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Abstract
Intersection types have come a long way since their intro-

duction in the Seventies. They have been exploited for char-

acterising behaviours of λ-terms and π -calculus processes,
building λ-models, verifying properties of higher-order pro-

grams, synthesising code, and enriching the expressivity of

programming languages. This paper is a light overview of

intersection types and some of their applications.
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1 Introduction
Type polymorphism is a desirable feature for programming

languages and is indeed a fascinating subject, as it implies a

form of infinity. Universal types, namely System F and its ex-

tension Fω [45], are a direct design of polymorphism, given

that universality contains a notion of infinity. Intersection

types are polymorphic types, too, because they permit us to

list explicitly all possible (interesting) types of a program.

They are then a formalism to describe portions of infinity,

the ones that matter in a certain context. As a finitary de-

scription of infinity, intersection types have come a long way

since their introduction in the Seventies. They have been

exploited for characterising behaviours of λ-terms and π -
calculus processes, building λ-models, verifying properties
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of higher-order programs, synthesising code, and enriching

the expressivity of programming languages.

In this work, we would like to take the reader along a path

of discovery into the origins and applications of intersection

types. This path cannot be complete, given the amplitude of

the subject. We avoided technical details as much as possible

in favour of intuition, sometimes also sacrificing precision.

It was difficult to choose the subjects of this paper: the

main criterion was to cover as many different contexts and

periods of time as possible, in the given space. We hope that

the reader will enjoy this guided walk through intersection

types and will forgive us for our omissions.

The paper is organised as follows. The first three sections

introduce intersection types for the λ-calculus, discuss their
syntactic properties, and describe their use for computing

the complexity of λ-terms. The next three sections illustrate

the role of intersection types in defining the semantics of the

λ-calculus and of the π -calculus. Section 8 presents one of the
more unexpected and interesting applications of intersection

types, i.e., the ability of model checking higher-order func-

tions. The remaining sections are oriented to programming

languages from different points of view: we start from auto-

matic software composition and type decoration, and then

we present some aspects of the languages CDuce, Forsythe
and Java.

The sections are self-contained, with the exception of

Section 6 which requires Section 5, and can be read indepen-

dently. We only assume some familiarity with the λ-calculus
and types (a good introduction to the subjects can be found,

for instance, in the keystone books [18, 68]).

2 The birth of intersection types
In the Seventies, looking at the world through the λ-calculus,
a natural question to be asked was how to obtain types that

were preserved not only by subject reduction (a mandatory

request!), but also by subject expansion [29, 30, 69]. We take

the standard syntax for pure λ-terms [7] (Definition 2.1.1):

M ::= x | λx.M | MM,

with the usual notational conventions, and define reduction

−→ as the reflexive, transitive and contextual closure of the

β-rule:

(λx.M)N −→ M[N/x],

https://doi.org/10.1145/3373718.3394733
https://doi.org/10.1145/3373718.3394733
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N : σ1 · · · N : σn

M[N/x] : τ

Figure 1. Derivation ofM[N/x] : τ .

N : σ

M[N/x] : τ

Figure 2. Derivation of M[N/x] : τ when x occurs exactly
once inM.

x : σ

M : τ
(→ I )

λx.M : σ → τ N : σ
(→ E)

(λx.M)N : τ

Figure 3. Derivation of (λx.M)N : τ when x occurs exactly
once inM.

M[N/x] : τ

Figure 4. Derivation ofM[N/x] : τ when x does not occur
inM.

where M[N/x] denotes the λ-term obtained by the (capture

free) substitution of x by N inM [32] (page 94).

Type preservation under subject expansion means that if

M[N/x] has a type τ , written M[N/x] : τ , then also (λx.M)N
has the same type, i.e., (λx.M)N : τ . This is enough for com-

positional typings, a common feature. A tree representation

of a type derivation forM[N/x] : τ is given in Figure 1, where
n is the number of occurrences of x inM. Ifn = 1 the drawing

simplifies as in Figure 2, and we can derive the same type

for (λx.M)N as shown in Figure 3, just using the standard

rules of arrow introduction and elimination. If n = 0, we get

the result in Figure 4, where N has no type. To tackle this

case, it is useful to have a universal type, which we name ω,
and the typing rule (ω) assigning ω to any arbitrary λ-term.

Therefore, we type the expansion by the derivation shown

in Figure 5.

Lastly, if n > 1, we need to assign the types σ1, . . . ,σn to

the variable x. We add then the intersection type constructor

M : τ
(→ I )

λx.M : ω → τ
(ω)

N : ω
(→ E)

(λx.M)N : τ

Figure 5. Derivation of (λx.M)N : τ when x does not occur
inM.

∧ with the expected introduction and elimination rules:

M : τ M : σ
(∧I )

M : τ ∧ σ

M : τ ∧ σ
(∧E)

M : τ

M : τ ∧ σ
(∧E)

M : σ

Figure 6 shows the typing of the expansion for n = 2, the

generalisation to an arbitrary n > 2 being straightforward.

To sum up, intersection types are generated by the gram-

mar:

τ ,σ ::= ϕ | ω | τ → τ | τ ∧ τ ,

where ϕ ranges over an enumerable set of type variables.

We adopt the convention that ∧ has precedence over →.

Unless otherwise stated, we assume ∧ to be idempotent,

commutative and associative with neutral element ω.
We write typing judgments as Γ ⊢ M : τ , where a basis Γ

is a finite mapping from term variables to types:

Γ ::= ∅ | Γ, x : τ .

The typing rules are given in Figure 7. A nice property of

intersection types is the possibility of typing all normal forms,
i.e., λ-terms that cannot be reduced, with types capturing

completely the normal forms. In fact, from these typings,

a simple algorithm can extract the corresponding normal

forms [30]. Note that some normal forms, for example the

auto-application λx.xx, cannot be typed using the simple

types à la Curry [49] (Definition 15.6). The type derivation

of Figure 8 shows how intersection can deal instead with

auto-application, by considering the same variable both as a

function and as an argument for that function.

The notion of approximation formalises the idea that the

result of a computation is gradually built, step by step, by the

computation itself (in contrast to the set theoretic static no-

tion of function as graph). A program may fail to terminate,

but still go on building some information, as, for example,

a program building an infinite stream. In the λ-calculus, re-
cursion is simulated through the fixed point combinator Y,
which does not have a normal form, but repeatedly unfolds

its recursive definition. In the intersection type system Y has

an infinite number of types, which correspond exactly to its

unfoldings, i.e., its approximants:

ω (ω → τ1) → τ1 (ω → τ1) ∧ (τ1 → τ2) → τ2 . . .
. . . (ω → τ1) ∧ . . . ∧ (τn → τn+1) → τn+1 . . .

This sequence of types represents Y’s infinite normal form.
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x : σ1 ∧ σ2

(∧E)
x : σ1

x : σ1 ∧ σ2

(∧E)
x : σ2

M : τ
(→ I )

λx.M : σ1 ∧ σ2 → τ

N : σ1 N : σ2

(∧I )
N : σ1 ∧ σ2

(→ E)
(λx.M)N : τ

Figure 6. Derivation of (λx.M)N : τ when x occurs twice inM.

