skip to main content
research-article

A Survey of Multi-Label Topic Models

Published:26 November 2019Publication History
Skip Abstract Section

Abstract

Every day, an enormous amount of text data is produced. Sources of text data include news, social media, emails, text messages, medical reports, scientific publications and fiction. To keep track of this data, there are categories, key words, tags or labels that are assigned to each text. Automatically predicting such labels is the task of multi-label text classification. Often however, we are interested in more than just the pure classification: rather, we would like to understand which parts of a text belong to the label, which words are important for the label or which labels occur together. Because of this, topic models may be used for multi-label classification as an interpretable model that is flexible and easily extensible. This survey demonstrates the manifold possibilities and flexibility of the topic model framework for the complex setting of multi-label text classification by categorizing different variants of models.

References

  1. C. E. Antoniak. Mixtures of dirichlet processes with applications to bayesian nonparametric problems. Annals of Statistics, 2(6):1152--1174, 11 1974.Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh. On smoothing and inference for topic models. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, UAI '09, pages 27--34, Arlington, Virginia, United States, 2009. AUAI Press.Google ScholarGoogle Scholar
  3. P. Bhattacharya, M. B. Zafar, N. Ganguly, S. Ghosh, and K. P. Gummadi. Inferring user interests in the twitter social network. In Proceedings of the 8th ACM Conference on Recommender systems, pages 357--360. ACM, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3:993--1022, January 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757--1771, March 2004.Google ScholarGoogle ScholarCross RefCross Ref
  7. W. Buntine and M. Hutter. A Bayesian view of the Poisson-Dirichlet process. arXiv preprint arXiv:1007.0296, 2010.Google ScholarGoogle Scholar
  8. S. Burkhardt. Online Multi-label Text Classification Using Topic Models. PhD thesis, Johannes Gutenberg- Universit¨at Mainz, 2018.Google ScholarGoogle Scholar
  9. S. Burkhardt and S. Kramer. Multi-label classification using stacked hierarchical dirichlet processes with reduced sampling complexity. In ICBK 2017 - International Conference on Big Knowledge, pages 1--8, Hefei, China, 2017. IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. Burkhardt and S. Kramer. Online sparse collapsed hybrid variational-gibbs algorithm for hierarchical dirichlet process topic models. In M. Ceci, J. Hollm´en, L. Todorovski, C. Vens, and S. D'zeroski, editors, Machine Learning and Knowledge Discovery in Databases, pages 189--204, Cham, 2017. Springer International Publishing.Google ScholarGoogle Scholar
  11. S. Burkhardt and S. Kramer. Multi-label classification using stacked hierarchical dirichlet processes with reduced sampling complexity. Knowledge and Information Systems, pages 1--23, 2018.Google ScholarGoogle Scholar
  12. S. Burkhardt and S. Kramer. Multi-label classification using stacked hierarchical dirichlet processes with reduced sampling complexity. Knowledge and Information Systems, pages 1--23, 2018.Google ScholarGoogle Scholar
  13. S. Burkhardt and S. Kramer. Online multi-label dependency topic models for text classification. Machine Learning, 107(5):859--886, May 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Burkhardt and S. Kramer. Online multi-label dependency topic models for text classification. Machine Learning, 107(5):859--886, May 2018. SIGKDD Explorations Volume 21, Issue 1 Page 77Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Burkhardt and S. Kramer. Decoupling sparsity and smoothness in the dirichlet variational autoencoder topic model. Journal of Machine Learning Research, 20(131):1--27, 2019.Google ScholarGoogle Scholar
  16. S. Burkhardt, J. Siekiera, J. Glodde, M. A. Andrade- Navarro, and S. Kramer. Towards identifying drug side effects from social media using active learning and crowd sourcing. In Pacific Symposium of Biocomputing (PSB), page accepted, 2020.Google ScholarGoogle Scholar
  17. S. Burkhardt, J. Siekiera, and S. Kramer. Semisupervised bayesian active learning for text classification. In Bayesian Deep Learning Workshop at NeurIPS, 2018.Google ScholarGoogle Scholar
  18. K. Canini, L. Shi, and T. Griffiths. Online inference of topics with latent dirichlet allocation. In D. van Dyk and M.Welling, editors, Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pages 65-- 72, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16--18 Apr 2009. PMLR.Google ScholarGoogle Scholar
  19. O. Capp´e and E. Moulines. On-line expectationmaximization algorithm for latent data models. Journal of the Royal Statistical Society Series B, 71(3):593--613, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  20. C. Chen, L. Du, andW. Buntine. Sampling table configurations for the hierarchical Poisson-Dirichlet process. In D. Gunopulos, T. Hofmann, D. Malerba, and M. Vazirgiannis, editors, Proc. of ECML-PKDD, pages 296--311, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.Google ScholarGoogle Scholar
