
Modeling the Behavior of Threads in the PREEMPT_RT Linux
Kernel Using Automata

Daniel Bristot de Oliveira

Red Hat, Inc.

Scuola Superiore Sant’Anna

Universidade Federal de Santa

Catarina

bristot@redhat.com

Tommaso Cucinotta

Scuola Superiore Sant’Anna

tommaso.cucinotta@santannapisa.it

Rômulo Silva de Oliveira

Universidade Federal de Santa

Catarina

romulo.deoliveira@ufsc.br

ABSTRACT
This article proposes an automata-based model for describing and

verifying the behavior of thread management code in the Linux

PREEMPT_RT kernel, on a single-core system. The automata model

defines the events that influence the timing behavior of the exe-

cution of threads, and the relations among them. This article also

presents the extension of the Linux trace features that enable the

trace of such events in a real system. Finally, one example is pre-

sented of how the presented model and tracing tool helped catching

an inefficiency bug in the scheduler code and ultimately led to im-

proving the kernel.

CCS CONCEPTS
•Computer systems organization→Real-time operating sys-
tems; Embedded systems;

KEYWORDS
Real-time systems, Linux kernel, behavioral modeling, code verifi-

cation, automata, tracing.

ACM Reference Format:
Daniel Bristot de Oliveira, Tommaso Cucinotta, and Rômulo Silva deOliveira.

2018. Modeling the Behavior of Threads in the PREEMPT_RT Linux Kernel

Using Automata. In Proceedings of ACM Conference (Conference’17). ACM,

New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Real-time Linux has been a research topic for more than a decade

now, with many scheduling algorithms being implemented in Linux

[3, 7, 22, 25]. Despite the constant interaction of Linux development

and the real-time research, some conceptual divergence between

these groups still exists.

For instance, the common assumption that tasks are completely

independent, that the operating system is (fully) preemptive, and

that operations are atomic [6, 7] is a frequent critic from Linux devel-

opers. They argue that the results of the development of theoretical

schedulers does not reproduce the reality of real-time applications

running on Linux [15].

In practice, the interaction among tasks can cause some non-

negligible delays, even for functions that are not directly related,

caused by in-kernel operations [9]. Those in-kernel operations are

Ewili’18, 4 October, 2018, Torino, Italy.

Copyright held by Owner/Author

necessary because of the non-atomic nature of a sophisticated op-

erating system like Linux. For example, the highest priority thread,

once activated, will not be atomically loaded in the processor, start-

ing to run instantaneously. Instead, to notify the activation of a

thread, the system needs to block the execution of the scheduler.

Then, interrupts must be disabled as well, to avoid race conditions

with interrupt handlers. Hence, delays in the scheduling and inter-

rupt handler are created during activation of a thread [12].

The understanding of such operations, and how they affect the

timing behavior of a task, are fundamental for the development

of real-time algorithms for Linux. However, the amount of effort

required for a researcher to understand all these constraints is not

negligible. Rather, it might take years for a newcomer to understand

the internals of the Linux kernel. The complexity of Linux is indeed

a barrier, not only for researchers but for developers as well. Inside

the kernel, scheduling operations interact with low-level details of

the underlying processor and memory architectures, where com-

plex locking protocols and “hacks” are used. This is done to ensure

that such a general-purpose operating system (GPOS) behaves as

efficiently as possible in the average case, while at the same time

it is done to ensure that, with proper tuning, the kernel can serve

an increasing number of real-time use cases as well, turning effec-

tively into a real-time operating system (RTOS). The progressive

chasing and elimination over the years of any use of the old global

kernel lock, the extensive use of fine-grain locking, the widespread

adoption of memory barrier primitives, or even the post-ponement

of most interrupt handling code to kernel threads as done in the

PREEMPT_RT kernel, are all examples of a big commitment into

reducing the duration of non-preemptible kernel sections to the

bare minimum, while allowing for a greater control over the pri-

ority and scheduling among the various in-kernel activities, with

proper tuning by the system administrator.