(Ax)
Γ, x : τ ⊢ x : τ

(ω)
Γ ⊢ M : ω

Γ, x : σ ⊢ M : τ
(→ I )

Γ ⊢ λx.M : σ → τ

Γ ⊢ M : σ → τ Γ ⊢ N : σ
(→ E)

Γ ⊢ MN : τ

Γ ⊢ M : σ Γ ⊢ M : τ
(∧I )

Γ ⊢ M : σ ∧ τ

Γ ⊢ M : σ ∧ τ
(∧E)

Γ ⊢ M : τ

Figure 7. Typing rules for intersection types.

As should be clear from the above discussion, the pre-

sented type system enjoys both subject reduction and subject

expansion.

Theorem 2.1. (Subject Reduction and Expansion)
1. If Γ ⊢ M : τ and M −→ N, then Γ ⊢ N : τ .
2. If Γ ⊢ M : τ and N −→ M, then Γ ⊢ N : τ .

A feature of intersection types is the ability to charac-

terise computational properties of λ-terms [37, 69], proper-

ties which are widely studied in the literature. In particular

we recall the following classes of λ-terms:

• a λ-term is weakly normalising if it reduces to a λ-term
of the shape λx.M (called a λ-abstraction) or of the
shape xM1 . . .Mn (n ≥ 0) (called a λ-free term);

• a λ-term is solvable if it reduces to a λ-term of the

shape λx1 . . . xn .yM1 . . .Mm (n,m ≥ 0) (called a head

normal form);

• a λ-term is normalising if it reduces to a normal form;

• a λ-term is strongly normalising if all its reductions

terminate.

These computational behaviours have a clear correspon-

dence with the typings of λ-terms.

Theorem 2.2. (Computational Properties)
1. Γ ⊢ M : ω → ω iffM is weakly normalising.
2. Γ ⊢ M : τ1 → . . .→ τn → ϕ (n ≥ 0) iffM is solvable.
3. Γ ⊢ M : τ and Γ,τ do not contain ω iffM is normalising.
4. Γ ⊢ M : τ without using ω in the derivation iff M is

strongly normalising.

Other classes of λ-terms are characterised in [37]. Notably

intersection types can then be considered the first example of

behavioural types, i.e., types able to represent the behaviour

of terms. Behavioural types are widely used to ensure sound-

ness of communication protocols [53]. On the negative side,

the expressivity of the intersection type system implies the

undecidability of intersection type inference, i.e., given a

λ-term, we are unable to say if we can derive a type for it.

For this reason various restrictions have been proposed in

the literature. We will discuss one of them in Section 10.

Inhabitation, i.e., the existence of a λ-term that can be

typed from a given basis with a given type, is also unde-

cidable. This problem was open for a long time and then

brilliantly solved in [79].

The type system with intersection types is a conservative

extension of the type system with simple types à la Curry [8,

47]. System F and its extension Fω [45] are very expressive

thanks to the use of universal quantifiers. Because all λ-terms

typable in Fω are strongly normalising [45], they can also be

typed with intersection types. On the contrary, [78] gives a

λ-term which has an intersection type but no type in Fω .

3 Expansion
Canwe add the power of intersection types to a calculus or to

a programming language? The answer is yes, and expansion
is one of the key ingredients. Let us see what it is.

Rule (∧I ) duplicates the typings of the same λ-terms. For

example we can derive:

y : σ ⊢ y : σ

y : σ , x : ϕ ⊢ x : ϕ

y : σ ⊢ λx.x : ϕ → ϕ

y : σ ⊢ y(λx.x) : ψ

where σ = (ϕ → ϕ) → ψ , but also

y : τ ⊢ y : τ

y : τ , x : ϕ1 ⊢ x : ϕ1

y : τ ⊢ λx.x : ϕ1 → ϕ1

y : τ , x : ϕ2 ⊢ x : ϕ2

y : τ ⊢ λx.x : ϕ2 → ϕ2

y : τ ⊢ λx.x : (ϕ1 → ϕ1) ∧ (ϕ2 → ϕ2)

y : τ ⊢ y(λx.x) : ψ

where τ = (ϕ1 → ϕ1) ∧ (ϕ2 → ϕ2) → ψ . This example

suggests the usefulness of replacing some types by an in-

tersection of types obtained by renaming the original ones.

Here ϕ → ϕ is replaced by (ϕ1 → ϕ1) ∧ (ϕ2 → ϕ2). Clearly

the choice of the replaced types must follow syntactic rules.

In this case the replacement is called expansion [30].
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(Ax)
x : (σ → τ ) ∧ σ ⊢ x : (σ → τ ) ∧ σ

(∧E)
x : (σ → τ ) ∧ σ ⊢ x : σ → τ

(Ax)
x : (σ → τ ) ∧ σ ⊢ x : (σ → τ ) ∧ σ

(∧E)
x : (σ → τ ) ∧ σ ⊢ x : σ

(→ E)
x : (σ → τ ) ∧ σ ⊢ xx : τ

(→ I )
⊢ λx.xx : (σ → τ ) ∧ σ → τ

Figure 8. Typing auto-application.

Expansion is also needed when we want to type the appli-

cation of two λ-terms. Consider for example MN1
where:

• M = λx.x(λy.yz) has type
(((ϕ1 → ϕ2) → ϕ2) → ϕ3) → ϕ3,

starting from the assumption z : ϕ1;

• N = λfa.f(fa) has type
(ψ1 → ψ2) ∧ (ψ3 → ψ1) → ψ3 → ψ2.

We need to unify the two types ((ϕ1 → ϕ2) → ϕ2) → ϕ3 and

(ψ1 → ψ2) ∧ (ψ3 → ψ1) → ψ3 → ψ2, which can be drawn as

the following trees:

→ →

→ ϕ3 ∧ →

→ ϕ2 → → ψ3 ψ2

ϕ1 ϕ2 ψ1 ψ2 ψ3 ψ1

The problem here is the clash between an arrow and an

intersection, connected by a dotted line. Expansion allows

us to have an intersection in the type of M:

z : ϕ1

��
⊢ M : (ϕ1 → ϕ2) → ϕ2

��
→ ϕ3

z : ϕ′
1
∧ ϕ′′

1
⊢ M : ((ϕ′

1
→ ϕ′

2
) → ϕ′

2
) ∧ ((ϕ′′

1
→ ϕ′′

2
) → ϕ′′

2
) → ϕ3

Note that also the assumption z : ϕ1 must be expanded to

z : ϕ ′
1
∧ϕ ′′

1
. After the expansion, unification using substitution

is straightforward:

z : ϕ ′
1
∧ ϕ ′′

1
⊢ M : (σ → τ ) → τ ,

⊢ N : σ → τ ,

where

σ = ((ϕ ′
1
→ ϕ ′

2
) → ϕ ′

2
) ∧ ((ϕ ′′

1
→ ϕ ′

1
→ ϕ ′

2
) → ϕ ′

1
→ ϕ ′

2
)

and τ = (ϕ ′′
1
→ ϕ ′

1
→ ϕ ′

2
) → ϕ ′

2
. We can then derive

z : ϕ ′
1
∧ ϕ ′′

1
⊢ MN : τ .