  21. J. Chuang, D. Ramage, C. Manning, and J. Heer. Interpretation and trust: Designing model-driven visualizations for text analysis. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '12, pages 443--452, New York, NY, USA, 2012. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Cohen and D. Ruths. Classifying political orientation on twitter: It's not easy! In Seventh International AAAI Conference on Weblogs and Social Media, 2013.Google ScholarGoogle Scholar
  23. J. Foulds, L. Boyles, C. DuBois, P. Smyth, and M.Welling. Stochastic collapsed variational bayesian inference for latent dirichlet allocation. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '13, pages 446--454, New York, NY, USA, 2013. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. F¨ urnkranz, E. H¨ ullermeier, E. Loza Menc´a, and K. Brinker. Multilabel classification via calibrated label ranking. Machine Learning, 73(2):133--153, Nov 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. Gouk, B. Pfahringer, and M. J. Cree. Learning distance metrics for multi-label classification. In 8th Asian Conference on Machine Learning, volume 63, pages 318--333, 2016.Google ScholarGoogle Scholar
  26. T. L. Griffiths and M. Steyvers. Finding scientific topics. In Proc. of the National Academy of Sciences of the United States of America, volume 101, pages 5228--5235. National Acad Sciences, 2004.Google ScholarGoogle Scholar
  27. S. Gururangan, T. Dang, D. Card, andN.A. Smith.Variational pretraining for semi-supervised text classification. arXiv preprint arXiv:1906.02242, 2019.Google ScholarGoogle Scholar
  28. M. D. Hoffman, D. M. Blei, and F. R. Bach. Online learning for latent dirichlet allocation. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 856--864. Curran Associates, Inc., 2010.Google ScholarGoogle Scholar
  29. M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal of Machine Learning Research, 14:1303--1347, May 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Y. Hu, J. Boyd-Graber, B. Satinoff, and A. Smith. Interactive topic modeling. Machine Learning, 95(3):423--469, Jun 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Jagarlamudi, H. Daum´e III, and R. Udupa. Incorporating lexical priors into topic models. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pages 204--213. Association for Computational Linguistics, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In European conference on machine learning, pages 137--142. Springer, 1998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. N. Johri, D. Ramage, D. A. McFarland, and D. Jurafsky. A study of academic collaboration in computational linguistics with latent mixtures of authors. In Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, LaTeCH '11, pages 124--132, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. I. Katakis, G. Tsoumakas, and I. Vlahavas. Multilabel text classification for automated tag suggestion. In ECML-PKDD discovery challenge, volume 75, 2008.Google ScholarGoogle Scholar
  35. S. Lacoste-Julien, F. Sha, and M. I. Jordan. Disclda: Discriminative learning for dimensionality reduction and classification. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 897--904. Curran Associates, Inc., 2009.Google ScholarGoogle Scholar
  36. J. D. Lafferty and D. M. Blei. Correlated topic models. In Advances in neural information processing systems, pages 147--154, 2006.Google ScholarGoogle Scholar
  37. A. Q. Li, A. Ahmed, S. Ravi, and A. J. Smola. Reducing the sampling complexity of topic models. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '14, pages 891--900, New York, NY, USA, 2014. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. W. Li. Pachinko Allocation: DAG-structured Mixture Models of Topic Correlations. PhD thesis, University of Massachusetts Amherst, April 2007.Google ScholarGoogle Scholar
  39. W. Li and A. McCallum. Pachinko allocation: Dagstructured mixture models of topic correlations. In Proceedings of the 23rd international conference on Machine learning, ICML '06, pages 577--584, New York, NY, USA, 2006. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. X. Li, J. Ouyang, and X. Zhou. Supervised topic models for multi-label classification. Neurocomput., 149(PB):811-- 819, Feb. 2015. SIGKDD Explorations Volume 21, Issue 1 Page 78Google ScholarGoogle Scholar
  41. E. Loza Menc´a and J. F¨ urnkranz. Efficient multilabel classification algorithms for large-scale problems in the legal domain. In E. Francesconi, S. Montemagni, W. Peters, and D. Tiscornia, editors, Semantic Processing of Legal Texts -- Where the Language of Law Meets the Law of Language, volume 6036 of Lecture Notes in Artificial Intelligence, pages 192--215. Springer-Verlag, 1 edition, May 2010.Google ScholarGoogle Scholar
