membership-based protocols are supported by a reliable

membership (RM) [54, 93], typically based onVertical Paxos [68].
Vertical Paxos uses a majority-based protocol to reliably
maintain a stable membership of live nodes [97] (i.e., as in vir-
tual synchrony [18]), which is guarded by leases. Informally,
nodes in Vertical Paxos locally store a lease, a membership
variable and an epoch_id . Nodes are operational as long as
their lease is valid. Messages are tagged with the epoch_id
of the sender at the time of message creation, and a receiver
drops any message tagged with a different epoch_id than its
local epoch_id. The membership variable establishes the set
of live nodes, which allows for efficient execution of reads
and writes on any node with a valid lease. During failure-free
operation, membership leases are regularly renewed. When
a failure is suspected, the membership variable is updated
reliably (and epoch_id is incremented) through a majority-
based protocol but only after the expiration of leases. This
circumvents potential false-positives of unreliable failure
detection and maintains safety under network partitions
(§3.4). Simply put, updating the membership variable only

3

after lease expiration ensures that unresponsive nodes have
stopped serving requests before they are removed from the
membership and new requests complete only amongst the
remaining live nodes of the updated membership group.

A common practice for high-performance replication is to
optimize for the typical failure-free operation by harnessing
the performance benefits of membership-based protocols
and limiting the usage of majority-based protocols to RM
reconfiguration [33, 51, 68]. In fact, major datacenter opera-
tors, such as Microsoft, not only exploit membership-based
protocols in their datastores [33, 93], but they also provide
LSCs [29, 89] and RM [54] as datacenter services to ease the
deployment of membership-based protocols by third parties.

One of the earliestmembership-based protocols is Primary-
backup [5], which serves all requests at a primary node and
does not leverage the backup replicas for performance. Chain
Replication (CR) [98] improves upon Primary-backup by or-
ganizing the nodes in a chain and dividing the responsibil-
ities of the primary amongst the head and the tail of the
chain, as shown in Figure 1 (bottom-left). CR is a common
choice for implementing high performance reliable replica-
tion [7, 12, 52, 96, 102]. We next discuss CRAQ [96], a highly
optimized variant of CR.

2.5 CRAQ
CRAQ is a state-of-the-art membership-based protocol that
offers high throughput and strong consistency (Lin). In CRAQ,
nodes are organized in a chain and writes are directed to its
head, as in CR. The head propagates the write down the chain,
which completes once it reaches the tail. Subsequently, the
tail propagates acknowledgmentmessages upstream towards
the head, letting all nodes know about the write’s completion.

CRAQ improves upon CR by enabling read requests to be
served locally from all nodes, as shown in Figure 1 (top-left).
However, if a non-tail node is attempting to serve a read for
which it has seen a write message propagating downstream
from head to tail, but has not seen the acknowledgement
propagating up, then the tail must be queried to find out
whether the write has been applied or not.

CRAQ is the state-of-the-art reliable replication protocol
that achieves high throughput via a combination of local
reads and inter-key concurrent writes. However, CRAQ fails
to satisfy the low latency requirement: while reads are typi-
cally local and thus very fast, writes must traverse multiple
nodes sequentially incurring a prohibitive latency overhead.

3 Hermes
Hermes is a reliable membership-based broadcasting pro-
tocol that offers high throughput and low latency whilst
providing linearizable reads, writes, and RMWs (single-key
transactions). Hermes optimizes for the common case of no
failures [15] and targets intra-datacenter in-memory data-
stores with a replication degree typical of today’s deploy-

time

Node 1 Node 2 Node 3

Out of the
critical path

a

b

Coordinator Followers

write(K=3)

write commits

INV(K,TS,3)

ACK(K,TS)
ACK(K,TS)

VAL(K,TS)

Figure 2. Example of writing a value of 3 to key K. Nodes one,
two and three hold a replica of K. TS is the timestamp.

ments (3-7 replicas) [48]. As noted in §2.2, the replica count
does not constrain the size of a sharded datastore, since each
shard is replicated independently of other shards. Example
applications that can benefit from Hermes include reliable
datastores [11, 12, 80, 102], lock-services [24, 48] and appli-
cations that require high performance, strong consistency
and availability (e.g., [1, 20, 103]).

3.1 Overview
In Hermes, reads complete locally. Writes can be initiated
by any replica and complete fast regardless of conflicts. As
illustrated in Figure 2, a write to a key proceeds as follows:
the replica initiating the write (called coordinator) broadcasts
an Invalidation (INV)message to the rest of the replicas (called
followers) and waits on acknowledgments (ACKs). Once all
ACKs have been received; the write completes via a Validation
(VAL) message broadcast by the coordinator replica.

We now briefly overview the salient features of Hermes
and discuss the specifics in the following subsections.
Invalidations When an INV message is received, the target
key is placed in an Invalid state, meaning that reads to the
key cannot be served. While conceptually similar to a lock
(e.g., in 2PC), the key difference is that with invalidations,
concurrent writes to the same key do not fail and are resolved
in place through the use of logical timestamps as discussed
below. The use of invalidations is inspired by cache coher-
ence protocols, where a cache line in an Invalid state informs
the readers that they must wait for an updated value.
Logical timestamps Each write in Hermes is tagged with a
monotonically-increasing per-key logical timestamp, imple-
mented using Lamport clocks [62] and computed locally at
the coordinator replica. The timestamp is a lexicographically
ordered tuple of [v, cid] combining a key’s version number
(v), which is incremented on every write, with the node id
of the coordinator (cid). Two or more writes to a key are
concurrent if their execution is initiated by different replicas
holding the same timestamp. Non-concurrent writes to a
key are ordered based on their timestamp version, while
concurrent writes from different coordinators (same version)
are ordered via their cid5. Uniquely tagged writes allow each
node to locally establish a global order of writes to a key.
5 More precisely, a timestamp A: [vA, cidA] is higher than a timestamp B:
[vB, cidB], if either vA > vB or vA = vB and cidA > cidB.

4

High-performance non-conflicting writes Hermes al-
lows for high-performance writes (§2.3) by maximizing con-
currency while maintaining low latency. First, writes in Her-
mes are executed from any replica in a decentralized manner,
eschewing the use of a serialization point (e.g., a leader);
thus reducing the number of network hops and ensuring
load balance. In contrast to approaches that globally order
independent writes for strong consistency (e.g., ZAB – §5.1.1),
Hermes allows writes to different keys to proceed in parallel,
hence achieving inter-key concurrency. This is accomplished
via Hermes’ approach of invalidating all operational replicas
to achieve linearizability. When combined with the logical
timestamps, invalidations permit concurrent writes to the
same key to be correctly linearized at the endpoints; thus,
writes do not appear to conflict, making aborts unnecessary.

Finally, in the absence of a failure, writes in Hermes cost
one and a half round-trips (INV→ACK→VAL); however, the
exposed latency is just a single round-trip for each node.
From the perspective of the coordinator, once all ACKs are
received, it is safe to respond to a client because at this point,
the write is guaranteed to be visible to all live replicas, and
any future read cannot return the old value (i.e., the write
is committed – Figure 2 b). The followers also observe only
a single round-trip (further optimized in §3.3), which starts
once an INV arrives; at that point, each follower responds
with an ACK and completes the write when a VAL is received.
Safely replayable writes Node and network faults during
a write to a key may leave the key in a permanently Invalid
state in some or all of the nodes. To prevent this, Hermes
allows any invalidated operational replica to replay the write
to completion without violating linearizability. This is ac-
complished using two mechanisms. First, the new value for
a key is propagated to the replicas in INV messages (Fig-
ure 2 a). Such early value propagation guarantees that every
invalidated node is aware of the new value. Secondly, logi-
cal timestamps enable a precise global ordering of writes in
each of the replicas. By combining these ideas, a node that
finds a key in an Invalid state for an extended period can
safely replay a write by taking on a coordinator role and
retransmitting INV messages to the replica ensemble with
the original timestamp (i.e., original version number and cid),
hence preserving the global write order.

The above features afford the following properties:
≻ Strong consistency: By invalidating all replicas of a key at
the start of a write, Hermes ensures that a key in a Valid
state is guaranteed to hold themost up-to-date value. Hermes
enforces the invariant that a read may complete if and only
if the key is in a Valid state, which provides linearizability.
≻ High performance: Local reads in concert with high per-
formance broadcast-based non-conflicting writes from any
replica help ensure both low latency and high throughput.
≻ Fault tolerance: Hermes uses safely replayable writes to tol-
erate a range of faults, including message loss, node failures,

Figure 3. Metadata stored and messages sent by Hermes.

and network partitions. As a membership-based protocol,
Hermes is aided by RM to provide a stable group membership
of live nodes in the face of failures and network partitions.

3.2 Hermes Protocol in Detail
Hermes protocol consists of four stable states Valid, Invalid,
Write and Replay and a single transient state Trans. Figure 3
illustrates the format of protocol messages and the metadata
stored at each replica. A detailed protocol transition table,
as well as the TLA+ specification, are available online6.

The following protocol is slightly simplified in that it only
focuses on reads andwrites (omits RMWs) and only deals with
node failures (but not network faults). Resilience to network
faults and RMWs are described in §3.4 and §3.6, respectively.
Reads: A read request is serviced on an operational replica
(i.e., one with an RM lease) by returning the local value of
the requested key if it is in the Valid state. If the key is in
any other state, the request is stalled.
Writes:

Coordinator
A coordinator node issues a write to a key only if it is in
the Valid state; otherwise the write is stalled. To issue and
complete a write, the coordinator node:
• CTS: Updates the key’s local timestamp by incrementing its
version and appending its node id as the cid, and assigns
this new timestamp to the write.

• CINV: Promptly broadcasts an INV message consisting of
the key, the new timestamp (TS) and the value to all repli-
cas and transitions the key to the Write state, whilst ap-
plying the new value locally.