A very elegant formalisation of expansion is done through

expansion variables; see [22] and the references therein. The

application of an expansion variable to a type τ can replace τ
with the intersection of types obtained from τ by renaming

variables. For instance, there is an expansion variable E such

that the application E(ϕ → ϕ) → ψ produces

(ϕ1 → ϕ1) ∧ (ϕ2 → ϕ2) → ψ .

1
This example is taken from [22].

The most interesting use of expansion variables is inside

type derivations, for example

y : σ ⊢ y : σ

y : σ , x : Eϕ ⊢ x : Eϕ

y : σ ⊢ λx.x : E(ϕ → ϕ)

y : σ ⊢ y(λx.x) : ψ

where σ = E(ϕ → ϕ) → ψ produces

y : τ ⊢ y : τ

y : τ , x : ϕ1 ⊢ x : ϕ1

y : τ ⊢ λx.x : ϕ1 → ϕ1

y : τ , x : ϕ2 ⊢ x : ϕ2

y : τ ⊢ λx.x : ϕ2 → ϕ2

y : τ ⊢ λx.x : (ϕ1 → ϕ1) ∧ (ϕ2 → ϕ2)

y : τ ⊢ y(λx.x) : ψ

where τ = (ϕ1 → ϕ1) ∧ (ϕ2 → ϕ2) → ψ .
Expansion variables can be used to implement expansion

in a simple, clean and flexible way.

Principal typing is a key notion for type assignment sys-

tems. The best definition of principal typing [80] uses the

following partial order on the pairs basis/type:

⟨Γ,τ ⟩ ⊑ ⟨Γ′,τ ′⟩ if for allM: Γ ⊢ M : τ implies Γ′ ⊢ M : τ ′.

Definition 3.1. ⟨Γ,τ ⟩ is the principal typing forM if

Γ ⊢ M : τ and Γ′ ⊢ M : τ ′ implies ⟨Γ,τ ⟩ ⊑ ⟨Γ′,τ ′⟩.

For example in our type system:

• ⟨y : (ϕ → ϕ) → ψ ,ψ ⟩ is the principal typing of

y(λx.x);
• ⟨z : ϕ1, (((ϕ1 → ϕ2) → ϕ2) → ϕ3) → ϕ3⟩ is the

principal typing of λx.x(λy.yz);
• ⟨∅, (ψ1 → ψ2)∧(ψ3 → ψ1) → ψ3 → ψ2⟩ is the principal

typing of λfa.f(fa);
• ⟨z : ϕ ′

1
∧ ϕ ′′

1
, (ϕ ′′

1
→ ϕ ′

1
→ ϕ ′

2
) → ϕ ′

2
⟩ is the principal

typing of (λx.x(λy.yz))(λfa.f(fa)).

It is interesting to build, starting from the principal typing of

a λ-term, the other typings for the same λ-term. Substitution

is enough to derive all typings from the principal typing in

the simple type system à la Curry [10]. However, for inter-

section types, substitution is not enough: as the example

at the beginning of this section shows, we need also expan-

sion [30]. This is why expansion is crucial if one wants to add

intersection types to a calculus or a programming language.
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4 Complexity of β-reduction
Complexity theory has a prominent role in computer science.

Turing machines are mainly used as a model of computa-

tion [46], but also the λ-calculus is exploited [59] in this

sense.

In Section 2 we have seen that intersection types charac-

terise computational properties of λ-terms. Actually, they

can do more: they can give quantitative bounds to the num-

ber of β-reductions needed to reach the normal forms and

to the number of symbols in the normal forms [11, 12]. The

key move to increase the expressivity of intersection types

is to consider non-idempotent intersections in relevant type
assignment systems. These relevant systems can then be

used to count the number of the occurrences of variables

during the reduction process.

More recently, exact bounds have been provided for var-

ious reduction strategies with a uniform methodology [1].

We consider here only the reduction to head normal form.

The size of the head normal form λx1 . . . xn .yM1 . . .Mm is

n +m.

In the type system of [1] there are atomic types that can

only be assigned to λ-terms producing results of given shapes.

In particular, considering the reduction to head normal form,

the type abs can only be assigned to λ-terms whose head

normal forms are λ-abstractions, while the type neutral can
only be assigned to λ-terms whose head normal forms are

λ-free terms. The typing judgments carry two counters, the

counter b for the step number and the counter r for the size
of the normal form, i.e., they are of the shape

Γ ⊢(b,r ) M : τ .

Three typing rules are:

(Axc)
x : τ ⊢(0,0) x : τ

Γ,x : σ ⊢(b,r ) M : τ
(→ Ic)

Γ ⊢(b+1,r ) λx.M : σ → τ

Γ ⊢(b,r ) M : σ → τ Γ′ ⊢(b
′,r ′) N : σ

(→ Ec)
Γ
∧

Γ′ ⊢(b+b
′,r+r ′) MN : τ

where the basis in the conclusion of rule (→ Ec) is obtained
by taking the intersections of the types for the same vari-

ables:

Γ
∧

Γ′ = {x : σ ∧ σ ′ | x : σ ∈ Γ & x : σ ′ ∈ Γ′}∪
{x : σ | x : σ ∈ Γ & x < dom(Γ′)}∪
{x : σ ′ | x : σ ′ ∈ Γ′ & x < dom(Γ)},

and dom(Γ) = {x | x : σ ∈ Γ}. Rule (→ Ic) can only be used

when the typed λ-abstraction will be applied and reduced to

obtain the head normal form. For this reason, the counter b
is incremented by 1, while the counter r remains the same.

In rule (→ Ec) the values of the counters for the application
are simply obtained by summing those of the application

arguments.

Writing a for abs and b for abs → abs, an example of

type derivation taken from [1] is shown in Figure 9, where

x : b ⊢(0,0) x : b y : a ⊢(0,0) y : a

x : b, y : a ⊢(0,0) xy : a

y : a ⊢(1,0) λx.xy : b → a y : b ⊢(0,0) y : b

y : a ∧ b ⊢(1,0) (λx.xy)y : a

⊢(2,0) λy.(λx.xy)y : a ∧ b → a ⊢(1,1) λz.z : a ∧ b

⊢(3,1) (λy.(λx.xy)y)(λz.z) : a

Figure 9. A type derivation with complexity counters.

we omit the derivation of ⊢(1,1) λz.z : a ∧ b which requires

other typing rules. The head reduction of (λy.(λx.xy)y)(λz.z)
returns λz.z in three steps. Therefore, the judgment

⊢(3,1) (λy.(λx.xy)y)(λz.z) : a

gives the exact number of β-reductions and the exact size of

the obtained head normal form. Instead λy.(λx.xy)y reduces

in one step to λy.yy, which has size 2, and we derive

⊢(2,0) λy.(λx.xy)y : a ∧ b → a.

