
Lower Bounds for QBFs of Bounded Treewidth

Johannes K. Fichte∗1, Markus Hecher†2,3, and Andreas Pfandler‡3

1International Center for Computational Logic, TU Dresden, Germany
2Institute of Logic and Computation, TU Wien, Austria

3Institute of Computer Science, University of Potsdam, Germany

July 6, 2020

Abstract

The problem of deciding the validity (QSat) of quantified Boolean formulas (QBF)
is a vivid research area in both theory and practice. In the field of parameterized
algorithmics, the well-studied graph measure treewidth turned out to be a successful
parameter. A well-known result by Chen [10] is that QSat when parameterized by
the treewidth of the primal graph and the quantifier rank of the input formula is fixed-
parameter tractable. More precisely, the runtime of such an algorithm is polynomial
in the formula size and exponential in the treewidth, where the exponential function
in the treewidth is a tower, whose height is the quantifier rank. A natural question
is whether one can significantly improve these results and decrease the tower while
assuming the Exponential Time Hypothesis (ETH). In the last years, there has been a
growing interest in the quest of establishing lower bounds under ETH, showing mostly
problem-specific lower bounds up to the third level of the polynomial hierarchy. Still,
an important question is to settle this as general as possible and to cover the whole
polynomial hierarchy. In this work, we show lower bounds based on the ETH for
arbitrary QBFs parameterized by treewidth and quantifier rank. More formally, we
establish lower bounds for QSat and treewidth, namely, that under ETH there cannot
be an algorithm that solves QSat of quantifier rank i in runtime significantly better than
i-fold exponential in the treewidth and polynomial in the input size. In doing so, we
provide a reduction technique to compress treewidth that encodes dynamic programming
on arbitrary tree decompositions. Further, we describe a general methodology for a
more fine-grained analysis of problems parameterized by treewidth that are at higher
levels of the polynomial hierarchy. Finally, we illustrate the usefulness of our results by
discussing various applications of our results to problems that are located higher on
the polynomial hierarchy, in particular, various problems from the literature such as
projected model counting problems.

Acknowledgments. This is an extended version of a paper that appeared at the 35th Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS 2020). This work has been supported

by the Austrian Science Fund (FWF), Grants P26696, P30930-N35, P32830, and Y698, and the

German Science Fund (DFG), Grant HO 1294/11-1. Hecher is also affiliated with the University

of Potsdam, Germany. We would like to thank the reviewers as well as Stefan Szeider and Stefan

Woltran for their support. Special appreciation goes to Michael Morak for early discussions.

∗johannes.fichte@tu-dresden.de
†hecher@dbai.tuwien.ac.at
‡pfandler@dbai.tuwien.ac.at

1

ar
X

iv
:1

91
0.

01
04

7v
2

 [
cs

.C
C

]
 2

 J
ul

 2
02

0

1 Introduction

Treewidth, which was introduced specifically for graph problems by Robertson and Seymour
in a series of papers [55–59], is a popular parameter in the community of parameterized
complexity [14, 17, 33] and according to Google Scholar mentioned in 20,000 results (queried
on April 27, 2020). Treewidth is a combinatorial invariant that renders a large variety of NP-
complete or #P-complete graph problems tractable [6, 11]. Among these problems are for
example deciding whether a graph has a Hamiltonian cycle, whether a graph is 3-colorable,
or determining the number of perfect matchings of a graph [13]. Still, treewidth has also
been widely employed for important applications that are defined on more general input
structures such as Boolean satisfiability (Sat) [60] and constraint satisfaction (CSP) [15, 34].
Even problems that are located “beyond NP” such as probabilistic inference [51], problems
in knowledge representation and reasoning [20, 37, 54] as well as deciding the validity (QSat)
of quantified Boolean formulas (QBF) can be turned tractable using treewidth; for QSat
we also parameterize by the number of alternating quantifier blocks (quantifier rank) [10].
However, QSat remains intractable when parameterized by treewidth alone [1], which is
established using a particular fragment of path decompositions for QBF. QSat is also known
as the prototypical problem for the polynomial hierarchy in descriptive complexity [38, 40].
Indeed, an encoding in QBF allows the characterization of problems on certain levels of
the hierarchy using results by Fagin [26]. This has, for instance, been done for reasoning
problems [21–23].

The meta results on treewidth are the well-known Courcelle’s theorem [12] and its
logspace version [24], which states that whenever one can encode a problem into a formula
in monadic second order logic (MSO), then the problem can be decided in time linear in
the input size and some function in the treewidth. While Courcelle’s theorem provides a
full framework for classifying problems concerning the existence of a tractable algorithm,
its practical application is limited due to potentially huge constants, and the exponential
runtime in the treewidth (upper bound) may result in a tower of exponents that is far from
optimal. In contrast, the available upper bounds are more immediate for QSat: Chen [10]
showed that one can decide validity for a given QBF in time exponential in the treewidth
where the treewidth is on top of a tower1of iterated exponentials of height that equals the
quantifier rank in the formula. Since the quantifier rank required to encode a problem
directly matches the level on which the problem is located in the polynomial hierarchy,
reductions to QSat seem natural. Lampis, Mitsou, and Mengel [47] employed this fact
and proposed reductions from a collection of reasoning problems in AI to QSat that yield
quite precise (up to a constant factor) upper bounds on the runtime. In consequence, these
results highlight QBF encodings as a very handy and precise alternative to Courcelle’s
theorem. A natural question is whether one can significantly improve existing algorithms or
establish limits that, unless very bad things happen in computational complexity theory, an
algorithm with a certain runtime cannot exist. Lampis, Mitsou, and Mengel also consider
this question using results [46] for QBF of quantifier rank two (2-QSat). While these results
for the second level are applicable to numerous important problems, there is also a plethora
of interesting problems that are even harder, which underlines the need for further research
in this direction.

In this paper, we address lower bounds for the runtime of an algorithm that exploits
treewidth in a more general setting. We establish results for QBFs of bounded treewidth
and of arbitrary quantifier rank, thereby providing a novel method to generalize the result
for 2-QSat in a non-incremental way.

1 Function tow(`, k) is a tower of iterated exponentials of 2 of height ` with k on top. More precisely, for
integer k, we define tow : N× N→ N by tow(1, k) = 2k and tow(` + 1, k) = 2tow(`,k) for all ` ∈ N.

2

A way to establish tight lower bounds in parameterized complexity theory is to assume
the exponential time hypothesis (ETH) [41] and construct reductions. ETH is a widely
accepted standard hypothesis in the fields of exact and parameterized algorithms. ETH
states that there is some real s > 0 such that we cannot decide satisfiability of a given
3-CNF formula F in time 2s·|F | · ‖F‖O(1) [14, Ch.14], where |F | refers to the number of
variables and ‖F‖ to the size of F , which is number of variables plus number of clauses
in F . Recently, Lampis and Mitsou [46] established that 2-QSat (∃∀-Sat and ∀∃-Sat)
cannot be solved by an algorithm that runs in time single exponential in the treewidth of the
primal graph (primal treewidth) when assuming ETH. The primal graph of a QBF Q has as
vertices the variables of Q and there is an edge between two variables if they occur together
in a clause or term, respectively. Pan and Vardi [52] mention in an earlier work that this
extends to 3-QSat (∀∃∀-Sat and ∃∀∃-Sat), and `-QSat, if ` is an odd number. But it
does not extend constructively to the case, where ` is even. Therefore, a new approach is
needed to show the complete picture for QSat. While Marx and Mitsou [50] considered
certain graph problems that are located on the third level of the polynomial hierarchy [62],
they emphasize that the classical complexity results do not provide sufficient explanation
why double- or triple-exponential dependence on treewidth is needed and one requires
quite involved proofs for each problem separately. However, they state that intuitively the
quantifier rank of the problem definitions are the common underlying reason for being on
higher levels of the polynomial hierarchy and for requiring high dependence on treewidth. A
natural generalization of the statement to arbitrary QBFs is formally stated in the following
hypothesis.

Claim 1. Under ETH, QSat for a closed formula Q in prenex normal form with n variables,
primal treewidth k, and quantifier rank ` cannot be decided in time tow(`, o(k)) · poly(n).

Contributions. In this paper, we prove Claim 1, which strengthens the importance of QBF
encodings for problems parameterized by treewidth, and establish a general methodology to
obtain treewidth lower bounds for problems of the polynomial hierarchy. Our contributions
are as follows:

1. We consider ETH and QSat and establish the full picture of runtime lower bounds for
algorithms parameterized by treewidth in connection to the quantifier rank of the formula.

We present a reduction that significantly compresses treewidth and applies to any instance
of QSat without restricting the quantifier rank while only assuming ETH. Note that this
“compression” is constructive and independent of the original instance size, which is different
from existing methods, e.g., [46, 50, 52]. In fact, compression only depends on the original
parameter treewidth.

2. We provide a novel methodology for a more fine-grained analysis of algorithms parame-
terized by treewidth. This methodology relies only on the ETH and allows:

(a) for simply using reductions from QBF to exclude runtime results (height of the tower)
for treewidth and

(b) for directly concluding lower bounds for projected model counting problems (PQSat),
that is, #Σ`Sat and #Π`Sat [19], which serve as canonical problems in counting complexity,
as well as for various other problems.

Instead of establishing problem-specific reductions from SAT for problems higher in the
polynomial hierarchy, e.g., [46, 50], our reduction and methodology are very general. We
illustrate its applicability in the showcases in Section 3.2.

3

Novel Techniques. We constructively encode core ideas of a dynamic programming
algorithm on tree decompositions into a QBF that expresses solving an instance of QSat by
means of a QSat oracle of one level higher in the hierarchy (self-reduction) while achieving
a certain compression of treewidth. More precisely, we provide a reduction that reduces
any instance Q of QSat of treewidth t and quantifier rank ` into an instance Q′ of QSat
of treewidth O(log t) and quantifier rank `+ 1, while the size of Q′ is linearly bounded in
the size of Q. Notice that the treewidth of Q′ only depends on the treewidth of Q, but is
independent of, e.g., the number of variables and quantifier rank of Q. Hence, treewidth of Q′

is compressed compared to the original treewidth of Q. Atserias and Oliva [1] cover a related
setting: compressing pathwidth2 for a fragment of path decompositions of QBFs thereby
increasing the quantifier rank by two. However, we require a general, constructive method
to compress the width of arbitrary tree decompositions of any QBF, thereby increasing
quantifier rank by only one, and improve their result (Corollary 29).

Our reduction is novel in the following sense:

1. We use a given tree decomposition to guide the evaluation of the considered formula, which
allows us to decouple the variables sufficiently to decrease treewidth and we thereby achieve
exponential compression of the parameter treewidth. By construction of the reduction, the
lower bound results carry over to the larger parameter pathwidth2 and even 2-local pathwidth,
where each variable occurs at most twice. Note that this direction is by construction and
does not hold in general. However, particular novelty lies in encoding essentials of dynamic
programming, which will be presented in the more general context of treewidth (tree
decompositions).

2. In the proof, we use a reduction approach that balances redundancy and structural
dependency (captured by treewidth or pathwidth), which allows us to apply this method to
QBFs of arbitrary quantifier rank, thereby increasing quantifier rank by only one.

3. Our approach might help to improve solvers utilizing treewidth, as instances of huge
treewidth might become solvable in practice (cf., [9, 32]) after applying our reduction.
Indeed, our reduction encodes dynamic programming on tree decompositions into a Boolean
formula, namely, guessing of finite states for table entries of decomposition nodes, checking
whether certain entries sustain, and propagating entries among different nodes. As this
technique, although presented for QBFs, does not explicitly encode quantifier dependencies
into the Boolean formula, the technique is hopefully of general use.

Connection to kernels. Note that our approach is orthogonal to kernelization as ker-
nelizations tackle bounds of the instance size by the considered parameter, whereas here we
target reducing the parameter itself and not the size of the input instance.

2 Preliminaries

Basics. For a set X, let 2X be the power set of X. The function tow(`, k) is defined as in
Footnote 1. The domain D of a function f : D → A is given by dom(f). By f−1 : A → D
we denote the inverse function f−1 := {f(d) 7→ d | d ∈ dom(f)} of a given function f , if
it exists. To permit operations such as f ∪ g for functions f and g, the functions may be
viewed as relations. We use the symbol “·” as placeholder for a value of an argument, which
is clear from the context and the actual value is negligible. We let N contain all positive

2Pathwidth is similar to treewidth, but admits only certain tree decompositions, whose tree is just a path.

4

integers and N0 all non-negative integers. Throughout this paper, we refer by log(·) to the
binary logarithm.

Computational Complexity. We assume familiarity with standard notions in computa-
tional computational complexity [53], counting complexity classes [19], and parameterized
complexity [14, 17, 33]. We recall some basic notions. Let Σ and Σ′ be some finite alphabets.
We call I ∈ Σ∗ an instance and ‖I‖ denotes the size of I. Let L ⊆ Σ∗×N and L′ ⊆ Σ′∗×N
be two parameterized problems. An fpt-reduction r using g from L to L′ is a many-to-one
reduction from Σ∗ × N to Σ′∗ × N such that for all I ∈ Σ∗ we have (I, k) ∈ L if and only if
r(I, k) = (I ′, k′) ∈ L′ with k′ ≤ g(k), where f, g : N → N are fixed computable functions
such that r is computable in time f(k) ·poly(‖I‖). We call r also an f -bounded fpt-reduction
using g for given f and g.

Quantified Boolean Formulas (QBFs). We define Boolean formulas and their evalua-
tion in the usual way and literals are variables or their negations. For a Boolean formula F ,
we denote by var(F) the set of variables of F . Logical operators ∧,∨,¬,→,↔ are used in the
usual meaning. A term is a conjunction of literals and a clause is a disjunction of literals. F
is in conjunctive normal form (CNF) if F is a conjunction of clauses and F is in disjunctive
normal form (DNF) if F is a disjunction of terms. In both cases, we identify F by its set of
clauses or terms, respectively. From now on assume that a Boolean formula is either in CNF
or DNF. A formula is in c-CNF or c-DNF if each set in F consists of at most c many literals.
Let ` ≥ 0 be integer. A quantified Boolean formula Q (in prenex normal form) is of the form
Q1V1.Q2V2. · · ·Q`V`.F where Qi ∈ {∀, ∃} for 1 ≤ i ≤ ` and Qj 6= Qj+1 for 1 ≤ j ≤ ` − 1;

and where Vi are disjoint, non-empty sets of Boolean variables with
⋃`
i=1 Vi ⊆ var(F); and

F is a Boolean formula. We call ` the quantifier rank of Q and let matrix(Q) := F . Further,
we denote the set fvar(Q) of free variables of Q by fvar(Q) := var(matrix(Q)) \ (

⋃`
i=1 Vi).

If fvar(Q) = ∅, then Q is referred to as closed, otherwise we say Q is open. Unless stated
otherwise, we assume open QBFs. The truth (evaluation) of QBFs is defined in the standard
way. An assignment is a mapping ι : X → {0, 1} defined for a set X of variables. An
assignment ι′ extends ι (by dom(ι′) \ dom(ι)) if dom(ι′) ⊇ dom(ι) and ι′(y) = ι(y) for
any y ∈ dom(ι). Given a Boolean formula F and an assignment ι for var(F). Then, for F in
CNF, F [ι] is a Boolean formula obtained by removing every c ∈ F with x ∈ c and ¬x ∈ c if
ι(x) = 1 and ι(x) = 0, respectively, and by removing from every remaining clause c ∈ F
literals x and ¬x with ι(x) = 0 and ι(x) = 1, respectively. Analogously, for F in DNF values
0 and 1 are swapped. For a given QBF Q and an assignment ι, Q[ι] is a QBF obtained
from Q, where variables x ∈ dom(ι) are removed from preceding quantifiers accordingly,
and matrix(Q[ι]) := (matrix(Q))[ι]. A Boolean formula F evaluates to true if there exists
an assignment ι for var(F) such that F [ι] = ∅ if F is in CNF or F [ι] = {∅} if F is in DNF.
A closed QBF Q evaluates to true (or is valid) if ` = 0 and the Boolean formula matrix(Q)
evaluates to true. Otherwise, i.e., if ` 6= 0, we distinguish according to Q1. If Q1 = ∃, then Q
evaluates to true if and only if there exists an assignment ι : V1 → {0, 1} such that Q[ι]
evaluates to true. If Q1 = ∀, then Q[ι] evaluates to true if for any assignment ι : V1 → {0, 1},
Q[ι] evaluates to true. An (open or closed) QBF Q is satisfiable if there is a truth assign-
ment ι : fvar(Q)→ {0, 1} such that resulting closed QBF Q[ι] evaluates to true. Otherwise Q
is unsatisfiable. Given a closed QBF Q, the evaluation problem QSat of QBFs asks whether
Q evaluates to true; `-QSat refers to the problem QSat on QBFs of quantifier rank `. The
problem QSat is PSpace-complete and is therefore believed to be computationally harder
than Sat [44, 53, 62]. For more details on QBFs we refer to [3, 44].

The projected model counting problem PQSat takes an open QBF Q and asks to output
the number of distinct assignments ι : fvar(Q)→ {0, 1} such that Q[ι] evaluates to true.

Example 2. Consider the closed QBF Q = ∃w, x.∀y, z.D, where D := d1 ∨ d2 ∨ d3 ∨ d4,

5

w z
x y {w, x, y} {w, y, z}

{w, y} d2: {w, x, y}
t2

d1: {w, x, y}t1

d4: {w, y, z}
t4

d3: {w, y, z} t3

{w, y}t5

Figure 1: Primal graph PQ of Q from Example 2 (left) with TDs T1, T2 of graph PQ (right).

and d1 := w ∧ x ∧ ¬y, d2 := ¬w ∧ ¬x ∧ y, d3 := w ∧ y ∧ ¬z, and d4 := w ∧ y ∧ z. Observe
that Q[ι] is valid under assignment ι = {w 7→ 1, x 7→ 1}. In particular, Q[ι] can be simplified
to ∀y, z.(¬y)∨ (y∧¬z)∨ (y∧ z), which is valid, since for any assignment κ : {y, z} → {0, 1}
the formula Q[ι][κ] (and therefore Q) evaluates to true. �

Tree Decompositions (TDs). For basic terminology on graphs and digraphs, we refer to
standard texts [7, 16]. For an arborescence T = (N,A, r), which is a directed, rooted tree
with root r and a node t ∈ N , we let cld(t, T) be the set of all child nodes t′, which have an
outgoing edge (t, t′) ∈ A from t to t′. Let G = (V,E) be a graph. A tree decomposition (TD)
of graph G is a pair T = (T, χ) where T = (N,A, r) is an arborescence with root r ∈ N ,
and χ is a mapping that assigns to each node t ∈ N a set χ(t) ⊆ V , called a bag, such that
the following conditions hold: (i) V =

⋃
t∈N χ(t) and E ⊆

⋃
t∈N{{u, v} | u, v ∈ χ(t)}; and

(ii) for each q, s, t, such that s lies on the path from q to t, we have χ(q) ∩ χ(t) ⊆ χ(s).
Then, width(T) := maxt∈N |χ(t)| − 1. The treewidth tw(G) of G is the minimum width(T)
over all tree decompositions T of G. For arbitrary but fixed w ≥ 1, it is feasible in
linear time to decide if a graph has treewidth at most w and, if so, to compute a tree
decomposition of width w [5]. Further, we call a tree decomposition T = (T, χ) a path
decomposition (PD) if T = (N, ·, r) and |cld(t)| ≤ 1 for each node t ∈ N . Analogously,
we define pathwidth pw(G) as the minimum width(T) over all path decompositions of G.
Similarly, for m ≥ 2, let m-local pathwidth of G refer to the pathwidth over all path
decompositions of G, where each vertex in V occurs in at most m bags. For a given
tree decomposition T = (T, χ) with T = (N,A, r), and an element x ∈

⋃
t∈N χ(t), we

denote by T [x] the result T ′ of restricting T to nodes, whose bags contain x. Formally,
T ′ := (T ′, χ′), where T ′ := (N ′, A′, r′), N ′ := {t | t ∈ N, x ∈ χ(t)}, A′ := A ∩ (N ′ ×N ′),
and for each t ∈ N ′, χ′(t) = χ(t). Finally, r′ ∈ N ′ is the first node reachable from r. The
literature distinguishes so-called nice tree decompositions, which can be computed in linear
time without increasing the width [45]. For our purposes, the following relaxed variant of
almost nice tree decompositions suffices.

Definition 3. Given an integer c ∈ N. A tree decomposition T = (T, χ), where T = (N, ·, r),
is called almost c-nice, if for each node t ∈ N with cld(t) = {t1, . . . , ts}, the following

conditions are true (i) s ≤ 2 and (ii)
∣∣∣χ(t) \

⋃i=s
i=1 χ(ti)

∣∣∣ ≤ c.
In order to use tree decompositions for QBFs, we need a graph representation of Boolean

formulas [60]. The primal graph PF of a Boolean formula F in CNF or DNF has the
variables var(F) of F as vertices and an edge {x, y} if there exists a term or clause f ∈ F
such that x, y ∈ var(f), respectively. For a QBF Q, we identify its primal graph with the
primal graph of its matrix, i.e., let PQ := Pmatrix(Q).

Example 4. Figure 1 illustrates the primal graph PQ of the QBF from Example 2 and two
tree decompositions of PQ of width 2. The graph PQ has treewidth 2, since the vertices w,x,y
are completely connected and hence width 2 is optimal [45]. �

Definition 5. Let T = (T, χ) be a tree decomposition of a graph G. A labeled tree
decomposition (LTD) T of a Boolean formula F in CNF or DNF is a tuple T = (T, χ, δ)

6

{ , }t3 a b

{ }t1 a { } t2b

{a, b}
t4

{ , }t5T : a b

{ }
·
· p3

{ }

·

a1, p1 { }b2, p2

·

{ }

··

a4, p4, b4

{ } T ′:p5·
·

Figure 2: Simplified illustration of a certain tree decomposition T ′ = (T, χ′) of PR(Q)

(yielded3 by reduction R), and its relation to tree decomposition T = (T, χ) of PQ. Each
bag χ′(ti) of a node ti of T ′ contains variable xi for any variable x introduced in χ(ti)
and dlog(width(T))e many (green) pointer variables pi selecting one variable in χ(ti) of T .
Squiggly red arrows indicate the propagation between pointers pi, pj and ensure consistency.
In particular, although truth values for variable a are “guessed” using a1 and a4 (and
“propagated” via blue squiggly arrows to corresponding pointers p1 and p4, respectively),
these red arrows ensure via pointers p1, p3, p4, p5 that truth values for a1 and a4 coincide.

where (T, χ) is a tree decomposition of PF with T = (N, ·, r), and δ : N ′ → F with N ′ ⊆ N
is a bijective mapping from TD nodes to clauses or terms in F such that for every t ∈ N ′,
var(δ(t)) ⊆ χ(t).

Observation 6. Given an almost c-nice tree decomposition T of a primal graph PF for a
given 3-CNF or 3-DNF formula F of width k. Then, one can easily create a labeled almost
c-nice tree decomposition T ′ of PF with a linear number of nodes in the number of nodes
in T such that width(T ′) = width(T).

Example 7. Consider again Figure 1 (right). Observe that T2 is a labeled almost 3-nice
tree decomposition of PQ, where labeling function δ sets δ(ti) = di, for 1 ≤ i ≤ 4. �

3 Decomposition-Guided Compression

Next, we present our approach to transform a given input instance of treewidth k into
an instance of exponentially smaller treewidth (“compression”) compared to the original
treewidth k. Thereby, we trade the compression of the parameter for the cost of additional
computation power required to solve the compressed instance. For the canonical QSat
problem, we require an increased quantifier rank.

First, we introduce the reduction R that takes an instance Q of `-QSat, and computes
a corresponding tree decomposition T of the primal graph PQ, where width(T) = tw(PQ).
Then, it returns a compressed instance R(Q) of (`+1)-QSat of treewidth O(log(width(T))).
The reduction R, which is guided by TD T , yields3 a new compressed tree decomposition T ′
of PR(Q) of width O(log(width(T))). For that it is crucial to balance introducing copies of
variables (redundancy) and saving treewidth (structural dependency), such that, intuitively,
we can still evaluate R(Q) given the limitation of treewidth O(log(width(T))). To keep
this balance, we can only analyze in a bag in T ′ a constant number of elements of the
corresponding original bag of T . Still, considering log(width(T)) many elements in a bag
at once allows us to represent one “pointer” to address at most width(T) many elements
of each bag of T and, consequently, the restriction to O(log(width(T))) many elements in
a bag at once enables constantly many such pointers. To give a first glance at the idea

3For the sake of readability, we defer the discussion of formal details on the construction of T ′ to the
proof of Lemma 23.

7

of the reduction R, Figure 2 provides an intuition and illustrates a tree decomposition T
of PQ together with a corresponding compressed tree decomposition T ′ of PR(Q), whose
bags contain pointers to original bags of T . Actually, we can encode the propagation of
information from one bag of T ′ to its parent bag with the help of these pointers. Thereby,
we ensure that information is consistent and this consistency can be preserved, even though
we guess in R truth values for copies of the same variable in Q independently. Note that
these “local” pointers for each bag are essential to achieve treewidth compression.

Below, we discuss the reduction R in more detail. Then, Section 3.2 provides a description
of a general methodology for establishing lower bounds for problems parameterized by
treewidth. In more detail, equipped with our lower bound results for QSat, we propose
reductions from QSat as a general toolkit for proving lower bounds assuming ETH. Further,
we discuss several showcases to illustrate this methodology.

3.1 The Reduction

The formula R(Q) constructed by R mainly consists of three interacting parts. In the
presentation, we refer to them as guess, check, and propagate part.

• ”Guess” (G): Contains clauses responsible for guessing truth values of variables occurring
in the original QBF Q.

• ”Check” (CK): These clauses ensure that there is at least one 3-DNF term in Q that is
satisfied, thereby maintaining 3 pointers for each node as discussed above.

• ”Propagate” (P): These clauses ensure consistency using a pointer for each node of the
tree decomposition.

We commence with the formal description of R. Given a QBF Q of the form Q :=
Q1V1.Q2V2. · · · ∀V`.D, where D is in 3-DNF such that the quantifier blocks are alternat-
ing, i.e., quantifiers of quantifier blocks with even indices are equal, which are different from
those of blocks with odd indices. Further, assume a labeled almost c-nice tree decompo-
sition T = (T, χ, δ), where T = (N, ·, ·) of the primal graph PQ of D, which always exists
by Observation 6. Notice that by Definition 5 for all terms d ∈ D, the inverse function
δ−1(d) is well-defined. Further, actually R can deal with open QBFs, i.e, QBF Q does not
necessarily have to be closed. Open formulas are needed later to simplify the correctness
proof of Section 4.

We use the following sets of variables. Let NodeI (x):= {t | t ∈ N, x ∈ χ(t) \
(
⋃
ti∈cld(t)χ(ti))} be the set of nodes, where a given element x is introduced. For a set V ⊆

var(D) of variables, we denote by VarI (V) := {xt | x ∈ V, t ∈ NodeI (x)} the set of
fresh variables generated for each original variable x and node t, where x is introduced.
Later, we need to distinguish whether the set Vi of variables is universally or existen-
tially quantified. Universal quantification requires to shift for each x ∈ Vi all but one
representative of {xt | t ∈ NodeI (x)} to the next existential quantifier block Qi+1. The
representative variable that is not shifted is denoted by rep(x). In particular, given a
quantifier block Q2, its variables V2 and the variables V1 of the preceding quantifier block,
we define: VarI (Q2, V2, V1) := {xt | x ∈ V2, t ∈ NodeI (x), Q2 = ∃} ∪ {xt | x ∈ V2, t ∈
NodeI (x), xt = rep(x), Q2 = ∀} ∪ {xt | x ∈ V1, t ∈ NodeI (x), xt 6= rep(x), Q2= ∃}. We
denote by VarSat := {satt, sat≤t | t ∈ N} the set of fresh decision variables responsi-
ble for storing for each node t ∈ N whether any term at t or at any node below t is

satisfied, respectively. Finally, we denote by VarB := {b0t , . . . , bdlog(|χ(t)|)e−1
t | t ∈ N},

and VarBV := {vt | t ∈ N} the set of fresh variables for each node t ∈ N that will
be used to address particular elements of the corresponding bags (pointer as depicted in
Figure 2 in binary representation), and to assign truth values for these elements, respectively.

8

Overall, the variables in VarB allow us to guide the evaluation of formula D along the
tree decomposition T . For checking 3-DNF terms, we need the same functionality three

more times, resulting in the sets VarB3 := {b0t,j , . . . , b
dlog(|χ(t)|+1)e−1
t,j | t ∈ N, 1 ≤ j ≤ 3}

that additionally may refer to a special fresh element nil (therefore the +1 in the exponent
in definition of VarB3), and VarBV3 := {vt,j | t ∈ N, 1 ≤ j ≤ 3} of fresh variables. Notice
that the construction is designed in such a way that the focus lies only on certain elements
of the bag (one at a time, and independent of other elements within the same bag). In
the end, this ensures that the treewidth of our reduced instance is only logarithmic in the
original treewidth of the primal graph of D. Reduction R(Q) creates Q′ :=

Q1 VarI (Q1, V1, ∅). Q2 VarI (Q2, V2, V1). · · · ∀ VarI (∀, V`, V`−1),VarB .

∃ VarI (∃, ∅, V`), VarBV ,VarBV3 ,VarB3 ,VarSat . C,

where C is a CNF formula consisting of guess, check and propagate parts, i.e., sets G, CK,
and P of clauses, respectively.

Example 8. Consider again Q from Example 2. The resulting instance R(Q) looks as
follows assuming that rep(y) = yt1, where C consists of a guess, check and, propagate
part.

∃ wt1 , wt3 , xt1 .︸ ︷︷ ︸
VarI (∃,{w,x},∅)

∀ yt1 , zt3 ,︸ ︷︷ ︸
VarI (∀,{y,z},{w,x})

b0t1 , b
1
t1 , b

0
t2 , . . . , b

1
t4 , b

0
t5 .︸ ︷︷ ︸

VarB

∃ yt3 ,︸︷︷︸
VarI (∃,∅,{y,z})

vt1 , . . . , vt5︸ ︷︷ ︸
VarBV

, vt1,1, vt1,2, vt1,3, vt2,1, . . . , vt5,3,︸ ︷︷ ︸
VarBV3

b0t1,1, b
1
t1,1, b

0
t1,2, . . . , b

1
t5,3,︸ ︷︷ ︸

VarB3

satt1 , . . . , satt5 , sat≤t1 , . . . , sat≤t5 .︸ ︷︷ ︸
VarSat

C

�

In the following, we define sets G, CK, and P of clauses. To this end, we require for
the pointers a bit-vector (binary) representation of the elements in a bag of T , and a
mapping that assigns bag elements to its corresponding binary representation. In particular,
we assume an arbitrary, but fixed total order ≺ of elements of a bag χ(t) of any given
node t ∈ N . With ≺, we can then assign each element x in χ(t) its unique (within the bag)
induced ordinal number o(t, x). This ordinal number o(t, x) is expressed in binary. For that
we need precisely dlog(|χ(t)|)e many bit-variables B := {b0t , . . . , bdlog(|χ(t)|)e−1

t }. We denote
by [[x]]t the (consistent) set of literals over variables in B that encode (in binary) the ordinal
number o(t, x) of x ∈ χ(t) in t, such that whenever a literal bit or ¬bit is contained in the
set [[x]]t, the i-th bit in the unique binary representation of o(t, x) is 1 or 0, respectively.
Analogously, for 1 ≤ j ≤ 3 we denote by [[x]]t,j the (consistent) set of literals over variables

in Bj := {b0t,j , . . . , b
dlog(|χ(t)|+1)e−1
t,j } that either binary-encode the ordinal number o(t, x)

of x ∈ χ(t) in t, or these literals binary-encode number maxy∈χ(t)o(t, y) + 1 for x = nil.

The guess part G. The clauses in G, which we denote as implications, are defined as
follows.

xt ∧
∧

b∈[[x]]t

b −→ vt for each xt ∈ VarI (var(D)) (1)

¬xt ∧
∧

b∈[[x]]t

b −→ ¬vt for each xt ∈ VarI (var(D)) (2)

Intuitively, this establishes that whenever a certain variable xt for an introduced variable x ∈
χ(t) is assigned to true (false) and all the corresponding literals in [[x]]t of the binary
representation of o(t, x) are satisfied (i.e, x is “selected”), then also vt ∈ VarBV of node t
has to be set to true (false).

Analogously, set G further contains the following clauses:

9

xt ∧
∧

b∈[[x]]t,j

b −→ vt,j for each xt ∈ VarI (var(D)), 1 ≤ j ≤ 3 (3)

¬xt ∧
∧

b∈[[x]]t,j

b −→ ¬vt,j for each xt ∈ VarI (var(D)), 1 ≤ j ≤ 3 (4)

Example 9. Consider formula C from Example 8. Let 1 ≤ j ≤ 3. Further, assume the
following mapping of bag contents to bit-vector assignments. For any variable a ∈ var(D)
with t ∈ NodeI (a) and for a = nil with t ∈ N , we arbitrarily fix the total ordering ≺ and
have [[a]]t and [[a]]t,j as follows.

a t ∈ {t1, t2} t ∈ {t3, t4} t = t5
[[a]]t [[a]]t,j [[a]]t [[a]]t,j [[a]]t [[a]]t,j

w {¬b0t ,¬b1t} {¬b0t,j ,¬b1t,j} {¬b0t ,¬b1t} {¬b0t,j ,¬b1t,j} {¬b0t} {¬b0t,j ,¬b1t,j}
x {¬b0t , b1t} {¬b0t,j , b1t,j} - -
y {b0t ,¬b1t} {b0t,j ,¬b1t,j} {¬b0t , b1t} {¬b0t,j , b1t,j} {b0t} {¬b0t,j , b1t,j}
z - {b0t ,¬b1t} {b0t,j ,¬b1t,j} -

nil - {b0t,j , b1t,j} - {b0t,j , b1t,j} - {b0t,j ,¬b1t,j}

The guess part of C contains for example for variable w ∈ var(D) the following clauses.

wt1 ∧ ¬b0t1 ∧ ¬b
1
t1 −→ vt1 , ¬wt1 ∧ ¬b0t1 ∧ ¬b

1
t1 −→ ¬vt1 ,

wt3 ∧ ¬b0t3 ∧ ¬b
1
t3 −→ vt3 , ¬wt3 ∧ ¬b0t3 ∧ ¬b

1
t3 −→ ¬vt3 .

Thereby, whenever we guess a certain truth value for wt1 (wt3) it is ensured that there is a
certain bit-vector, namely [[w]]t1 ([[w]]t3) such that vt1 (vt3) has to be set to the same truth
value. Analogously, clauses of the form (3) and (4) are in G. �

The check part CK. In the following, we assume an arbitrary, but fixed total order of
the (three) literals of each (3-DNF) term d ∈ D. We refer to the first, second, and third
literal of d by tlit(d, 1), tlit(d, 2), and tlit(d, 3), respectively. Analogously, tvar(d, 1), tvar(d, 2),
and tvar(d, 3) refers to the variable of the first, second, and third literal, respectively. Further,
for a given term d ∈ D and 1 ≤ j ≤ 3, let bv(d, t, j) denote vt,j if tlit(d, j) is a variable,
and ¬vt,j otherwise. Set CK contains the following clauses:

sat≤t −→ sat≤t1 ∨ · · · ∨ sat≤ts ∨ satt for each t ∈ N,
cld(t) = {t1, . . . , ts} (5)

Informally speaking, for any node t this ensures the propagation of whether we satisfied
at least one term directly in node t, or in any descendant of t.

In order to check whether a particular term is satisfied, we add for each term d ∈ D clauses

encoding the implication satδ−1(d) −→
∧

1≤j≤3

[∧
b∈[[tvar(d,j)]]δ−1(d),j

b ∧ bv(d, δ−1(d), j)
]

as

follows:

satδ−1(d) −→ b for each d ∈ D, 1 ≤ j ≤ 3,
b ∈ [[tvar(d, j)]]δ−1(d),j (6)

satδ−1(d) −→ bv(d, δ−1(d), j) for each d ∈ D, 1 ≤ j ≤ 3 (7)

Finally, we add sat≤r for root r, and ¬satt for each node t in N \
⋃
d∈D{δ−1(d)} since these

nodes are not used for checking satisfiability of any term.

sat≤r (8)

¬satt for each t ∈ N \
⋃
d∈D

{δ−1(d)} (9)

Example 10. Consider again formula C from Example 8. We discuss clauses of the
check part for node t2 = δ−1(d2) and root node t5. Thereby, we encode satisfiability of
term d2 = ¬w ∧¬x∧ y assuming tlit(d2, 1) = ¬w, tlit(d2, 2) = ¬x, and tlit(d2, 3) = y.

sat≤t2 −→ sat≤t1 ∨ satt2 ,
satt2 −→ ¬b0t2,1, satt2 −→ ¬b1t2,1, satt2 −→ ¬vt2,1,
satt2 −→ ¬b0t2,2, satt2 −→ b1t2,2, satt2 −→ ¬vt2,2,
satt2 −→ b0t2,3, satt2 −→ ¬b1t2,3, satt2 −→ vt2,3,

sat≤t5 −→ sat≤t2 ∨ sat≤t4 ∨ satt5 , sat≤t5 , ¬satt5
10

�

The propagate part P. The sets G and CK contain clauses responsible for guessing truth
values and checking that at least one term of the original formula D is satisfied accordingly.
In particular, the guess of truth values for var(D) happens at different tree decomposition
nodes “independently”, whereas checking whether at least one term d ∈ D is satisfied is
achieved in exactly one tree decomposition node δ−1(d). Intuitively, in order to ensure
that these independent guesses of truth values for var(D), are consistent, clauses in P
make use of the connectedness condition of TDs in order to guide the comparison of these
independent guesses along the TD. More precisely, for each tree decomposition node t ∈ N ,
every node ti ∈ cld(t), and every variable x ∈ χ(t) ∩ χ(ti) that both nodes t and ti have in
common, the set P contains clauses:

vt ∧
∧

b∈[[x]]t

b ∧
∧

b∈[[x]]ti

b −→ vti for each t ∈ N, ti ∈ cld(t),

x ∈ χ(t) ∩ χ(ti) (10)

¬vt ∧
∧

b∈[[x]]t

b ∧
∧

b∈[[x]]ti

b −→ ¬vti for each t ∈ N, ti ∈ cld(t),

x ∈ χ(t) ∩ χ(ti) (11)

Further, for each clause d ∈ D, every node ti in cld(δ−1(d)), and 1 ≤ j ≤ 3 such
that tvar(d, j) ∈ χ(ti), set P contains:∧

b′∈[[tvar(d,j)]]t,j

b′ −→ b for each d ∈ D with 1 ≤ j ≤ 3,
t = δ−1(d), ti ∈ cld(t), tvar(d, j) ∈ χ(ti),

b ∈ [[tvar(d, j)]]ti,j (12)

vt,j ←→ vti,j for each t ∈ N, ti ∈ cld(t), 1 ≤ j ≤ 3 (13)

Vaguely speaking, this construction ensures that whenever a bag element (using VarB3) or
a truth value (using VarBV3) is “selected” in node t, we also have to select the same (if
exists) below in children of t.

Example 11. Consider once more C from Example 8. We illustrate the propagate part for
node t4 = δ−1(d4) and variable w assuming that w = tvar(d4, 1). Observe that d4 = w∧y∧z,
and w ∈ χ(t4) ∩ χ(t3).

vt4 ∧ ¬b0t4 ∧ ¬b
1
t4︸ ︷︷ ︸

[[w]]t4

∧¬b0t3 ∧ ¬b
1
t3︸ ︷︷ ︸

[[w]]t3

−→ vt3 ,

¬vt4 ∧ ¬b0t4 ∧ ¬b
1
t4︸ ︷︷ ︸

[[w]]t4

∧¬b0t3 ∧ ¬b
1
t3︸ ︷︷ ︸

[[w]]t3

−→ ¬vt3 ,

¬b0t3,1 ∧ ¬b
1
t3,1 −→ ¬b

0
t4,1, ¬b0t3,1 ∧ ¬b

1
t3,1 −→ ¬b

1
t4,1,

vt4,1 ←→ vt3,1, vt4,2 ←→ vt3,2, vt4,3 ←→ vt3,3 �

Remark 12. Recalling Figure 2, we would like to highlight the relation between elements of
the figure and variables or clauses of reduction R introduced above. Blue elements a1, b2, a4, b4
represent “introduce variables” VarI (var(D)) and the blue squiggly arrows visualize the guess
part G. Green elements p1, p2, p3, p4, p5 represent “pointer variables” VarB and VarB3 and
the green squiggly arrows point to elements of tree decomposition T . Finally, red squiggly
arrows visualize the propagate part P. (The check part CK is not explicitly visualized.)

Converting C to 3-CNF formula C ′. Observe that by similar arguments (cf., [46])
one can transform using an additional reduction R′ the CNF formula C of the QBF R(Q)
into 3-CNF, resulting in Q′′ = R′(R(Q)) such that tw(PQ′′) ≤ tw(PR(Q)) + 2. To this end,
one has to perform the following standard reduction (cf., [46]): As long as there exists a
clause c ∈ C consisting of more than 3 literals, we introduce a fresh existentially quantified
variable v, remove c from C and replace it with two new clauses. The first new clause
contains v and two literals of c, while the second clause contains ¬v and the remaining
literals of c. Note that this standard reduction R′ does not affect satisfiability, and can be

11

done such that it causes only constant increase of the treewidth (cf., Lemma 23 and [46]).
Observe that by construction the same argument actually holds for pathwidth.

3.2 Methodology for Lower Bounds

The reduction discussed in the previous subsection allows us to establish our main result,
which is the following theorem.

Theorem 13 (QBF lower bound). Given an arbitrary QBF of the form Q = Q1V1.Q2V2.Q3V3

· · ·Q`V`.F where ` ≥ 1, and F is a 3-CNF formula (if Q` = ∃), or F is a 3-DNF formula
(if Q` = ∀). Then, unless ETH fails, Q cannot be solved in time tow(`, o(k)) ·poly(|var(F)|),
where k is the treewidth of the primal graph PQ.

In the following, we first use this theorem to establish a full methodology to obtain lower
bound results for bounded treewidth and then provide a proof for the theorem in the next
section. The result for ` = 2 (cf., [46]) has already been applied as a strategy to show lower
bound results for problems in artificial intelligence, as for example abstract argumentation,
abduction, circumscription, and projected model counting, that are hard for the second
level of the polynomial hierarchy when parameterized by treewidth [28, 30, 47]. With the
generalization to an arbitrary quantifier rank in Theorem 13, one can obtain lower bounds
for variants of these problems and even more general problems on the third level or higher
levels of the polynomial hierarchy.

Methodology. This motivates our methodology to show lower bounds for problems
parameterized by treewidth. To this end, we make use of a stricter notion of fpt-reductions,
which linearly preserves the parameter. Given functions f, g : N→ N, where g is linear, and
an f -bounded fpt-reduction r using g. Then, we call r an f -bounded fptl-reduction using g.
Next, we discuss the methodology for proving lower bounds of a problem P for treewidth
consisting of the following.

1. Graph Representation: Pick a graph representation G(I) for a given instance I of
problem P.

2. Quantifier Rank: Fix a quantifier rank ` such that there is a function f : N→ N with
f(k) ∈ O(tow(`, k)) and aim for establishing lower bound tow(`,Ω(k)) · poly(‖I‖).

3. Establish Reduction: Establish an f -bounded fptl-reduction from an arbitrary QBF Q
of quantifier rank ` parameterized by treewidth of the primal graph of Q to an instance I
of P parameterized by treewidth as well.

4. Conclude lower bound: Then, by applying Theorem 13 conclude that unless ETH
fails, an arbitrary instance I of problem P cannot be solved in time tow(`, o(k)) · poly(‖I‖)
where k = tw(G(I)).

We can generalize this to “non-canonical” lower bounds. To this end, one aims in Step 2
for a lower bound of the form tow

(
`,Ω(g−1(k)

)
· poly(‖I‖) for some function g : N → N

such that g−1 is well-defined, and f(k) ∈ O
(
tow(`, g−1(k))

)
. Then, in Step 3 one needs to

establish an f -bounded fpt-reduction using g accordingly, in order to conclude in Step 4 that
under ETH an arbitrary instance I of P cannot be solved in time tow(`, o(g−1(k)))·poly(‖I‖),
where k = tw(G(I)).

With the help of this methodology one can show lower bounds f(k) for certain problems P,
parameterized by treewidth, by reducing from the canonical `-QSat problem parameterized
by treewidth k as well. Thus, one avoids directly using ETH via tedious reductions from

12

Problem P
LB tow(i,Ω(k)) · poly(‖I‖)

i=1 i=2 i=3 i=4 i=5 i=`
Min Vertex Cover / Dominating Set [35] O[41]
Max Indep. Set, Hamilt. Cycle [35] O[41]
3-Colorability, Sat, #Sat [35, 60] O[41]
Circumscription, PAP [47] Ot[47] H
MUS [47] Ot[47] H
Skeppref ,Skepsemi-st,Credsemi-st [31] Ot[31] H
PMC [30] Ot[30] H
ASPCons, #ASP [28, 42] Ot[28] H
k-Choosability [50], k ≥ 3 O[50] H
k-Choosability Deletion [50], k ≥ 4 O[50]
#PPAP H
PASP [2, 28] H[28]
#PCredS [31], S ∈ {pref, semi-st, stage} H[31]
Candidate World View Check [61] H
World View Check [61] H
#Projected Guesses to World Views H
`-QSat, #`-QSat, ` ≥ 1 [10] H
PQSat [19]: #Σ`−1Sat,#Π`−1Sat, ` ≥ 2 H

Table 1: Runtime lower bounds (under ETH) for selected problems, where I denotes
an instance of problem P and k refers to the treewidth (“Ot”), pathwidth (“O”), or 2-
local pathwidth (“H”) of the corresponding (primal) graph of I. Results known from the
literature are marked by “Ot” and “O”. By “H”, we indicate that the result holds due to
lower bound advancements and the methodology described in this paper. We obtain results
for “H”, with known lower bound (“Ot”, “O”), by the existing lower bound proof together
with our methodology for 2-local pathwidth. Bounds are asymptotically tight unter ETH;
corresponding upper bounds (e.g.,[4, 10, 28, 31, 39, 42, 47, 50, 60]) are out of scope. For
definitions, we refer to the problem compendium in an online self-archived version.

Sat, which involves problem-tailored constructions of instances of P whose treewidth is
`-fold logarithmic in the number of variables or clauses of the given Sat formula.

Note that the methodology naturally extends to pathwidth, since the result of Theorem 13
easily extends to (2-local) pathwidth by construction of our reduction R, which works for
any tree decomposition including the special case of path decompositions. Formal details
will be provided in Section 4 on correctness in Corollary 27, followed by further consequences
of Theorem 13.

Showcases. Table 1 gives a brief overview of selected problems and their respective runtime
lower bounds under ETH. Then, the proof of Theorem 14 below serves as an example for
applying the methodology, showing that Theorem 13 also allows for quite general results on
projection. Note that this bounds are tight under ETH.

Theorem 14. Given an open QBF of the form Q = Q1V1.Q2V2. Q3V3 · · ·Q`V`.F where ` ≥
1, and F is a 3-CNF formula (if Q` = ∃), or a 3-DNF formula (if Q` = ∀). Then, under
ETH, PQSat is indeed harder than deciding validity of Q[ι] for any assignment ι : fvar(Q)→
{0, 1}. In particular, assuming ETH, PQSat cannot be solved in time tow(` + 1, o(k)) ·
poly(|var(F)|), where k is the pathwidth of the primal graph PQ.

Proof. Assume towards a contradiction that under ETH one can solve projected model
counting of Q in time tow(`+ 1, o(k)) · poly(|var(F)|). In the following, we define an fptl-
reduction r from QSat to the decision variant PQSat-at-least-u of PQSat, where a given
open QBF Q is a yes instance if and only if the solution (count) to PQSat of Q is at least u.

In particular, we transform a closed QBF Q′ = Q0V0.Q1V1. Q2V2.Q3V3 · · ·Q`V`.F ,
where k is the pathwidth of PQ to an instance Q = Q1.V1.Q2V2.Q3V3 · · ·Q`V`.F of PQSat-
at-least-u, where fvar(Q) = V0, and we set u := 1 if Q0 = ∃ and u := 2|V0|, otherwise. The
reduction is indeed correct, since Q′ is a yes-instance of QSat if and only if Q = r(Q′)

13

is a yes-instance of PQSat-at-least-u. Then, one can solve Q′ of quantifier rank `+ 1 in
time tow(`+ 1, o(k)) · poly(|var(F)|), which contradicts Theorem 13 and Corollary 27.

Corollary 15. Assuming ETH, an instance Q of the problem #Σ`Sat or #Π`Sat cannot
be solved in time tow(`+ 1, o(k)) · poly(|var(matrix(Q))|), where k is the pathwidth of PQ.

Next, we provide further examples (listed in Table 1) of the applicability of our methodology.
We provide brief definitions of the problems discussed below in an online self-archived
version.

Proposition 16 (cf., [28]). Unless ETH fails, PASP for given ASP program Π and a
set P ⊆ var(Π) of projection variables cannot be solved in time tow(3, o(k)) · poly(|Π|),
where k is the pathwidth of the primal graph4 of Π.

Proof (Idea). Fptl-reduction from ∀∃∀-Sat to PASP, both parameterized by the pathwidth
of its primal graph.

Proposition 17 (cf., [31]). Let S ∈ {pref, semi-st, stage} and F be an argumentation
framework. Unless ETH fails, we cannot solve the problem #PCredS in time tow(3, o(k)) ·
poly(‖F‖) where k is the pathwidth of F (underlying graph).

Proof (Idea). Fptl-reduction from ∀∃∀-Sat parameterized by pathwidth of primal graph,
to #PCredSEM (parameterized by pathwidth of the underlying graph).

Theorem 18. Unless ETH fails, #PPAP for given instance (T,H,M) and set P of
projection variables cannot be solved in time tow(3, o(k)) · poly(|var(T)|), where k is the
pathwidth of the primal graph of T .

Proof (Idea). Fptl-reduction from ∀∃∀-Sat to the decision variant of #PPAP, either from
scratch or by lifting existing reduction [47] from ∃∀-Sat.

Theorem 19. Given an epistemic program Π and a variable a ∈ var(Π). Then, unless
ETH fails, deciding the problem Candidate World View Check cannot be solved in
time tow(3, o(k)) · poly(|Π|), and the problem World View Check for a cannot be solved
in time tow(4, o(k)) · poly(|Π|), where k is the pathwidth of the primal graph of Π.

Proof (Idea). Fptl-reduction from ∃∀∃-Sat, or ∃∀∃∀-Sat (parameterized by pathwidth of
primal graph), respectively. Actually the reductions from the literature for showing ΣP

3 -
hardness and ΣP

4 -hardness [61] form fptl-reductions.

Note that our work focuses on lower bounds. However, the corresponding upper bounds for
treewidth can be established by reductions to `-QSat to obtain asymptotically tight results
under ETH, see Table 1.

4 Correctness, Compression and Runtime

In the following, we show correctness and properties of our reduction presented in Section 3.1.
Therefore, we assume a given QBF Q := Q1V1.Q2V2. · · · ∀V`.D, where D is in 3-DNF.
Further, let T = (T, χ, δ) such that T = (N, ·, r) be a labeled almost c-nice tree decomposition
of primal graph PQ of width k. The reduced instance is addressed by R(Q), where
reduction R is defined as in Section 3.1. The resulting QBF of quantifier rank ` + 1 is
referred to by R′(R(Q)) and its matrix in 3-CNF is given by C = matrix(R′(R(Q))).

4For a definition of the primal graph of a program, we refer to [42].

14

To simplify presentation, we introduce the following definitions. Let d ∈ D be a
term, t ∈ N be a node of the tree decomposition, and 1 ≤ j ≤ 3, then bit-term(d, t) :=⋃

1≤j≤3[[[tvar(d, j)]]t,j ∪ {bv(d, t, j)}]. Further, given an assignment α : var(D)→ {0, 1}, we
define a function local(·) that produces new assignments to copies of the variables, therefore
let local(α) := {xt 7→ α(x) | x ∈ dom(α), t ∈ NodeI (x)} denote the matching assignment of
the corresponding guess variables. Further, for a set S of literals and an assignment ι, we
say assignment ι respects S, if (

∧
l∈S l)[ι] evaluates to true.

Correctness. Next, we establish correctness of reduction R.

Lemma 20. Let κ be any assignment of at least two variables xt, xt′ ∈ VarI (var(D)) such
that κ(xt) 6= κ(xt′) for nodes t, t′ ∈ NodeI (x) with x ∈ var(D). Then, R(Q)[κ] is invalid.

Proof. We construct an assignment κ′ which extends κ and sets certain variables in VarB .
Then, we show that R(Q)[κ′] is invalid, which suffices since VarB is universally quantified.
The construction of κ′ is as follows: for every b ∈ [[x]]t′′ and every t′′ ∈ N where x ∈ χ(t′′),
we set κ′(b) := 1, if b is a variable; and κ′(b) := 0, otherwise. Assume towards contradiction
that there is an assignment κ′′ : VarI (var(D)) ∪ VarB ∪ VarBV → {0, 1} that extends κ′

such that R(Q)[κ′′] is valid. In particular, the assignment κ′′ sets variables in VarBV
such that every clause in the assigned variables of R(Q), in particular, parts G and P, is
valid under the assignment κ′′. By Condition (ii) of the definition of a tree decomposition
(connectedness), T [x] induces a connected tree as well. In consequence, irrelevant of how κ′′

assigns variable vr′ for the root node r′ of T [x], the clauses in Formulas (10) and (11) enforce
that exactly the same truth value v = κ′′(vn) has to be set for any node n ∈ NodeI (x).
Then, κ′′(vt) = v and κ′′(vt′) = v holds. By part G of our reduction, more precisely,
Formulas (1) and (2), we conclude that both κ′′(xt) = v and κ′′(xt′) = v, which contradicts
that κ(xt) 6= κ(xt′).

Lemma 21. Given an assignment ι : VarI (var(D)) ∪ VarB ∪ VarBV → {0, 1}. Then,
for any assignment κ : VarI (var(D)) ∪ VarB ∪ VarBV ∪ VarB3 ∪ VarBV3 → {0, 1} that
extends ι, R(Q)[κ] is invalid, if (a) there is no term di ∈ D with t = δ−1(di) such that κ re-
spects bit-term(di, t). Now assume that there is di ∈ D with κ respecting bit-term(di, δ

−1(di)),
then R(Q)[κ] is also invalid, if (b) κ(vt,j) 6= κ(xt′), where x = tvar(di, j) for some 1 ≤ j ≤ 3
and t′ ∈ NodeI (x).

Proof. Assume towards a contradiction that (a) is not the case, i.e., there is no di ∈ D
such that κ respects bit-term(di, t) for t = δ−1(di) and still R(Q)[κ] is valid. Observe that
by R(Q), in particular, by construction of the check part CK of R, κ(sat≤r) = 1 by (8) and
therefore κ(satt) = 1 by (5) for at least one node t ∈ N has to be set in κ. This, however,
implies by (9) that t = δ−1(di) for some di ∈ D. In consequence, by construction of (6)
and (7), κ respects bit-term(di, t), where t= δ−1(di), contradicting the assumption.

Towards contradicting (b), assume that there is di ∈ D with t = δ−1(di) and x =
tvar(di, j) as well as t′ ∈ NodeI (x) such that κ(vt,j) 6= κ(xt′) and still R(Q)[κ] is valid.
Observe that for any two nodes t′′, t′′′ ∈ T [x], κ respects [[x]]t′′,j and [[x]]t′′′,j by (12) and
connectedness of T [x]. Further, for any t′′, t′′′ ∈ T [x], κ(vt′′,j) = κ(vt′′′,j) by (13). Then,
since (3) and (4) ensure that κ(xt′) = κ(vt′,j), ultimately by connectedness of T [x], κ(vt,j) =
κ(xt′) holds.

Theorem 22 (Correctness). Let Q be a QBF of the form Q = Q1V1.Q2V2. · · · ∀V`.D where
D is in DNF. Then, for any assignment α : fvar(Q)→ {0, 1}, we have Q[α] is valid if and
only if R(Q)[α′] is valid, where assignment: fvar(R(Q))→ {0, 1} is such that α′ = local(α).

15

Proof. Let T = (T, χ, δ) be the labeled tree decomposition that is computed when con-
structing R, where T = (N,A, r). We proceed by induction on the quantifier rank `.
Base case. Assume ` = 1.

“=⇒”: Let α be an assignment to the free variables of Q for which Q[α] is valid. Further,
let α′ := local(α). We show that R(Q)[α′] is valid as well. Let therefore ι be an arbitrarily
chosen assignment to the variables in V1. Since ` = 1, we have Q1 = ∀. We define an
assignment κ : VarI (∀, V1, ∅)→ {0, 1} such that κ(xt) := ι(x) for every xt ∈ VarI (∀, V1, ∅)
with t ∈ N and x ∈ var(D). Next, we define an assignment κ′ : VarI (∀, V1, ∅) ∪ VarI (∃,
∅, V1) → {0, 1} that extends κ and sets κ′(xt′) := ι(x) for every xt′ ∈ VarI (∃, ∅, V1) with
t′ ∈ N . Assignment κ′ has by construction the same truth value for each of the copies xt
of x, which is needed for R(Q)[α′ ∪ κ] to be valid in order to not contradict Lemma 20.

Then, we construct an assignment κ′′, which extends κ′ by the variables in VarB3 ,
VarBV3 , and VarSat . By construction of ι and since Q[α] is valid, Q[α∪ ι] is valid, which is
the same as D[α∪ι] is valid. In consequence, as D is in DNF, there is at least one term d ∈ D
such that d[α ∪ ι] is valid. Depending on the term d, we assign the variables in VarB3 ,
VarBV3 , and VarSat with assignment κ′′. By Definition 5, there is a unique node t = δ−1(d)
in the labeled tree decomposition for the term d. Then, we set κ′′(sat≤t) := κ′′(satt) := 1.
For every ancestor t′ of t ∈ N , we assign κ′′(sat≤t′) := 1. For every node s ∈ N that
is not an ancestor of t, we set κ′′(sat≤s) := 0. Finally, for every node u, where u 6= t,
we set κ′′(satu) := 0. For every node t ∈ N and 1 ≤ j ≤ 3 with tvar(d, j) 6∈ χ(t), we
set κ′′ such that it respects [[nil]]t,j ∪ {bv(d, t, j)}. Finally, for every node t and 1 ≤ j ≤ 3
with tvar(d, j) ∈ χ(t), we set κ′′ such that it respects bit-term(d, t).

It remains to prove that for every assignment β : VarB → {0, 1}, there is an assignment ζ :
VarBV → {0, 1} for which R(Q)[α′ ∪ κ′′ ∪ β ∪ ζ] is valid. For every variable x ∈ χ(t), if for
every node t ∈ N , assignment β respects [[x]]t, then we set ζ(vt) := (α ∪ ι)(x). Otherwise,
ζ(vt) := 0, since we can assign any truth value here. By construction of α′ and κ′′, clauses
in Formulas (3) and (4) are satisfied of G. Every clause of CK of R(Q) is satisfied by
construction of κ′′ \ κ′ (and also by κ′′) and ζ. Clauses in Formulas (12) and (13) of P
are satisfied by κ′′ \ κ′. Further, clauses in Formulas (1) and (2) of G are satisfied because
of β, κ′′, α′, and ζ. Finally, the clauses in Formulas (10) and (11) of P are satisfied by
construction of β, ζ, and κ′.

“⇐=”: Let α be an assignment to the free variables of Q for which Q[α] is invalid. We
show that if QBFQ[α] is invalid, then R(Q)[α′] is invalid as well. SinceQ[α] is invalid, Q[α∪ι]
is invalid for any assignment ι : V1 → {0, 1}. Assume towards a contradiction that R(Q)[α′]
is valid. We define an assignment κ := local(ι), which is κ : VarI (∀, V1, ∅)∪VarI (∃, ∅, V1)→
{0, 1} such that κ(xt) := ι(x) for every xt ∈ VarI (∀, V1, ∅) ∪ VarI (∃, ∅, V1) with t ∈ N
and x ∈ var(D). Observe that by Lemma 20, κ is the only remaining option to obtain
valid R(Q)[α]. As a result, since R(Q)[α′] is claimed valid, R(Q)[α′ ∪ κ] is valid as well.
In consequence, by Lemma 21 Statement (a), there has to exist an extension κ′ of α′ ∪ κ
such that for some d ∈ D, κ′ respects bit-term(d, t), where t = δ−1(d). By Lemma 21
Statement (b), for 1 ≤ j ≤ 3 and every node t′ ∈ NodeI (y), where y := tvar(d, j), we have
κ′(vt,j) = κ′(yt′). However, by construction of κ′ and connectedness of T [y], then (α ∪ ι)
respects d. In consequence, this contradicts our assumption that Q[α ∪ ι] is invalid.
Induction step (` > 1): We assume that the theorem holds for a given `− 1 and it remains
to prove that it then holds for `.

“=⇒”: We proceed by case distinction on the first quantifier, i.e., (Case 1) Q1 = ∃
and (Case 2) Q1 = ∀. Thereby, we show that if Q[α] is valid and has quantifier rank `,
then R(Q)[α′] is valid as well.

(Case 1) Q1 = ∃: Since Q[α] is valid, we can construct at least one assignment ι : V1 →
{0, 1} such that Q[α ∪ ι] is valid. By induction hypothesis, since the QBF Q[α ∪ ι] has

16

quantifier rank ` − 1, and is valid, there are α′, ι′ such that R(Q)[α′ ∪ ι′] is valid as well.
In particular, by induction hypothesis, α′ = local(α), ι′ = local(ι) and therefore R(Q)[α′] is
valid as well.

(Case 2) Q1 = ∀: Since Q[α] is valid, for any assignment ι of V1, we obtain that Q[α∪ ι]
is valid. In the following, we denote by R′′(Q) the QBF that is obtained from R(Q),
where variables in VarI (∃, ∅, V1) do not appear in the scope of a quantifier, i.e., these
variables, while existentially quantified in R(Q), are free variables in R′′(Q). By induction
hypothesis, since the QBF Q[α∪ ι] has quantifier rank `−1, and is valid, there are α′, ι′ with
α′ = local(α), ι′ = local(ι), such that R′′(Q)[α′ ∪ ι′] is valid as well. Then, since ι was chosen
arbitrarily, for every assignment κ of variables in dom(ι′) ∩ VarI (Q1, V1, ∅), there is (by
Lemma 20, sinceR′′(Q)[α′∪ι′] is valid) an assignment κ′ of variables in dom(ι′)∩VarI (∃, ∅, V1)
such that R(Q)[α′ ∪ κ ∪ κ′] is valid. In consequence, R(Q)[α′] is valid as well.

“⇐=”: Again, we proceed by case distinction in order to show that if Q[α] is invalid
and has quantifier rank `, R(Q)[α′] is invalid as well.

(Case 1) Q1 = ∃: Since Q[α] is invalid, for every assignment ι of variables V1 we have
that Q[α ∪ ι] is also invalid. By induction hypothesis, since the QBF Q[α ∪ ι] has quantifier
rank `− 1, and is invalid, there are assignments α′ and ι′ such that R(Q)[α′ ∪ ι′] is invalid
as well, where α′ = local(α), ι′ = local(ι). Therefore R(Q)[α′] is invalid, since ι was chosen
arbitrarily and by Lemma 20 ι′ covers all relevant cases, where R(Q)[α′] could be valid.

(Case 2) Q1 = ∀: Since Q[α] is invalid, there is at least one assignment ι of variables V1,
such that Q[α ∪ ι] is invalid. By induction hypothesis, since QBF Q[α ∪ ι] has quantifier
rank `− 1, and is invalid, there are assignments α′ and ι′ with α′ = local(α), ι′ = local(ι),
such that R′′(Q)[α′ ∪ ι′] is invalid (R′′ defined above), either. By Lemma 20, even for an
assignment ι′′ that restricts ι′ to variables in dom(ι′) ∩VarI (Q1, V1, ∅), there cannot be an
assignment κ to variables in dom(ι′) ∩VarI (∃, ∅, V1) such that R(Q)[α′ ∪ ι′′ ∪ κ] is valid. In
consequence, R(Q)[α′] is invalid as well.

Compression and Runtime. After having established the correctness of reduction R, we
move on to showing that this reduction indeed compresses the treewidth of the resulting
QBF R(Q), as depicted in Figure 2. In particular, we prove this claim by constructing a
tree decomposition T ′ of the primal graph of R(Q) and show its relation to labeled almost
c-nice tree decomposition T of Q, where width(T) = tw(PQ). Then, we discuss runtime
properties of the reduction.

Lemma 23 (Compression). The reduction R exponentially decreases treewidth. In particular,
R′(R(Q)) constructs a QBF such that the treewidth of the primal graph of R′(R(Q)) is 12 ·
dlog(k + 1)e+ 7c+ 6, where k is the treewidth of PQ and c ≤ k.

Proof. Assume a labeled almost c-nice tree decomposition T = (T, χ, r) of PQ of width k,
where T = (N,E). From this we will construct a tree decomposition T ′ = (T, χ′, r) of the
primal graph of R(Q). For each tree decomposition node t ∈ N with cld(t) = {t1, . . . , ts}, we
set its bag χ′(t) := {b | x ∈ χ(t), b ∈ [[x]]t ∪ [[x]]t1 ∪ · · · ∪ [[x]]ts} ∪ {b | x ∈ χ(t), 1 ≤ j ≤ 3, b ∈
[[x]]t,j ∪ [[x]]t1,j ∪ · · ·∪ [[x]]ts,j}∪{xt′ | xt′ ∈ VarI (V), t′ = t}∪

⋃
t′∈{t,t1,...,ts}{vt′,1, vt′,2, vt′,3, vt′ ,

satt′ , sat≤t′}. Observe that all the properties of tree decompositions are satisfied. In
particular, connectedness is not destroyed since the only elements that are shared among
(at most two) different tree decompositions nodes are in VarB , VarBV and in VarB3 ,
and VarBV3 .

Each bag χ′(t) contains bit-vectors [[x]]t, [[x]]t1 , . . . , [[x]]ts for each x ∈ χ(t), resulting
in at most 3 · dlog(k)e many elements, since each node can have at most s = 2 many
children. Further, each bag additionally consists of bit-vectors [[x]]t,j , [[x]]t1,j , . . . , [[x]]ts,j for

17

each x ∈ χ(t) ∪ {nil}, where 1 ≤ j ≤ 3, which are at most 3 · 3 · dlog(k + 1)e many ele-
ments. In total everything sums up to at most 12·dlog(k+1)e+7c+6 many elements per node,
since |{xt′ | xt′ ∈ VarI (V), t = t′}| ≤ c, and moreover |

⋃
t′∈{t,t1,...,ts}{vt′,1, vt′,2, vt′,3, vt′ , satt′ ,

sat≤t′}| ≤ 6 · (c + 1) due to T being labeled and almost c-nice. Note that the treewidth
of R′(R(Q)) only marginally increases, since there are at most O(k · dlog(k)e) many clauses
in each bag of χ′(t) for any node t ∈ N , each of size at most O(dlog(k)e). However, the fresh
variables, that were introduced during the 3-CNF reduction only turn up in at most two new
clauses (that is, they have degree two in the primal graph). Further, the construction can
be controlled in such a way, that each new clause consists of at most two fresh variables. In
consequence, one can easily modify T ′, by adding at most O(k ·dlog(k)e2) many intermediate
nodes for each node t ∈ N , such that the width of T ′ is at most 12 · dlog(k+ 1)e+ 7c+ 6.

Theorem 24 (Runtime). Given a QBF Q, where D=matrix(Q), k is the treewidth of the
primal graph of Q. Then, constructing R′(R(Q)) takes time O(2k

4 · ‖D‖ · c), where c ≤ k.

Proof. First, we construct [5] a tree decomposition of the primal graph of Q of width k in
time 2O(k3) · |var(D)|, consisting of at most O(2k

3 · |var(D)|) many nodes. Then, we compute
a labeled almost c-nice tree decomposition in time O(k2 · 2k3 · (‖D‖) [45, Lemma 13.1.3]
without increasing the width k, resulting in decomposition T = (T, χ), where T = (N,E, r)
of the primal graph of Q. Note that thereby the number of nodes is at most O(k · 2k3 · ‖D‖).
The reduction R(Q) then uses at most O(k · 2k3 · ‖D‖ · c) many variables in VarI (V) since
in almost c-nice tree decompositions one node “introduces” at most c variables. The other
sets of variables used in R are bounded by O(dlog(k + 1)e · k2 · 2k3 · ‖D‖). Overall, there
are O(dlog(k + 1)e · k2 · 2k3 · ‖D‖ · c) many clauses constructed by R(Q). Hence, the claim
follows, since R′(R(Q)) runs in time O(dlog(k+ 1)e2 ·k2 ·2k3 · ‖D‖ · c) ⊆ O(2k

4 · ‖D‖ · c).

Proof of the main result. We are in position to prove the main result of this work. To
this end, we show that the lower bounds are closed under negation and restate Theorem 13.

Lemma 25. Assume a given closed QBF of the form Q = Q1V1.Q2V2.Q3V3 · · ·Q`V`.F ,
where ` ≥ 1 and F is in CNF if Q` = ∃, and F is in DNF if Q` = ∀. Under ETH,
one cannot solve Q in time tow(`, o(k)) · poly(|var(F)|) if and only if one cannot solve the
negation ¬Q in the same time.

Proof. Assume towards a contradiction that ¬Q can be solved in time tow(`, o(k)) ·
poly(|var(F)|) under ETH. But then, since inverting the result can be achieved in constant
time, under ETH we can solve Q in time tow(`, o(k)) · poly(|var(F)|). Hence, we arrive at a
contradiction.

Theorem 13 (QBF lower bound). Given an arbitrary QBF of the form Q = Q1V1.Q2V2.Q3V3

· · ·Q`V`.F where ` ≥ 1, and F is a 3-CNF formula (if Q` = ∃), or F is a 3-DNF formula
(if Q` = ∀). Then, unless ETH fails, Q cannot be solved in time tow(`, o(k)) ·poly(|var(F)|),
where k is the treewidth of the primal graph PQ.

Proof. We assume that Q is closed, i.e., for Q we have fvar(Q) = ∅. We show the theorem
by induction on the quantifier rank `. For the induction base, where ` = 1, the result follows
from the ETH in case of Q` = ∃ since k ≤ |var(F)|. If Q` = ∀, by Lemma 25, the result
follows. Note that for the case of ` = 2, the result has already been shown [46] as well.

For the induction step, we assume that the theorem holds for given Q of quantifier
rank ` ≥ 1, where Q` = ∀, the treewidth of primal graph PQ is k, and F is in 3-DNF. We
show that then the theorem also holds for quantifier rank `+ 1. Towards a contradiction,
we assume that in general we can solve any QBF Q′ of quantifier rank `+ 1, in time tow(`+

18

1, o(tw(PQ′))) · poly(|var(C ′)|), where C ′ = matrix(Q′). We compute a labeled almost c-nice
TD T of PQ of width k, where c is in O(log(k)). We proceed by case distinction on the last
quantifier Q′`+1 of Q′.

(Case 1) Q′`+1 = ∃: Let Q′ = R′(R(Q)), C ′ = matrix(Q′) be the matrix of Q′, and k′ be
the treewidth of the primal graph of C ′. Observe that Q′ has quantifier rank `+ 1 and is of
the required form. By Lemma 23, k′ = 12 · dlog(k + 1)e+ 7c+ 6. As a result, since R is an
fpt-reduction (including time for computing T) according to Theorem 24, one can solve Q′

in time tow(` + 1, o(12 · dlog(k + 1)e + 7c + 6)) · poly(|var(C ′)|) = tow(` + 1, o(log(k))) ·
poly(|var(C ′)|). Therefore, by Theorem 22 we can solve Q in time tow(`, o(k))·poly(|var(F)|),
which contradicts the induction hypothesis.

(Case 2) Q′`+1 = ∀: By Lemma 25 one can decide in time tow(`+ 1, o(k)) ·poly(|var(C ′)|)
whether Q′ is valid if and only if we can decide in time tow(` + 1, o(k)) · poly(|var(C ′)|)
whether ¬Q′ is valid. Note that after bringing ¬Q′ into prenex normal form, the last
quantifier is ∃. Therefore, the remainder of this case is (Case 1). Hence, we have established
the second case and this concludes the proof.

Further Consequences. We generalize Theorem 13 to the incidence graph. The incidence
graph of a formula F in CNF or DNF is the bipartite graph, which has as vertices the
variables and clauses (terms) of F and an edge vc between every variable v and clause
(term) c whenever v occurs in c in F [60]. We obtain the following.

Corollary 26. Given an arbitrary QBF Q of quantifier rank ` ≥ 1. Then, under ETH one
cannot solve Q in time tow(`, o(k)) · poly(|var(matrix(Q))|), where k is the treewidth of the
incidence graph of matrix(Q).

Proof. The claim follows from Theorem 13, since, in general, the treewidth k of the incidence
graph of Q is bounded [29, 60] by treewidth k′ of PQ, i.e., k ≤ k′ + 1. As a result, if the
weaker lower bound of this corollary did not hold, Theorem 13 would be violated.

Corollary 27 (2-Local Pathwidth bound). Given an arbitrary QBF of the form Q =
Q1V1.Q2V2.Q3V3 · · ·Q`V`.F , where ` ≥ 1 and F in 3-CNF (if Q` = ∃) or 3-DNF (if Q` = ∀).
Then, unless ETH fails, Q cannot be solved in time tow(`, o(k)) · poly(|var(F)|), where k is
the 2-local pathwidth of graph PQ.

Proof. First, we show the claim for pathwidth by induction, which can be easily established
for base case ` = 1. For the case of ` = 2, related work [46] holds only for treewidth. However,
the cases for ` ≥ 2 follow from the proof of Theorem 13, since every path decomposition is
also a tree decomposition, and the proofs of lemmas and theorems used intermediately only
rely on an arbitrary tree decomposition. To be more concrete, the proof of Theorem 13 relies
on Lemma 23, whose proof shows compression for any tree decomposition, which hence also
works for any PD as well. Similarly, Theorem 24 also holds for pathwidth, since a PD of
fixed pathwidth can be computed [5] even in time O(2k

2 · |var(F)|), and since computation
of labeled almost c-nice decompositions works anologously for PDs. Further, the remainder
of the proof holds for the thereby obtained PD, since the construction works for any TD.
Finally, Lemma 25 holds independently of the parameter. As a result, reductions R′ and R
used by Theorem 13 indeed are sufficient for PDs.

The proof above can be lifted to the case of 2-local pathwidth by observing that the 2-
local pathwidth of PR′(R(Q)) is also bounded by 12 ·dlog(k+1)e+7c+6 (cf. Lemma 23), since
each variable of PR′(R(Q)) occurs at most twice in the constructed (path) decomposition T ′
of R′(R(Q)).

19

Remark 28. We remark that reduction R can be generalized to finite, non-Boolean domains
(QCSP, e.g., [27]). For given variables V of a QCSP formula Q, the variables in VarI (V),
VarBV , and VarBV3 have to be made non-Boolean, whereas the other variables used in R
stay Boolean. Consequently, one obtains similar results as in related work [46], but for
quantifier rank ` ≥ 3. We conject that under ETH, validity of QCSPs Q over domain D
of quantifier rank `, where k = pw(PQ), cannot be decided in time tow(` − 1, |D|o(k)) ·
poly(|var(Q)|).

Finally, we establish a corollary that improves a result from the literature. To this end, we
denote for given positive number n by log∗(n) the smallest value i such that tow(i, 1) ≥ n. A
known result [1, Corollary 1] states ΣP

` -hardness for instances Q of (4·log∗(|var(matrix(Q))|))-
QSat, wheras here we establish para-ΣP

` -hardness for instancesQ′ of (log∗(| var(matrix(Q′))|))-
QSat. This is possible by applying our established reduction R, which is rather fine-grained
since it only increases quantifier rank by one, and it works indeed for any QBF, and not just
for a certain classes of QBFs in contrast to the known result. As a consequence, whenever
a new class of `-QBFs with a certain treewidth or pathwidth guarantee was discovered,
which is still ΣP

` -hard, one immediately obtains para-ΣP
` -hardness by using reduction R.

Then, one could potentially further improve quantifier alternations by applying reduction R,
which is (asymptotically) tight under ETH.

Corollary 29. Given any integer ` ≥ 1. Then, deciding QSat is para-ΣP
` -hard when

parameterized by (2-local) pathwidth of the primal graph PQ for input QBFs of the form
Q = Q1V1.Q2V2. Q3V3 · · ·Q`+log∗(|var(F)|)V`+log∗(|var(F)|).F, where is F in 3-CNF (if Q` = ∃)
or 3-DNF (if Q` = ∀).

Proof. Given a closed QBF of the form Q′ = Q1V
′

1 .Q2V
′

2 .Q3V
′

3 · · ·Q`V ′` .F ′, where ` ≥ 1
and F ′ is in 3-CNF if Q` = ∃, and F ′ is in 3-DNF if Q` = ∀, and k′ is the 2-local pathwidth
of PQ′ . Then, we apply our reduction R followed by R′ on Q′ and iteratively apply R and R′.
We repeat this step exactly log∗(k′) many times and refer to the final result by Q′′. Note
that the solutions to problem QSat on Q′ and Q′′ are equivalent by Theorem 22. Then,
the resulting 2-local pathwidth k′′ of PQ′′ is in O(1) by Lemma 23, i.e., parameter k′′ is
constant. Hence, since Q′ is hard for ΣP

` , also Q′′ is hard for ΣP
` , and Q′′ is para-ΣP

` -hard
since k′′ is a constant. Observe that k′ ≤ |var(F ′)| ≤ |var(matrix(Q′′))|. As a result, QSat
for QBFs of the form Q above is hard for para-ΣP

` .

5 Conclusion

In this work, we presented a lower bound for deciding the validity (QSat) of quantified
Boolean formulas (QBFs). Thereby, we have significantly extended the current state-of-the-
art of this line of research: So far, lower bound results under ETH for QSat parameterized
by treewidth were not available for all levels of the polynomial hierarchy. The generalization
of this result in Theorem 13 does not only cover QBFs, parameterized by treewidth and
an arbitrary quantifier rank, but solves a natural question for a well-known problem in
complexity theory. Interestingly, the result confirms the (asymptotic) optimality of the
algorithm by Chen [10] for solving QSat and thereby answers a longstanding open question.
Indeed, one cannot expect to solve QSat of quantifier rank ` significantly better than in
time Ω∗(tow(`, k)) in the treewidth k. The proof of this result relies on a novel reduction
approach that makes use of a fragile balance between redundancy and structural dependency
(captured by treewidth) and uses tree decompositions as a “guide” in order to achieve
exponential compression of the parameter treewidth. We encode dynamic programming

20

on tree decompositions and obtain a technique for compressing treewidth. Note that both
our technique and the results naturally carry over to path decompositions and (2-local)
pathwidth.

Given the nature of our reduction, we observe that the reduction might also serve in
reducing treewidth in practice. In particular, solvers based on tree decompositions such as
the QBF solver dynQBF [9] could benefit from significantly reduced treewidth; at the cost
of increased quantifier rank by one. Since dynQBF is capable [49] of solving instances up
to treewidth 80 with quantifier rank more than two, slightly increasing the quantifier rank
might be in practice a good trade-off for decreasing the treewidth significantly.

Another advantage of our reduction is that it gives rise to a versatile methodology for
showing lower bounds for arbitrary problems (depending on the ETH, parameterized by
treewidth) by reduction from `-QSat, parameterized by treewidth as well. Thereby we
avoid tedious reductions from Sat (directly using ETH), which involves problem-tailored
gadgets to construct instances whose treewidth is `-fold logarithmic in the number of
variables or clauses of the given Sat formula. Further, we have listed a number of showcases
to illustrate the applicability of this approach to natural problems that are beyond the
second level of the polynomial hierarchy. As a by-product we have established that the
canonical problems #Σ`Sat and #Π`Sat of projected model counting applied to QBFs when
parameterized by treewidth always come at the price of an additional level of exponentiality
in the treewidth (compared to `-QSat).

One direction for future work is to explore further problems parameterized by treewidth
and to establish tightness of the so far existing upper bounds. Another important direction
is to work out techniques and showcases for “non-canonical” lower bounds, where fptl-
reductions are not sufficient and using a customized function g is necessary. Hence, our
goal is to continue this line of research in order to use this toolkit for problems that do not
exhibit (e.g., [48]) canonical runtimes, where fptl-reductions suffice. We hope this work will
foster research and new insights on lower bounds.

21

References

[1] A. Atserias and S. Oliva. Bounded-width QBF is PSPACE-complete. J. Comput. Syst.
Sci., 80(7):1415–1429, 2014. doi: 10.1016/j.jcss.2014.04.014.

[2] R. A. Aziz. Answer Set Programming: Founded Bounds and Model Counting. PhD thesis,
Department of Computing and Information Systems , The University of Melbourne,
Sept. 2015.

[3] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability,
volume 185 of FAIA. IOS Press, 2009. ISBN 978-1-58603-929-5.

[4] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In
Proceedings of the 15th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’88), volume 317 of LNCS, pages 105–118. Springer, 1988. doi:
10.1007/3-540-19488-6.

[5] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996. doi: 10.1137/S0097539793251219.

[6] H. L. Bodlaender and A. M. Koster. Combinatorial optimization on graphs of bounded
treewidth. Comput. J., 51(3):255–269, 2008. doi: 10.1093/comjnl/bxm037.

[7] J. A. Bondy and U. S. R. Murty. Graph theory, volume 244 of Graduate Texts in
Mathematics. Springer, 2008. ISBN 978-1-84628-970-5. doi: 10.1007/978-1-84628-970-5.

[8] G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance.
Commun. ACM, 54(12):92–103, 2011.

[9] G. Charwat and S. Woltran. Expansion-based QBF solving on tree decompositions.
Fundam. Inform., 167(1-2):59–92, 2019. doi: 10.3233/FI-2019-1810.

[10] H. Chen. Quantified constraint satisfaction and bounded treewidth. In Proceedings of
the 16th European Conference on Artificial Intelligence (ECAI’04), volume IOS Press,
pages 161–170, 2004. ISBN 1-58603-452-9.

[11] M. Chimani, P. Mutzel, and B. Zey. Improved Steiner tree algorithms for bounded
treewidth. J. Discrete Algorithms, 16:67–78, 2012. doi: 10.1016/j.jda.2012.04.016.

[12] B. Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook of
Theoretical Computer Science, Vol. B, pages 193–242. Elsevier, 1990. doi: 10.1016/
b978-0-444-88074-1.50010-x.

[13] B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter complexity of
graph enumeration problems definable in monadic second-order logic. Discr. Appl.
Math., 108(1-2):23–52, 2001. doi: 10.1016/S0166-218X(00)00221-3.

[14] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015. ISBN
978-3-319-21274-6. doi: 10.1007/978-3-319-21275-3.

[15] R. Dechter. Tractable structures for constraint satisfaction problems. In Handbook
of Constraint Programming, volume I, chapter 7, pages 209–244. Elsevier, 2006. doi:
10.1016/S1574-6526(06)80011-8.

22

[16] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate Texts in Mathematics.
Springer, 2012. ISBN 978-3-642-14278-9.

[17] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complex-
ity. Texts in Computer Science. Springer, 2013. ISBN 978-1-4471-5558-4. doi:
10.1007/978-1-4471-5559-1.

[18] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–357, 1995.

[19] A. Durand, M. Hermann, and P. G. Kolaitis. Subtractive reductions and complete
problems for counting complexity classes. Theor. Comput. Sci., 340(3):496–513, 2005.
ISSN 0304–3975. doi: 10.1016/j.tcs.2005.03.012.

[20] W. Dvořák, R. Pichler, and S. Woltran. Towards fixed-parameter tractable algorithms
for abstract argumentation. Artif. Intell., 186:1–37, 2012. ISSN 0004-3702. doi:
10.1016/j.artint.2012.03.005.

[21] U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving advanced reasoning tasks using
quantified boolean formulas. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on on Innovative Applications of
Artificial Intelligence (AAAI/IAAI 2000), pages 417–422. AAAI Press / The MIT
Press, 2000. ISBN 0-262-51112-6.

[22] T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming:
Propositional case. Ann. Math. Artif. Intell., 15(3–4):289–323, 1995. doi: 10.1007/
BF01536399.

[23] T. Eiter and G. Gottlob. The complexity of logic-based abduction. J. ACM, 42(1):
3–42, 1995. doi: 10.1145/200836.200838.

[24] M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of bodlaender
and courcelle. In Proceedings of the 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS’10), pages 143–152. IEEE, 2010. doi: 10.1109/FOCS.2010.21.

[25] W. Faber, G. Pfeifer, and N. Leone. Semantics and complexity of recursive aggregates
in answer set programming. Artif. Intell., 175(1):278–298, 2011.

[26] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In
Proceedings of the 7th Symposia in Applied Mathematics. AMS, 1974. ISBN 0-8218-
1327-7.

[27] A. Ferguson and B. O’Sullivan. Quantified constraint satisfaction problems: From
relaxations to explanations. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence (IJCAI 2007), pages 74–79. The AAAI Press,
2007.

[28] J. K. Fichte and M. Hecher. Treewidth and counting projected answer sets. In Proceed-
ings of the 15th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2019), volume 11481 of LNCS, pages 105–119. Springer, 2019. doi:
10.1007/978-3-030-20528-7\ 9.

[29] J. K. Fichte and S. Szeider. Backdoors to tractable answer-set programming. Artif.
Intell., 220(C):64–103, 2015. doi: 10.1016/j.artint.2014.12.001.

23

[30] J. K. Fichte, M. Hecher, M. Morak, and S. Woltran. Exploiting treewidth for projected
model counting and its limits. In Proceedings of the 21th International Conference on
Theory and Applications of Satisfiability Testing (SAT’18), volume 10929 of LNCS,
pages 165–184. Springer, 2018. doi: 10.1007/978-3-319-94144-8\ 11.

[31] J. K. Fichte, M. Hecher, and A. Meier. Counting complexity for reasoning in abstract
argumentation. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence,
(AAAI 2019), pages 2827–2834. The AAAI Press, 2019. doi: 10.1609/aaai.v33i01.
33012827.

[32] J. K. Fichte, M. Hecher, P. Thier, and S. Woltran. Exploiting database management
systems and treewidth for counting. In Proceedings of the 22nd International Symposium
on Practical Aspects of Declarative Languages (PADL 2020), volume 12007 of LNCS,
pages 151–167. Springer, 2020. doi: 10.1007/978-3-030-39197-3\ 10.

[33] J. Flum and M. Grohe. Parameterized Complexity Theory. Theor. Comput. Sci.
Springer, 2006. ISBN 978-3-540-29952-3. doi: 10.1007/3-540-29953-X.

[34] E. C. Freuder. A sufficient condition for backtrack-bounded search. J. ACM, 32(4):
755–761, 1985. doi: 10.1145/4221.4225.

[35] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979. ISBN 0-7167-1044-7.

[36] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Comput., 9(3/4):365–386, 1991.

[37] G. Gottlob, R. Pichler, and F. Wei. Bounded treewidth as a key to tractability of
knowledge representation and reasoning. Artif. Intell., 174(1):105–132, 2010. doi:
10.1016/j.artint.2009.10.003.

[38] M. Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure
Theory., volume 47. Cambridge University Press, 2017.

[39] M. Hecher, M. Morak, and S. Woltran. Structural decompositions of epistemic logic
programs. In Proceedings of the 34th AAAI Conference on Artificial Intelligence,
(AAAI 2020). The AAAI Press, 2020. In press.

[40] N. Immerman. Descriptive complexity. Springer, 1999. ISBN 0387986006.

[41] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. ISSN 0022-0000. doi:
10.1006/jcss.2001.1774.

[42] M. Jakl, R. Pichler, and S. Woltran. Answer-set programming with bounded treewidth.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), volume 2, pages 816–822, 2009.

[43] T. Janhunen and I. Niemelä. The answer set programming paradigm. AI Magazine, 37
(3):13–24, 2016.

[44] H. Kleine Büning and T. Lettman. Propositional Logic: Deduction and Algorithms.
Cambridge University Press, New York, NY, USA, 1999. ISBN 978-0521630177.

[45] T. Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer,
1994. ISBN 3-540-58356-4. doi: 10.1007/BFb0045375.

24

[46] M. Lampis and V. Mitsou. Treewidth with a quantifier alternation revisited. In Pro-
ceedings of the 12th International Symposium on Parameterized and Exact Computation
(IPEC’17), volume 89 of LIPIcs, pages 26:1–26:12. Dagstuhl Publishing, 2017. doi:
10.4230/LIPIcs.IPEC.2017.26.

[47] M. Lampis, S. Mengel, and V. Mitsou. QBF as an Alternative to Courcelle’s
Theorem. In Proceedings of the 21th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT’18), pages 235–252. Springer, 2018. doi:
10.1007/978-3-319-94144-8\ 15.

[48] D. Lokshtanov, D. Marx, and S. Saurabh. Slightly superexponential parameterized
problems. SIAM J. Comput., 47(3):675–702, 2018. doi: 10.1137/16M1104834.

[49] F. Lonsing and U. Egly. Evaluating QBF solvers: Quantifier alternations matter.
In Proceedings of the 24th International Conference on Principles and Practice of
Constraint Programming (CP 2018), volume 11008 of LNCS, pages 276–294. Springer,
2018. doi: 10.1007/978-3-319-98334-9\ 19.

[50] D. Marx and V. Mitsou. Double-Exponential and Triple-Exponential Bounds
for Choosability Problems Parameterized by Treewidth. In Proceedings of the
43rd International Colloquium on Automata, Languages, and Programming (ICALP
2016), volume 55 of LIPIcs, pages 28:1–28:15. Dagstuhl Publishing, 2016. doi:
10.4230/LIPIcs.ICALP.2016.28.

[51] S. Ordyniak and S. Szeider. Parameterized complexity results for exact Bayesian network
structure learning. J. Artif. Intell. Res., 46:263–302, 2013. doi: 10.1613/jair.3744.

[52] G. Pan and M. Y. Vardi. Fixed-parameter hierarchies inside PSPACE. In LICS, pages
27–36. IEEE Computer Society, 2006. doi: 10.1109/LICS.2006.25.

[53] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. ISBN 978-0-
201-53082-7.

[54] R. Pichler, S. Rümmele, and S. Woltran. Counting and enumeration problems with
bounded treewidth. In Proceedings of the 16th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR’10), volume 6355
of LNCS, pages 387–404. Springer, 2010. ISBN 978-3-642-17511-4. doi: 10.1007/
978-3-642-17511-4\ 22.

[55] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. J. Comb.
Theory, Ser. B, 35(1):39–61, 1983. doi: 10.1016/0095-8956(83)90079-5.

[56] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B, 36(1):49–64, 1984. doi: 10.1016/0095-8956(84)90013-3.

[57] N. Robertson and P. D. Seymour. Graph minors – a survey. In Surveys in Combina-
torics 1985: Invited Papers for the 10th British Combinatorial Conference, London
Mathematical Society Lecture Note Series, pages 153–171. Cambridge University Press,
1985. ISBN 0521315247. doi: 10.1017/CBO9781107325678.009.

[58] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms, 7(3):309–322, 1986. doi: 10.1016/0196-6774(86)90023-4.

[59] N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-decomposition.
J. Comb. Theory, Ser. B, 52(2):153–190, 1991.

25

[60] M. Samer and S. Szeider. Algorithms for propositional model counting. J. Discrete
Algorithms, 8(1):50–64, 2010. doi: 10.1016/j.jda.2009.06.002.

[61] Y. Shen and T. Eiter. Evaluating epistemic negation in answer set programming
(extended abstract). In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence (IJCAI 2017), pages 5060–5064. ijcai.org, 2017. doi: 10.24963/
ijcai.2017/722.

[62] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In
Proceedings of the 5th Annual ACM Symposium on Theory of Computing (STOC’73),
pages 1–9. ACM, 1973. doi: 10.1145/800125.804029.

26

A Appendix

A.1 Counting Problems

A witness function is a function W : Σ∗ → 2Σ′∗ that maps an instance I ∈ Σ∗ to a
finite subset of Σ′∗. We call the set W(I) the witnesses. A parameterized counting
problem L : Σ∗ × N → N0 is a function that maps a given instance I ∈ Σ∗ and an
integer k ∈ N to the cardinality of its witnesses |W(I)|. Let C be a decision complexity
class, e.g., P. Then, #·C denotes the class of all counting problems whose witness functionW
satisfies (i) there is a function f : N0 → N0 such that for every instance I ∈ Σ∗ and every
W ∈ W(I) we have |W | ≤ f(‖I‖) and f is computable in time O(poly(‖I‖)) and (ii) for
every instance I ∈ Σ∗ the decision problem W(I) belongs to the complexity class C. Then,
#·P is the complexity class consisting of all counting problems associated with decision
problems in NP. Let L and L′ be counting problems with witness functions W and W ′. A
parsimonious reduction from L to L′ is a polynomial-time reduction r : Σ∗ → Σ′∗ such that
for all I ∈ Σ∗, we have |W(I)| = |W ′(r(I))|. It is easy to see that the counting complexity
classes #·C defined above are closed under parsimonious reductions. It is clear for counting
problems L and L′ that if L ∈ #·C and there is a parsimonious reduction from L′ to L,
then L′ ∈ #·C.

A.2 Problem Compendium

Projected Model Counting (PQSat). Durand et al. [19] have shown that the canon-
ical problems #Σ`Sat, and #Π`Sat are #·ΣP

` -complete, and #·ΠP
` -complete (both via

parsimonious reductions), respectively. Note that both problems are special cases of PQSat
as defined in Section 2. Further, #Sat is the problem #Σ0Sat, and PMC is the prob-
lem #Σ1Sat.

Problem: #Σ`Sat [19]

Input: Open QBF Q = ∃V1.∀V2. · · ·Q`V`F , where F is a Boolean for-
mula in 3-DNF if Q` = ∀ (and 3-CNF if Q` = ∃).

Output: Number of assignments ι : fvar(Q) → {0, 1} such that Q[ι] is
valid.

Problem: #Π`Sat [19]

Input: Open QBF Q = ∀V1.∃V2. · · ·Q`V`F , where F is a Boolean for-
mula in 3-DNF if Q` = ∀ (and 3-CNF if Q` = ∃).

Output: Number of assignments ι : fvar(Q) → {0, 1} such that Q[ι] is
valid.

Abstract Argumentation. We consider the Argumentation Framework by Dung [18].
An argumentation framework (AF) is a directed graph F = (A,R) where A 6= ∅ is a
finite set of arguments and R ⊆ A × A a pair of arguments representing direct attacks
of arguments. In argumentation, we interest in computing so-called extensions, which
are subsets S ⊆ A of the arguments that meet certain properties according to certain
semantics as given below. An argument s ∈ S, is called defended by S in F if for every
(s′, s) ∈ R, there exists s′′ ∈ S such that (s′′, s′) ∈ R. The family defF (S) is defined by
defF (S) := {s | s ∈ A, s is defended by S in F}. We say S ⊆ A is conflict-free in S if
(S×S)∩R = ∅; S is admissible (adm) in F if (i) S is conflict-free in F , and (ii) every s ∈ S
is defended by S in F . Assume an admissible set S. Then, (iiia) S is preferred (pref) in F ,
if there is no S′ ⊃ S that is admissible in F ; (iiib) S is semi-stable (semi-st) in F if there is

27

no admissible set S′ ⊆ A in F with S+
R ((S′)+

R where S+
R := S ∪ {a | (b, a) ∈ R, b ∈ S}; a

conflict-free set S is stage in F if there is no conflict-free set S′ ⊆ A in F with S+
R ((S′)+

R.
Let ALL abbreviate the set {pref, semi-st, stage}. For a semantics S ∈ ALL, S(F) denotes
the set of all extensions of semantics S in F .

Let S ∈ ALL be an abstract argumentation semantic, F = (A,R) be an argumentation
framework, and a ∈ A an argument. The credulous reasoning problem CredS asks to
decide whether there is an S-extension of F that contains the (credulous) argument a. The
skeptical reasoning problem SkepS asks to decide whether all S-extensions of F contain the
argument a.

Problem: Projected Credulous Counting #PCredS [31]

Input: S ∈ ALL, argumentation framework F , set P of projection
arguments, argument a ∈ A.

Output: Number of S-extensions, where a is credulously accepted, re-
stricted to P , in more detail, |{S ∩ P | S ∈ S(F), a ∈ S}|.

Propositional Abduction. The Propositional Abduction Problem (PAP) consists of a
tuple (T,H,M), where T is a Boolean formula (theory) in CNF, H ⊆ var(T) is a set of
hypothesis, and M ⊆ var(T) forms a set of manifestations. A set S ⊆ H is a solution to
the problem (T,H,M) if there is an assignment ι : var(T) → {0, 1} such that (T ∪ S)[ι]
evaluates to true, and for every assignment ι : var(T)→ {0, 1}, where (T ∪ S)[ι] evaluates
to true, also M [ι] evaluates to true. Given a PAP (T,H,M). Then, let S(T,H,M) denote
the set of solutions to this problem.

Problem: Projected Propositional Abduction Counting #PPAP

Input: PAP problem (T,H,M), set P ⊆ var(T) of projection variables.

Output: Number of solutions to (T,H,M) where only the num-
ber of combinations with respect to P are of interest, i.e.,
|{S ∩ P | S ∈ S(T,H,M)}|.

Answer Set Programming (ASP). We follow standard definitions of Boolean disjunc-
tive ASP. For comprehensive foundations, we refer to introductory literature [8, 43]. Let
`, m, n be non-negative integers such that ` ≤ m ≤ n, a1, . . ., an be Boolean variables.
A program Π is a set of rules of the form a1 ∨ · · · ∨ a` ← a`+1, . . . , am,¬am+1, . . . ,¬an.
For a rule r, we let Hr := {a1, . . . , a`}, B+

r := {a`+1, . . . , am}, B−r := {am+1, . . . , an},
and var(r) := Hr ∪B+

r ∪B−r . Consequently, var(Π) :=
⋃
r∈Π var(r).

An interpretation I ⊆ var(Π) is a set of variables. I satisfies a rule r if (Hr ∪B−r) ∩ I 6= ∅
or B+

r \ I 6= ∅. I is a model of Π if it satisfies all rules of Π. The Gelfond-Lifschitz (GL)
reduct of Π under I is the program ΠI obtained from Π by first removing all rules r with
B−r ∩ I 6= ∅ and then removing all ¬z where z ∈ B−r from the remaining rules r [36]. I is
an answer set of a program Π if I is a subset-minimal model of ΠI .

Problem: Answer Set Consistency (ASPCons)

Input: Program Π.

Question: Does there exist an answer set of program Π?

Problem: Answer Set Counting (#ASP)

Input: Program Π.

Output: Number of answer sets of Π.

28

Problem: Projected Answer Set Counting (PASP) [2]

Input: Program Π, set P ⊆ var(Π) of projection variables.

Output: Number of answer sets projected to the set P , which is,
|{S ∩ P | S is an answer set of Π}|.

Epistemic Logic Programming (ELP). Let `, m, n be non-negative integers such
that ` ≤ m ≤ n, a1, . . ., an be Boolean variables. Then, an epistemic program Π is a
set of epistemic rules of the form a1 ∨ · · · ∨ a` ← l`+1, . . . , lm,¬lm+1, . . . ,¬ln., where li
for ` + 1 ≤ i ≤ n is either variable ai, or an epistemic literal potentially using epistemic
negation not of the form not ai or not ¬ai. Let EP(Π) be the set of epistemic literals
occurring in Π. Given a guess σ ⊆ EP(Π). The epistemic reduct Πσ corresponds to the
program Π, where each occurrence of not l ∈ σ is replaced by truth constant >, and each
occurrence of not l ∈ EP(Π) \ σ is replaced by ¬l. Note that Πσ corresponds to an ASP
program, assuming that > is in any answer set and potential double negation (¬¬) is
treated [25] accordingly5. Then, given guess σ ⊆ EP(Π), the collection A of all the answer
sets of Πσ is a candidate world view of Π w.r.t. σ, if (i) A 6= ∅, (ii) for each not l ∈ σ there is
an answer set A ∈ A where A ∪ {l} is unsatisfiable (A is viewed as a formula of facts), and
(iii) for each not l ∈ EP(Π) \ σ and each answer set A ∈ A, A ∪ {l} is satisfiable. Further,
set A of all the answer sets of Π is referred to by world view of Π w.r.t. σ, if there is no
set σ′ that is a candidate world view of Π w.r.t. σ′ such that σ (σ′ ⊆ EP(Π).

Problem: Candidate World View Check [61]

Input: Epistemic program Π, variable a ∈ var(Π).

Question: Does there exist a guess S ⊆ EP(Π) that in-
duces a candidate world view, more precisely,
{S | S ⊆ EP(Π), set A of answer sets of ΠS

is a candidate world view} 6= ∅?

Problem: World View Check [61]

Input: Epistemic program Π, variable a ∈ var(Π).

Question: Does there exist a guess S ⊆ EP(Π) that induces
a world view, where a is true, i.e., {S | S ⊆
EP(Π), set A of answer sets of ΠS is a world view, a ∈
A for any A ∈ A} 6= ∅?

Problem: #Projected Guesses to World Views

Input: Epistemic program Π, variable a ∈ var(Π), set P ⊆ var(Π) of
projection variables.

Output: Number of distinct epistemic literal sets EP(Π) projected to P
that lead to world views, where a is true, i.e., |{S∩{not p, not ¬p |
p ∈ P} | S ∈ EP(Π), the set A of answer sets of
ΠS is a world view, a ∈ A for any A ∈ A}|.

5Note that there are several ways to treat potential occurrences of double negation, which are out of the
scope of this work.

29

	1 Introduction
	2 Preliminaries
	3 Decomposition-Guided Compression
	3.1 The Reduction
	3.2 Methodology for Lower Bounds

	4 Correctness, Compression and Runtime
	5 Conclusion
	A Appendix
	A.1 Counting Problems
	A.2 Problem Compendium