• CACK: Once the coordinator receives ACKs from all the live
replicas, the write is completed by transitioning the key to
the Valid state (Invalid state if the key was in Trans state7).

• CVAL: Finally, the coordinator broadcasts a VAL consisting
of the key and the same timestamp to all the followers.

Note that the coordinator waits for ACKs only from the live
replicas as indicated in the membership variable. If a fol-
lower fails after an INV has been sent, the coordinator waits
6https://hermes-protocol.com
7The Trans state indicates a coordinator with a pending write that got
invalidated. While not required, the Trans state is useful for tracking when
the coordinator’s original write completes, hence allowing the coordinator
to notify the client of the write’s completion.

5

https://hermes-protocol.com

for the ACK from the failed node until the membership is
reliably updated (after the node is detected as failed and the
membership lease expires – §2.4). Once the coordinator is
not missing any more ACKs, it can safely continue the write.

Follower
• FINV: Upon receiving an INV message, a follower compares
the timestamp from the incoming message to its local
timestamp of the key. If the received timestamp is higher
than the local timestamp, the follower transitions the key
to the Invalid state (Trans state if the key was in the Write
or the Replay state) and updates the key’s local timestamp
(both its version and cid) and value.

• FACK: Irrespective of the result of the timestamp compari-
son, a follower always responds with an ACK containing
the same timestamp as that in the INV message of the write.

• FVAL: When a follower receives a VAL message, it transi-
tions the key to the Valid state if and only if the received
timestamp is equal to the key’s local timestamp. Otherwise,
the VAL message is simply ignored.

Write Replays: A request that finds a key in the Invalid state
for an extended period of time (determined via the mlt timer,
described in §3.4) triggers a write replay. The node servicing
the request takes on the coordinator role, transitions the key
to the Replay state and begins a write replay by re-executing
steps CINV through CVAL using the TS and value received
with the INV message. Note that the original TS is used in
the replay (i.e., the cid is that of original coordinator) to
allow the write to be correctly linearized. Once the replay is
completed, the key transitions to the Valid state after which
the initial request is serviced.
▷ Formal verification: We expressed Hermes in TLA+ [63]
and model checked the protocol’s reads, writes, RMWs and
replays for safety and absence of deadlocks in the presence
of message reorderings and duplicates, and membership re-
configurations due to crash-stop failures.

3.3 Hermes Protocol Optimizations
[O1] Eliminating unnecessary validations When the
coordinator of a write gathers all of its ACKs but discovers a
concurrent write to the same key with a higher timestamp
(i.e., was in the Trans state), it does not need to broadcast VAL
messages (CVAL), thus saving valuable network bandwidth.
[O2] Enhancing fairness Hermes linearizes writes based
on their unique timestamps, consisting of a version and a
node id. In case of same versions (i.e., concurrent writes),
the linearization is resolved based on the node ids, which
might raise concerns about fairness. This is easily mitigated
by assigning several virtual node ids to each physical node.
With this scheme, before issuing a write, a node randomly
picks one of its assigned virtual node ids to be used for the
write’s logical timestamp. Of course, to maintain correctness,
the same virtual node id cannot be assigned to more than one
physical node. For example, given three nodes (A, B, and C),

the following sets of virtual ids A:{1, 4, 7, 10}, B:{2, 5, 8, 11},
and C:{3, 6, 9, 12} are safe and would increase fairness.
[O3] Reducing blocking latency In the failure-free case,
and during a write to a key, followers block reads to that
key for up to a round-trip (§3.1). This blocking latency can
be reduced to a half round-trip if followers broadcast ACKs
to all replicas instead of just responding to the coordinator
of the write (FACK). Once all ACKs have been received by a
follower, it can service the reads to that key without waiting
for the VAL message. While this optimization increases the
number of ACKs, the actual bandwidth cost is minimal as
ACK messages have a small constant size. The bandwidth
cost is further offset by avoiding the need to broadcast VAL
messages. Thus, under the typical small replication degrees,
this optimization comes at negligible cost in bandwidth.

3.4 Network Faults, Reconfiguration and Recovery
This section presents Hermes’ operation under imperfect
links, network partitions and the transient period of member-
ship reconfiguration on a fault. It then provides an overview
of the mechanism to add new nodes to the replica group.
Imperfect Links In typical multi-path datacenter networks,
messages can be reordered, duplicated, or lost [36, 39, 73].
Hermes operates correctly under all of these scenarios as
described below. In Hermes, the information necessary to
linearize operations is embedded with the keys and in the
messages in the form of logical timestamps. Thus, even if
messages get delayed, reordered, or duplicated in the net-
work, the protocol never violates linearizability.

Hermes uses the same idea of replaying writes if any of its
INV, ACK, or VAL messages is suspected to be lost. A message
is suspected to be lost for a key if the request’s message-loss
timeout (mlt), within which every write request is expected
to be completed, is exceeded. To detect the loss of an INV or
ACK for a particular write, the coordinator of the write resets
the request’s mlt once it broadcasts INV messages. If the mlt
of a key is exceeded before its write completion, then the
coordinator suspects a potential message loss and resets the
request’s mlt before retransmitting the write’s INV broadcast.
In contrast, the loss of a VAL message is handled by the

follower using a write replay. Once a follower receives a
request for a key in the Invalid state, it resets the request’s
message-loss timeout. If the timestamp or the state has not
been updated within the mlt duration, it suspects the loss
of a VAL message and triggers a write replay. Although a
write replay will never compromise the safety of the proto-
col, we note that a carefully calibrated timeout will reduce
unnecessary replays (e.g., when messages are not lost).
Network Partitions Datacenter network topologies are
highly redundant [39, 94]; however, in rare cases, link fail-
ures might result in a network partition. According to the
CAP theorem [21, 38], either consistency or availability must
be sacrificed in the presence of network partitions. Hermes

6

follows the guidelines of Brewer [22] to permit the datastore
to continue serving requests only in its primary partition,
which is a partition with the majority of replicas. Although
failure detectors cannot differentiate between node failures
and network partitions, the membership can only be reliably
updated in the primary partition – due to its majority-based
protocol – and does so only after the expiration of the mem-
bership leases. Thus, replicas in a minority partition stop
serving requests before the membership is updated and new
requests are able to complete only in the primary partition.
While this approach allows the datastore to continue op-
erating even under network partitions, it reduces Hermes
resilience from n − 1 node failures to tolerating less than
⌊ n2 ⌋ failures, if the RM protocol is run by the datastore repli-
cas and not external nodes. Nevertheless, this cost is similar
to any other reliable protocol that tolerates network par-
titions [48, 50, 64]. Once network connectivity is restored,
nodes previously on a minority side can re-join the replica
group via a recovery procedure explained below.
Membership reconfiguration after a failure Following
a network partition or a node failure and expiration of the
leases for all of the nodes in a membership group, a majority-
based protocol is used to reliably update the membership.
We refer to this update as m-update, which consists of a
lease renewal, a new list of live nodes and an incremented
epoch_id. Although the m-update is consistent even in the
presence of faults, the update does not reach all live replicas
instantaneously. Rather, there is a transient period when
some replicas that are considered live, according to the latest
value of the membership, have received the m-update while
others have not and are still non-operational.

Hermes seamlessly deals with the transition of m-update
without violating safety. Hermes’ replicas which have re-
ceived the m-update are able to act as coordinators and serve
new requests. Thus, reads that find the target key in the Valid
state can immediately be served as usual. In contrast, writes
or reads that require a replay (i.e., targeted key is Invalid)
are effectively stalled until all live nodes as indicated by the
membership variable receive the m-update. This is because
writes and write replays do not commit until all live replicas
become operational and acknowledge their INV messages.
During this transition period, any live follower that has

not yet received the latest m-update will simply drop the
INV messages, because those messages are tagged with an
epoch_id greater than the follower’s local epoch_id. This
manifests as a simple message loss to a coordinator which
triggers retransmission of the INVs (§3.4). The coordinator
eventually completes its writes once all live followers have
received the latest membership and become operational.
Recovery Hermes’ fault tolerance properties enable a data-
store to continue operating even in the presence of failures.
However, as nodes fail, new nodes need to be added to the
datastore to continue operating at peak performance. To add

Node 1

Node 2

Node 3
time

INV(key,TS,value)

ACK(key,TS) VAL(key,TS)

X: node/msg failure
m-update

write(A=1)

write(A=3)

read(A)

read(A)

(write replay)

X

X

State of A

Node 1:
Node 2:
Node 3:

...
0
0
0

1
0
0

1
0
3

1
1
3

1
3
3

3
3
3

3
3
3

3
3
3

3
3
X

3
3
X

3
3
X

Figure 4. Concurrent writes to key A, then a read, followed by
a node and a message failure which trigger a write replay on
the last read. State of A shows the values of the replicas; blue
represents Valid state, orange represents other states. Under-
lined values indicate a change in value and/or state.

a new node, the membership is reliably updated, following
which all other live replicas are notified of the new node’s
intention to join the replica group. Once all the replicas ac-
knowledge this notification, the new node starts operating as
a shadow replica that participates as a follower for all of the
writes but does not serve any client requests. Additionally,
it reads chunks (multiple keys) from other replicas to fetch
the latest values and reconstruct the datastore similarly to
existing approaches [33, 84]. After reading the entire data-
store, the shadow replica is up-to-date and transitions to
operational state, whereby it is able to serve client requests.

3.5 Operational Example
In this subsection, we discuss Figure 4, which illustrates an
example of Hermes’ execution with reads and writes to keyA.
The purpose is to demonstrate the operation of Hermes while
shedding light onto some of its corner cases in the presence
of concurrency and failures. For simplicity, we assume no
use of virtual node ids or any latency optimizations (§3.3).

First, node 1 initiates a write (A = 1), by incrementing its
local timestamp, broadcasting INV messages (solid lines) and
transitioning key A to Write state. Similarly, node 3 initiates
another concurrent write (A = 3). Recall that INVs in Hermes
contain the key, the timestamp (including the cid), and the
value to be written. We assume that key A is initially stored
with the same value (zero) and timestamp in all three nodes.