As a matter of fact, in the judgments Γ ⊢(b,r ) M : τ , the
counter b is always an upper bound on the length of the

head reduction and r is always a lower bound on the size of

the head normal form. These counters become exact only

when both the types in the bases and the predicates are one

of the two constants abs and neutral.

5 Type theories
Since the very beginning of intersection types, there have

been two main variants of the system discussed in Section 2:

the restriction to strict types and the addition of subtyping.

Strict types are defined without intersections on the right-

side of the arrows. This requires two syntactic categories:

τ ::= ϕ | ω | σ → τ σ ::= τ | σ ∧ σ

For example (ϕ1 → ϕ1) ∧ (ϕ2 → ϕ2) is not a strict type, but

(ϕ1 → ϕ1) ∧ (ϕ2 → ϕ2) → ψ is a strict type. We refer the

interested reader to [6] for a comprehensive treatment of

strict types. We would like to remark that the expansion of

derivations (discussed in Section 3) is simpler for strict types

than for the other ones, because it is more constrained.

Subtyping between intersection types is naturally induced

by set-theoretic inclusion:

τ ≤ τ σ ∧ τ ≤ σ σ ∧ τ ≤ τ τ ≤ ω

σ ≤ τ σ ≤ ρ

σ ≤ τ ∧ ρ

σ ≤ ρ ρ ≤ τ

σ ≤ τ

Considering the arrow as the function space constructor, we

also have:

(σ → τ ) ∧ (σ → ρ) ≤ σ → τ ∧ ρ
σ ′ ≤ σ τ ≤ τ ′

σ → τ ≤ σ ′ → τ ′
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σ
τ

ρ
σ τ

σ ′ τ ′

Figure 10. Subtyping between arrow and intersection types.

These last subtypings are illustrated in Figure 10, where

σ τ

denotes the set of functions mapping inputs of type σ to

outputs of type τ . The second rule depicts the co-variant and
contra-variant behaviour of the arrow type constructor with

respect to subtyping.

Many subtyping relations have been shown to be useful

for characterising computational properties of λ-terms [37]

and/or for building λ-models, see Section 6. Subtyping can

also modify the set of basic types. For example, by assum-

ing ϕ ≤ ψ for all type variables ϕ,ψ , we obtain a type sys-

tem with only two basic types, ϕ and ω. It is then natural

to parametrise intersection types assignment systems by

subtyping. These parametrised systems are usually called

intersection type theories [9] (Sections 13.1 and 13.2).

Definition 5.1. An intersection type theory T is a set of

sentences of the form σ ≤ τ satisfying at least the axioms

and rules induced by set-theoretic inclusion and involving

only the intersection type constructor.

We write σ ≤T τ for derivability in the type theory T.

Definition 5.2. The intersection type assignment system in-
duced by the type theory T is obtained by adding to the typing

rules of Figure 7 the subsumption rule

Γ ⊢ M : σ σ ≤T τ
(≤T)

Γ ⊢ M : τ

We write Γ ⊢TM : τ for derivability in the type assignment

system induced by the type theory T.

Note that rule (∧E) is derived in ⊢T for all T.

As expected, the subsumption rule gives more types to

λ-terms, for example, for all T including the subtyping rule

for the co-variance and the contra-variance of the arrow, we

obtain ⊢T λx.x : (ϕ → ψ ) → ϕ ∧ ϕ ′ → ψ . This judgement

does not hold for the type assignment system described in

Section 2.

6 λ-models
It is folklore that the λ-calculus can be considered as the pure
core of functional programming. An important indicator of

this fact is the influence of Scott’s λ-models [74] on the

denotational semantics of programming languages [75]. In

this section we show how to use type theories for building

finitary logical descriptions of λ-models.

We start by recalling the definition of λ-model, using the

notions of environment and applicative structure [48].

Definition 6.1. 1. An environment E in the set D is a

total mapping from term variables to elements of D.

2. An applicative structure is a pair ⟨D, ·⟩, where D is a

set and · is a binary operation on D.

As usual, we denote by E[x := d] the environment that ap-

plied to x returns d and applied to y , x returns E(y).

Definition 6.2. A λ-model is a triple ⟨D, ·, ⟦ ⟧D⟩, where

⟨D, ·⟩ is an applicative structure, ⟦ ⟧D is a mapping from

λ-terms and environments in D to elements of D, and ⟦ ⟧D
satisfies:

1. ⟦x⟧DE = E(x);
2. ⟦MN⟧DE = ⟦M⟧DE · ⟦N⟧DE ;

3. ⟦λx.M⟧DE = ⟦λy.M[y/x]⟧DE ;

4. ∀d ∈ D .⟦M⟧D
E[x:=d] = ⟦N⟧D

E[x:=d] implies ⟦λx.M⟧DE =
⟦λx.N⟧DE ;

5. E(x) = E′(x) for all variables x which occur free in M
implies ⟦M⟧DE = ⟦M⟧DE′ ;

6. ⟦λx.M⟧DE · d = ⟦M⟧D
E[x:=d].

The set D is called the domain of the λ-model.

The intersection type assignment system allows us to build

λ-models by considering as domains sets of filters induced

by type theories [4]. Filters of types are sets closed under

subtyping and intersection.

Definition 6.3. Let T be a type theory. A non-empty set of

types F is a T-filter if:
1. σ ≤T τ and σ ∈ F imply τ ∈ F;
2. σ ,τ ∈ F imply σ ∧ τ ∈ F.

We use F T
for the set of T-filters. If X is a set of types we

denote by ↑TX the smallest T-filter containing X . It is easy
to verify that (F T

,⊆) is an ω-algebraic complete lattice, with

bottom ↑T{ω} and top the set of all types.

We can turn F T
into an applicative structure by defining:

F ·T F′ =↑T{τ | σ → τ ∈ F & σ ∈ F′}.

A natural interpretation of λ-terms in F T
is:

⟦M⟧FT

E = {τ | ∃Γ. Γ |= E & Γ ⊢ M : τ },

where Γ |= E (to be read: the basis Γ agrees with the envi-

ronment E) if Γ(x) = σ implies σ ∈ E(x). Therefore we can
ask:

“Is ⟨F T, ·T, ⟦ ⟧FT

⟩ a λ-model?”

This clearly amounts to checking whether the conditions

of Definition 6.2 are satisfied. It is easy to see that all type

theories verify all conditions but the last one. The last condi-

tion can be ensured by considering the following subtyping

condition: ∧
i ∈I (σi → τi ) ≤T σ → τ implies

∃J ⊆ I .σ ≤T

∧
i ∈J σi &

∧
i ∈J τi ≤T τ .

A type theory is called β-sound if it satisfies this condition.
We have then a family of λ-models, called filter models, one
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for each β-sound type theory. Note that β-soundness is not
a necessary condition to obtain filter models; a counterex-

ample is given in [3].

It is interesting to note that we can build a filter model iso-

morphic to any D∞ model as defined in [74]. The advantage

is that we obtain finitary logical descriptions of D∞ models.