As a consequence, Linux runs in a satisfactory way for many real-

time applications with precise timing requirements. This is possible

thanks to a set of operations that ensure the deterministic operation

of Linux. The challenge is then, to describe such operations, using

a level of abstraction that removes the complexity due to the in-

kernel code, in a format that facilitates the understanding of Linux

code for real-time researchers without being too far from the way

developers observe and improve Linux.

Real-time Linux developers evaluate the system using tracing.

They interpret a chain of events to understand and improve Linux’

timing behavior. For instance, they use ftrace or perf to trace ker-
nel events like interrupt handling, wakeup of a new thread, context

switch, etc.. while cyclictest measures the latency of the system.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Daniel Bristot de Oliveira, Tommaso Cucinotta, and Rômulo Silva de Oliveira

When cyclitest hits a large latency, the trace is interpreted, to
identify the chains of events that bring the system to the state that
caused the latency

1
. Then the kernel is modified to avoid this state.

The notion of events, traces and states used by developers are

common to Discrete Event Systems (DES). A DES can be formally

modeled through a language describing all admissible sequences

of events that the DES can produce or process. The language of a

DES can be defined in many formats, like regular expressions and

automaton.

Following the approach presented for IRQs on PREEMPT_RT

Linux [13], this article proposes an automata model for threads

in Linux on a single-core system. The automata model defines

the events that influence the timing behavior of the execution of

threads, and the relation among each event.

Paper Contributions. This article discusses an automaton model

for threads in Linux, on a single core, and also the extension of

the Linux trace features that enable the trace of such events in

a real system. The paper also demonstrates how the model can

improve the understanding of Linux properties. Finally, it shows

one example of how the presented model and tracing techniques

helped to catch a bug leading to some inefficiency in the scheduler

code, so that a patch could be developed, which has been submitted

and accepted by developers for upstream merging.

Paper Organization. The paper is organized as follows: Section 2

briefly recalls some related work and Section 3 provides a short

summary of the automata theory used in this paper; Section 4

provides some details of the used modeling strategy and discusses

the development of the proposed model. Section 5 describes part

of the proposed model, based on the concepts introduced in the

previous sections. Finally, Section 6 presents the next steps of this

work, pointing toward a better description of Linux’s tasks using

well defined real-time theory terms.

2 RELATEDWORK
Software verification is an active and bustling area of research,

with many techniques involving the use of automata theory [27] or

other state-based modeling methodologies, temporal logics and/or

techniques similar to process calculus. These are aimed at either

ensuring that a given safety/correctness predicate on the system

state can never be violated, or, in case a violation is possible, these

techniques aim at finding an execution trace/scenario leading to the

faulty state, useful to debug the system (or sometimes its abstract

model). Classical examples involve modeling and analysis of lock-

ing schemes and distributed application protocols, e.g., by using

well-known tools such as SPIN [17], TLC+ using TLA+ [20] and/or

PlusCal models [21]. These formalisms can also handle verifica-

tion of timing properties for real-time systems [2]. It is particularly

challenging to apply these techniques on code written in general-

purpose programming languages, such as C/C++ or Java: either the

software is so simple to allow for a complete enumeration of all

the possible states, or – the majority of the times – one ends up

with the inherently undecidable problem of checking whether or

not a predicate can ever be violated. Also, for complex software,

the model is usually built as an abstraction of the actual software

1
http://people.redhat.com/williams/latency-howto/rt-latency-howto.txt

behavior, introducing a risky semantic gap between the model and

the actual software behavior. Such a gap may be reduced by ap-

proaches proposing automatic model generation from C code [23],

which have the inherent drawback of producing overly big and

complex models. However, many techniques have been developed

that allow for huge reductions of the search space, allowing these

techniques to be usable with a reasonable processing time in vari-

ous cases of real industrial software. A remarkable example is the

use of TLA+ and PlusCal within AmazonWeb Services [24], leading

to the discovery of various design bugs in DynamoDB, S3, EBS, EC2

and other software components.