Node 2 ACKs the INV message from node 1 (dashed line),
updates its timestamp and value, and transitions key A to
Invalid state. Node 3 ACKs the INV of node 1, but it does not
modifyA or its state since its local timestamp is higher (same
version but higher cid). Subsequently, node 2 receives the
INV from node 3, which has a bigger timestamp than the
locally stored timestamp, resulting in an update in its local
value and timestamp, all while remaining in Invalid state.
Likewise, node 1 ACKs the INV of node 3, by updating the

7

value, the timestamp, and transitioning to Trans state.
Meanwhile, node 2 starts a read, but it is stalled since its

local copy of A is invalidated. Once node 3 receives all of the
ACKs, it completes its own write by transitioning A to the
Valid state and broadcasts a VAL message (dotted lines) to the
other replicas. When node 2 receives node’s 3 VAL message,
it transitions A to Valid state and completes its stalled read.

Once node 1 receives all of the ACKs it completes its write
but transitions to the Invalid state. This occurs because the
write from node 3 took precedence over its own due to a
higher timestamp, but the VAL from node 3 has not yet been
received. Note that although the write from node 1 completes
later than the concurrent write from node 3, it is linearized
before the write of node 3 due to its lower timestamp (cid).
As a last step, we consider a failure scenario, whereby

the VAL message from node 3 to node 1 gets dropped and
node 3 crashes. Thus, key A in node 1 remains in the Invalid
state. Once leases expire and node 3 is detected as failed, the
membership variable is reliably updated. Subsequently, node
1 receives a read for A, but finds A invalidated by a failed
node. Thus, node 1 triggers a write replay by broadcasting
INV messages with the key’s locally-stored timestamp and
value (i.e., replaying node 3’s original write). Crucially, the
fact that INV messages contain both the timestamp and value
to be written allows node 1 to safely replay node 3’s write.
Node 2 ACKs the INV from node 1 without applying it, since
it already has the same timestamp. Once node 1 gets the
ACK from node 2, it is able to unblock itself. Lastly, node
1 completes the replay of the write by broadcasting a VAL
message to all of the live nodes (i.e., node 2, in this example).

3.6 Read-Modify-Writes in Hermes
So far, we have focused on read and write operations; how-
ever, Hermes also supports read-modify-write (RMW) atom-
ics that are useful for synchronization (e.g., a compare-and-
swap to acquire a lock). In general, atomic execution of a read
followed by a write to a key may fail if naively implemented
with simple reads and writes. This is because a read followed
by a write to a key is not guaranteed to be performed atomi-
cally since another concurrent write to the same key with
a smaller logical timestamp could be linearized in-between
the read-write pair, hence violating the RMW semantics.
For this reason, an RMW update in Hermes is executed

similarly to a write, but it is conflicting. Hermes may abort
an RMWwhich is concurrently executed with another update
operation (either a write or another RMW) to the same key.
Hermes commits an RMW if and only if the RMW has the
highest timestamp amongst any concurrent updates to that
key. Moreover, it purposefully assigns higher timestamps
to writes compared to their concurrent RMWs. As a result,
any write racing with an RMW to a given key is guaranteed
to have a higher timestamp, thus safely aborting the RMW.
Meanwhile, if only RMW updates are racing, the RMW with
the highest node id will commit, and the rest will abort.

More formally, Hermes always maintains safety and guar-
antees progress in the absence of faults by ensuring two
properties: (1) writes always commit, and (2) at most one of
possible concurrent RMWs to a key commits. To maintain these
properties, the following protocol alterations are needed:
• Metadata: To distinguish between RMW and write updates,
an additional binary flag (RMW_flag) is included in INV
messages. The flag is also stored in the per-key metadata
to accommodate update replays.

• CTS: When a coordinator issues an update, the version of
the logical timestamp is incremented by one if the update
is an RMW and by two if it is a write.

• FRMW-ACK: A follower ACKs an INV message for an RMW
only if its timestamp is equal to or higher than the local
one; otherwise, the follower responds with an INV based
on its local state (i.e., same message used for write replay).

• CRMW-abort: In contrast to non-conflicting writes, an RMW
with pending ACKs is aborted if its coordinator receives
an INV to the same key with a higher timestamp.

• CRMW-replay: After an RM reconfiguration, the coordinator
resets any gathered ACKs of a pending RMW and replays
the RMW to ensure it is not conflicting.

3.7 Summary
This section introducedHermes, a reliablemembership-based
protocol that guarantees linearizability. Hermes’ decentral-
ized broadcast-based design is engineered for high through-
put and low latency. By leveraging invalidations and logical
timestamps, Hermes enables efficient local reads and high-
performance updates that are decentralized, fast, and inter-
key concurrent. Writes (but not RMWs) in Hermes are also
non-conflicting. Finally, Hermes seamlessly recovers from a
range of node and network faults thanks to its write replays,
enabled by early value propagation and logical timestamps.

4 System
To evaluate the benefits and limitations of the Hermes pro-
tocol, we build HermesKV, an in-memory RDMA-based KVS
with a typical read/write API. HermesKV is replicated across
all the machines comprising a deployment and relies on the
Hermes protocol to ensure the consistency of the deployment.
We choose RDMA networking to match the trend in modern
datacenters towards offloaded network stacks and ultra-low
latency fabrics instead of onloaded UDP/TCP [44, 77].

In §4.1, we present a functional overview of the HermesKV
and briefly outline the implementation of its KVS. Subse-
quently, we describeWings (§4.2), our RDMA-based library
which serves as the communication layer of the HermesKV.

4.1 Overview and KVS
Each node in HermesKV is composed of a number of iden-
tical worker threads. Each worker performs the following
tasks: 1) decodes client requests; 2) accesses the local KVS

8

replica; and 3) runs the Hermes protocol to complete requests.
Client requests are distributed among the worker threads of
the system. Requests can be either reads or writes. Worker
threads communicate solely to coordinate writes (and write
replays) as reads are completed locally.
Our KVS is based on ccKVS [37], which is a version of

MICA [70] (found in [57]), but modified to support CRCW
using seqlocks [61]. Seqlocks are beneficial as they allow
for efficient lock-free reads [92]. We further extend ccKVS
to accommodate the Hermes-specific protocol actions, state
transitions and request replies based on the replica state.
The Hermes protocol is agnostic to the choice of a datas-

tore and can be used with any datastore. We choose ccKVS
since its minimalist design allows us to focus on the impact
of the replication protocol itself without regard of idiosyn-
crasies or overheads of a commercial-grade datastore.

4.2 Wings: an RDMA RPC layer for Hermes
State-of-the-art RDMA-based KVS designs such as HERD [55]
and ccKVS [37] have shown Remote Procedure Calls (RPCs)
to be a highly effective design paradigm. Hence, we leverage
RDMA Unreliable Datagram sends (UD sends) to build the
Wings library, a simple and efficient RPC layer over RDMA.
Wings allows for opportunistic batching of multiple mes-
sages into one network packet, implements application-level
flow control, provides support for broadcasts and enlists an
array of RDMA low-level optimizations.
Opportunistic Batching The benefits of batchingmultiple
application-level messages into a single network packet are
well-known. Batching amortizes the network header over-
head, leading to better utilization of network bandwidth.

Wings automatically performs opportunistic batching for
all messages. The programmer provides Wings with a buffer
that holds messages that need to be sent to various remote
servers. Wings inspects the buffer in order to batch mes-
sages with the same receiver, then it creates a lightweight
application-level header per batch specifying howmanymes-
sages are batched and sends the packets. Note that the batch-
ing performed by Wings is opportunistic, as it will never stall
in order to form a batch; rather, Wings creates batches for
the intended receivers only with readily available messages.
Broadcast Primitive Wings implements software-based
broadcasts as a series of unicasts to all members of a broad-
cast group.Wings performs opportunistic batching for broad-
casts in a similar manner as regular requests.
Flow Control Wings uses credit-based flow control [59] to
manage the data flow between the servers of a deployment.
The programmer can specify whether the credit updates are
explicit or implicit. Implicit credits are common in a commu-
nication pattern where a server sends a request and receives
a response for that request; the response can be then treated
as an implicit credit update. HermesKV leverages this fea-
ture when coordinating a write: the coordinator broadcasts

invalidations to all remote replicas and treats the acknowl-
edgments as credits updates. Explicit credits are needed for
messages that do not require responses. HermesKV exploits
explicit credits for the validation messages, as the protocol
does not require validations to be acked. Instead, after re-
ceiving several validation messages, HermesKV nodes send
explicit credit messages to the sender to inform it of their
buffer availability. Similarly to other Wings operations, ex-
plicit credits are opportunistically batched. The receiver polls
a number of incoming messages and sends back a single ex-
plicit credit update message.
RDMAOptimizations InWings, we build RDMA RPCs over
UD sends following published low-level guidelines [13, 37,
56, 57]. Transparent to the programmer, Wings amortizes
and alleviates PCIe overheads. First, Wings performs doorbell
batching and selective signaling when sending work requests
to the NIC, and it inlines payloads inside the work requests
when the payload is small enough (188B on our NIC) to reduce
the required NIC-initiated DMAs per work request. Broadcasts
are implemented as a linked list of work requests each with
a different destination but all pointing to the same payload.
Moreover, explicit credit updates are header-only packets
exploiting the immediate header field [14]. Thus, they are
cheaper to transmit and due to the lack of a payload they
reduce PCIe transactions on both sender and receiver sides.