Let (D,⊑), (D ′,⊑′) be ω-algebraic complete lattices. We

denote by [D → D ′] the set of continuous functions from

D to D ′
. We equip [D → D ′] with the pointwise partial

order ⊑′′
defined by: f ⊑′′ д if f (d) ⊑′ д(d) for all d ∈ D. We

use idD for the identity function on D. The same symbol ⊑

will denote the partial order on variousω-algebraic complete

lattices without ambiguity, because the compared elements

will always belong to the same set.

Definition 6.4. 1. Let (D0,⊑) be an ω-algebraic com-

plete lattice and

ß0 : D0 → [D0 → D0] æ0 : [D0 → D0] → D0

be such that:

• i0 ◦ j0 ⊑ id[D0→D0];

• j0 ◦ i0 = idD0
.

2. We define:

• Dn+1 = [Dn → Dn];

• in(f ) = in−1 ◦ f ◦ jn−1 for f ∈ Dn ;

• jn(д) = jn−1 ◦ д ◦ in−1 for д ∈ Dn+1.

3. The set D∞ is:

D∞ = {d ∈ Πn∈NDn | ∀n ∈ N.d ↓ n ∈ Dn &

jn(d ↓ n + 1) = d ↓ n},

where d ↓ n is the projection of d on Dn ,

and the partial order on D∞ is:

d ⊑ d′ if ∀n ∈ N.d ↓ n ⊑ d′ ↓ n.

To build the type theory T∞ inducing a filter model iso-

morphic to a given D∞ model we need some notation.

Let K(D) be the set of compact elements of D,

d 7→ d′ : D → D ′
be the step function defined by:

d 7→ d′(d′′) =

{
d′ if d ⊑ d′′,
⊥D′ otherwise,

and ∼T be short for ≤T and ≥T.

Definition 6.5. [5] The type theory T∞ for the ω-algebraic
complete lattice D∞ is given by:

1. the set of atomic types is the set K(D0), where ⊥ is

renamed ω;
2. if d, d′ ∈ K(D0) and d ⊑ d′, then d′ ≤T∞ d;
3. d ∧ d′ ∼T∞ d ⊔ d′;
4. if i0(d) =

⊔
i ∈I (di 7→ d′i ), then d ∼T∞

∧
i ∈I (di → d′i );

5. ≤T∞ contains all axioms and rules listed in Section 5.

In this construction the set of atomic types is the set of

compact elements of D0 with the reverse order. Intersection

corresponds to join and arrow corresponds to the step func-

tion. Each atomic type is equivalent to an intersection of

arrows between atomic types as prescribed by the mapping

i0.

For example, if D0 = {⊥,⊤}, ⊥ ⊑ ⊤, and i0(d) = ⊥ 7→ d,
then we obtain the atomic types ω,⊤ with

⊤ ≤T∞ ω ω ∼T∞ ω → ω ⊤ ∼T∞ ω → ⊤

plus all axioms and rules listed in Section 5.

Intersection type systems can also provide finitary logical

descriptions of other kinds of λ-models. In particular, [65]

gives a correspondence with stable λ-models [13] and [66]

gives a correspondence with relational λ-models [19]. The

switch to other semantics requires deep changes. In fact,

the type assignment systems in [65] and [66] are relevant.

Moreover intersection is not idempotent in [66].

In the following section we discuss how intersection types

can characterise the behaviour of π -calculus processes.

7 Behaviour of π -processes
Proving properties for concurrent systems is still a challenge,

even though type systems offering guarantees of various

forms of safety have been explored extensively. There are, for

example, type systems guaranteeing deadlock and livelock

freedom of processes [55, 58, 64, 76], type systems for check-

ing the correctness of communications among processes,

such as session types [51], and type systems for proving

the termination of processes [35, 82]. However, little was

known about the existence of type systems able not only to

guarantee but also to characterise some relevant property of

concurrent processes, i.e., yielding completeness in addition

to soundness, until the intersection type system in [33].

The process calculus in [33] is based on the polyadic asyn-

chronous localised π -calculus [73] (Section 5.6), where a

notion of asynchronous hyperlocalised π -process is added.
This “hyperlocalisation” means that the resulting calculus

is actually a fragment of the localised calculus, i.e., with fur-

ther constraints on the presence of input names under input

prefixes (the limitations introduced by these restrictions are

discussed in [33], where it is shown that they have a modest

impact on the expressiveness of the calculus)
2
.

As an example of the use of (non-idempotent) intersection

types in [33] we consider the typing of parallel composition.

Typing judgments are of the shape Γ ⊢ P :: ∆, where:

• Γ associates types and channel dependencies to chan-

nels used by the process P as inputs;

• ∆ associates types to channels used by P in outputs.

The parallel composition of processes is typed by taking

intersections of channel types. An example is:

(x ;y, z) : τ1 ⊢ P :: y : σ1, z : σ (x ;y) : τ2 ⊢ Q :: y : σ2

(x ;y, z) : τ1 ∧ τ2 ⊢ P |Q :: y : σ1 ∧ σ2, z : σ

where (x ;y1, . . . ,yn) means that the use of the channels

y1, . . . ,yn in outputs depends on a reception on channel

x .

2
A justification of this restriction is impossible without introducing deep

technical details.
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The intersection-based type system in [33] defines and

characterises (by means of a completeness theorem) a safety

property for π -processes, named good behaviour, which is

essentially a form of deadlock-freedom and may-termination.

The verification of the good-behaviour property is shown to

be very hard. In particular, it is proved to be Π0

2
-complete,

essentially because π -processes are non-deterministic. This

shows that good behaviour of π -processes is not the same

as termination in purely sequential languages, for which the

property of being terminating (in any reasonable sense) can

be proved by finitary systems. The intuition behind this type

system is that it does not capture the “whole” good behaviour

by means of a finite type derivation, but each derivation does

capture a fraction of it, and the type system is complete in

the sense that it does not miss any of these fractions.

The system stems from a recently introduced construc-

tion [62], which is based on the following ideas: (i) inter-
section types can be seen as approximations in linear logic;

(ii) a programming language has an intersection-flavoured

type discipline if it can be encoded in linear logic; (iii) it is
known that the π -calculus itself can be translated in linear

logic. Many encodings are present the literature, such as the

one in [50], which is exploited in [33].

Essentially the Π0

2
-completeness makes this type system

not immediate for practical use, however in [33] the authors

depict non-trivial examples in which it is possible to describe

totally the type derivations for a process, which is equivalent

to describing its entire behaviour. This kind of description

could be a form of parametric derivation, suggesting a type

discipline in the style of bounded linear logic [44], which is

known to be related to intersection types [62].

8 Model checking = type checking
Higher-order functional programs can be translated into

higher-order recursion schemes. A recursion scheme is a kind
of tree grammar for generating a single, possibly infinite,

ranked tree with the start symbol S as the root. As a running

example, we use the following recursion scheme
3
:

S −→ F c F x −→ br x(a(F (bx)))

which generates the tree shown in Figure 11.