In this context, an area that is particularly challenging is the

one of verification of an operating system kernel and its various

components. Some works that addressed this problem include the

one by Henzinger and others [16], who used control flow automata,

combining existing techniques for state-space reduction based on

abstraction, verification and counterexample-driven refinement,

with lazy abstraction. This allows for an on-demand refinement

of parts of the specification by choosing more specific predicates

to add to the model while the model checker is running, without

any need for revisiting parts of the state space that are not affected

by the refinements. Interestingly, authors applied the technique,

implemented within the BLAST tool, to the verification of safety

properties of OS drivers for the Linux and Microsoft Windows NT

kernels. The technique required instrumentation of the original

drivers, to insert a conditional jump to an error handling piece of

code, and a model of the surrounding kernel behavior, in order to

allow the model checker to verify whether or not the faulty code

could ever be reached.

The static code analyzer SLAM [4] shares major objectives with

BLAST, in that it allows for analyzing C programs to detect violation

of certain conditions. It has been used also to detect improper usage

of the Microsoft Windows XP kernel API by some device drivers.

More recently, Witkowski et al. [28] proposed the DDVerify tool,

extending on the capabilities of BLAST and SLAM, e.g., supporting

synchronization constructs, interrupts and deferred tasks.

Another remarkable work is the lockdep mechanism [10] built

into the Linux kernel, capable of identifying errors in using locking

primitives that might eventually lead to deadlocks. The mechanism

includes detection of mistaken order of acquisition of multiple

(nested) locks throughout multiple kernel code paths, and detection

of common mistakes in handling spinlocks across IRQ handler vs

process context, e.g., acquiring a spinlock from process context

with IRQs enabled as well as from a IRQ handler. Interestingly, the

number of different spinlock states that has to be kept by the kernel

is reduced by applying the technique based on individual locking

classes, rather than individual locks.

There have also been other remarkable works assessing formal

correctness of a whole micro-kernel such as seL4 [19], i.e., adher-

ence of the compiled code to its expected behavior, stated in formal

mathematical terms. seL4 has also been accompanied by precise

WCET analysis [5]. These findings were possible thanks to the sim-

plicity of the seL4 micro-kernel features, e.g., semi-preemptability.

To the best of our knowledge, none of the above techniques ven-

tured into the challenging goal of building a formal model for the

understanding and verification of in-kernel code sections respon-

sible for such low-level operations such as task scheduling, IRQ

Modeling the Behavior of Threads in the PREEMPT_RT Linux Kernel Using Automata Conference’17, July 2017, Washington, DC, USA

x

a
z

g

b

y

a,g

a

b

Figure 1: State transitions diagram (based on Figure 2.1 from
[8]).

and NMI management, and their delicate interplay. This paper fo-

cuses on the automata-based modeling of the task scheduling code,

extending our related prior work [13] which focused on the IRQ

and NMI management code. These works shed some light exactly

into this uncovered spot, in the industrial and research practice

literature.

3 BACKGROUND
We model the evolution of threads on Linux over time as a Discrete

Event System. A DES can be described in various ways, for example

using a language (that represents the “legal” sequences of events
that can be observed during the evolution of the system). Informally

speaking, an automaton is just a formalization used to model a set

of well-defined rules that define such a language.

A trace of its run-time behavior can be described as a sequence

of the visited states and the associated events causing state transi-

tions. Hence, a DES evolution is described as a sequence of events

e1, e2, e3, ...en .
All possible sequences of events define the language that de-

scribes the system. Representing a language using an appropriate

modeling formalism is then fundamental for the analysis, control

and performance evaluation of a DES.

The starting point to describe a DES is the underlying set of

events E = {ei } associated with it, that represents the “alphabet”

used to form “strings” (“traces”) of events that compose the DES lan-

guage. This framework can be used either to define the language to

be performed by a new system, or to formally identify the language

understood by an existing system.