5 Experimental Methodology
5.1 Evaluated Systems
We evaluate Hermes by comparing its performance with a
majority-based and membership-based RDMA-enabled base-
line protocols. To facilitate a fair protocol comparison, we
study all protocols over a common multi-threaded KVS im-
plementation based on HermesKV (as described in §4). All
protocols are implemented in C over the RDMA verbs API [14].
The evaluated systems are as follows:
• rZAB : In-house, multi-threaded, RDMA-enabled ZAB [90].
• rCRAQ: In-house, multi-threaded, RDMA-based CRAQ [96].
• HermesKV : Implementation of Hermes as in §3 and §4,
without the latency optimization (O3 from §3.3).
Our evaluation mainly focuses on the comparison of Her-

mesKV to rZAB and rCRAQ, since they share the KVS and com-
munication library, which allows us to isolate the effect of
the protocol itself on performance. We also compare Hermes
to Derecho [50] (§6.5), the state-of-the-art RDMA-optimized
open-source implementation of membership-based (i.e., vir-
tually synchronous) Paxos. Table 2 below summarizes the
read and write features of the evaluated systems.

5.1.1 rZAB
In ZAB protocol, one node is the leader and the rest are
followers. A client can issue a write to any node, which in
turn propagates the write to the leader. The leader receives
writes from all nodes, serializes them and proposes them by

9

Local reads WritesSystem Leases Consistency Concurrency Latency (RTT) Dec.
HermesKV one per RM Lin inter-key 1 ✓
rCRAQ one per RM Lin inter-key O(n) ✗
rZAB none SC serializes all 2 † ✗
Derecho none SC serializes all 1 ‡ ✓

Table 2. Comparison of read and write features for the evalu-
ated systems. SC: sequentially consistent; RM: reliable mem-
bership; Dec: decentralized; n: number of replicas; †1 RTT for
master’s writes; ‡lock-step commit.

broadcasting atomically to all followers. The followers send
back acknowledgements (ACKs) to the leader; on receiving a
majority of ACKs for a given write, the leader commits the
write locally and broadcasts commits to the followers.

A client’s read can be served locally by any node without
any communication as long as the last write of that client has
been applied in that node. However, local reads in ZAB are
sequentially consistent (SC), which is weaker than Lin. Prob-
lematically, the fact that ZAB is not Lin leads to a performance
issue on writes. This is because, in contrast to the stricter
Lin, sequential consistency (SC) is not compositional [10]. As
a result, it is not possible to deploy independent instances
(e.g., per-key) of SC protocols such as ZAB to increase the
concurrency of writes because the composition of those in-
stances would violate SC. If a ZAB client requires linearizable
reads, then it can issue a sync command prior to the read. A
sync is completed similarly to a write, necessarily increasing
the read latency. We do not evaluate linearizable reads, to
get the upper bound performance of the ZAB protocol.
rZAB optimizations We apply to rZAB all HermesKV op-
timizations and utilize the RDMA Multicast [14] to tolerate
ZAB’s asymmetric (i.e. leader-oriented) network traffic pat-
tern. Our highly optimized, RDMA implementation of ZAB
outperforms the open-source implementation of Zookeeper
(evaluated in [52]) by three orders of magnitude. Of course,
Zookeeper is a production system incorporating features
beyond the ZAB protocol, such as client tracking and check-
pointing to disk. By evaluating a lean and optimized version
of just ZAB, we are facilitating a fair protocol comparison.

5.1.2 rCRAQ
CRAQ affords local reads and inter-key concurrent, but not
decentralized, writes (§2.5 details the CRAQ protocol). We
identify two undesirable properties of CRAQ: 1) writes must
traverse multiple hops before completing, adversely affecting
the system’s latency; and 2) the nodes of the chain are gen-
erally not well balanced, in terms of the amount of work per-
formed per-packet potentially affecting the system’s through-
put. To evaluate how these properties affect performance,
we study our own RDMA-enable version of CRAQ (rCRAQ),
that enjoys all optimizations available in HermesKV.

5.2 Testbed
We conduct our experiments on a cluster of 7 servers inter-
connected via a 12-port Infiniband switch (MellanoxMX6012F).

Each machine runs Ubuntu 18.04 and is equipped with two
10-core CPUs (Intel Xeon E5-2630v4) with 64 GB of system
memory and a single-port 56Gb Infiniband NIC (Mellanox
MCX455A-FCAT PCI3 x16). Each CPU has 25 MB of L3 cache and
two hardware threads per core. We disable turbo-boost, pin
threads to cores and use huge pages (2 MB) for the KVS. The
KVS consists of one million key-value pairs, replicated in all
nodes. Unless stated otherwise, we use keys and values of 8
and 32 bytes, respectively; which are accessed uniformly.

6 Evaluation
6.1 Throughput on Uniform Traffic
Figure 5a shows the performance of HermesKV, rCRAQ and
rZAB while varying the write ratio under uniform traffic.
▷ Read-only: For read-only, all three systems exhibit identi-
cal behaviour, achieving 985 Million Requests per second
(MReqs/s), as all systems perform reads locally from all repli-
cas. To reduce clutter we omit the read-only from the figure.
▷ HermesKV: At a 1% write ratio (Figure 5a), HermesKV
achieves 770 MReqs/s, outperforming both baselines (12%
better than rCRAQ and 4.5× better than rZAB). As the write ra-
tio increases, the throughput of HermesKV gradually drops,
reaching 72MReqs/s on a write-only workload. The through-
put degradation at higher write ratios is expected because
writes require an exchange of messages over the network,
which cost both CPU cycles and network bandwidth.

At 20% write ratio, HermesKV significantly outperforms
the baselines (40% over rCRAQ, 3.4× over rZAB). The reason
for HermesKV’s good performance compared to alternatives
is that it combines local reads with high-performance writes.
▷ rCRAQ: The CRAQ protocol is well-suited for high through-
put, comprising both inter-key concurrent writes and local
reads. Nevertheless, rCRAQ performs worse than HermesKV
across all write ratios, with the gap widening as write ratios
increase. That difference has its root in the design of CRAQ.
Firstly, reads in CRAQ are not always local: if a non-tail

node is attempting to serve a read for a key for which it has
seen a write but not an ACK, then the tail must be queried to
find out whether the write has been applied or not. Therefore,
increasing the write ratio has an adverse effect on the reads,
as more reads need to be served remotely via the tail node.

This disadvantage hints to a more important design flaw:
the CRAQ design is heterogeneous, mandating that nodes as-
sume one of three different roles – head, tail or intermediate
– where each role has different responsibilities. As such, load
is not equally balanced, so the system is always bottlenecked
by the node with the heaviest responsibilities. For instance,
at high ratios, the tail node is heavily loaded as it receives
read queries from all nodes. Meanwhile, at low write ratios,
the tail has fewer responsibilities than an intermediate node,
as it only propagates acknowledgements up the chain, whilst
an intermediate must also propagate writes downstream.

10

1 5 20 50 75 100
% Write Ratio

0

200

400

600

800

1000

1200

M
Re

qu
es

ts
 /

Se
c

HermesKV
rCRAQ
rZAB

(a) Uniform

1 5 20 50 75 100
% Write Ratio

0

200

400

600

800

1000

1200
HermesKV
rCRAQ
rZAB

(b) Skewed [Zipfian exponent 0.99]

Figure 5. Throughput for 1% to 100% write ratio. [5 nodes]

▷ rZAB: As expected, ZAB fails to achieve high throughput
at non-zero write ratios as it imposes a strict ordering con-
straint on all writes at the leader. The strict ordering makes
it difficult to extract concurrency, inevitably causing queu-
ing of writes and delaying the subsequent reads within each
session. At 1%write ratio, rZAB achieves 172MReqs/s, which
drops to a mere 16 MReqs/s for a write-only workload.

6.2 Throughput under Skew
We next explore how the evaluated protocols perform un-
der access skew. We study an access pattern that follows a
power-law distribution with a Zipfian exponent of 0.99, as in
YCSB [28] and recent studies [32, 37, 81]. Figure 5b shows the
performance of the three protocols when varying the write
ratio from 1% to 100%. We discuss read-only separately.
▷ Read-only: Similarly to the uniform read-only setting, all
three protocols achieve identical performance (4183MReq/s)
due to their all-local accesses. Unsurprisingly, the read-only
performance under the skewed workload is higher than the
uniform performance for all protocols. This is because under
a skewed workload there is temporal locality among the
popular objects, which is captured by the hardware caches.
▷ HermesKV: HermesKV gracefully tolerates skewed access
patterns, especially at lowwrite ratios (achieving 1190MReq/s
at 1% write ratio). Repeatedly accessing popular objects can-
not adversely affect HermesKV write throughput, as con-
current writes to the popular objects can proceed without
stalling (as explained in § 3.1). Meanwhile, read throughput
thrives under a skewed workload as reads are always local in
HermesKV, and as such can benefit from temporal locality.
▷ rCRAQ: Similarly, rCRAQ benefits from temporal locality
when accessing the local KVS, while write throughput is un-
affected by the skew, as multiple writes for the same key can
concurrently flow through the chain. The problem, however,
is that non-tail nodes cannot complete reads locally if they
have seen a write for the same key but have not yet received
an ACK. In that case, the tail must be queried. Under skew,
such cases become frequent, with reads to popular objects
often serviced by the tail and not locally. Thus, at higher
write ratios, the tail limits rCRAQ’s performance.
▷ rZAB: rZAB is not affected by the conflicts created by the
skewed access pattern, as it already serializes all writes irre-
spective of the object they write. In practice, rZAB performs

slightly better under skew as hardware caches are more ef-
fective due to better temporal locality for popular objects.
6.3 Latency Analysis
6.3.1 Latency vs Throughput
Figure 6a illustrates the median (50th%) and the tail (99th%)
latencies of the three protocols as a function of their through-
put at 5% write ratio. We measure latency of each request
from the beginning of its execution to its completion.
All three systems execute reads locally, while writes in-

cur protocol actions that include traversing the network.
Therefore, at 5% write ratio, we expect the median latency
of all protocols to be close to the latency of a read and the
tail latency to be that of a write. Consequently, the gap be-
tween the median and the tail latency is to be expected for
all systems and should not be interpreted as unpredictability.
▷ HermesKV: The median latency of HermesKV is the latency
of a read, and as expected, is consistently very low (on the
order of 1µs) even at peak throughput because reads are local.
The tail latency is determined by the writes. The tail latency
increases with the load, because writes traverse the network
and thus can be subject to queuing delays as load increases.
At peak throughput, the tail latency of HermesKV is 69µs .
▷ rCRAQ: In rCRAQ themedian latency is the latency of a read,
and as such, is typically on the order of a few microseconds.
As expected, the tail latency, which corresponds to a write,
is consistently high – at least 3.6× larger than HermesKV at
the same throughput points – ranging from 42µs at lowest
load to 172µs at peak load. The high write latency is directly
attributed to the protocol design as writes in rCRAQ need to
traverse multiple network hops, incurring both the inherent
network latency and the queuing delays in all the nodes.
▷ rZAB: As the other two protocols, rZAB achieves a low me-
dian latency because of its local reads, but even at moderate
throughput, its tail latency is much larger (e.g., more than
3.6× than that of Hermes at 75MReq/s) because of the high
latency of the writes that must serialize on the leader.