In this way, verifying properties of higher-order func-

tional programs corresponds to model checking of recursion

schemes. Model checking in [56] amounts to verify whether a

trivial automaton [2] accepts the tree generated by the recur-

sion scheme. A trivial automaton is a quadruple (Σ, Q, δ , q0),

where Σ is a ranked alphabet,Q is the set of states with initial

state q0, and δ is a partial map fromQ ×dom(Σ) toQ∗
which

respects ranks, i.e., if δ (q, a) = q1 . . .qk , then k = Σ(a).
An example is B = (Σ, {q0,q1}, δ , q0), where

Σ = {br 7→ 2, a 7→ 1, b 7→ 1, c 7→ 0}

3
This example and the following ones are taken from [56].

br

c a

br

b a

c br

b a

b · · ·

c

Figure 11. Tree generated by the recursion scheme of the

running example.

q0

q0 q0

q0

q0 q0

q1 q0

q0 q0

q1 · · ·

q1

Figure 12. A run tree of B for the tree in Figure 11.

and

δ (q0, br) = q0q0 δ (q1, br) = q1q1 δ (q0, a) = q0

δ (q0, b) = δ (q1, b) = q1 δ (q0, c) = δ (q1, c) = ϵ

Figure 12 shows that the tree generated by the recursion

scheme of the running example is accepted by B.

Intersection types transform automata acceptance in type

checking. The basic types are the states of the automata, and

hence the types of trees. An arrow type q1 → q2 represents

a function mapping a tree of type q1 into a tree of type q2.

An intersection type q1 ∧ q2 represents a tree having both

types q1 and q2. The types of the terminals are prescribed by

the transition function δ , i.e., if δ (q, a) = q1 . . .qk , then we

have the axiom

Γ ⊢ a : q1 → . . .→ qk → q

For example, the axioms for the automaton B are

Γ ⊢ br : q0 → q0 → q0 Γ ⊢ br : q1 → q1 → q1

Γ ⊢ a : q0 → q0 Γ ⊢ b : q0 → q1 Γ ⊢ b : q1 → q1

Γ ⊢ c : q0 Γ ⊢ c : q1
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We must check if Γ ⊢ S : q0 for some Γ, where the non-

terminals have types refining their sorts. This condition on

Γ ensures that there are only a finite number of types we can

assume for the non-terminals. In the running example, the

sorts of the non-terminals are S : ◦ and F : ◦ → ◦, where

◦ is the sort of trees. Taking Γ = {S : q0, F : q0 ∧ q1 → q0},

we can derive Γ ⊢ F c : q0 and

Γ ⊢ λx.br x(a(F (bx))) : q0 ∧ q1 → q0,

which imply Γ ⊢ S : q0. Notice that, in typing λx.br x(a(F (bx)))
with q0 ∧ q1 → q0, the first occurrence of x is typed by q0

and the second occurrence of x is typed by q1.

The keystone paper [56] contains a complete treatment

including a practical model checking algorithm with imple-

mentation and experimental results.

In [57] the verification of higher-order recursion schemes

amounts to check if the trees generated by the schemes

satisfy a modal µ-calculus formula. An intersection type

system is built such that a recursion scheme is typable if and

only if the generated tree satisfies the formula. Given that the

modal µ-calculus is more expressive than trivial automata,

the construction of the corresponding type system is trickier

than the one of [56].

9 Program synthesis
Retrieving and composing automatically compatible pieces

of software from a library are tasks at the core of efficient

code reuse. A theoretical approach to such tasks is illustrated

in [38], where a framework for automatic composition syn-

thesis from a repository of software components is defined.

This is a form of typed-based code synthesis and it relies

on combinatory logic with intersection types [70]. Software

components are typed combinators, and an algorithm for

inhabitation, i.e., “is there a combinatory term N with type

τ relative to an environment ∆?”, can be used to synthesise

compositions. Here, ∆ represents a repository of components

indicated only by their names (combinators) and their types

(intersection types), τ specifies the synthesis goal, an inhabi-

tant N is a program obtained by an applicative combination

of components in ∆, and is automatically constructed (syn-

thesized) by the inhabitation algorithm. In particular, because

∆may vary, this is an instance of the relativized inhabitation

problem. Indeed, differently to the standard combinatory

logic for which a fixed basis of combinators is usually con-

sidered, this particular inhabitation problem is relativized to

an arbitrary environment ∆, which is part of the input.

In [70], the authors consider expressive combinatory log-

ics under the restriction that axioms are not interpreted

schematically but literally, corresponding to a monomorphic

interpretation of types, resulting in finite combinatory logic.
They show that the provability (inhabitation) problem for

finite combinatory logic with intersection types is Exptime-

complete with or without subtyping (note that standard in-

tersection type subtyping is in Ptime). This implies, from

an application point of view, that intersection types are an

expressive specification formalism for supporting automatic

functional composition synthesis. For example, starting from

the standard sets of combinators {S,K} [49] (Definition 2.1),

where S = λxyz.xz(yz) and K = λxy.x , we can look for an

inhabitant of ϕ → ϕ. In order to get the expected result,

i.e., SKK, we need to take the types σ → τ → ϕ → ϕ for

S and σ ∧ τ for K, where σ = ϕ → (ω → ϕ) → ϕ and

τ = ϕ → ω → ϕ.
The variant k-bounded combinatory logic (named BCLk )

[39] is obtained by imposing the bound k on the depth of

types that can be used to instantiate polymorphic combinator

types. In [38], BCL0 (that is, level 0-bounded polymorphism)

is exploited. BCL0 is already very expressive, as it is possible

to define within BCL0 a framework for 2-Exptime-complete

synthesis problems, equivalent in complexity to other known

synthesis frameworks (e.g., variants of temporal logic and

propositional dynamic logic).

A step forward from [38] is in [14], where the same ap-

proach is basing on mixins, instead of generic software com-

ponents. Here, a library is a repository of mixin-based object-

oriented code. Mixins [17] are a form of linearised multiple

inheritance and are essentially composable functions over

classes returning classes. With this focus on composition

instead of inheritance, they are an ideal program construct

to constitute the library ∆.
With {C1 : σ1, . . . ,Cp : σp ,M1 : τ1, . . . ,Mq : τq} = ∆ as

the abstract specification of a library including classesCi and

mixinsMj with interfaces as typesσi and τj , respectively, and
given a type τ specifying an unknown class, a combinatory

synthesis of classes via intersection-typedmixin combinators

is performed.

The first result of [14] is to combine expressive-enough

features of type systems used for typing classes and mixins,

and the system of intersection types. Starting from a type

assignment system of intersection and record types [60], a

record merge operation is added, to obtain mixin combina-

tors via extensible records and a subsequent suitable type

system.

The second result is to show that it is possible to type

classes and mixins in a expressive-enough way, where the

former are essentially recursive records and the latter are

made of a combination of fixed-point combinators and record

merge. Such terms, which usually require recursive types,

can be typed in the resulting system by means of an iterative

procedure exploiting the ability of intersection types to rep-

resent approximations of the potentially infinite unfolding

of recursive definitions. This is shown by the typing of the

fixed point combinator Y, discussed in Section 2.

The third result concerns how to deal with non-monotonic

properties of record merge (for instance, the absence of la-

bels), which are incompatible with the existing theory of

BCLk synthesis. Therefore, in [14] there is an encoding of
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intersection types with record types and merge into a con-

servative extension of bounded combinatory logic, where

unary type constructors are monotonic and distribute over

intersection. The encoding is proved sound and partially

complete.