A DES can be formally modeled through a language, L(G), de-
scribing all admissible sequences of events that the DES can produce

or process. There are many possible ways to describe the language

of a system. For example, it is possible to use regular expressions.

For complex systems, though, more flexible modeling formats were

developed, being automaton one of these method.

One of the key features of an automaton is its directed graph or

state transition diagram representation. For example, consider the

event set E = {a,b, c} and the state transition diagram in Figure 1,

where nodes represent the system states, labeled arcs represent

transitions between states, the arrow points to the initial state and

the nodes with double circles are marked states. The marked state

is the safe state of the the system.

Formally, a deterministic automaton, denoted byG , is a quintuple

G = {X ,E, f ,x0,Xm } (1)

whereX is the set of states,E is the finite set of events, f : X×E → X
is the transition function (defining the state transition between

states from X due to events from E), x0 is the initial state and

Xm ⊆ X is the set of marked states.

For instance, the automaton G represented on Figure 1 can be

described by defining X = {x ,y, z}, E = {a,b,д}, f (x ,a) = x ,
f (y,a) = x , f (z,b) = z, f (x ,д) = z, f (y,b) = y, f (z,a) = f (z,д) =
y, item x0 = x and Xm = {x , z}. The automaton starts from the ini-

tial state x0 and moves to a new state f (x0, e) upon the occurrence

of an event e ⊆ E with f (x0, e) defined. This process continues
based on the transitions for which f is defined.

Informally, following the graph of Figure 1 it is possible to see

that the occurrence of event a, followed by event д and a will lead

from the initial state to state y. The language generated by an

automaton G = {X ,E, f ,x0,Xm } consists of all possible chains of

events generated by the state transition diagram starting from the

initial state.

One important language generated by automata is the marked

language. The marked language is composed of the set of words

in L(G) that lead the state transition diagram to a marked state.

The marked language is also called the language recognized by the

automaton. When modeling systems, a marked state is generally

interpreted as a possible final or secure state for a system.

Automata theory also enables operations between automata. An

important operation is the parallel composition of two or more

automata that can be synchronized to compose a single automaton.

In the parallel composition, events not shared between the automata

are possible at any state in which it is possible in the local state.

Events shared between two automata are possible only when it is

possible in every automaton for which the event is part of the set

of events. The initial state of the parallel composition is the initial

state of all the composed automata. A state is marked if and only if

the state is marked in all the automata in the parallel composition.

In general, complex systems can be modeled as composed of

many concurrent (and simpler) sub-systems. Automata operations

enable the modeling of a complex DES by decomposing it in mod-

ules. For example, the approach presented by Ramadge and Won-

ham [26] allows the modeling of a system composed by many

sub-systems. With this approach, the system is modeled as a set

of completely independent sub-systems and each sub-system is

known as a plant or generator. The composition of all sub-systems

generates all possible chains of events, even sequences of events

that cannot really be generated by the system in practice. Hence,

specifications are defined to remove “impossible sequences” from

the language. Specifications are automata using events common in

the generators they aim to synchronize.

Using such approach, a thread on Linux can be modeled using a

set of sub-systems; then, the restrictions imposed to the possible

sequences of events are modeled, allowing the interaction of each

event to be precisely described.

4 PROPOSED APPROACH
During the model development, described in Figure 2, the informal

knowledge about Linux tasks’ is modeled using automata theory.

The main source of information, in order of importance, are pre-

vious papers about the subject [12], kernel code, documentation

Conference’17, July 2017, Washington, DC, USA Daniel Bristot de Oliveira, Tommaso Cucinotta, and Rômulo Silva de Oliveira

Informal
knowledge

Kernel

Modeling
[Supremica]

Observation of
the kernel execution

[perf/tracepoints]

Validation
[perf task_model]

Automaton
[.dot]

Trace
[.data]

Does the
model

 match the
kernel?

Done

No

Yes

Figure 2: Modeling Phases.

Table 1: Automaton and Kernel events relation and status.

Kernel event Automaton event Status
irq:local_irq_disable local_irq_disable new

irq:local_irq_enable local_irq_enable new

sched:sched_preempt_disable preempt_disable new

sched:sched_preempt_enable preempt_enable new

sched:sched_need_resched sched_need_resched new

sched:sched_set_state sched_set_state_runnable new

sched:sched_set_state sched_set_state_sleepable new

sched:sched_entry schedule_entry new

sched:sched_exit schedule_exit new

sched:sched_switch sched_switch_in exist

sched:sched_switch sched_switch_in_o exist

sched:sched_switch sched_switch_out_o exist

sched:sched_switch sched_switch_preempt exist

sched:sched_switch sched_switch_suspend exist

sched:sched_waking sched_waking exist

and the observation of the system’s execution using various tracing

tools, and hardware documentation [18]. During the development

of the model, the execution of the model and the execution of the

kernel are checked continuously one against the other. If a problem

is detected, the chain of events is evaluated, resulting in a change

in the model. However, as the model becomes more mature, it can

be the case that the problem resides in the kernel, as a result of a

misusage of the kernel methods. If a kernel problem is detected, a

change in the kernel can be proposed.

4.1 Events
The events used in the automata modeling and their relative kernel

events are presented in Table 1. The status column shows if trace

event of the kernel is new or if it is an existing one. When a kernel

event refers to more than one event, the extra fields of the kernel

event are used to distinguish between automaton events.

The perf tool was extended to collect the trace of the kernel

events used for the modeling.

4.2 Modeling
The automata describing the formal model have been developed

using the Supremica IDE [1]. Supremica is an integrated environ-

ment for verification, synthesis and simulation of discrete event

systems using finite automata. Supremica allows exporting the re-

sult of the modeling in the DOT format that can be plotted using

graphviz [14], for example.

need_resched

sched_need_resched

runnablesleepable

sched_set_state_sleepable

sched_waking
sched_set_state_runnable

scheduling_contextthread_context

schedule_exit

schedule_entry

Figure 3: Examples of generators: NeedResched (on top, left)
Sleepable and Runnable (on top, right) Scheduling Context
(bottom).

An efficient way to model complex systems is using the modu-

lar approach. In the modular approach, rather than modeling the

system as a single automaton, the system is divided into generators
and specifications. The generators are the system’s events modeled

as a set of independent sub-systems, where each sub-system has

its own independent set of events. Then, the relation of the events

of each sub-system is modeled as a set of specifications. Similarly,

each specification is modeled independently, using the alphabet of

the sub-systems of the generator it aims to control.

Examples of generators are shown in Figure 3. The Need Resched

generator contains only one event and one state. The Sleepable

and Runnable generators have two states. Initially, the thread is

in the sleepable state. The events sched_waking and sched_-
set_state_runnable cause a state change to runnable. The event
sched_set_state_sleepable returns the task to the initial state.

The Scheduling Context models the call and return of the main

scheduling function of Linux, which is __scheduler().
Figure 4 shows the specifications of events that allows a task to

call the scheduler. The explanation of this specification is done in

the next section.

The final model is done with the parallel composition of all gen-

erators and specifications. It is composed of 15 events, 7 generators,

and 10 specifications. Resulting in 149 states and 327 transitions.

The model is non-blocking, has no forbidden states and is deter-

ministic.

As expected, the final model has many events, which makes it

difficult to use. However, the modular approach allows the use of

only parts of the model in the analysis, as demonstrated in the next

section.

5 EARLY RESULTS
The modular modeling of the thread creates many possibilities.

The first is the ability to analyze the properties of threads in Linux

without a deep knowledge of the internals of the kernel.