6.3.2 Latency vs Write ratio
Figures 6b and 6c depict the median and tail latencies of
reads and writes separately, under both skewed and uniform
workloads, when operating at peak throughput of CRAQ –
which corresponds roughly to 50-85% of HermesKV peak
throughput. rZAB cannot achieve high enough throughput

11

100 200 300 400 500
MRequests / Sec

0

50

100

150

La
te

nc
y

(
s)

HermesKV - Median
HermesKV - 99th%
rCRAQ - Median
rCRAQ - 99th%
rZAB - Median
rZAB - 99th%

(a) Latency vs throughput. [Uniform traf-
fic, 5% write ratio]

1 5 20 50 75 100
% Write Ratio

0

100

200

300

La
te

nc
y

(
s)

rCRAQ writes - median
rCRAQ writes - 99th%
rCRAQ reads - median
rCRAQ reads - 99th%

HermesKV writes - median
HermesKV writes - 99th%
HermesKV reads - median
HermesKV reads - 99th%

(b) Median and 99th% [Uniform traffic]

1 5 20 50 75 100
% Write Ratio

0

100

200

300

400

La
te

nc
y

(
s)

rCRAQ writes - median
rCRAQ writes - 99th%
rCRAQ reads - median
rCRAQ reads - 99th%

HermesKV writes - median
HermesKV writes - 99th%
HermesKV reads - median
HermesKV reads - 99th%

(c) Median and 99th% [Zipfian 0.99]
Figure 6. Latency analysis. [5 nodes]

to be included in the figures.
▷ Uniform: HermesKV delivers very low, tightly distributed
latencies across all write ratios, for both reads (2µs-15µs) and
writes (29µs-42µs). As expected, rCRAQ exhibits a similar
behaviour for reads but not for writes. rCRAQ write latencies
are at least 3.9× to 5.9× larger than the corresponding write
latencies of HermesKV, with median latencies ranging from
101 to 215µs while the tail latencies range from 138 to 330µs .
▷ Skew: Under skew the tail latencies of both reads and writes
increase in HermesKV, because reads and writes are more
likely to conflict on popular objects. The tail read latency is
the latency of a read that stalls waiting for a write to return;
not surprisingly that latency is roughly equal to the median
latency of a write. Similarly, the tail latency of a HermesKV
write increases up to 120µs because in the worst case without
failures a write might need to wait an already outstanding
write (to the same key) issued from the same node.

In rCRAQ, the latencies of writes remain largely unaffected,
compared to the uniform workload. However, the behaviour
of reads changes radically because reads are far more likely
to conflict with writes under skew; such reads are sent to the
tail node. Consequently, the tail node becomes very loaded,
which is reflected in both the median (up to 112µs) and tail
(up to 386µs) read latencies. This is a very important result;
while high write latencies are expected of rCRAQ, we show
that reads latencies can suffer as well, making CRAQ an un-
desirable protocol for systems that target low latency.

6.4 Scalability Study
To investigate the scalability of the evaluated protocols, we
measure their performance by varying the replication degree.
Figure 7 depicts the throughput of the three protocols under
write ratios of 1% and 20% for 3, 5 and 7 machines.
▷ HermesKV: Reads in HermesKV are always local and thus
their overhead is independent of the number of replicas, al-
lowing HermesKV to take advantage of the added replicas
to increase its throughput. Therefore, HermesKV’s scalabil-
ity is dependent on the write ratio, achieving almost linear
scalability with the number of replicas at 1% writes, while
maintaining its performance advantage at 20% write ratio.
▷ rCRAQ: When scaling rCRAQ, the expectations are similar
to HermesKV: reads are scalable, but writes are not. However,

scaling the replicas in CRAQ implies extending the size of the
chain. Consequently, more non-tail nodes redirect their reads
to the tail node. Thus, the tail becomes loaded, degrading read
throughput, while also creating back-pressure in the chain
which adversely affects write throughput. That phenomenon
is apparent in Figure 7; at 20% write ratio, rCRAQ throughput
degrades when the chain is extended from 5 to 7 nodes.
▷ rZAB: rZAB also performs reads locally, and thus is expected
to see a benefit from greater degrees of replication at low
write ratios. However, write requests incur a large penalty
in rZAB, as the leader receives and serializes writes from all
machines. When the leader cannot keep up with the write
stream, the replicas inevitably fall behind as the reads stall
waiting for the writes to complete, and the writes are queued
on the leader. Indeed, in Figure 7, we observe that even
though rZAB scales well for a read-dominant workload, at a
20% write ratio, increasing the replication degree from 5 to 7
cuts the performance almost in half. Our results are in line
with the original scalability analysis of Zookeeper [48].

6.5 Comparison to Derecho
In this section, we compare HermesKV throughput with the
RDMA-optimized open-source Derecho [50], the state-of-the-
art membership-based variant of Paxos. Derecho’s codebase
partitions work at each node across several threads (3-4), but
does not support higher degrees of threading. For a fairest
possible comparison, we limit HermesKV to a single thread.

Figure 8 shows throughput of awrite-onlyworkload, while
varying the object size from 32B to 1KB – such relatively small
object sizes are typical for datastore workloads [8, 70]. Al-
though HermesKV is constrained to a single thread, it outper-
forms Derecho by an order of magnitude on small object sizes
(32B), while maintaining its benefit even on larger objects
(3× at 1KB). Derecho increases the performance of its totally
ordered writes by exploiting monotonic predicates [50]. Nev-
ertheless, due to its lock-step delivery and its inability to
offer inter-key concurrent writes, it fails to match the per-
formance of Hermes. We note that HermesKV’s throughput
naturally decreases as the object size increases and more
bytes per request are transferred.

12

HermesKV rCRAQ rZAB HermesKV rCRAQ rZAB
1% writes 20% writes

0

250

500

750

1000

M
Re

qu
es

ts
 /

se
c 3 nodes

5 nodes
7 nodes

Figure 7. Scalability study. [Uniform
traffic]

32B 256B 1024B
Object Size

0

1

2

3

M
Re

qu
es

ts
 /

se
c HermesKV -

single thread
Derecho

Figure 8. Comparison to Derecho. [Uni-
form traffic, 5 nodes, write-only]

0 100 200 300
milliseconds

0

250

500

750

M
Re

qu
es

ts
 /

se
c

1% writes
5% writes
20% writes

Node failure

150ms Timeout

Figure 9. HermesKV under failure. [Uni-
form traffic, 5 nodes, timeout=150ms]

6.6 Throughput with Failures
In order to study the behaviour of HermesKV when a failure
occurs, we implement RM in a similar manner with [54] and
integrate it with HermesKV. Figure 9 depicts the behaviour
of HermesKV when a failure is injected at 1, 5, and 20%
write ratios in a five node deployment and a conservative
timeout of 150ms. The throughput drops to zero almost im-
mediately after the failure, because all live nodes are blocked
waiting for acknowledgements from the failed node. After
the timeout expires, the machines reach agreement (via a
majority-based protocol) to reliably remove the failed node
from the membership, and subsequently continue operating
with four nodes. The agreement part of the protocol entails
exchanging a handful of small messages over an unloaded
RDMA network, which takes just a few microseconds and
is not noticeable in the figure. The recovered, steady-state
throughput is lower after the failure, because one node is
removed from the replica group.

7 Related Work
Consensus and atomic broadcast State machine replica-
tion (SMR) [91] provides linearizability by explicitly ordering
all client requests (reads and writes), and requiring all repli-
cas to execute the requests in the determined order. SMR
can be implemented using any fault-tolerant consensus or
atomic broadcast algorithm to order the requests. Numerous
such algorithms have been proposed [18, 26, 71, 82], the most
popular being variants of Paxos [64]. Recent works present
optimized variants of these protocols that exploit commu-
tative operations [2, 65, 78] and rotating coordinators [75].
Others leverage a ring-based topology [6, 42, 85], similarly
to CRAQ, to increase throughput but at the cost of latency.
Most of these protocols are majority-based and sacrifice

performance for a failure model without RM support. There-
fore, they typically enforce strong consistency at the cost of
performance, by sacrificing either local reads or concurrency.
An abundance of such protocols forfeits local reads [9, 18, 19,
35, 64–67, 69, 75, 76, 78, 83, 87], thus incurring a significant
penalty on read-dominant datastore workloads.

