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Counting Bounded Tree Depth
Homomorphisms
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We prove that graphs G, G’ satisfy the same sentences of first-order logic
with counting of quantifier rank at most k if and only if they are homomorphism-
indistinguishable over the class of all graphs of tree depth at most k. Here
G,G" are homomorphism-indistinguishable over a class F of graphs if for
each graph F € F, the number of homomorphisms from F' to G equals the
number of homomorphisms from F to G'.

1 Introduction

Structural information is captured very well by homomorphism counts. Indeed, an old
theorem due to Lovész [30] states that two graphs G, G’ are isomorphic if and only if
hom(F,G) = hom(F,G’) for all graphs F'. Here hom(F,G) denotes the number of homo-
morphisms from graph F' to graph G; homomorphisms are mappings between vertices
that preserve adjacency. This simple theorem is quite useful and can be seen as a the
starting point for the theory of graph limits [9, [31],32]: by associating each graph G with
the vector HOM(G) := (hom(F, G) ‘ F graph), we map graphs into an infinite dimen-
sional real vector space, which can be turned into a Hilbert space by defining a suitable
inner product. This transformation enables us to analyse graphs with methods of linear
algebra and functional analysis and, for example, to consider convergent sequences of
graphs and their limits, called graphons (see [31]). Vector embeddings of graphs are
also crucial for applying machine learning methods to graphs. Notably, there is a close
connection between homomorphism counts and so-called graph kernels (e.g. [40} 24]) and
graph neural networks (e.g. [33, [36]).

However, not only the full homomorphism vector HOM(G) of a graph G, but also its
projections on natural subspaces capture very interesting information about G. For a
class F of graphs, we consider the projection

HOM#(G) := (hom(F,G) | F € F)

of HOM(G) onto the subspace indexed by the graphs in F. Following [8], we call graphs
G, G’ homomorphism-indistinguishable over F if HOMz(G) = HOM£(G’). Dvorédk [14]
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proved that two graphs are homomorphism-indistinguishable over the class 7 of graphs
of tree width at most & if and only if they are not distinguishable by the k-dimensional
Weisfeiler-Leman algorithm, a well-known combinatorial isomorphism test. As we can
always restrict homomorphism vectors to connected graphs without loss of information,
this implies that two graphs are homomorphism-indistinguishable over the class 7 of
trees if and only if they are not distinguishable by the 1-dimensional Weisfeiler-Leman
algorithm, which is also known as colour refinement and naive vertex classification. Via
well-known characterisations of Weisfeiler-Leman indistinguishability in terms of the
solvability of certain natural systems of linear inequalities [2] 20], 34] or systems of poly-
nomial equations or inequalities [3] 6l [19], this also yields algebraic characterisations of
homomorphism indistinguishability over classes of bounded tree width. A related al-
gebraic characterisation was obtained for homomorphism indistinguishability over the
class of paths [13]. It is well-known (though usually phrased differently) that two graphs
are homomorphism-indistinguishable over the class of cycles if and only if they are co-
spectral, that is, their adjacency matrices have the same eigenvalues with the same mul-
tiplicities. Boker [7] proved that two graphs are homomorphism-indistinguishable over
the class of bipartite graphs if and only if they have isomorphic bipartite double covers.
The most recent addition to this picture is a result due to Mancinska and Roberson [35]
stating that two graphs are homomorphism-indistinguishable over the class of all planar
graphs if and only if they are quantum isomorphic. Quantum isomorphism, introduced
in [I], is a complicated notion that is based on similar systems of equations as those
characterising homomorphism indistinguishability over graphs of bounded tree width,
but with non-commutative variables ranging over the elements of some C'*-algebra.

What we see emerging is a rich theory connecting combinatorics, structural graph
theory, and algebraic graph theory. It turns out that logic is also an integral part of
this theory, not only because some of the algebraic characterisations of homomorphism
indistinguishability can be phrased in terms of propositional proof complexity [3, [0,
19], but also because there is a well-known characterisation of the Weisfeiler-Leman
algorithm and hence homomorphism indistinguishability over classes of bounded tree
width in terms of logical equivalence. The logic C is the extension of first-order logic
by counting quantifiers of the form 32Px (“there exists at least p elements z”). Every
C-formula is equivalent to a formula of plain first-order logic. However, we are mainly
interested in fragments of the logic obtained by restricting the quantifier rank or the
number of variables of formulas, and the translation from C to first-order logic preserves
neither the quantifier rank nor the number of variables (see Remark [21]). The logic C
and its finite variable fragments have first been considered by Immerman in the 1980s
[22] 23], and they have played an important role in finite model theory since then. Cai,
Fiirer, and Immerman [I1] showed that equivalence in the (k + 1)-variable fragment
CF1 of C corresponds to indistinguishability by the k-dimensional Weisfeiler-Leman
algorithm. Thus, two graphs are C**!-equivalent if and only if they are homomorphism
indistinguishable over the class Ty of graphs of tree width at most k.

Rather than restricting the number of variables in a formula, it is, arguably, even more
fundamental to restrict the quantifier rank (maximum number of nested quantifiers in a
formula). Our main result is the following characterisation of equivalence in the fragment



Ci, of C consisting of all formulas of quantifier rank at most k.
Theorem 1.1. For all k > 1 and all graphs G,G’ the following are equivalent.

(i) G and G' are homomorphism-indistinguishable over the class T Dy of all graphs of
tree depth at most k.

(it) G and G’ satisfy the same Cy-sentences.

Tree depth, introduced by Nesettil and Ossona de Mendez [37], is a structural graph
parameter that has received a lot of attention in recent years (e.g. [l [10, 12, 17} [16]).
Our result adds a characterisation of homomorphism indistinguishability over classes of
bounded tree depth to the theory of homomorphism indistinguishability sketched above.

However, our result is also interesting from a purely logical point of view. It can be seen
simultaneously as a locality theorem and as a quantifier elimination theorem. Locality,
because as noted above, when considering homomorphism indistinguishability, we can
restrict our attention to connected graphs. Connected graphs of tree depth at most k
are known to have a radius of at most 2*~1 — 1 (see [38]), and hence their homomorphic
images will always be contained in neighbourhoods of radius at most 2¥=! — 1. This
means that homomorphism indistinguishability over graphs of tree depth k and thus C-
equivalence only depend on neighbourhoods of radius at most 2¢~!—1. This consequence
of our main theorem was known before [27], but we believe that our approach sheds some
new light on locality. It should be seen in the context of other recent and not-so-recent
locality results for counting logics [27), 28, 29] 25, 26], B9]. Let us remark (as already
noted by Libkin [27]) that the exact choice of a counting extension of first-order logic is
not so important when we only study equivalence between Structures

Our theorem is a quantifier-elimination result, because it says that we can replace the
k nested quantifiers of a Cp-formula, which may involve alternations between existential
and universal quantifiers, by flat, unnested homomorphism counts. While new in this
context, replacing quantifier alternation by counting is a common theme in complexity
theory, most prominently represented by Toda’s theorem [41] that P#P contains the
polynomial hierarchy.

The proof of our theorem is harder than one might expect in view of the numerous
previous results on homomorphism indistinguishability. The overall structure of the
proof is as follows: in the first step we use linear algebraic techniques that go back to
Lovész [30] to show that homomorphism counts can be expressed by counts of more
restrictive structure preserving mappings. In the second step, the connection to logic
is established via an Ehrenfeucht-Fraissé game and interpolation techniques. To carry
out the first step, we need to prove the invertibility of certain homomorphism matrices,
which we achieve by a decomposition into lower-triangular and upper triangular matrices
of full rank. The precise nature of this decomposition is what makes the proof difficult;
we need to go through various intermediate mappings obeying certain carefully chosen
constraints.

!The reason is that over a fized finite graph, formulas of other counting extensions of first-order logic,
such as the logic FOCN(P) of [25], are equivalent to C-formulas of the same quantifier rank.



The structure of the paper is simple: we prove the theorem and then discuss some of
its consequences.

2 Preliminaries
2.1 Graphs and Homomorphisms

We always assume graphs to be undirected and vertex-coloured. Thus a graph is a triple
(V(G), E(G),~%) where V(G) is a finite set, E(G) C (V(2G)), and ¢ : V(G) — T for
some set I' whose elements we view as “colours” 1 The order of a graph is |G| := |V (G)|.
A graph G is a subgraph of a graph H (we write G C H) if V(G) C V(H), E(G) C E(H),
and 7% (v) = vH (v) for all v € V(G).

A homomorphism from a graph F to a graph G is a mapping h : V(F) — V(G) such
that h(u)h(v) € E(G) for all wv € E(F) and vF'(u) = v (h(u)) for all u € V(F). We
write h : F' — G to denote that h is a homomorphism from F' to G. We denote the
number of homomorphism from F' to G by hom(F,G). Graphs G, G’ are homomorphism-
indistinguishable over a class F of graphs if hom(F,G) = hom(F,G’) for all F € F;
otherwise they are homomorphism-distinguishable over F.

Observe that for a disconnected graph F' with connected components Fi, ..., Fy and
for an arbitrary graph G it holds that hom(F,G) = Hle hom(F;, G). This means that
if F is a class of graphs such that all connected components of graphs in F belong to
F as well, then graphs G, G’ are homomorphism-indistinguishable over F if and only if
they are homomorphism-indistinguishable over the class F¢ of all connected graphs in
F.

A homomorphism h : F — G is an embedding (or monomorphism) from F to G (we
write h : F' < @) if it is injective. A homomorphism h : F' — G is an epimorphism
from F to G (we write h : F — Q) if h is surjective and for every edge vv' € F(QG)
there is an edge uu’ € E(F) such that h(u) = v and h(u') = v'. (Note that not every
surjective homomorphism is an epimorphism.) If H : F — G is an epimorphism, then
G is a homomorphic image of F. By emb(F,G) and epi(F,G) we denote the numbers of
embeddings and epimorphisms from F' to G.

If 7 is a partial mapping from V(F') to V(G), then by hom(F,G;7) we denote the
number of homomorphisms from F' to G that extend w. In particular, for vertices
u € V(F) and v € V(G), by hom(F, G;u +— v) we denote the number of homomorphism
h: F — G with h(u) = v. We use similar notations for embeddings, epimorphisms, and
other types of mappings that we shall introduce later.

2.2 First-Order Logic with Counting

To define the syntax of the logic C, we assume that we have an infinite supply of variables,
which we denote by z,y, z and variants such as 2’,y;. Variables range over the vertices
of a graph. Atomic formulas (in the language of graphs) are of the form x =y, E(z,y)
(“there is an edge between x,y”), and y(x) = ¢ for colours ¢ (“x has colour ¢”). C-

2For clarity of the presentation, we decided to focus on undirected graphs here. The result can be
extended to arbitrary relational structures, see Section [5.3] for a brief discussion.



formulas are constructed from atomic formulas using negation -y, disjunction (¢ V 1),
and counting quantifiers 32Pxp, where p € N, z is a variable, and ¢, v are formulas.

An occurrence of a variable x is free in a formula ¢ if it is outside the range of all
quantifications 32Px. A sentence is a formula without any free variables. We often write
o(z1,...,xp) to indicate that the free variables of ¢ are among z1,...,z,. (Not all of
these variables are required to appear in ¢.) For a formula ¢(z1,...,2¢), a graph G,
and vertices vy,...,v € V(G), we write G = ¢(vy,...,v) to denote that G satisfies
if the variables x; are interpreted by the vertices v;. We also write ¢(x) and ¢(v) for
tuples © = (z1,...,2¢), v = (v1,...,v7). Now we can define the semantics of the logic
C inductively in the obvious way. In particular, for ¢(yy,...,y¢) = IZPxY(z, y1, ..., ye)
we let G = ¢(wi,...,wy) if there are mutually distinct vq,...,v, € V(G) such that
G = Y(vi,wi,...,wp) for all i € [p].

The quantifier rank qr(p) of a C-formula ¢ is defined inductively by letting qr(¢) := 0
for all atomic formulas ¢ and qr(—¢) = qr(y), qr(e V ¢) = max{qr(y),qr(y)}, and
qr(32Pz¢) := qr(¢) + 1. By Ci we denote the fragment of C consisting of all formulas
of quantifier rank at most k. Graphs G,G’ are Cy-equivalent if G = ¢ <— G' E ¢
for all Cg-sentences . We write G Eg G’ to denote that G and G’ are Cj-equivalent
We extend this notation to formulas with free variables, writing G, v E]S G', v for
tuples v € V(G)%,v' € V(G')* to denote that for all Cj-formulas ¢(x) it holds that

GEelv) < G @)

Remark 2.1. Interpreting the usual existential quantifier 3 as 32!, we can view first-
order logic FO as a fragment of C. Observe that C has the same expressive power as its
fragment FO, because 3=Px¢(z,y1, .- -,y¢) can be equivalently expressed as

dzq... 3z, /\ Xy = x5 N\ /\ (i Y1, - -+ Ye)
1<i<j<p 1<i<p

However, this increases the quantifier rank. It is easy to see that for every k > 1,
Cy. is strictly more expressive than the fragment FO,, of first-order logic consisting of all
formulas of quantifier rank at most k. Actually, for every k the C-formula 3%+ !z (z = )
is not equivalent to any FOg-formula.

2.3 The Bijective Pebble Game

The bijective pebble game, introduced by Hella [21], gives a combinatorial characterisa-
tion of equivalence in the logic C and its fragments Cy.

Let G,G’ be graphs of the same order. The bijective pebble game on G and G’ is
played by two players called Spoiler and the Duplicator. Positions of the game are pairs
(v,v") where v € V(G)*,v' € V(G')* for some k > 0. A play of the game consists of a
sequence of rounds, starting from some initial position (’UQ,’U6), where vg = (v1,...,vp)
and v = (v}, ..., vy) for some £ > 0. The default initial position is the “empty position”
((), (). Inround i of the game, Duplicator chooses a bijection f; : V(G) — V(G’). Then
Spoiler chooses a vey; € V(G), and we let vy ; := fi(vey). The position after round



iis (v;,0)) = ((v1,...,ve44), (V). .. ,Uéﬂ‘))- In the k-round game, the play ends after
k-rounds, and Duplicator wins the play if vy — v}, = (v; = v, | 1 <i < k+/{)is a
local isomorphism from G to G’, that is, for all 7, j € [¢ + k] the following conditions are
satisfied:

° v =0 & v =j;

e vv; € B(G) <= vv; € E(G');

o 79 (i) =7 (V).

If vy, — v, is not a local isomorphism, then Spoiler wins the play.
We can now define winning strategies for Spoiler and Duplicator in the usual way.
The following lemma, which links the bijective pebble game to the logic C, is a minor
variant of a theorem due to Hella [21] and of the standard characterisation of first-order
logic in terms of Ehrenfeucht-Fraissé games (see, for example, [15]).

Lemma 2.2. For allk,¢ > 0, all graphs G,G" of the same order, and allv € V(G),v' €
V(G")* the following are equivalent.

(i) Duplicator has a winning strategy for the k-round bijective pebble game on G,G’
with initial position (v,v’).

(i) G,v =5 G v'.

If we do not specify the initial position of the game, we always assume it is the empty
position ((),(()). Thus the lemma implies that Duplicator has a winning strategy for
the k-round bijective pebble game on G, G’ if and only if G EIS G'.

2.4 Graphs of Bounded Tree Depth

It will be convenient in this paper to view trees and forests as partially ordered sets. A
forest S is a pair (V(S), <) consisting of a (finite) vertex set V(S) and a partial order
<% on V(S) such that for every ¢t € V(S) the set {u € V(S) | u <% t} is a chain, that
is, its elements are pairwise comparable. We denote the strict partial order associated
with <% by <. If t <5 u and there is no v € V(S) such that t <% v and v <% u, then
we say that u is a child of ¢ and that ¢ is the parent of w. This gives us a one-to-one
correspondence between forests viewed as partially ordered sets and rooted forests in the
usual graph-theoretic sense. The <% minimal elements of V() are called the roots of
S. The height of S is the length |X| of the longest chain X in S. Note that, differing
from the standard graph theoretic definition, we count the number of vertices (and not
the number of edges) on a path from the root to a leaf. In particular, a forest consisting
of roots only has height 1.

A forest T with a unique root is a tree. We denote the root of a tree T by 7. A subtree
of a tree T is a tree T with V(T") C V(T such that <”" is the restriction of <7 to
V(T"). Thus a subtree is an induced substructure that is a tree itself. Observe that a set
U C V(T) induces a subtree of T if and only if U has a unique <”-minimal element. This



notion of subtree does not coincide with the usual graph-theoretic notion of a subtree
of a tree. In particular, elements of a subtree can be interleaved with elements that do
not belong to the subtree.

An elimination forest of a graph G is a forest S such that V(S) = V(G) and for every
edge uv € E(QG), either u <% v or v <% u. If an elimination forest S of G is a tree, we
also call it an elimination tree of G. The tree depth of a graph G is the minimum & such
that G has an elimination forest of height k. We denote the class of all graphs of tree
depth at most k& by 7Dy and the class of all connected graphs in 7Dy by TD;..

Lemma 2.3 (NeSetfil and Ossona de Mendez [37]).
(1) TDj consists of all 1-vertex graphs.

(2) For k > 1, TDj., is the class of all connected graphs F' that have a verter r such
that all connected components of F'\ {r} are in TDy,.

(3) For all k > 1, TDy, is the class of disjoint unions of graphs in TDj,.

We let D be the class of all pairs (F,T') where F is a graph and T an elimination tree
of F'. We usually denote elements of D by DA

For D = (F,T) € D, we let FP := F, TP := T and V(D) := V(F) = V(T),
E(D) := E(F), v = 4", 2P:==<T and rP := rT. We call r? the root of D. The
height of D is the height of TP. We denote the class of all D € D of height at most k
by Di. Observe that a connected graph F' is in 7Dy if and only if there is a D € Dy
such that FP = F.

Remark 2.4. There is a strange asymmetry in the definition of D: for pairs (F,T) € D,
we require 1" to be a tree, not an arbitrary forest, but we do not require the graph F' to
be connected. Yet this definition is carefully chosen. In particular, if we required F' to
be connected then we would run into difficulties in the proof of Lemma

3 Past-Preserving Homomorphisms

Let D € Dg, and let G be an arbitrary graph. A homomorphism from D to G is simply a
homomorphism from F to G. We write h : D — G to denote that h is a homomorphism
from D to G, and we let hom(D, G) := hom(F” G) be the number of homomorphisms
from D to G. A homomorphism h : D — G is an epimorphism (we write h : D — G) if
it is an epimorphism from FP to G.

A homomorphism h : D — G is past-injective if for all u,v € V(D) with u <P v
we have h(u) # h(v). If in addition, for all u,v € V(D) with u <P v we have uv €
E(D) <= h(u)h(v) € E(G), then h is past-preserving. We denote the number of
past-injective homomorphisms from D to G by pi-hom(D,G) and the number of past-
preserving homomorphisms from D to G by pp-hom(D,G). In this section, we shall
prove that we can compute the numbers of past-preserving homomorphisms to a graph

3The reader may wonder why we chose the letter “d” (in D and D). One reason is that it picks up the
“d” in depth and that D is close to 7D. Or think of “d” as standing for “decomposed graph”.



from the numbers of homomorphisms and vice versa. The difficult first step will be
to establish an equivalence between the numbers of past-injective homomorphisms and
homomorphisms.

The general strategy for establishing such an equivalence, going back to Lovéasz [30],
is to establish a linear relationship between the corresponding counting vectors, in our
case the vectors HOMyp, (G) = (hom(F,G) | F € TD},) and the corresponding vector
of past-injective homomorphism counts and then show that the matrix relating the two
vectors is invertible (this will happen in Lemma B.2] Corollary B3] and Lemma [3.5)).
On the linear algebra side, we shall write the (infinite) matrix of homomorphism counts
as a product of an upper-triangular matrix with nonzero diagonal entries and a lower-
triangular matrix with nonzero diagonal entries. This decomposition of the homomor-
phism matrix corresponds to a decomposition of homomorphisms. The upper triangular
matrix is obtained by considering some form of injective homomorphisms, in our case
past-injective homomorphisms. The lower triangular matrix corresponds to suitable sur-
jective homomorphisms, in our case shrinking epimorphisms, to be introduced next. The
reason that we cannot just work with plain injective and surjective homomorphisms (or
rather epimorphisms) is that the homomorphic image of a graph of tree depth at most
k may have larger tree depth than k. However, we shall prove (in Lemma B1]) that
shrinking epimorphisms preserve tree depth.

Let D € Dy, and let G be a graph with V(G) C V(D) (but not necessarily G C FP).
A shrinking homomorphism from D to G is a homomorphism h : D — G such that
h(u) =P wu for all u € V(D) and h is idempotent, that is, h(h(u)) = h(u) for all
u € V(D). We are mainly interested in shrinking epimorphisms. We denote the number
of shrinking epimorphism from D to G by s-epi(D,G). Note that if h is a shrinking
epimorphism from D to G then h(v) = v for all v € V(G). Indeed, since h is surjective,
we have v = h(u) for some u and therefore h(v) = h(h(u)) = h(u) = v. This implies
that for all v € V(G) we have 7% (v) = P (v).

To simplify the notation, for graphs F,G we write G T, F if V(G) C V(F) and
7% (v) = vF(v) for all v € V(G). For a D € D we write G C., D instead of G C., FP.

Lemma 3.1. Let D € Dy, G & D, and let f : D — G be a shrinking epimorphism
from D to G. Then TP induces a subtree on V(G), and this subtree TP[V(G)] is an
elimination tree of G of height at most k, that is, (G, TP[V(G)]) € Di.

Proof. We first prove that T’ := TP[V(G)] is a tree of height at most k. Observe that
f(rP) = rP and thus P € V(G). Hence V(G) has a unique <”-minimal element, and
T' is a tree. Clearly, the height of 77 is at most the height of 7” and hence at most k.

It remains to prove that 7" is an elimination tree of G. Let vv' € E(G). We shall
prove that either v <" v/ or ¢/ <T" v. Since f is an epimorphism, there is an edge
uy’ € E(D) such that f(u) = v and f(u') = v/. Then v <P u and v <P «'. Since TP
is an elimination tree of F'P, either u <P v’ or u/ <P w. Without loss of generality we
assume u <P u'. Then v,v' <P u/. Since the set {t € V(D) | t <P «'} is a chain in
the tree TD, either v <P v/ or v/ <P v. As jT/ is the restriction of <P to V(Q), this
implies that v <7 v/ or v <7’ v. O



Lemma 3.2. Let D € Dy, and let h : D — H be a homomorphism from D to some
graph H. Then there is a graph G =, D, a shrinking epimorphism f : D — G, and a
past-injective homomorphism g : (G, TP[V(G)]) — H such that h =go f.

Furthermore, G, f, and g are unique. That is, if G' T, D and f' : D — G’ is a
shrinking epimorphism and g : (G',TP[V(G")]) — H is past-injective such that h =
gof,thenG=G, f=f,andg=4g.

Proof. Let W := h(V (D)) C V(H) be the range of h. Then the sets h~!(w), for w € W,
form a partition of V(D). For every u € V(D), let f(u) be the <P-minimal element
in A=Y (h(u)) N {t | t =P u}. There is at most one such element because {t | t <P u}
is a chain. Note that f is idempotent. Let G := f(FP) be the graph with vertex set
V(G) := f(V(D)) and edge set E(G) := {f(u)f(«)) | wu’ € E(D)}. Then f: D — G
is a shrinking epimorphism. Hence by Lemma B} the induced subtree TP[V (G)] is an
elimination tree of G of height at most k.

For all u,u’ € V(D), if f(u) = f(u') then h(u) = h(u'). Thus there is a mapping
g : V(G) — V(H) such that h = go f. As h is a homomorphism and G = f(F), the
mapping ¢ is a homomorphism from G to H. Indeed, for every edge vv’ € E(G) there is
an edge wu' € E(D) such that f(u) = v and f(u') = v’. Then g(v)g(v') = h(u)h(v') €
E(H).

To prove that g is past-injective, suppose for contradiction that there are v,v’ € V(G)
such that v <7"V(@) o/ and g(v) = g(v/) = w. Note that v <7 V(@] o/ implies
v <P /. As f is the identity on V(G) C V(FP), we have h(v) = h(v') = w. By the
definition of f, this means that v = f(v) and v/ = f(v') are <”-minimal elements in
h~Y(w). Since v # v/, it follows that v AP ¢/. This is a contradiction.

It remains to prove the uniqueness. Let G’ T, D and f’ : D — G a shrinking
epimorphism and ¢ : (G',T[V(G')]) — H a past-injective homomorphism such that
h=gof.If f=f then G = G, because ' = f(FP) = f/(FP) =G, and g = ¢
because go f = ¢’ o f/ and f, f’ are surjective. Suppose for contradiction that f’ # f.
Let u € V(D) such that f’(u) # f(u) and, subject to this condition, u is <”-minimal.

Case 1: f(u) # u.
Let v’ := f(u). Then v/ <P u and, since f is idempotent, f(u') = u’. Thus

h(u) = g(f(u) = g(u') = g(f () = h(u').

By the minimality of u, we have f'(u') = f(u') = «’. This implies

g (f'(u) = h(u) = h(') = g'(f'()). (3.4)

Since f/(u) =P wand f'(v') = v <P w and TP is a tree, either f'(u) <P f'(u') or

f'(u") =P f'(u). Since ¢’ is past-injective, by ([B.A]) we have neither f/(u) <P f'(u)

nor f'(u') <P f'(u) and thus f'(u) = f'(u') = v’ = f(u). This is a contradiction.
Case 2: f(u) =

Let o/ := f'(u). Then ' <P wu. Since f’ is idempotent, we have f'(u/) =
f'(f'(w)) = f'(u) = v and thus h(u) = ¢'(f'(uv)) = ¢'(v') = ¢'(f'(u')) = h(u'). By



the minimality of v we have f(u') = f'(v/) = «'. Hence g(u) = g(f(u)) = h(u) =
h(u") = g(f(u')) = g(u'), which contradicts g being past-injective. O

Corollary 3.3. Let D € Dy, and let H be a graph. Then

hom(D, H) = Z s-epi(D, G) - pi-hom((G, TP [(V(G)]), H). (3.B)
GC,D

Corollary 3.4. Let D € Dy, and let H,H' be graphs such that for all G T, D with
(G, TP[V(G)]) € Dy, it holds that

pi-hom((G, TP[V(Q@)]), H) = pi-hom((G, TP [V (G))), H').

Then
hom(D, H) = hom(D, H').

Proof. Here we use Lemma [3.1] to see that we can restrict the sum in (3.B]) to G with
(G, TP[V(G)) € Dy O

Lemma 3.5. Let (G,T) € Dy, and let H, H' be graphs such that for all F' € T Dy with
FC,G,
hom(F, H) = hom(F, H').
Then
pi-hom((G,T), H) = pi-hom((G,T), H").

Proof. Let G be the set of all (G',T') € Dy, such that G' C, G and 7" = T[V(G')]. In
particular, (G,T) € G.

Let (G1,T1),...,(Gm,Ty) be an enumeration of G such that (Gy,,Tn) = (G,T)
and |G;| < |Gj| for ¢ < j. Observe that s-epi((G;,T;),G;) = 1 for all ¢ and that
s-epi((G;,T;),Gj) > 0 for j # ¢ only if V(G;) C V(G;) and hence j < i. Let A € R™*™
be the matrix with entries A;; := s-epi((G;,T;),G;). Then A is a lower triangular matrix
with diagonal entries A; = 1 for all . This implies that A is invertible.

Let ¢ = (c1,...,¢m)T be the vector with entries ¢; := hom(Gj, H), and let b =
(b1,...,bm)T be the vector with entries b; := pi-hom((G;,T;), H). By Corollary (3.3} for
every i we have

¢; = hom((Gy, Ti), H)

= Z s-epi((Gy, T3), G") - pi-hom((G", T;[V(G")]), H)
G'E,G;

= Z Aijbj-
j=1

Thus ¢ = Ab, and since A is invertible, b = A~ 'e.
Now let ¢/ = (c},...,c,)T be the vector with entries ¢, := hom(G;, H'), and let

b = (by,...,b,)T be the vector with entries b, := pi-hom((G;,T;), H'). Then b’ = A~!¢.
By the assumption of the lemma, we have ¢ = ¢’. Thus b = b". In particular,

pi-hom((G,T),H) = b, = b, = pi-hom((G,T), H"). O
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Let us now move on to past-preserving homomorphisms.

Lemma 3.6. Let D € Dy, and let h : D — H be a past-injective homomorphism from
D to a graph H. Then there is a unique graph G O FP with V(G) = V(D) such that
TP is an elimination tree of G and h is a past-preserving homomorphism from (G, TP)
to H.

Proof. Suppose that D = (F,T). We let G be the graph with V(G) := V(F),
E(G) := {uv € (V(2F)> ‘ u =T v and h(u)h(v) € E(H)},

and 7 := 4¥. Then G D F, because h is a homomorphism, and T is an elimination
tree of G, because uv € E(G) implies u <T v or v <7 u. Moreover, h is past-preserving,
because it is past-injective and for u <7 v we have uv € E(G) <= h(u)h(v) € E(H).

It remains to prove the uniqueness. Let G’ O F with V(G') = V(F) such that T
is an elimination tree of G’ and h is a past-preserving homomorphism from (G’,T) to
H. Then ¢ = 4¥ = 4%, because h is a homomorphism from G’ to H. Moreover, for
all wv € E(G"), either u <7 v or v < w, because T is an elimination tree of G’, and
wv € E(G') <= h(u)h(v) € E(H), because h is past-preserving. Thus E(G’') = F(G)
and therefore G = G’. O

Corollary 3.7. Let D € Dy, and let H be a graph. Then

pi-hom(D, H) = Z pp-hom((G,T?), H).
GDFP such that V(G)=V(D)
and (G,TP)eD;,

Corollary 3.8. Let D € Dy, and let H,H' be graphs such that for all G O FP with
V(G) = V(D) and (G, TP) € Dy,

pp-hom((G,T?), H) = pp-hom((G,T"), H').

Then
pi-hom(D, H) = pi-hom(D, H).

Lemma 3.9. Let D € Dy, and let H, H' be graphs. Suppose that for all G O FP with
V(G) = V(D) and (G, T?) € Dy we have

pi-hom((G, TP), H) = pi-hom((G,T"), H').

Then
pp-hom (D, H) = pp-hom(D, H').

Proof. Let D = (F,T). Let G be the set of all G O F such that V(G) = V(F) and T
is an elimination tree of G. In particular, F' € G. Let G1,...,G,, be an enumeration
of G such that G; = F' and |E(G;)| < |E(G;)| for i < j. Let A € R™*™ be the matrix
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with entries A;; := 1 if G; C G; and A;; = 0 otherwise. Then A is an upper triangular
matrix with diagonal entries A;; = 1 for all ¢. This implies that A is invertible.

Let ¢ = (c1,...,cm)T be the vector with entries ¢; := pi-hom((G;,T), H), and let
b= (by,...,byn)" be the vector with entries b; := pp-hom((G;,T), H). By Corollary 3.7,
we have ¢ = Ab, and since A is invertible, b = A~ lc.

Now let Let ¢/ = (c},...,c,)T be the vector with entries ¢; := pi-hom((G;,T), H'),
and let b = (by,...,b,,)T be the vector with entries b, := pp-hom((G;,T), H'). Then
b =A"l¢.

By the assumption of the lemma, we have ¢ = ¢/. Thus b = b'. In particular,

pi-hom(D, H) = by = b} = pi-hom(D, H'). O
Theorem 3.10. For all k > 0 and all graphs G,G’, the following are equivalent.

(i) For all F € TDy,
hom(F,G) = hom(F,G").

(ii) For all D € Dy,
pi-hom (D, G) = pi-hom (D, G').

(iii) For all D € Dy,
pp-hom (D,G) = pp-hom (D,G').

Proof. The implication (i) = (ii) follows from Lemma [3.5]

As for all connected F' € TDj, there is an elimination tree T such that (F,T') € Dy,
it follows from Corollary B4l that (ii) implies hom(F, G) = hom(F,G’) for all F € TDj,.
But we have observed earlier that this implies hom(F, G) = hom(F,G’) for all F € T Dj,.

The equivalence between (ii) and (iii) follows from Lemma B.9]and Corollary B8 O

4 Playing the Game

In this section, we will connect the numbers of past-preserving homomorphisms to the
bijective pebble game and use this to prove our main theorem. We start with a technical
lemma that we need for our interpolation arguments laterE

Lemma 4.1. Let aq,...,a; € N, where a; = (a;1,...,0im), be mutually distinct vec-
tors with positive entries. For every i € [¢] and every d = (di,...,dy,) € N, let
d ._ym %
a;” =L a;.
Then there is a d = (di,...,dn) € N™ such that 1 < d; < ¢ for all i € [m] and
al? a\? are mutually distinct
1 heay y distinct.

Proof. The proof is by induction on m. The case m = 1 is trivial, we can simply choose
dy = 1. For the inductive step m — 1 to m, let @ := (a1, ..., ajm-1)). Let P1,..., Py
be the partition of [¢] such that a] = a’ if and only if i,j € P, for some p € [¢].

4We are convinced that this lemma is known to many other researchers, but lacking a reference, we
decided to include a proof.
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For p € [¢], let b, := a] for i € P,. By the induction hypothesis, there is a vector
d = (dy,...,dn_1) such that 1 < d; < (¢')2 < £2 for all i € [m — 1] and the numbers
bgd,), ceey bédl) are mutually distinct. In the following, we keep di,...,d,—1 fixed and
try to find a d,, such that d = (dy,...,d,,) satisfies the assertion of the lemma.

Observe that for dy,, > 1 and 4,j € [f], if i,j € P, for some p then a; = a; and
Aim # Qjm and thus

(d) _ p(d), dm d) dm _ _(d)
a;” =balm £ bHalm = a”.

For 7 € By, j € P, with p # ¢ we have

b(d/) ad;rnb
az(d) = agd) = I()d,) = =
bq ainn;L

(d)
If asn = ajm, there is no such d,,, because % # 1. If ajm # ajm, there is at most
q
one such d,,. Overall, for all distinct 7,5 € [¢] there is at most one d,;, > 1 such that
az(d) = a§d). Thus by the pigeonhole principle, there is a d,, < (5) + 1 < 2 such that

agd) #+ ag»d) for all distinct 1, j. O

Let Di,...,D,, € D such that the roots r; := r” all have the same colour, that
is, YPi(r;) = yPi(rj) =: ¢ for all 4,5 € [m]. We say that Dy,...,D,, are compatible.
The rooted sum of Dy,..., Dy, is the pair D = (F,T) where F is the graph obtained
from the disjoint union of the FPi by identifying the roots r1,...,r, and T is the tree
obtained from the disjoint union of the trees TP1,..., TP by identifying their roots.
We write D = @le D; to express that D is the rooted sum of the D;. For d > 1, we
write D = d ® D’ to express that D is the rooted sum of d disjoint copies of D’. We
combine these notations, writing

m
=1

to express that D is the rooted sum of d; disjoint copies of D; for each ¢ € [m]. For every
set F C D we let F® denote the set of all rooted sums of elements of F.

Recall that for a D € D, a graph G, and vertices u € V/(D),v € V(G), by pp-hom (D, G; u +
v) we denote the number of past-preserving homomorphisms h : D — G with h(u) = v.
Observe that if D = @, D; for D; € Dy, then D € Dy and for all graphs G and
vertices v € V(G) we have

pp-hom (D, G; 7P — v) = H pp-hom(D;, G; rPi i v). (4.A)
i=1

Lemma 4.2. Let F C D. Let G,G' be graphs such that |G| = |G'| and

pp-hom (D, G) = pp-hom (D, G") (4.B)

13



for all D € F®. Then there is a bijection f:V(G) — V(G') such that
pp—hom(D,G; rP v) = pp—hom(D,G';rD — f(v))
forall D € F.

Proof. Let n := |G| = |G’|. Without loss of generality, we assume that V(G)NV (G') = 0.
We define an equivalence relation ~ on V(G)UV (G') as follows: for X,Y € {G,G'} and
zeV(X),yeV(Y), welet z ~ y if and only if for all D € F,

pp-hom (D,X;’I“D — :c) = pp-hom (D,Y; rD y) (4.C)

Let K1, ..., Ky be the ~-equivalence classes. For every i € [(], let p; := |K; N V(G)| and
p; = |K;NV(G)|, and let p = (p1,...,pr) and p’ = (p), ..., p}).

The assertion of the lemma is an immediate consequence of the following claim.
Claim 1.

p=p.

Proof. Without loss of generality, we assume that F is finite. If it is not, for all distinct
i,j € [¢] we pick a D;; € F such that for z € K;,y € K; and X,Y € {G,G'} with
x € V(X), y € V(Y) it holds that

pp-hom (Dij, X377 = &) # pp-hom(Dy;, Y312 1= y),

and we restrict our attention to the finite class of all these D;; without changing the
equivalence relation ~.

Say, F = {D1,...,D,,}, and for every i € [m], let r; := rPi. Then for all X,Y €
{G,G'} and z € V(X),y € V(Y) we have = ~ y if and only if

Vj € [m] : pp-hom(Dj, X;rj — x) = pp-hom(D;,Y;r; — y).

For i € [{], let a;j := pp-hom(D;, X;r; — z) for all X € {G,G'}, v € K; NV (X). Let
a; := (a;1,...,aim) and a? = (ayj, ... ,agj)T. Thus the a; are the rows and the a’ the
columns of the (¢ x m)-matrix with entries a;;. Observe that the rows a; are mutually
distinct.

For every j € [m] we have

pp-hom(D;,G) = Z pp-hom(D;, G;rj — v)
veV(Q)

¢
= Zpiaij
i=1
= (p.a’).
and similarly

pp-hom(D;,G’) = <p’, aj> )

14



Here (x,y) = ), z;y; denotes the standard inner product of vectors x,y.
Let us call a set J C [m] compatible if all D; for j € J are compatible (that is,

their roots have the same colour). The support of a vector d = (dy,...,d;,) is the set
supp(d) := {i € [m] | d; # 0}, and we call d compatible if its support is compatible. For
every compatible nonzero vector d = (dy,...,d,,) € N we let
PO = B oD,
jEsupp(d)

Then D@ € F®. We denote the root of D@ by (@ By @A), for every X € {G,G'}
and z € V(X) we have

pp-hom (D(d),X;r(d) ) = H pp-hom(D;, X;r; s )%,
j=1

Thus for every i € [¢], X € {G,H}, and = € K; NV (X) we have

m
pp-hom (D(d),X;r(d) > x) = H af.l; =: az(d). (4.D)
j=1
Let a@) = (agd), ... ,aéd))T. Note that with this notation, a’ = a(€), where e; denotes

the jth unit vector. Then

pp-hom(D,G) = > pp-hom(D, G; 7D s v)
veV(Q)

l
= sz‘al(-d)
i=1
= <p, a(d)> -
and similarly
pp-hom(D'¥, ¢) = <p’7 a(d)> :
For all j, let b9 := pp-hom(D@ G). Since D@ ¢ F® by @B]), we have b® =
pp-hom (D@ G"). Then
b = <p, a(d)> = <p’,a(d)> . (4.E)
Since 0° = 1 and 0¢ = 0 for d > 1, for every i € [¢] and every d € N™ we have

agd) # 0 <= supp(d) C supp(a;). (4.F)

Suppose for contradiction that p # p’. Choose ig € [¢] such that p;, # pgo and, subject
to this condition, S := supp(a;,) is inclusionwise maximal.
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Suppose first that S = (). Then a;, = 0, and as the a; are mutually distinct, a; # 0
and therefore supp(a;) # 0 for i # iyp. By the maximality of S, this implies p; = p} for
all i # ig. Hence pjy =n — >, pi =mn — >4 Pi = pj,, which is a contradiction. It
follows that S # 0.

Let I = {z € [f] | supp(a;) = S}. For every i € I, let @; := (a;; | j € S). Then
the vectors a; have only positive entries, and they are mutually distinct, because the
a; are mutually distinct. By Lemma EI] there is a vector d = (d, i | 7 € S) such that

Z(d) for i € I are mutually distinct. Let d = (di,...,d;,) with d;j = dj for
(d

j € S and dj = 0 otherwise. Then the numbers a; ) for i € T are mutually distinct.
Z(]d) —( (d))] where jd = (jdi,...,jdy). Let

(2

the numbers a

Observe that for every j € N we have a

A be the |I| x |I|-matrix with entries A;; := a( 9 (for convenience, we take row indices
from the set I and column indices from {1,...,|I|}). A is a Vandermonde matrix and
thus invertible.

Let p; := (p; | ¢ € I) and p; := (p} | © € I) be the restrictions of p and p’ to I. For
every j, the jth entry of p; - A is

Zpia(jd)zzz:pia(jd)— Z Pz‘a(jd)— Z Pz‘a(jd)

i€l i=1 i€l i€l
S¢Zsupp(a;) ScCsupp(a;)
(pa ) T e
i€[f]
SCsupp(a;)

because by (4LF]) we have a( D_0if § = supp(jd) € supp(a;). Similarly, the jth entry

of pf- Ais
> pial? = (pa?) — ST gl
iel i€[/]
SCsupp(a;)

By the maximality of S, for all ¢ with S C supp(a;) we have p; = p,. Thus

Z pia(jd): Z via (Jd)’

€[l i€[{]
ScCsupp(a;) SCsupp(a;)
and therefore, by (L.E),
d) d)
S pial® = Yl
el el

Since this holds for all j, we have p; - A = p} - A. As A is invertible, it follows that
p; = P} and, in particular, p;, = p; . This is a contradiction. O

Remark 4.3. The proof of the lemma actually shows that (4.B]) only needs to be satisfied
for rooted sums of at most m¢? graphs from F, where m := | F|, and ¢ is the number of
equivalence classes of the relation ~. (Recall the definition of ~ from (4.C]).) Note that
we always have £ <n = |G|.
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Corollary 4.4. Let G,G be graphs such that for all D € Dy,
pp-hom (D, G) = pp-hom(D,G"). (4.G)
Then there is a bijection f : V(G) — V(G') such that for all D € Dy,
pp-hom(D,G;rD — v) = pp-hom(D,G';rD — f(v))

Proof. This follows immediately from Lemma 2] noting that D° = Dj and that Q)
for all D € Dy, implies that |G| = |H|. O

4.1 Proof of the Main Theorem

For the inductive proof, the following construction is useful. Let G be a graph and
v € V(G). We let G v be the graph with vertex set V(G 1v) := V(G) \ {v}, edge set
E(Gv) :={ww € E(G) | w,w" € V(G) \ {v}}, and colouring defined by

,}/sz(w) — {(WG’(U/), 1) if vw € E(G),
(WG(w),O) if vw € E(QG).

Lemma 4.5. Let k > 0, and let G,G’ be graphs and v € V(G),v' € V(G') such that
|G| = |G’ > 2 and % (v) = 4 (/). Then the following are equivalent.

(i) Duplicator has a winning strategy for the k-round bijective pebble game on G,G’
with initial position (v,v").

(i) Duplicator has a winning strategy for the k-round bijective pebble game on Gl wv,
G .
Proof. Straightforward. O

The next lemma is the last significant step of the proof of our main theorem. After
that, we only need to pull things together to complete the proof.

Lemma 4.6. Let k > 1, and let G,G" be graphs of the same order. Then the following
are equivalent.

(i) For all D € Dy,
pp-hom(D, G) = pp-hom(D, G").

(i1) Duplicator has a winning strategy for the k-round bijective pebble game on G,G’.

Proof. We first prove (i) = (ii). The proof is by induction on k.

For the base case k = 1, suppose that pp-hom(D, G) = pp-hom(D,G’) for all D € D;.
By Corollary [47] there is a bijection f : V(G) — V(G’) such that for all D € D; and
veV(Q),

pp-hom(D,G;rD ) = pp-hom(D,G';rD = f(v)).
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This implies 7% (v) = % (f(v)). Duplicator picks f in the first (and only) round of the
game and wins.

For the inductive step k — k + 1, let G,G’ be graphs of the same order such
that pp-hom(D,G) = pp-hom(D,G’) for all D € Dyyq. If |G| = |G'| = 1, then
pp-hom(D,G) = pp-hom(D,G’) for all D € D; implies that the graphs are isomor-
phic (their unique vertices have the same colour). Thus we may further assume that
Gl = 6| = 2

By Corollary 4], there is a bijection f : V(G) — V(G') such that for all D € Dy yq
and v € V(G),

pp-hom(D,G;rD — v) = pp-hom(D,G’;rD — f(v)) (4.H)

In the first round of the game, Duplicator picks this bijection f. Say, Spoiler picks
v e V(Q). Let v/ := f(v). Note that @H]) implies v¢(v) = ¢ (v/). Let H := Glv and
H' := G"v'. We need to prove that Duplicator has a winning strategy for the remaining
k-round bijective pebble game on G,G’ with initial position (v,v’). By Lemma [E3]
it suffices to prove that Duplicator has a winning strategy for the k-round bijective
pebble game on H, H'. This follows immediately from the induction hypothesis and the
following claim.

Claim 1. For all D € Dy,
pp-hom (D, H) = pp-hom(D, H').

Proof. Let D = (F,T) € Dy. We may assume that all vertices u € V(D) have a colour
of the form (c,i) where i € {0,1}. Otherwise, pp-hom(D, H) = pp-hom(D, H') = 0.

We define a graph F'™ and a tree T as follows. We take a fresh vertex r* and let
V(F?) =V(F)u{rt},

E(FT):=E(F)U
{r*u | u e V(F) with v (u) = (¢, 1) for some ¢},

and vE (rt) := 4% (v) = A% () and vF T (1) == ¢ for all u € V(F) with ~F (u) = (¢, )
for some i € {0,1}. We let V(T) := V(T)U{r*} and

<T"=<T U{(r*,u) |ue V(T)}

Then r7 is the root of 7. Then T is an elimination tree of '™ of height k + 1. Hence
DT = (F*,T") € Diy1.

Observe that that there is a one-to-one correspondence between the past-preserving
homomorphisms from D' to G mapping r™ to v and the past-preserving homomor-
phisms from D to H E Similarly, there is a one-to-one correspondence between the past-
preserving homomorphisms from DT to G’ mapping r* to v/ and the past-preserving

5Note that here we need the homomorphisms to be past preserving. The proof would break down if
we worked with arbitrary homomorphisms, because a homomorphism from DT to G mapping r*
to v could also map vertices in V(D1)\ {r*} = V(D) to v, and such a homomorphism would not
correspond to a homomorphism from D to H.
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homomorphisms from D to H'. Thus

pp-hom(D, H) = pp-hom(D™,G;rt s v),
pp-hom (D, H') = pp-hom(D™,G’; 7" = o').

By (@H) applied to DT, we have
pp-hom(D™, G;r" + v) = pp-hom(D*,G';r T — 2').

Thus pp-hom(D, H) = pp-hom(D, H'). J

The proof of the converse direction (ii) = (i) is also by induction on k.

For the base case k = 1, assume that Duplicator has a winning strategy for the 1-
move bijective pebble game on G,G’. Then there is a bijection f : V(G) — V(G')
such that v%(v) = 4 (f(v)) for all v € V(G), which implies that for each colour
¢ the two graphs have the same numbers of vertices of colour c¢. This implies that
pp-hom(D, G) = pp-hom(D,G") for all D € D;.

For the inductive step kK — k + 1, assume that Duplicator has a winning strategy for
the (k + 1)-round bijective pebble game on G,G’. Without loss of generality we may
assume that |G| = |G’| > 2. Then, by LemmalLH] there is a bijection f : V(G) — V(G’)
such that for each v € V(G), 7% (v) = 7% (f(v)) and Duplicator has a winning strategy
for the k-round bijective pebble game on G v, G’ f(v). By the induction hypothesis,
this implies

pp-hom(D, G v) = pp-hom(D, G’ 1 f(v)) (4.1)
for all D € Dy.. R

Now let D € Dyy1 and 7 := rP. By deleting 7 from ]3, we obtain a family D1, ..., D,, €
Dy.. For every i € [m], let D; € Dy, be obtained from D; by recolouring the vertices as
follows: for u € V(D;), let

) o 4 O 1) if fu € E(D),
) {(WDi(u),O) otherwise.

The crucial observation is that for each v € V(G) with 7% (v) = v () we have

m
pp-hom (D, G;7 +— v) = H pp-hom(D;, G v)

i=1

and similarly

~ m A~
pp-hom(D,G';7+— f(v)) = H pp-hom(D;, G" 1 f(v)).

i=1

By (4I), this implies

pp—hom(lA),G;?b—) v) = pp-hom(ﬁ,G';?H f(v)).
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Thus

pp—hom(lA)7 G)= Z pp—hom(lA)7 G;T )
vGV(G)
79 (0)=A" (7)
= Y pphom(D,G";7— f(v))
veV(G)
7Y (0)=7" ()
= Z pp-hom(ﬁ, G
v'EV(G”)
7 (W)=yP 7)
= pp-hom(D, G").
O

Proof of Theorem [ . The theorem follows from the previous lemma combined with
Lemma (stating that winning strategies for Duplicator in the bijective pebble game
establish equivalence in the logic) and Theorem BI0] (stating the equivalence between
homomorphism counts and past-preserving homomorphism counts), observing that for
all k > 1, graphs G, G’ of distinct orders are neither homomorphism-indistinguishable
over the class 7D;. nor Ci-equivalent. O

5 Discussion

It is a consequence of our main theorem that every sentence ¢ of the logic C and other
counting logics such as Kuske and Schweikardt’s [25] FOCN(P) is equivalent to an in-
finitary Boolean combination of expressions of 1, stating that “there are exactly m
homomorphism from F' into the current graph”, where F' € T Dy, for the quantifier rank
k of ¢. Indeed, it follows immediately from Theorem [Tl that every sentence ¢ € C of
quantifier rank k is equivalent to

\/ /\ NF hom(F,G)- (5.4)

G graph FeTD;,
such that G=¢p
Observe that ng,, can be viewed as a sentence of the form 37" xa, where x is a tuple
of |F'| variables and « is a conjunction of atoms of the form E(z;,z;) and y(x;) =
c. This gives us a normal form for C-sentences that is local and achieves some form
of quantifier elimination (or, maybe more precisely, quantifier de-alternation). But of
course the infinite disjunction and conjunctions are unpleasant. We can replace the
infinite conjunctions by a finite one, ranging over a finite set F(G) C TDj, that only
depends on G. But there is no hope of avoiding the infinite disjunction.

5.1 Graphs of Bounded Degree

For graphs G of bounded degree, we can improve our main theorem. We fix a set I' of
colours and only consider graphs G with rg(y%) C T
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Theorem 5.1. Let k,d > 1. Then there is a finite set F q C TDy, computable from
k,d, such that for all graphs G, G’ of mazimum degree at most d the following are equiv-
alent.

(i) G and G' are homomorphism-indistinguishable over Fy, 4.
(it) G and G’ satisfy the same Cy-sentences.

Proof (sketch). We only need to prove that the implication (i) == (ii) holds for a suffi-
ciently large F, 4 C TDy.

Recall that connected graphs in 7Dj have radius at most 2¢~! — 1. Thus if two
vertices v,w in a graph G have isomorphic neighbourhoods of radius 25~ — 1, then
hom(D, G;rP + v) = hom(D,G;rP + o' for all D € Dy,. Note that the equality holds
even though the graph F” is not necessarily connected, because on both sides of the
equality we have the same graph G, and every connected component of D that does not
contain the root 7P contributes to both sides of the equation in the same way.

In graphs of maximum degree at most d, the number of isomorphism types of neigh-
bourhoods of radius 2¥~! — 1 is bounded in terms of k& and d. This means that there
is only a bounded number of homomorphism counts hom(D,G;r” +— v). Recall Re-
mark 3l By what we have just observed, if both G' and G’ are of maximum degree d,
the number ¢ of equivalence classes is bounded in terms of &, d, and thus we only need
to consider rooted sums of at most f(k,d) graphs (for a suitable function f).

If we plug this into the inductive proof of the main theorem, we see that we only need
to consider homomorphism counts from g(k, d) graphs, for a suitable function g. U

Note that this stronger version of the theorem leads to a slight improvement of the
normal form (B.A) for graphs of maximum degree at most d: independently of the
disjunct G, we can restrict the conjunction to graphs F' from the finite set 7 4.

5.2 Equivalence in First-Order Logic

We may wonder if in Theorem [5.1] we really need the dependence of the set Fj, 4 on the
maximum degree d. That is, we may ask if for every k there is a finite set F C T Dy
such that for all graphs G, G’ if G and G’ are homomorphism-indistinguishable over Fj,
then they are Cp-equivalent. It is easy to see that this cannot be the case, essentially
because the number of Cg-equivalence classes is unbounded.

However, this is different for first-order logic FO: for every k there are only finitely
many FOg-equivalence classes, where FOy denotes the fragment of FO consisting of all
formulas of quantifier rank at most k. Thus it may be tempting to conjecture the
following. Again, we fix a set I' of colours and only consider graphs G with rg(y%) C T.

Conjecture 5.2. Let k > 1. Then there is a finite set F, C T Dy such that for all
graphs G,G’, if G and G' are homomorphism-indistinguishable over Fy, then G and G’
satisfy the same FOyp-sentences.

It would be really nice if this conjecture was true. For example, it would imply
a parameterised version of Toda’s theorem, settling a long-standing open problem in

21



Figure 5.1. The star 5,3

parameterised complexity theory [I8]. Unfortunately, the conjecture is false already for
k=2.

Example 5.3. Let us assume that I' = {O,0,@}. For all £,/ € N, we let S, be the
star with a centre r and tips s1,...,5p,t1,...,t; such that r is grey, the s; are white,
and the ¢; are black (see Figure [5.0). Moreover, we let W be the graph consisting of a
single white vertex and B the graph consisting of a single black vertex. Observe that
S0,0,W,B € TDy and S, , € TDy for all p,q € N.

Let S be the class of all graphs that are finite disjoint unions of stars S, 4 for p,q € N.
For every graph G € S and all p,q € N, let a,, 4(G) be the number of copies of S, 4 in
G. Observe that for all 4, j,p,q € N we have

hom(Si j, Sp.q) = P'¢’.

Thus for G € S,
hom (S ;,G) = Y p'lay(G). (5.B)
p,q€N
Moreover, hom(W, G) = hom(S510,G) = > N Papq(G) and hom(B, G) = hom(Sp,1,G) =
> pqen 4ap,q(G). Observe that hom(F, G) = 0 for all connected I € TD2\ (SU{B,W}).
Suppose for contradiction that there is a finite 7 C T D5 such that for all graphs G, G’,
if hom(F,G) = hom(F,G’) for all F € F then G =5 G’. Without loss of generality we
assume that all F' € F are connected. We will only consider graphs G,G’ € S. Thus it
suffices to consider F' € FN{S;; | i,j € N}. Let m := max{j | S;; € F}.

Claim 1. There are vectors a = (a,...,an),
a' = (da},...,al,) € N™ such that
(1) g1 ag < Xgtr 9o

(i) dogey Pag = P ¢/a for all j € [m].

Proof. Let A € Q™*™ be the matrix with entries a;; = j!. Then A is a Van-
dermonde matrix and thus has full rank. Therefore, the equation Ax = e, where
er = (1,0,...,0)7 € Q™, has the rational solution * = A~'e;. Multiplying with a
positive common denominator ¢ of the entries of &, we obtain an integer solution y
to the system Ay = ce;. We write y = a’ — a for two nonnegative integer vectors
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a = (d},...,a),a = (a1,...,an). The equation Aa’ = ce; + Aa yields exactly the

r'n
equations in the assertion of the claim. J

We choose vectors a,a’ according to the claim and let ag := > 7" aj, — > 2L a,. Let
G be the disjoint union of a, copies of Sy 4 for ¢ € {0,...,m}. Then a;4(G) = a, for
g € {0,...,m} and a,4(G) = 0 for all p # 1,q or p = 1,¢ > m. Similarly, let G’
be the disjoint union of aj, copies of Sy, for ¢ € {1,...,m}. Then a14(G’) = ay for
ge{l,...,m} and a,4(G’) =0forall p#1l,gorp=1,¢g=0o0r p=1,¢ >m. Then
for all 7 € N we have

m m

hom(SLo, G) = Z aq = Z a; = hom(Si,Oa G/)
q=0 q=1

and, for j € [m],

hom(S; ;, G) = quaq = qua; = hom(S, ;,G").
q=1 q=1
Thus hom(F,G) = hom(F,G’) for all F € F.

However, G contains a copy of S o, whereas G’ does not. Thus G satisfies the FOo-
sentence

3 (y(2) =0 A 3y (Elw,y) A(y)=0) A ~3y(Elz,y) Ay(y)=e))
and G’ does not. Hence G and G’ are not FO%-equivalent. J

5.3 Relational Structures

Our main result extends from graphs to arbitrary relational structures. The definition
of elimination forests and hence of tree depth can be extended in a straightforward way.
Lemma[2.3] the inductive characterisation of tree depth, does not generalise directly, but
can be adapted: when deleting the root, rather than removing all tuples that contain the
root from all relations, we need to add relations of smaller arity and keep the remaining
tuples after deleting the root. A similar adaptation will be necessary in the definition
of Glv in Section 1l It needs to be checked that Lemma B still holds with the new
definitions—it does—, the rest of the proof goes through nearly unchanged.

It would be interesting to work out an extension of the main theorem to weighted
graphs, yielding homomorphisms whose weight is the product of the edges weights in its
image. Such an extension would require a suitable extension of the logic. We leave this
for future work.

5.4 Complexity

Boker, Chen, Grohe, and Rattan [§] studied the computational complexity of homo-
morphism indistinguishability over classes F of graphs. Depending on F, they found
complexities ranging from polynomial time to undecidable. Notably, homomorphism
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indistinguishability over the class of all graphs is equivalent to isomorphism and hence
decidable in quasi-polynomial time [4].

It is a consequence of our main theorem that for every k, homomorphism indistin-
guishability over 7Dy is decidable in polynomial time, or more precisely, time nOK),
because Cg-equivalence is decidable in this time. Probably the easiest way to see this is
via the bijective pebble game: given graphs G, G’, by induction on ¢ we can compute the
partition of V(G)*~* U V(G")*~¢ such that Duplicator wins the /-move bijective pebble
game with initial position x, " if and only x, ’ belong to the same class of the partition.

We leave open the question whether homomorphism indistinguishability over 7Dy, is

fixed-parameter tractable when parameterised by k. We conjecture that it is not.

6 Concluding Remarks

We characterise equivalence in the counting extension of first-order logic, parameterised
by quantifier rank, in terms of homomorphism indistinguishability over graphs of bounded
tree depth. While a result along these lines may not be unexpected, it is surprising that
we obtain such a tight and clean correspondence between quantifier rank and tree depth.

An interesting aspect of the correspondence between homomorphism counts and logi-
cal equivalence is that homomorphism counts also give us a natural notion of distance and
similarity between graphs via distances between the homomorphism vectors HOM £(G)
in suitable inner-product spaces. Through the translation between logic and homomor-
phism counts, such distance measures between graphs give us notions of “approximate
logical equivalence” and possibly “approximate logical satisfiability”, which in times of
uncertain data seems very desirable and deserves further exploration.
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