For instance, the model in Figure 4 presents the conditions for

the thread under analysis to call the scheduler. In the initial state, in

which the thread is not running, the schedule_entry event is rec-

ognized. When the sched_switch_in switch the state of the thread
to running, the schedule_entry is not allowed. The running state,

Modeling the Behavior of Threads in the PREEMPT_RT Linux Kernel Using Automata Conference’17, July 2017, Washington, DC, USA

not_running

schedule_entry
sched_waking

sched_need_resched

running

sched_switch_in

preemption_runnable
sched_switch_preempt

schedule_entry

preemption_sleepable

schedule_entry
sched_switch_preempt

preemption_to_runnable
sched_wakingsleepable sched_switch_in

schedule_entry
sched_switch_preemptsched_switch_in

sched_need_resched

sched_set_state_sleepable

sched_need_reschedsched_set_state_runnable
sched_waking

suspending

schedule_entry

sched_switch_suspend

Figure 4: Example of Specifications: Necessary and Sufficient conditions to call the scheduler.

1: ktimersoftd/0 8 [000] 784.425631: sched:sched_switch: ktimersoftd/0:8 [120] R ==> kworker/0:2:728 [120]
2: kworker/0:2 728 [000] 784.425926: sched:sched_set_state: sleepable
3: kworker/0:2 728 [000] 784.425936: sched:set_need_resched: comm=kworker/0:2 pid=728
4: kworker/0:2 728 [000] 784.425941: sched:sched_entry: at preempt_schedule_common
5: kworker/0:2 728 [000] 784.425945: sched:sched_switch: kworker/0:2:728 [120] R ==> kworker/0:1:724 [120]
6: irq/14-ata_piix 86 [000] 784.426515: sched:sched_waking: comm=kworker/0:2 pid=728 prio=120 target_cpu=000
7: kworker/0:1 724 [000] 784.426610: sched:sched_switch: kworker/0:1:724 [120] t ==> kworker/0:2:728 [120]
8: kworker/0:2 728 [000] 784.426616: sched:sched_entry: at schedule
9: kworker/0:2 728 [000] 784.426619: sched:sched_switch: kworker/0:2:728 [120] R ==> kworker/0:2:728 [120]

Figure 5: Kernel trace excerpt.

though, recognizes two events, the sched_set_state_sleepable
and the sched_need_resched.

In the case of the occurrence of the event sched_set_state_-
sleepable, the thread changes the state to sleepable, where the
schedule_entry is recognized. Hence, the occurrence of sched_-
set_state_sleepable is sufficient to call the scheduler. However,

the thread can return to the previous state with the occurrence of

the event sched_set_state_runnable, and so the scheduler will

not necessarily be called.

In the other case of the occurrence of the event sched_need_-
resched, the schedule_entry will become possible, moving the

thread to the state preemption_runnable. In this state, though,

it is not possible to return to the running state without causing

a preemption. As the preemption only occurs in the scheduling

context, the sched_need_resched event is both a necessary and a

sufficient condition to call the scheduler.

Another possibility created by the model is the identification of

problems of the kernel. For example, taking the trace of Figure 5,

considering the thread kworker/0:2 in analysis, and the model

in Figure 4 in the initial state, the events and state transitions of

Table 2 happens.

The thread kworker/0:2 started to run at Line 1. After in run-
ning state, it sets its state to sleepable in Line 2, followed by the

need_resched event in Line 3, causing the scheduler to be called

in Line 4. Then, the thread switched the context in preemption

and left the processor. At Line 6 the thread is awakened, switching

Table 2: Events and state transitions of Figure 5.

Line Event New state
1 sched_switch_in running

2 sched_set_state_sleepable sleepable

3 sched_need_resched preemption_sleepable

4 sched_entry preemption_sleepable

5 sched_switch_preempt preemption_sleepable

6 sched_waking preemption_to_runnable

7 sched_switch_in running

8 sched_entry not recognized!

the state to preemption_to_runnable, and then at Line 7 the con-
text_switch_in takes place and the thread starts to run. However,
right after returning from the scheduler function, the thread calls

the scheduler again at Line 8, and this was not expected.