Meanwhile, protocols that allow local reads sacrifice per-
formance on writes. A recent atomic broadcast protocol offer-
ing local reads does so by relaxing consistency and applying
writes in lock-step [88]. Chandra et al. [25], present a proto-
col with linearizable local reads through object leases, which

serializes writes on a leader. ZAB [90], a characteristic exam-
ple of such protocols, enables local reads and serializes writes
on a leader but without using object leases, thus increasing
performance but at the cost of consistency. As shown in our
evaluation, Hermes significantly outperforms ZAB with its
decentralized and inter-key concurrent writes.
Per-key leases Linearizable protocols that use object leases
for local reads, such as [11, 25, 79], could be deployed per-
key (i.e., one protocol instance for each key) to match the
inter-key concurrency, but not latency, of writes in Hermes.
However, this mandates a lease for each individual key, which
is not scalable for realistic datastores with millions of keys.
In this approach, for linearizable local reads, leases must be
continuously renewed for each key — even in the absence of
writes or reads. This renewal costs at least Θ(n) messages (n
= number of replicas) per key and must occur before each
lease expires, causing significant network traffic. Moreover,
the lease duration cannot be made very long since this would
translate into similarly long unavailability upon a fault. In
contrast, Hermes, with its invalidating writes and just a
single RM lease per replica, offers local reads while being
fully inter-key concurrent at a message cost independent of
the number of the keys stored by the datastore.
Hardware-assisted replication Some proposals leverage
hardware support to reduce the latency of reliable replication,
such as FPGA offloading [49] and programmable switches [30,
52, 69]. For instance, Zhu et al. [105] use programmable
switches for in-network conflict detection, to allow local
reads from any replica. Other works tailor reliable protocols
by exploiting RDMA [17, 87, 101]. Hermes offers local reads
without hardware support. When evaluated over RDMA, Her-
mes significantly outperforms Derecho, which represents
the state-of-the-art of RDMA-based approaches (§6.5).
Optimized reliable replication A recent work [86] pro-
posed a Primary-backup optimization to reduce the exposed
write latency for external clients, but its correctness relies
on commutative operations. Howard’s optimization [47] al-
lows Paxos to commit after 1 RTT in conflict- and failure-free
rounds, albeit reads are not local. In contrast, Hermes is not
limited to commutative operations and affords local reads.
Reliable transaction commit Hermes provides single-key
linearizabile reads, writes and RMWs, but does not offer fully
reliable multi-key transactions. The distributed transaction

13

commit requires an agreement on whether a transaction
should atomically commit or abort: the transaction may only
be committed if all parties agree on it. A popular protocol
to achieve this is the two-phase commit (2PC) [40]. However,
the 2PC is a blocking protocol and must be extended to three
phases (3PC) to tolerate coordinator failures [41, 43, 95]. A
more common way to achieve reliable transactions is lay-
ering a transactional protocol over a reliable replication
protocol [29, 58, 104]. For instance, FaRM and Sinfonia use
Primary-backup [3, 33]. In this latter setting, Hermes can
be used as the underlying reliable replication protocol to
increase locality and performance.
Geo-replication Hermes is designed for replication within
a local area network (e.g., a datacenter), where network par-
titions are rare. The conventional wisdom for fault-tolerant
replication across dataceneters is to offer causal consistency
which allows execution in all sites under partitions. A causal
replication protocol could be tiered over several independent-
ly-replicated geo-distributed instances managed by Hermes
(instead of CR [4, 72]) to accelerate geo-replication.

8 Discussion
Are local reads beneficial in a large-scale datastore?
Throughout the paper, we report the latency of operations
with respect to a node (replica) in a distributed datastore. In
a large-scale datastore, clients might be external and not co-
located with a replica they desire to access. Although in this
case, reads in Hermes do not provide locality with respect to
the client, they still ensure load balance and low latency. This
is because, in Hermes, a remote read from an external client
would be solely served by just one replica without additional
messages, delays or coordination amongst replicas.
Reducing write latency of external clients
For the protocols discussed in this work, if clients are exter-
nal, an additional round-trip is required to reach and get a
response from the replica ensemble. Thus, the common-case
exposed latency for an external client to commit a write in
Hermes is 2 RTTs. To reduce the response time, followers
can send ACKs to both the coordinator of the write and the
client8 (FACK). This reduces the latency to complete lineariz-
able writes from external clients to 1.5 RTTs. The message
cost of this optimization (about twice the number of ACKs of
the baseline protocol) is linear with the replication degree.
Hermes without Loosely Synchronized Clocks (LSCs)
This paper considers a failure model with LSCs. Hermes lever-
ages LSCs only for the RM lease management, to ensure that
a node with a lease always has the latest membership. How-
ever, Hermes can be efficiently deployed in the absence of
LSCs with minor modifications. Hermes’ writes seamlessly
work without LSCs, since they commit only after all acknowl-
edgments are gathered, which occurs only if the coordinator

8Coordinator must send an ACK to the client as well.

has the same membership as every other live follower9.
Linearizable reads in Hermes can also be served without

LSCs. The basic idea is to use a committed write to any key
after the arrival of a read request as a guarantee that the
given node is still part of the replica group, hence validating
the read. More specifically, observe that a node can establish
that it is a member of the latest membership by successfully
committing a write. Using this idea, a read at a given node
can be speculatively executed but not immediately returned
to the client. Once the node executes a subsequent write to
any key and receives acknowledgments from a majority of
replicas, it can be sure that it was part of the latest member-
ship when the read was executed. Once that’s established,
the read can be safely returned to the client. Note that a ma-
jority of acknowledgments suffices because the membership
itself is updated via a majority-based protocol.
If a subsequent write is not readily-available (e.g., due

to low load) the coordinator can send a membership-check
message which contains only the membership epoch_id to
the followers. The followers will acknowledge this message
if they are in the same epoch. After a majority of acknowl-
edgments is collected, the coordinator returns the read. The
membership-check is a small message and can be issued af-
ter a batch of read requests are speculatively executed by
the coordinator. Thus, although serving reads without LSCs
increases the latency of reads until a majority of replicas
respond, it incurs zero (if a subsequent write is timely) or
minimal network cost to validate the read.

9 Conclusion
This work introduced Hermes, a membership-based reliable
replication protocol that offers both high throughput and
low latency. Hermes uses invalidations and logical times-
tamps to achieve linearizability, with local reads and high-
performance updates at all replicas. In the common case of no
failures, Hermes broadcast-based writes are non-conflicting
and always commit after a single round-trip. Hermes toler-
ates node and network failures through its safe write replays.
An evaluation of Hermes against state-of-the-art protocols
shows that it achieves superior throughput at all write ratios
and considerably reduces tail latency.

Acknowledgments
We thank our shepherd, Rodrigo Rodrigues, and our anony-
mous reviewers for their constructive comments and feed-
back. This work is supported by Microsoft Research and
ARM through their PhD Scholarship Programmes, as well as
EPSRC grants EP/M027317/1 and EP/L01503X/1.

9Followers with different membership value would have otherwise ignored
the received INVs due to discrepancy in the message epoch_ids (§2.4)

14

References
[1] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek,

Vishesh Khemani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri,
Jason Hunter, Roberto Peon, Larry Kai, Alexander Shraer, Arif Mer-
chant, and Kfir Lev-Ari. 2016. Slicer: Auto-sharding for Datacenter
Applications. In Proceedings of the 12th Conference on Operating Sys-
tems Design and Implementation (OSDI’16). USENIX, USA, 739–753.

[2] Marcos Aguilera, Carole Gallet, Hugues Fauconnier, and Sam Toueg.
2000. Thrifty Generic Broadcast. In Proceedings of the 14th Conference
on Distributed Computing (DISC ’00). ., London, UK, 268–282.

[3] Marcos Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and
Christos Karamanolis. 2007. Sinfonia: A New Paradigm for Building
Scalable Distributed Systems. SIGOPS Oper. Syst. Rev. 41, 6 (2007),
159–174.

[4] Sérgio Almeida, João Leitão, and Luís Rodrigues. 2013. ChainReac-
tion: A Causal+ Consistent Datastore Based on Chain Replication. In
Proceedings of the 8th ACM European Conference on Computer Systems
(EuroSys ’13). ACM, New York, NY, USA, 85–98.

[5] Peter Alsberg and John Day. 1976. A Principle for Resilient Shar-
ing of Distributed Resources. In Proceedings of the 2nd International
Conference on Software Engineering (ICSE ’76). IEEE, USA, 562–570.

[6] Yair Amir, Louise Moser, Peter Melliar, Deborah Agarwal, and Paul
Ciarfella. 1995. The Totem Single-ring Ordering and Membership
Protocol. ACM Trans. Comput. Syst. 13, 4 (Nov. 1995), 311–342.

[7] Ali Anwar, Yue Cheng, Hai Huang, Jingoo Han, Hyogi Sim, Dongy-
oon Lee, Fred Douglis, and Ali R. Butt. 2018. bespoKV: Application
Tailored Scale-out Key-value Stores. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis (SC ’18). IEEE Press, Piscataway, NJ, USA, Article 2, 16 pages.

[8] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload Analysis of a Large-scale Key-value Store.
SIGMETRICS Perform. Eval. Rev. 40, 1 (June 2012), 53–64.

[9] Hagit Attiya, Amotz Bar-Noy, andDannyDolev. 1995. SharingMemory
Robustly in Message-passing Systems. J. ACM 42, 1 (1995), 124–142.

[10] Hagit Attiya and Jennifer Welch. 1994. Sequential Consistency versus
Linearizability. ACM Trans. Comput. Syst. 12, 2 (May 1994), 91–122.

[11] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin,
James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim
Yushprakh. 2011. Megastore: Providing Scalable, Highly Available
Storage for Interactive Services. In Proceedings of the Conference on
Innovative Data system Research (CIDR). ., Asilomar, CA, 223–234.

[12] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wob-
ber, Michael Wei, and John D. Davis. 2012. CORFU: A Shared Log
Design for Flash Clusters. In Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation (NSDI’12). USENIX
Association, Berkeley, CA, USA, 1–1.

[13] Dotan Barak. 2013. Tips and tricks to optimize your
RDMA code. https://www.rdmamojo.com/2013/06/08/
tips-and-tricks-to-optimize-your-rdma-code/. (June 2013).

[14] Dotan Barak. 2015. RDMA Aware Networks Programming User Man-
ual. (2015).

[15] Luiz Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The
datacenter as a computer: Designing warehouse-scale machines. Syn-
thesis Lectures on Computer Architecture 13, 3 (2018), i–189.