  42. X.-L. Mao, Z.-Y. Ming, T.-S. Chua, S. Li, H. Yan, and X. Li. Sshlda: a semi-supervised hierarchical topic model. In Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning, pages 800--809. Association for Computational Linguistics, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding rating dimensions with review text. In Proceedings of the 7th ACM conference on Recommender systems, pages 165--172. ACM, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. J. D. Mcauliffe and D. M. Blei. Supervised topic models. In Advances in neural information processing systems, pages 121--128, 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. D. A. McFarland, D. Ramage, J. Chuang, J. Heer, C. D. Manning, and D. Jurafsky. Differentiating language usage through topic models. Poetics, 41(6):607 -- 625, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  46. D. Mimno and A. McCallum. Topic models conditioned on arbitrary features with dirichlet-multinomial regression. In Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI'08, pages 411--418, Arlington, Virginia, United States, 2008. AUAI Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. A. Mukherjee and B. Liu. Aspect extraction through semi-supervised modeling. In Proceedings of the 50th annual meeting of the association for computational linguistics: Long papers-volume 1, pages 339--348. Association for Computational Linguistics, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. J. Nam, J. Kim, E. Loza Menc´a, I. Gurevych, and J. F¨ urnkranz. Large-scale multi-label text classification - revisiting neural networks. In T. Calders, F. Esposito, E.H¨ ullermeier, and R. Meo, editors, Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), pages 437--452, Berlin Heidelberg, 2014. Springer.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. C.-T. Nguyen, D.-C. Zhan, and Z.-H. Zhou. Multi-modal image annotation with multi-instance multi-label lda. In Twenty-Third International Joint Conference on Artificial Intelligence, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. D. Padmanabhan, S. Bhat, S. Shevade, and Y. Narahari. Topic model based multi-label classification. In 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), pages 996--1003, Nov 2016.Google ScholarGoogle ScholarCross RefCross Ref
  52. R. Panda, A. Pensia,N. Mehta, M. Zhou, and P. Rai. Deep topic models for multi-label learning. In K. Chaudhuri and M. Sugiyama, editors, Proceedings of Machine Learning Research, volume 89 of Proceedings of Machine Learning Research, pages 2849--2857. PMLR, 16--18 Apr 2019.Google ScholarGoogle Scholar
  53. E. Papagiannopoulou, Y. Papanikolaou, D. Dimitriadis, S. Lagopoulos, G. Tsoumakas, M. Laliotis, N. Markantonatos, and I. Vlahavas. Large-scale semantic indexing and question answering in biomedicine. In Proceedings of the Fourth BioASQ workshop, pages 50--54, Berlin, Germany, Aug. 2016. Association for Computational Linguistics.Google ScholarGoogle ScholarCross RefCross Ref
  54. Y. Papanikolaou, J. R. Foulds, T. N. Rubin, and G. Tsoumakas. Dense distributions from sparse samples: Improved gibbs sampling parameter estimators for lda. Journal of Machine Learning Research, 18(62):1--58, 2017.Google ScholarGoogle Scholar
  55. A. J. Perotte, F.Wood, N. Elhadad, and N. Bartlett. Hierarchically supervised latent dirichlet allocation. In Advances in Neural Information Processing Systems, pages 2609--2617, 2011.Google ScholarGoogle Scholar
  56. Y. Prabhu and M. Varma. Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '14, pages 263--272, New York, NY, USA, 2014. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. D. Quercia, H. Askham, and J. Crowcroft. Tweetlda: supervised topic classification and link prediction in twitter. In Proceedings of the 4th Annual ACMWeb Science Conference, pages 247--250. ACM, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised multitask learners. 2019.Google ScholarGoogle Scholar
  59. D. Ramage, S. Dumais, and D. Liebling. Characterizing microblogs with topic models. In Fourth International AAAI Conference on Weblogs and Social Media, 2010.Google ScholarGoogle Scholar
  60. D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled lda: A supervised topic model for credit attribution in multi-labeled corpora. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 - Volume 1, EMNLP '09, pages 248--256, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. D. Ramage, P. Heymann, C. D. Manning, and H. Garcia- Molina. Clustering the tagged web. In Proceedings of the Second ACM International Conference on Web Search and Data Mining, WSDM '09, pages 54--63, New York, NY, USA, 2009. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. D. Ramage, C. D. Manning, and S. Dumais. Partially Labeled Topic Models for Interpretable Text Mining. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '11, pages 457--465, New York, NY, USA, 2011. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. D. Ramage, C. D. Manning, and D. A. Mcfarland. Which universities lead and lag? toward university rankings based on scholarly output. In In Proc. of NIPSWorkshop on Computational Social Science and theWisdom of the Crowds, 2010.Google ScholarGoogle Scholar
  64. A. Rodr´guez, D. B. Dunson, and A. E. Gelfand. The Nested Dirichlet Process. Journal of the American Statistical Association, 103(483):1131--1154, 2008. SIGKDD Explorations Volume 21, Issue 1 Page 79Google ScholarGoogle ScholarCross RefCross Ref