10 Bounded dimension
Programming languages with intersection types require de-

cidable type checking. This can be achieved by writing types

in the code. Examples are the CDuce function in Section 11,

the Forsythe typing rule in Section 12, and the Java code in

Section 13. The theoretical basis is the formulation of a λ-
calculus with intersection types à la Church. This means that

λ-terms are decorated by their types. There is no obvious

solution, for example we can derive

⊢ λx.x : (ϕ → ϕ) ∧ (ψ → ψ ),

but what is a suitable decoration for the variable x in this

λ-term? In the literature there are many proposals, see [16,

61, 81] and the references there. In particular the relevant

parallel term constructor | representing the intersection is

introduced in [16]. This allows us to obtain, for any type

derivation in the system of Section 2, a corresponding type

decorated term. For example, the typed term λxϕ .xϕ |λyψ .yψ

corresponds to ⊢ λx.x : (ϕ → ϕ) ∧ (ψ → ψ ).
The amount of type annotations can be reduced by means

of bidirectional type checking [34]. The key idea is to distin-

guish between terms for which a type can be synthesised

from terms that can be checked against a given type.

We think that a new and interesting solution is repre-

sented by dimensional intersection type calculi [40, 41]. The
typing judgments are of the shape Γ ⊢ P : τ , where P is an

elaboration, i.e., a term where each sub-term is decorated

with the set of types assigned to it. For example, in the stan-

dard intersection type system we can derive the following

judgments for identity:

⊢ λx.x : ϕ → ϕ, ⊢ λx.x : ϕ ∧ψ → ϕ,
⊢ λx.x : (ϕ → ϕ) ∧ (ψ → ψ ).

The corresponding judgments in dimensional intersection

type calculi are:

⊢ (λx.x⟨ϕ⟩)⟨ϕ → ϕ⟩ : ϕ → ϕ,
⊢ (λx.x⟨ϕ⟩)⟨ϕ ∧ψ → ϕ⟩ : ϕ ∧ψ → ϕ,

⊢ (λx.x⟨ϕ,ψ ⟩)⟨ϕ → ϕ,ψ → ψ ⟩ : (ϕ → ϕ) ∧ (ψ → ψ ),

where each sub-term is decorated by the set of the types

assigned to it. These decorations are enclosed between angle

brackets.

A crucial role in these calculi is played by the norms of

elaborations, which induce the dimensions of λ-terms with

respect to bases and types, as in the following definition.

Definition 10.1. 1. The norm | |P| | of P is the maximum

number of types that occur in the same set.

2. The dimension of M at Γ and τ is the minimum n such

that:

• M is obtained from P by erasing decorations;

• Γ ⊢ P : τ ;
• n is the norm of P;
for some P.

For example:

| |(λx.x⟨ϕ⟩)⟨ϕ → ϕ⟩| | = 1,

| |(λx.x⟨ϕ⟩)⟨ϕ ∧ψ → ϕ⟩| | = 1,

| |(λx.x⟨ϕ,ψ ⟩)⟨ϕ → ϕ,ψ → ψ ⟩| | = 2,

which imply that:

• the dimension of λx.x at ∅ and ϕ → ϕ is 1;

• the dimension of λx.x at ∅ and ϕ ∧ψ → ϕ is 1;

• the dimension of λx.x at ∅ and (ϕ → ϕ) ∧ (ψ → ψ ) is
2.

Type preservation under subject reduction holds and the

dimension cannot increase, as the following theorem states.

Theorem 10.2. (Subject Reduction) If M has dimensionm at
Γ and τ and M −→ N, then N has dimension n ≤ m at Γ and
τ .

Dimensional intersection type calculi naturally induce

meaningful restrictions of the standard system for which

essential decision problems become decidable.

Theorem 10.3. (Typability) Given a λ-termM and an integer
n > 0 it is decidable whetherM can be typed in dimension n.

This problem is shown to be Pspace-complete [41].

Theorem 10.4. (Inhabitation) Given a basis Γ, a type τ and
an integer n > 0, the existence of a λ-term with dimension n
at Γ and τ is decidable.

This problem is Expspace-complete [40].

11 Semantic subtyping
The accuracy of a type systems for characterising programs’

behaviour is important, in order to allow type checkers to

spot more errors and to accept more correct programs. Sub-

typing creates a hierarchy of types, from the less precise ones

to the more precise ones, for the same code (for example, the

number 3 has both types Int and Real, with Int < Real).
Subtyping is usually defined syntactically in an axiomatic

way, as we did in Section 5. Semantic subtyping (see [43]

and the references there) instead starts from a set-theoretic
model of types. In this model a type τ is interpreted as the

set of values having type τ :

⟦τ⟧ = {v | ⊢ v : τ }.

Then subtyping is simply defined as subset inclusion between

type interpretations:

τ ≤ σ
def

⇐⇒ ⟦τ⟧ ⊆ ⟦σ⟧.
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This approach can be used with arbitrary type constructors

×, {. . .},→, . . .

but requires the addition of intersection (∧), union (∨) and

negation (¬). These boolean combinators must behave set-

theoretically:

⟦τ ∧ σ⟧ = ⟦τ⟧ ∩ ⟦σ⟧,
⟦τ ∨ σ⟧ = ⟦τ⟧ ∪ ⟦σ⟧,
⟦¬τ⟧ = V \ ⟦τ⟧,

where V denotes the set of all values. Notably a model of

all terms is not required, neither is its restriction to the well-

typed ones. The interpretation of typed values is enough.

A great advantage of semantic subtyping is its complete-

ness: if τ ≤ σ does not hold, we can exhibit a value of type τ
which does not have type σ . This is theoretically elegant and
practically useful, because it allows us to write informative

error messages.

The XML processing language CDuce is grounded on se-

mantic subtyping. The core CDuce is a λ-calculus with ex-

plicitly typed functions and overloading. It reconciles func-

tions typed with intersection types and overloaded functions.

Code usable by all possible input types can be mixed with

code requiring specific input types. An example is

µ f (Int→Int)∧(Bool→Bool).λx.(y = x ∈ Int)?(y + 1) : ¬y,

where y is bound and replaced by x. This function applied to

an integer n returns n + 1 and applied to a boolean b returns

¬b. The type of the function is written explicitly. The binder

µ allows us to define recursive functions.

In the work [24], an XML language with higher-order

polymorphic functions and recursive types with union, in-

tersection, and negation connectives is studied. The key idea

for extending semantic subtyping, defined for ground types,

to types with type variables, is to make indivisible types

“splittable”, so that type variables can range over strict sub-

sets of any type. More precisely, convexity is the key property.
Convexity states that, given a finite set of types, if every as-

signment makes some of these types empty, then there exists

one particular type that is empty for all possible assignments.

Convexity imposes that the subtyping relation has a uniform

behaviour, thus convexity is a semantic characterisation of

“uniformity”, which is a feature of parametricity. A subtyping

algorithm for convex well-founded models was developed

and proved sound and complete. A crucial result is that every

model for ground types with infinite denotations is convex.