[16] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ran-
ganathan. 2017. Attack of the Killer Microseconds. Commun. ACM 60,
4 (2017), 48–54.

[17] Jonathan Behrens, Ken Birman, Sagar Jha, Matthew Milano, Edward
Tremel, Eugene Bagdasaryan, Theo Gkountouvas, Weijia Song, and
Robbert Van Renesse. 2016. Derecho: Group Communication at the Speed
of Light. Technical Report. Technical Report. Cornell University.

[18] Ken Birman and Thomas Joseph. 1987. Exploiting Virtual Synchrony
in Distributed Systems. In Proceedings of the Eleventh ACM Symposium
on Operating Systems Principles (SOSP ’87). ACM, New York, 123–138.

[19] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P.
Kusters, and Peng Li. 2011. Paxos Replicated State Machines As the
Basis of a High-performance Data Store. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation
(NSDI’11). USENIX Association, Berkeley, CA, USA, 141–154.

[20] Fábio Botelho, Fernando Ramos, Diego Kreutz, and Alysson Bessani.
2013. On the Feasibility of a Consistent and Fault-Tolerant Data Store
for SDNs. In Proceedings of the 2013 Second European Workshop on
Software Defined Networks (EWSDN ’13). IEEE, USA, 38–43.

[21] Eric Brewer. 2000. Towards Robust Distributed Systems. In Proceedings
of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing (PODC ’00). ACM, New York, NY, USA, 7–.

[22] Eric Brewer. 2012. CAP twelve years later: How the" rules" have
changed. Computer 45, 2 (2012), 23–29.

[23] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkat Venkataramani. 2013. TAO: Facebook’s Distributed Data
Store for the Social Graph. In Proceedings of the 2013 Conference on
Annual Technical Conference (ATC’13). USENIX, Berkeley, 49–60.

[24] Mike Burrows. 2006. The Chubby Lock Service for Loosely-coupled
Distributed Systems. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation - Volume 7 (OSDI ’06).
USENIX Association, Berkeley, CA, USA, 24–24.

[25] Tushar Chandra, Vassos Hadzilacos, and Sam Toueg. 2016. An Algo-
rithm for Replicated Objects with Efficient Reads. In Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing (PODC
’16). ACM, New York, NY, USA, 325–334.

[26] Tushar Chandra and Sam Toueg. 1996. Unreliable failure detectors for
reliable distributed systems. J. ACM 43, 2 (1996), 225–267.

[27] Kelly Clay. 2013. Amazon.com Goes Down, Loses $66,240 Per
Minute. https://www.forbes.com/sites/kellyclay/2013/08/19/
amazon-com-goes-down-loses-66240-per-minute/#4e849f8b495c.
(2013).

[28] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC ’10). ACM, New York, NY, USA, 143–154.

[29] James Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-
pher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak,
Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-
sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and
DaleWoodford. 2013. Spanner: Google’s Globally Distributed Database.
ACM Trans. Comput. Syst. 31, 3 (2013), 22.

[30] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone,
and Robert Soulé. 2015. NetPaxos: Consensus at Network Speed. In
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research (SOSR ’15). ACM, New York, Article 5, 7 pages.

[31] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
Highly Available Key-value Store. SIGOPS Oper. Sys. 41, 6 (2007), 5–20.

[32] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast Remote Memory. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14). USENIX Association, Seattle, WA, 401–414.

[33] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightin-
gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. 2015. No Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proceedings of the Symposium
on Operating Systems Principles (SOSP ’15). ACM, New York, 54–70.

[34] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus

15

https://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-your-rdma-code/
https://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-your-rdma-code/
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#4e849f8b495c
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#4e849f8b495c

in the Presence of Partial Synchrony. J. ACM 35, 2 (1988), 288–323.
[35] Niklas Ekström and Seif Haridi. 2016. A Fault-Tolerant Sequentially

Consistent DSM With a Compositional Correctness Proof. (2016).
arXiv:1608.02442

[36] Nathan Farrington. 2009. Multipath TCP under Massive Packet Re-
ordering. (2009).

[37] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald,
Boris Grot, and Vijay Nagarajan. 2018. Scale-out ccNUMA: Exploiting
Skew with Strongly Consistent Caching. In Proceedings of the EuroSys
Conference (EuroSys ’18). ACM, New York, Article 21, 15 pages.

[38] Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web services. Acm
Sigact News 33, 2 (2002), 51–59.

[39] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Under-
standing Network Failures in Data Centers: Measurement, Analysis,
and Implications. In Proceedings of the ACM SIGCOMM 2011 Conference
(SIGCOMM ’11). ACM, New York, NY, USA, 350–361.

[40] Jim Gray. 1978. Notes on Data Base Operating Systems. In Operating
Systems, An Advanced Course. Springer-Verlag, London, UK, 393–481.

[41] Rachid Guerraoui. 2002. Non-blocking atomic commit in asynchronous
distributed systems with failure detectors. Distributed Computing 15,
1 (2002), 17–25.

[42] Rachid Guerraoui, Dejan Kostic, Ron R. Levy, and Vivien Quema. 2007.
A High Throughput Atomic Storage Algorithm. In Proceedings of the
27th International Conference on Distributed Computing Systems (ICDCS
’07). IEEE Computer Society, Washington, DC, USA, 19–.

[43] Rachid Guerraoui, Mikel Larrea, and André Schiper. 1995. Non Block-
ing Atomic Commitment with an Unreliable Failure Detector. In Pro-
ceedings of the 14TH Symposium on Reliable Distributed Systems (SRDS
’95). IEEE Computer Society, Washington, DC, USA, 41–.

[44] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. 2016. RDMA over Commodity
Ethernet at Scale. In Proceedings of the 2016 ACM SIGCOMMConference
(SIGCOMM ’16). ACM, New York, NY, USA, 202–215.

[45] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., San Francisco, USA.

[46] Maurice Herlihy and Jeannette Wing. 1990. Linearizability: A Correct-
ness Condition for Concurrent Objects. ACM Trans. Program. Lang.
Syst. 12, 3 (July 1990), 463–492.

[47] Heidi Howard. 2019. Distributed consensus revised (Thesis). (2019).
[48] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.

2010. ZooKeeper: Wait-free Coordination for Internet-scale Systems.
In Proceedings of the USENIX Annual Technical Conference (USENIX
ATC’10). USENIX Association, Berkeley, CA, USA, 11–11.

[49] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016.
Consensus in a Box: Inexpensive Coordination in Hardware. In Pro-
ceedings of the 13th Usenix Conference on Networked Systems Design
and Implementation (NSDI’16). USENIX, Berkeley, CA, USA, 425–438.

[50] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano,
Weijia Song, Edward Tremel, Robbert Van Renesse, Sydney Zink, and
Kenneth P. Birman. 2019. Derecho: Fast State Machine Replication for
Cloud Services. Trans. Comput. Syst. 36, 2, Article 4 (2019), 49 pages.

[51] Ricardo Jiménez-Peris, M. Patiño Martínez, Gustavo Alonso, and Bet-
tina Kemme. 2003. Are Quorums an Alternative for Data Replication?
ACM Trans. Database Syst. 28, 3 (Sept. 2003), 257–294.

[52] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-
RTT Coordination. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX, Renton, WA, 35–49.

[53] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. 2011. Zab:
High-performance Broadcast for Primary-backup Systems. In Proceed-
ings of the 2011 IEEE/IFIP 41st International Conference on Dependable
Systems&Networks (DSN ’11). IEEE, Washington, DC, USA, 245–256.

[54] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan,

Todd Pfleiger, Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell,
Vipul Modi, Mansoor Mohsin, Ray Kong, Anmol Ahuja, Oana Pla-
ton, Alex Wun, Matthew Snider, Chacko Daniel, Dan Mastrian, Yang
Li, Aprameya Rao, Vaishnav Kidambi, Randy Wang, Abhishek Ram,
Sumukh Shivaprakash, Rajeet Nair, Alan Warwick, Bharat S. Narasim-
man, Meng Lin, Jeffrey Chen, Abhay Balkrishna Mhatre, Preetha Sub-
barayalu, Mert Coskun, and Indranil Gupta. 2018. Service Fabric:
A Distributed Platform for Building Microservices in the Cloud. In
Proceedings of the EuroSys Conference (EuroSys ’18). ACM, USA, 1–15.

[55] Anuj Kalia, Michael Kaminsky, and David Andersen. 2014. Using
RDMAEfficiently for Key-value Services. SIGCOMMComput. Commun.
Rev. 44, 4 (Aug. 2014), 295–306.

[56] Anuj Kalia, Michael Kaminsky, and David Andersen. 2016. FaSST: Fast,
Scalable and Simple Distributed Transactions with Two-sided (RDMA)
Datagram RPCs. In Proceedings of the 12th Conference on Operating
Systems Design and Implementation (OSDI’16). USENIX, USA, 185–201.

[57] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In Proceedings of
the 2016 USENIX Conference on Usenix Annual Technical Conference
(USENIX ATC ’16). USENIX Association, Berkeley, CA, USA, 437–450.

[58] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan
Fekete. 2013. MDCC: Multi-data Center Consistency. In Proceedings of
the 8th ACM European Conference on Computer Systems (EuroSys ’13).
ACM, New York, NY, USA, 113–126.

[59] H. T. Kung, Trevor Blackwell, and Alan Chapman. 1994. Credit-based
Flow Control for ATM Networks: Credit Update Protocol, Adaptive
Credit Allocation and Statistical Multiplexing. In Proceedings of the
Conference on Communications Architectures, Protocols and Applications
(SIGCOMM ’94). ACM, New York, NY, USA, 101–114.

[60] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decen-
tralized Structured Storage System. SIGOPS Oper. Sys. 44, 2 (2010),
35–40.

[61] Christoph Lameter. 2005. Effective synchronization on Linux/NUMA
systems. (2005).

[62] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21, 7 (1978), 558–565.

[63] Leslie Lamport. 1994. The temporal logic of actions. Transactions on
Programming Languages and Systems (TOPLAS) 16, 3 (1994), 872–923.

[64] Leslie Lamport. 1998. The part-time parliament. ACM Transactions on
Computer Systems (TOCS) 16, 2 (1998), 133–169.

[65] Leslie Lamport. 2005. Generalized consensus and Paxos. (2005).
[66] Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19, 2 (2006),

79–103.
[67] Leslie Lamport et al. 2001. Paxos made simple. ACM Sigact News 32, 4

(2001), 18–25.
[68] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2009. Vertical Paxos

and Primary-backup Replication. In Proceedings of the Symposium on
Principles of Distributed Computing (PODC ’09). ACM, USA, 312–313.

[69] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan
R. K. Ports. 2016. Just Say No to Paxos Overhead: Replacing Consensus
with Network Ordering. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI’16). USENIX
Association, Berkeley, CA, USA, 467–483.

[70] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. 2014. MICA: A Holistic Approach to Fast In-memory Key-value
Storage. In Proceedings of the 11th Networked Systems Design and Im-
plementation (NSDI’14). USENIX Association, Berkeley, USA, 429–444.

[71] Barbara Liskov and James Cowling. 2012. Viewstamped replication
revisited. (2012).

[72] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. 2011. Don’T Settle for Eventual: Scalable Causal Consistency
forWide-area Storagewith COPS. In Proceedings of the 23rd Symposium
on Operating Systems Principles (SOSP ’11). ACM, USA, 401–416.

[73] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng

16

http://arxiv.org/abs/1608.02442

Cheng, Jiansong Zhang, Enhong Chen, and Thomas Moscibroda. 2018.
Multi-Path Transport for RDMA in Datacenters. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18).
USENIX Association, Renton, WA, 357–371.

[74] Nancy Lynch and Alexander Shvartsman. 1997. Robust emulation
of shared memory using dynamic quorum-acknowledged broadcasts.
(1997), 272-281 pages.

[75] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius:
Building Efficient Replicated State Machines for WANs. In Proceedings
of the 8th Conference on Operating Systems Design and Implementation
(OSDI’08). USENIX, Berkeley, CA, USA, 369–384.

[76] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. 2011. High
Performance State-machine Replication. In Proceedings of the 41st
International Conference on Dependable Systems&Networks (DSN ’11).
IEEE Computer Society, Washington, DC, USA, 454–465.

[77] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to Host
Networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’19). ACM, New York, NY, USA, 399–413.

[78] Iulian Moraru, David Andersen, and Michael Kaminsky. 2013. There
is More Consensus in Egalitarian Parliaments. In Proceedings of the
24th Symposium on Operating Systems Principles (SOSP ’13). ACM, USA,
358–372.

[79] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2014. Paxos
Quorum Leases: Fast Reads Without Sacrificing Writes. In Proceedings
of the Symposium on Cloud Computing (SOCC ’14). ACM, USA, 1–13.

[80] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan, Owen Hofmann,
Jon Howell, and Yutaka Suzue. 2012. Flat Datacenter Storage. In Pre-
sented as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12). USENIX, Hollywood, CA, 1–15.

[81] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. 2016. The Case for RackOut: Scalable Data Serving Us-
ing Rack-Scale Systems. In Proceedings of the Seventh ACM Symposium
on Cloud Computing (SoCC ’16). ACM, New York, NY, USA, 182–195.

[82] Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped Replication:
A New Primary Copy Method to Support Highly-Available Distributed
Systems. In Proceedings of the Seventh Symposium on Principles of
Distributed Computing (PODC ’88). ACM, New York, NY, USA, 8–17.

[83] Diego Ongaro and John Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm. In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC’14). USENIX, USA, 305–320.

[84] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout,
and Mendel Rosenblum. 2011. Fast Crash Recovery in RAMCloud. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles (SOSP ’11). ACM, New York, NY, USA, 29–41.

[85] Parisa Marandi, M. Primi, N. Schiper, and F. Pedone. 2010. Ring Paxos:
A high-throughput atomic broadcast protocol. In 2010 International
Conference on Dependable Systems Networks. ., Chicago, USA, 527–536.

[86] Seo Jin Park and John Ousterhout. 2019. Exploiting Commutativity
for Practical Fast Replication. In Proceedings of the 16th Conference
on Networked Systems Design and Implementation (NSDI’19). USENIX,
USA, 47–64.

[87] Marius Poke and TorstenHoefler. 2015. DARE: High-Performance State
Machine Replication on RDMA Networks. In Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’15). ACM, New York, NY, USA, 107–118.

[88] Marius Poke, Torsten Hoefler, and Colin W. Glass. 2017. AllConcur:
Leaderless Concurrent Atomic Broadcast. In Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’17). ACM, New York, NY, USA, 205–218.

[89] Ian Prittie. 2018. Windows Time Service | Microsoft Docs.
https://docs.microsoft.com/en-us/windows-server/networking/
windows-time-service/windows-time-service-top. (2018).

[90] Benjamin Reed and Flavio P. Junqueira. 2008. A Simple Totally Ordered
Broadcast Protocol. In Proceedings of the 2nd Workshop on Large-Scale
Distributed Systems and Middleware (LADIS ’08). ACM, USA, 2:1–2:6.

[91] Fred B. Schneider. 1990. Implementing Fault-tolerant Services Using
the State Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4
(Dec. 1990), 299–319.

[92] Michael L. Scott. 2013. Shared-Memory Synchronization. (2013).
[93] Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chat-

zopoulos, Aleksandar Dragojević, Dushyanth Narayanan, and Miguel
Castro. 2019. Fast General Distributed Transactions with Opacity. In
Proceedings of the 2019 International Conference on Management of Data
(SIGMOD ’19). ACM, New York, NY, USA, 433–448.

[94] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015.
Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network. In Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communication (SIGCOMM
’15). ACM, New York, NY, USA, 183–197.

[95] Dale Skeen. 1981. Nonblocking Commit Protocols. In Proceedings of
the 1981 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’81). ACM, New York, NY, USA, 133–142.

[96] Jeff Terrace and Michael J. Freedman. 2009. Object Storage on CRAQ:
High-throughput Chain Replication for Read-mostly Workloads. In
Proceedings of the 2009 Conference on USENIX Annual Technical Con-
ference (USENIX’09). USENIX Association, Berkeley, CA, USA, 11–11.

[97] Robbert Van Renesse, Kenneth P. Birman, Bradford B. Glade, Katie
Guo, Mark Hayden, Takako Hickey, Dalia Malki, Alex Vaysburd, and
Werner Vogels. 1995. Horus: A Flexible Group Communications System.
Technical Report. Cornell University, Ithaca, NY, USA.

[98] Robbert van Renesse and Fred B. Schneider. 2004. Chain Replica-
tion for Supporting High Throughput and Availability. In Proceedings
of the 6th Conference on Symposium on Opearting Systems Design &
Implementation (OSDI’04). USENIX, Berkeley, CA, USA, 7–7.

[99] Paolo Viotti and Marko Vukolić. 2016. Consistency in Non-
Transactional Distributed Storage Systems. ACM Comput. Surv. 49, 1,
Article 19 (June 2016), 34 pages.

[100] Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1
(Jan. 2009), 40–44.

[101] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui.
2017. APUS: Fast and Scalable Paxos on RDMA. In Proceedings of the
Symposium on Cloud Computing (SoCC ’17). ACM, New York, 94–107.

[102] Michael Wei, Amy Tai, Christopher J. Rossbach, Ittai Abraham,
Maithem Munshed, Medhavi Dhawan, Jim Stabile, Udi Wieder, Scott
Fritchie, Steven Swanson, Michael J. Freedman, and Dahlia Malkhi.
2017. vCorfu: A Cloud-scale Object Store on a Shared Log. In Proceed-
ings of the 14th Conference on Networked Systems Design and Imple-
mentation (NSDI’17). USENIX Association, Berkeley, CA, USA, 35–49.

[103] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Rat-
nasamy, and Scott Shenker. 2018. Elastic Scaling of Stateful Network
Functions. In 15th Symposium on Networked Systems Design and Im-
plementation (NSDI 18). USENIX Association, Renton, WA, 299–312.

[104] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K.
Aguilera, and Jinyang Li. 2013. Transaction Chains: Achieving Se-
rializability with Low Latency in Geo-distributed Storage Systems.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, New York, NY, USA, 276–291.

[105] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan Ports, Ion Stoica,
and Xin Jin. 2019. Harmonia: Near-Linear Scalability for Replicated
Storage with In-Network Conflict Detection. (2019).

17

https://docs.microsoft.com/en-us/windows-server/networking/windows-time-service/windows-time-service-top
https://docs.microsoft.com/en-us/windows-server/networking/windows-time-service/windows-time-service-top

	Abstract
	1 Introduction
	2 Background
	2.1 In-Memory Distributed Datastores
	2.2 Replication and Consistency
	2.3 High Performance
	2.4 Reliable Replication Protocols
	2.5 CRAQ

	3 Hermes
	3.1 Overview
	3.2 Hermes Protocol in Detail
	3.3 Hermes Protocol Optimizations
	3.4 Network Faults, Reconfiguration and Recovery
	3.5 Operational Example
	3.6 Read-Modify-Writes in Hermes
	3.7 Summary

	4 System
	4.1 Overview and KVS
	4.2 Wings: an RDMA RPC layer for Hermes

	5 Experimental Methodology
	5.1 Evaluated Systems
	5.2 Testbed

	6 Evaluation
	6.1 Throughput on Uniform Traffic
	6.2 Throughput under Skew
	6.3 Latency Analysis
	6.4 Scalability Study
	6.5 Comparison to Derecho
	6.6 Throughput with Failures

	7 Related Work
	8 Discussion
	9 Conclusion
	Acknowledgments
	References