In a deeper analysis, before calling __schedule() to cause a con-
text switch, the schedule() function runs sched_submit_work()
to dispatch deferred work that was postponed to the point that

the thread is leaving the processor voluntarily, as an optimization.

The optimization, however, caused a preemption, that caused the

scheduler to be called in the path to call the scheduler. Hence, call-

ing the scheduler twice. Calling the scheduler twice does not cause

a logical problem. But it causes the strange effect of calling the

scheduler in vain, doubling the scheduler overhead.

This behavior was reported to the Linux community, along with

a suggestion of fix. The suggestions of the fix was to not call the

Conference’17, July 2017, Washington, DC, USA Daniel Bristot de Oliveira, Tommaso Cucinotta, and Rômulo Silva de Oliveira

scheduler during the path to call the scheduler. With the suggested

fix, the language generated by the system was recognized by the

automata. The suggestion has been recently submitted to the real-

time Linux kernel development list, and it was accepted for mainline

integration [11].

6 CONCLUSIONS
The understanding of in-kernel operations, and how they affect the

timing behavior of a task, are fundamental for the development

of real-time algorithms for Linux. However, due to the complexity

of Linux’ code base, this understanding may need an prohibitive

amount of time, justifying the creation of a simplified model, that

abstracts the complexity of the system, while describing the es-

sential operations that influence the timing behavior of threads

on Linux. The timing behavior of Linux is evaluated using the

trace of events by practitioners, which are common notions for

the automata theory, used in the modeling of DES. The usage of

the automata theory adequately enabled the modeling of Linux,

allowing the statement to of Linux’ properties, as used in real-time

papers, and the detection of non-optimal behaviors on Linux, as

in practice. This is not a finished work, however. The model needs

to be extended to comprise locking and interrupts, in the first mo-

ment, and also to include multi-core operations, like the migration

of threads. Moreover, the model can also be used in the develop-

ment of a validator of the timing behavior of tasks on Linux, like

lockdep does for locks.

REFERENCES
[1] Å kesson, K., Fabian, M., Flordal, H., and Malik, R. Supremica - An integrated

environment for verification, synthesis and simulation of discrete event systems.

In Discrete Event Systems, 2006 8th International Workshop on (2006), pp. 384–385.

[2] Abadi, M., and Lamport, L. An old-fashioned recipe for real time. ACM Trans.
Program. Lang. Syst. 16, 5 (Sept. 1994), 1543–1571.

[3] Abeni, L., Goel, A., Krasic, C., Snow, J., and Walpole, J. A measurement-

based analysis of the real-time performance of linux. In Proceedings. Eighth
IEEE Real-Time and Embedded Technology and Applications Symposium (2002),

pp. 133–142.

[4] Ball, T., and Rajamani, S. K. The slam project: Debugging system software

via static analysis. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (New York, NY, USA, 2002), POPL ’02,

ACM, pp. 1–3.

[5] Blackham, B., Shi, Y., Chattopadhyay, S., Roychoudhury, A., and Heiser, G.

Timing analysis of a protected operating system kernel. In Proceedings of the
32nd IEEE Real-Time Systems Symposium (RTSS11) (Vienna, Austria, November

2011), pp. 339–348.

[6] Brandenburg, B. B., and Anderson, J. H. Integrating hard/soft real-time tasks

and best-effort jobs on multiprocessors. In 19th Euromicro Conference on Real-
Time Systems (ECRTS’07) (July 2007), pp. 61–70.

[7] Calandrino, J. M., Leontyev, H., Block, A., Devi, U. C., and Anderson, J. H.

Litmus
r t : A testbed for empirically comparing real-time multiprocessor sched-

ulers. In Proceedings of the 27th IEEE International Real-Time Systems Symposium
(Washington, DC, USA, 2006), RTSS ’06, IEEE Computer Society, pp. 111–126.

[8] Cassandras, C. G., and Lafortune, S. Introduction to Discrete Event Systems,
2nd ed. Springer Publishing Company, Incorporated, 2010.

[9] Cerqeira, F., and Brandenburg, B. A comparison of scheduling latency in

linux, preempt-rt, and litmus-rt. In Proceedings of the 9th Annual Workshop on
Operating Systems Platforms for Embedded Real-Time applications (2013), pp. 19–
29.

[10] Corbet, J. The kernel lock validator. https://lwn.net/Articles/185666/, May 2006.

[11] de Oliveira, D. B. __schedule() being called twice, the second in vain. http:

//bristot.me/__schedule-being-called-twice-the-second-in-vain/, July 2018.

[12] de Oliveira, D. B., and de Oliveira, R. S. Timing analysis of the PREEMPT RT

linux kernel. Softw., Pract. Exper. 46, 6 (2016), 789–819.
[13] de Oliveira, D. B., de Oliveira, R. S., Cucinotta, T., and Abeni, L. Automata-

based modeling of interrupts in the linux preempt rt kernel. In 2017 22nd IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA)
(Sept 2017), pp. 1–8.

[14] Ellson, J., Gansner, E., Koutsofios, L., North, S. C., and Woodhull, G.

Graphviz – open source graph drawing tools. In International Symposium on
Graph Drawing (2001), Springer, pp. 483–484.

[15] Gleixner, T. Realtime Linux: academia v. reality. Linux Weekly News (July 2010).

Available at https://lwn.net/Articles/397422/.

[16] Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. Lazy abstraction.

In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (New York, NY, USA, 2002), POPL ’02, ACM, pp. 58–70.

[17] Holzmann, G. J. The model checker spin. IEEE Trans. Softw. Eng. 23, 5 (May

1997), 279–295.

[18] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s
Manual: Vol. 3. No. 325384-060US. September 2016.

[19] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,

Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch,

H., and Winwood, S. sel4: Formal verification of an os kernel. In Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles (New York,

NY, USA, 2009), SOSP ’09, ACM, pp. 207–220.

[20] Lamport, L. The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16,
3 (May 1994), 872–923.

[21] Lamport, L. The PlusCal Algorithm Language. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2009, pp. 36–60.

[22] Lelli, J., Scordino, C., Abeni, L., and Faggioli, D. Deadline scheduling in the

linux kernel. Software: Practice and Experience 46, 6 (2016), 821–839.
[23] Methni, A., Lemerre, M., Ben Hedia, B., Haddad, S., and Barkaoui, K. Speci-

fying and Verifying Concurrent C Programs with TLA+. Springer International
Publishing, Cham, 2015, pp. 206–222.

[24] Newcombe, C. Why Amazon Chose TLA+ . Springer Berlin Heidelberg, Berlin,

Heidelberg, 2014, pp. 25–39.

[25] Palopoli, L., Cucinotta, T., Marzario, L., and Lipari, G. Aquosa – adaptive

quality of service architecture. Softw. Pract. Exper. 39, 1 (Jan. 2009), 1–31.
[26] Ramadge, P. J., and Wonham, W. M. Supervisory control of a class of discrete

event processes. SIAM J. Control Optim. 25, 1 (Jan. 1987), 206–230.
[27] Vardi, M. Y., and Wolper, P. An automata-theoretic approach to automatic

program verification. In Proc. First IEEE Symp. on Logic in Computer Science (1986),
pp. 322–331.

[28] Witkowski, T., Blanc, N., Kroening, D., and Weissenbacher, G. Model

checking concurrent linux device drivers. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engineering (New

York, NY, USA, 2007), ASE ’07, ACM, pp. 501–504.

https://lwn.net/Articles/185666/
http://bristot.me/__schedule-being-called-twice-the-second-in-vain/
http://bristot.me/__schedule-being-called-twice-the-second-in-vain/
https://lwn.net/Articles/397422/

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Proposed Approach
	4.1 Events
	4.2 Modeling

	5 Early Results
	6 Conclusions
	References