Therefore, to construct a convex model, it just suffices to take

any model for ground types and modify straightforwardly

the interpretation of basic types so that they have infinite

denotations.

In [23] set-theoretic types are combined with polymor-

phic gradual typing by means of a single typing rule which

prescribes where casts must be added. A significant problem

is that a direct set-theoretic interpretation of the constructor

“?” (at the core of gradual typing) is unsound. The proposed

elegant solution uses variables with the constraint of having

only all positive or all negative occurrences.

Subtyping has been considered under various aspects. Ac-

cording to [21], inheritance in object-oriented languages can

be modelled using subtyping. This work has been a starting

point for the formal modelling of the object-oriented para-

digm, leading to fundamental discussions, such as the one in

[28]. In [63], types are seen as sets of terms and subtyping

(there called containment) is just subset inclusion. Therefore

this approach can be viewed as an ancestor of semantic sub-

typing, but with sets of terms instead of sets of values as

interpretations of types.

12 Forsythe
Intersection types made their way into imperative languages

thanks to John C. Reynolds. This was presented during his

LICS invited talk [71], which we briefly recall.

Variables of basic types, like Int, Real, Char, can be used

either in readingmode, or in writingmode, or both in reading

and writing mode. In the first case they can be typed by

Intexp, Realexp, Charexp and in the second case by Intacc,
Realacc, Characc. Intersection types avoid the introduction

of a third suffix for the third case, since we can simply use:

Intexp ∧ Intacc, Realexp ∧ Realacc, Charexp ∧ Characc.
In this way, we obtain for free the expected subtyping:

Intexp ∧ Intacc ≤ Intexp, Intexp ∧ Intacc ≤ Intacc etc.
The programming language Forsythe [72], an evolution of

Algol 60, uses intersection types in this and two other ways.

Records are typed by the intersection of label/type pairs,

for example the record {item : “a”,price : 5} can have type

(item : Char) ∧ (price : Int). In this way, we get the record

subtyping in width.

The λ-abstractions are explicitly decorated by all the types
used in various derivations for the same Forsythe term. More

precisely, the typing rule is:

Γ, x : σi ⊢ M : τi

Γ ⊢ λx : σ1 | · · · |σn .M : σi → τi

where 1 ≤ i ≤ n andM denotes a Forsythe term. For example,

λx : Int|Real.x has both types Int → Int and Real → Real,
hence we can derive (Int → Int) ∧ (Real → Real) for this
term using the intersection introduction rule.

Note that the type information on abstracted variables

permits the type checking of Forsythe programs.

The work [67] enhances Forsythe with the union type con-

structor and parametric polymorphism. We present a simple,

but effective, example on Church numerals, as defined in [26]

(page 28).

The type Nat of natural numbers can be considered as

the union of the type Zero, which contains only the Church

numeral for zero (λxy.y), with the type Pos of the Church
numerals for positive numbers, that is Nat = Zero ∨ Pos.
Then, the successor function must map Zero to Pos and Pos
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to Pos, yielding the type (Zero → Pos) ∧ (Pos → Pos).
Because Church numeral n applies n-times a function to an

argument, this justifies the definitions:

Zero = ∀ϕψ .(ϕ → ψ ) ∧ (ψ → ψ ) → ϕ → ϕ,
Pos = ∀ϕψ .(ϕ → ψ ) ∧ (ψ → ψ ) → ϕ → ψ ,

which yield a refinement of the standard polymorphic type

of Church numerals: ∀ϕ .(ϕ → ϕ) → ϕ → ϕ.

13 A boosted Java
The Java™ Programming Language is a general-purpose,

concurrent, strongly typed, class-based object-oriented lan-

guage [54], and one of the most popular programming lan-

guages with types ever. Over the years, Java developers have

incorporated sophisticated typing features, notably generics
in Java 5, and later intersection types appeared as bounds of

type variables. Actually, there was a proposal in [20] of intro-

ducing in Java 1 intersection types (called there compound

types) as parameter types and return types of methods, al-

lowing for programming techniques to support code reuse.

Indeed, present Java limits intersection types to be target

types of type-casts and bounds of type variables. Neverthe-

less, thanks to the fact that a generic type variable with an

intersection type bound can appear as a parameter type as

well as a return type of a method, we can affirm that the

extension described in [20] is achieved indirectly.

We observe, however, that this flexibility does not stretch

to Java 8 λ-expressions, because a generic type variable can-
not be instantiated by the type of a λ-expression. Java λ-
expressions are poly expressions because they can have var-

ious types according to the requirements of the context in

which they appear. Each context enforces the target type for
the λ-expression in that context, but the program does not

compile if this target type is unspecified. The target type can

be either a functional interface (which is an interface with a

single abstract method) or an intersection of interfaces that

induces a functional interface. In particular, the λ-expression
must match the signature of the unique abstract method of

its functional interface. By casting a λ-expression to an inter-

section type, this intersection becomes its target type, and

therefore the λ-expression exploits its poly nature, inhabiting
all the types of the intersection. In this way, it implements

the abstract method and it owns all the default methods

present in the interfaces belonging to the intersection. This

power is however limited, because if a λ-expression is passed

as argument to a method or returned by a method, its target

type cannot be an intersection type.

In [36], starting from the core language [15], there is a

proposal for a Java where intersection types can appear as

types of fields, types of formal parameters and value re-

sults of methods, therefore playing the role of target types

for λ-expressions anywhere these expressions can be used.

Moreover, intersection types are exploited to overcome the

restriction of having a unique abstract method in the func-

tional interface, because a λ-expression is able to match mul-

tiple signatures of abstract methods. The idea here is that

an intersection type expresses multiple, possibly unrelated,

properties of one term in a single type.

As shown in Figure 8, auto-application in the λ-calculus
can be typed using intersection types. We can adapt this

powerful feature from intersection type theory to Java, by

allowing any intersection of interfaces to be a functional

interface having multiple abstract methods. For example, we

can consider the method

C auto (Arg&Fun x){return x.mFun(x).mArg(new C( ));}

where C is any class (without fields for simplicity), and Arg

and Fun are two Java interfaces with the abstract methods

C mArg (C y) and Arg mFun (Arg z),

respectively. Although the method auto is greedy with re-

spect to the requirements about its argument, there are many

λ-expressions matching the target type Arg&Fun, first of all

the identity x->x.

Other object-oriented languages exploit successfully inter-

section types, with Scala [31], TypeScript [77], Ceylon [25]

and Flow [42] being some remarkable examples. In these

programming languages intersection types are used essen-

tially to model forms of multiple inheritance. A foundational

work on the usage of intersection types to model multiple

inheritance is [27].

14 Conclusion
We hope the reader enjoyed our tale of intersection types,

found a thread of thoughts to follow, and maybe even imag-

ined novel ideas for continuing the research on this topic. On

our side, we would like to explore the possibility of finding

a behavioural characterisation (in the vein of Section 7) of

the multiparty session calculus [52], a disciplined π -calculus
guaranteeing safety of communication protocols.
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