  65. M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P.Smyth. The author-topic model for authors and documents. In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI '04, pages 487--494, Arlington, Virginia, United States, 2004. AUAI Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. T. N. Rubin, A. Chambers, P. Smyth, and M. Steyvers. Statistical topic models for multi-label document classification. Machine Learning, 88(1--2):157--208, July 2012.Google ScholarGoogle Scholar
  67. R. Salakhutdinov, J. B. Tenenbaum, and A. Torralba. Learning with hierarchical-deep models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8):1958--1971, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. F. Sebastiani. Machine learning in automated text categorization. ACM Comput. Surv., 34(1):1--47, Mar. 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. M. Shimosaka, T. Tsukiji, S. Tominaga, and K. Tsubouchi. Coupled Hierarchical Dirichlet Process Mixtures for Simultaneous Clustering and Topic Modeling. In P. Frasconi, N. Landwehr, G. Manco, and J. Vreeken, editors, Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), Lecture Notes in Computer Science, vol. 9852, pages 230-- 246, Cham, 2016. Springer International Publishing.Google ScholarGoogle ScholarCross RefCross Ref
  70. A. Srivastava and C. Sutton. Autoencoding variational inference for topic models. In Proceedings of the International Conference on Learning Representations (ICLR), 2017.Google ScholarGoogle Scholar
  71. Y.W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):1566--1581, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  72. Y.W. Teh, D.Newman, and M.Welling.Acollapsed variational bayesian inference algorithm for latent dirichlet allocation. In B. Sch¨olkopf, J. C. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 1353--1360. MIT Press, 2007.Google ScholarGoogle Scholar
  73. G. Tsoumakas and I. Katakis. Multi-label classification: An overview. International Journal of Data Warehousing and Mining (IJDWM), 3(3):1--13, 2007.Google ScholarGoogle Scholar
  74. G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining multilabel data. In O. Maimon and L. Rokach, editors, Data Mining and Knowledge Discovery Handbook, pages 667-- 685. Springer US, 2010.Google ScholarGoogle Scholar
  75. G. Tsoumakas, I. Katakis, and I. P. Vlahavas. Effective and Efficient Multilabel Classification in Domains with Large Number of Labels. In ECML/PKDD 2008Workshop on Mining Multidimensional Data, 2008.Google ScholarGoogle Scholar
  76. H. Wang, M. Huang, and X. Zhu. A generative probabilistic model for multi-label classification. In Eighth IEEE International Conference on Data Mining, pages 628-- 637. IEEE, Dec 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. J.Wicker, B. Pfahringer, and S. Kramer. Multi-label classification using boolean matrix decomposition. In Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC '12, pages 179--186, NewYork, NY, USA, 2012. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. J. Wicker, A. Tyukin, and S. Kramer. A Nonlinear Label Compression and Transformation Method for Multilabel Classification Using Autoencoders, pages 328--340. Springer International Publishing, Cham, 2016.Google ScholarGoogle Scholar
  79. J. Zhang, Z. Ghahramani, and Y. Yang. A probabilistic model for online document clustering with application to novelty detection. In Advances in neural information processing systems, pages 1617--1624, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. L. Zhang, S. K. Shah, and I. A. Kakadiaris. Hierarchical multi-label classification using fully associative ensemble learning. Pattern Recognition, 70:89--103, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  81. M.-L. Zhang and Z.-H. Zhou. A review on multi-label learning algorithms. IEEE transactions on knowledge and data engineering, 26(8):1819--1837, 2013.Google ScholarGoogle Scholar
  82. M.-L. Zhang and Z.-H. Zhou. A review on multi-label learning algorithms. IEEE transactions on knowledge and data engineering, 26(8):1819--1837, 2014.Google ScholarGoogle Scholar
  83. Y. Zhang, J. Ma, Z. Wang, and B. Chen. Lf-lda: A topic model for multi-label classification. In International Conference on Emerging Internetworking, Data &Web Technologies, pages 618--628. Springer, 2017.Google ScholarGoogle Scholar
  84. J. Zhu, A. Ahmed, and E. P. Xing. Medlda: Maximum margin supervised topic models for regression and classification. In Proceedings of the 26th International Conference on Machine Learning, ICML '09, pages 1257--1264, New York, NY, USA, 2009. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Survey of Multi-Label Topic Models
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM SIGKDD Explorations Newsletter
      ACM SIGKDD Explorations Newsletter  Volume 21, Issue 2
      December 2019
      100 pages
      ISSN:1931-0145
      EISSN:1931-0153
      DOI:10.1145/3373464
      Issue’s Table of Contents

      Copyright © 2019 Copyright is held by the owner/author(s)

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 November 2019

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader