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Abstract—Optimal determinization construction of Streett au-
tomata is an important research problem because it is indis-
pensable in numerous applications such as decision problems
for tree temporal logics, logic games and system synthesis.
This paper presents a transformation from nondeterministic
Streett automata (NSA) with n states and k Streett pairs to
equivalent deterministic Rabin transition automata (DRTA) with

n5n(n!)n states, O(nn2
) Rabin pairs for k = ω(n) and n5nknk

states, O(knk) Rabin pairs for k = O(n). This improves the state
of the art Streett determinization construction with n5n(n!)n+1

states, O(n2) Rabin pairs and n5nknkn! states, O(nk) Rabin pairs,
respectively. Moreover, deterministic parity transition automata
(DPTA) are obtained with 3(n(n + 1) − 1)!(n!)n+1 states, 2n(n + 1)
priorities for k = ω(n) and 3(n(k + 1) − 1)!n!knk states, 2n(k + 1)
priorities for k = O(n), which improves the best construction with
nn(k + 1)n(k+1)(n(k + 1)− 1)! states, 2n(k + 1) priorities. Further, we
prove a lower bound state complexity for determinization con-
struction from NSA to deterministic Rabin (transition) automata
i.e. n5n(n!)n for k = ω(n) and n5nknk for k = O(n), which matches the
state complexity of the proposed determinization construction.
Besides, we put forward a lower bound state complexity for
determinization construction from NSA to deterministic parity

(transition) automata i.e. 2Ω(n2 log n) for k = ω(n) and 2Ω(nk log nk)

for k = O(n), which is the same as the state complexity of the
proposed determinization construction in the exponent.

Keywords—Streett automata, Rabin automata, determiniza-
tion, state complexity, lower bound.

I. INTRODUCTION

Streett automata [1] are nearly the same as Büchi automata

[2] except for the acceptance condition. They are exponen-

tially more succinct than Büchi automata in encoding infinite

behaviors of systems [4]. As a result, Streett automata have

an advantage in modeling behaviors of concurrent and reactive

systems [5].

Determinization is one of the fundamental notions in au-

tomata theory. Given a nondeterministic automaton A, deter-

minization of A is the construction of another deterministic

automaton B that recognizes the same language as A does.

As for Streett automata, determinization constructions have

been investigated for decades. In 1992, Safra introduced the

first determinization construction for nondeterministic Streett

automata (NSA) by using an innovative data structure known

as Streett Safra trees [3]. The states of the resulting deter-

ministic automata are not sets of states, but tree structures.

Safra’s construction transforms a NSA with n states and k

Streett pairs into a deterministic Rabin automaton (DRA) with

12n(k+1)nn(k + 1)n(k+1)(n(k + 1))n(k+1) states and n(k + 1) Rabin

pairs. In 2007, Piterman [9] presented a tighter construction

via compact Streett Safra trees which are obtained by using

a dynamic naming technique throughout the Streett Safra tree

construction. With compact Streett Safra trees, a NSA can be

transformed into an equivalent deterministic parity automaton

(DPA) with 2nn(k + 1)n(k+1)(n(k + 1))! states and 2n(k + 1)

priorities; or a DRA with the same state complexity and n(k+1)

Rabin pairs. The key advantage of Piterman’s determinization

is the resulting DPA which is easier to manipulate. In 2012,

Cai and Zhang presented the construction of an equivalent

DRA with n7n(n!)n+1 states and O(n2) Rabin pairs for k = ω(n),

and n5nkn(k+2)n! states and O(nk) Rabin pairs for k = O(n)

[5], [6]. Their construction is based on another data struc-

ture, namely, µ-Safra trees for Streett determinization, which

reduces the redundancy of index labels and utilizes a batch-

mode naming scheme.

As for the state lower bound of Streett determinization, it

has also been investigated. For a NSA with n states and k

Streett pairs, Cai and Zhang proved a lower bound of Streett

complementation which is 2Ω(n log n+nk log k) states for k = O(n)

and 2Ω(n2 log n) states for k = ω(n) [8]. It indicates that the

lower bound state complexity for determinization construction

from NSA to DR(T)A is no smaller than (maybe very close

to) 2Ω(n log n+nk log k) for k = O(n) and 2Ω(n2 log n) for k = ω(n).

Besides, for the lower bound state complexity for determiniza-

tion construction from NSA to deterministic Streett (transition)

automata (DS(T)A) or DP(T)A, a result was given in [12], [13]

with 2Ω(n log n) states. Later, Yan [15] obtained the same result

via full automata technique. Since then, the lower bound state

complexity 2Ω(n log n) for determinization construction from

NSA to DS(T)A or DP(T)A has never improved. There is a

gap between the upper and lower bounds state complexity for

determinization construction from NSA to DR(T)A, DS(T)A,

or DP(T)A. Therefore, it is interesting to make the state

complexity for Streett determinization construction tight or

tighter.

In this paper, we reconstruct µ-Safra trees as H-Safra trees

for Streett determinization by changing the name on each

node of the tree. As a consequence, an improved construction

of DRTA is obtained with state complexity being n5n(n!)n

for k = ω(n), and n5nknk for k = O(n). Then, LIR-H-Safra

trees for Streett determinization are presented by adding later

introduction records, which records the generation order of

each node, to H-Safra trees. Based on LIR-H-Safra trees,
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an improved construction of DPTA is obtained with state

complexity being 3(n(n + 1) − 1)!(n!)n+1 for k = ω(n), and

3(n(k + 1) − 1)!n!knk for k = O(n). We prove the lower bound

state complexity for determinization construction from NSA

to DR(T)A by the language game namely L-game [14] which

matches the state complexity of the proposed determinization

construction by H-Safra trees. Moreover, an improved lower

bound state complexity 2Ω(n2 log n) for k = ω(n) and 2Ω(nk log nk)

for k = O(n) for determiniztion construction from NSA to

DP(T)A is proposed based on L-game. It is the same as

the determinization construction by LIR-H-Safra trees in the

exponent.

The rest of the paper is organized as follows. The next

section briefly introduces automata over infinite words. In

Section III, Cai and Zhang’s NSA-to-DRA determinization

based on µ-Safra trees is revisited. Our new data structures, H-

Safra trees for Streett determinization and LIR-H-Safra trees

for Streett determinization, are presented in Section IV. In

the sequel, the improved NSA-to-DRTA and NSA-to-DPTA

determinization constructions are presented in Section V.

Section VI studies the lower bound of the determinization

construction.

II. AUTOMATA

Let Σ be a finite set of symbols called an alphabet. An

infinite word α is an infinite sequence of symbols from Σ. Σω is

the set of all infinite words over Σ. We present α as a function

α : N→ Σ, where N is the set of non-negative integers. Thus,

α(i) denotes the letter appearing at the ith position of the word.

In general, Inf(α) denotes the set of symbols from Σ which

occur infinitely often in α. Formally, Inf(α) = {σ ∈ Σ | ∃ωn ∈

N : α(n) = σ}. Note that ∃ωn ∈ N means that there exist

infinitely many n in N.

Definition 1 (Automaton). An automaton over Σ is a tuple

A = (Σ,Q, δ,Q0, λ), where Q is a non-empty, finite set of

states, Q0 ⊆ Q is a set of initial states, δ ⊆ Q × Σ × Q is a

transition relation, and λ is an acceptance condition.

A run ρ of an automaton A on an infinite word α is an

infinite sequence ρ : N→ Q such that ρ(0) ∈ Q0 and for all i ∈

N, (ρ(i), α(i), ρ(i+1)) ∈ δ. A is said to be deterministic if Q0 is a

singleton, and for any (q, σ, q′) ∈ δ, there exists no (q, σ, q′′) ∈

δ such that q′′ , q′, and nondeterministic otherwise. Similar

to infinite words, Inf(ρ) denotes the set of states from Q which

occur infinitely often in ρ. Formally, Inf(ρ) = {q | ∃ωn ∈ N :

ρ(n) = q}.

Several acceptance conditions are studied in literature. We

present three of them here:

• Streett, where λ = {〈G1, B1〉, 〈G2, B2〉, . . . , 〈Gk, Bk〉} with

Gi, Bi ⊆ Q. ρ is accepted iff for all 1 ≤ i ≤ k, we have

that Inf(ρ) ∩Gi , ∅ or Inf(ρ) ∩ Bi = ∅.

• Rabin, where λ = {〈A1,R1〉, 〈A2,R2〉, . . . , 〈Ak,Rk〉} with

Ai, Ri ⊆ Q. ρ is accepted iff for some 1 ≤ i ≤ k, we have

that Inf(ρ) ∩ Ai , ∅ and Inf(ρ) ∩ Ri = ∅.

• Parity, where λ = {λ1, λ2, . . . , λ2k} with λ1 ∪ λ2 ∪ . . . ∪

λ2k = Q. ρ is accepted iff the minimal index i for which

Inf(ρ) ∩ λi , ∅ is even.

An automaton accepts a word if it has an accepting run on

it. The accepted language of an automaton A, denoted by L(A),

is the set of words that A accepts.

We denote the different types of automata by three letter

acronyms in {D,N} × {S ,R, P} × {A}. The first letter stands

for the branching mode of the automaton (deterministic or

nondeterministic); the second letter stands for the acceptance

condition type (Streett, Rabin, or parity); and the third letter

indicates automata. While acceptance condition of an ordinary

automaton is defined on states, the acceptance condition of a

transition automaton is defined on transitions of the automaton.

Accordingly, with respect to each type of ordinary automata,

we also have its transition version.

III. DETERMINIZATION VIA µ-SAFRA TREES FOR STREETT

This section revisits the determinization construction via µ-

Safra trees for Streett [5]. For any positive integer m ∈ N, we

use [m] to denote the set {1, 2, . . . ,m}.

A. µ-Safra Trees for Streett Determinization

µ-Safra trees for Streett determinization, presented by Cai

and Zhang in 2012 [5], are obtained from Streett Safra trees

[3]. A µ-Safra tree for Streett determinization is a labelled

ordered tree. A tree is ordered just if the nodes are partially

ordered by older-than relation. Compared with Streett Safra

trees, the characteristic of µ-Safra trees for Streett determiniza-

tion is a batch-mode naming scheme Mb for nodes.

For an ordered tree, a leaf corresponds to a left spine. A left

spine is a maximal path τ1, τ2, . . . , τm such that τm is a leaf,

for any i ∈ {2, . . . ,m}, τi is the left-most child of τi−1, and

τ1, called the head of the left spine, is not a left-most child

of its parent [5]. We arrange all left spines with consecutive

integers starting from 1 as names of left spines. Each node is

on exactly one left spine. For the sibling nodes, the name of the

left spine, which contains the left-most sibling, is smaller than

the others. With this basis, every node can be named uniquely.

Nodes in a left spine named ls, from the head downwards, are

assigned continuously increasing names, starting from ls.1.

Rule 1 (Batch-mode naming scheme Mb). If a node τ belongs

to the left spine named ls, and τ is the i-th node in ls, the name

of τ is ls.i, i.e. Mb(τ) = ls.i [5].

Definition 2 (Cover and Mini [5], [7]). For a NSA S = (Σ,Q,

Q0, δ, λ) with |Q| = n and k Streett pairs λ = {〈G1, B1〉,

〈G2, B2〉, . . . , 〈Gk, Bk〉}. Let β be a subset of [k], and Gβ =
⋃

i∈βGi, where Gi is the first element of the i-th Streett pair

〈Gi, Bi〉. Then, Cover maps 2[k] to 2[k] such that

Cover(β) = { j ∈ [k] | G j ⊆ Gβ}

Mini also maps 2[k] to 2[k] such that j ∈ Mini(β) if, and only

if, j ∈ [k]\Cover(β) and

∀ j′ ∈ [k]\Cover(β), [ j′ , j→ (G j′ ∪Gβ 1 G j ∪Gβ)], (1)
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∀ j′ ∈ [k]\Cover(β), [ j′ < j→ (G j′ ∪Gβ , G j ∪Gβ)]. (2)

Example 1. For a NSA with n = 3, k = 4, Q = {q0, q1, q2},

and the first elements of the four Streett pairs are G1 = {q0, q1},

G2 = {q0}, G3 = {q1, q2}, and G4 = {q2}. Let β = {3}. We have

Gβ = G3 = {q1, q2}. Obviously, G3 ⊆ Gβ and G4 ⊆ Gβ, which

infers to Cover(β) = {3, 4}.

Further, we have [k]\Cover(β) = {1, 2}. For j = 1, j′ = 2,

we have G j′ ∪ Gβ = {q0, q1, q2} and G j ∪ Gβ = {q0, q1, q2},

which satisfies Conditions (1) and (2). Thus, 1 ∈ Mini(β).

For j = 2, j′ = 1, we also have G j′ ∪ Gβ = {q0, q1, q2} and

G j ∪ Gβ = {q0, q1, q2}. Obviously, Condition (2) is violated

since ( j′ = 1) < ( j = 2). Thus, 2 < Mini(β). As a result,

Mini(β) = {1}.

Definition 3 (µ-Safra tree for Streett determinization [5]).

Fix a NSA S = (Σ,Q,Q0, δ, λ) with |Q| = n and k Streett

pairs λ = {〈G1, B1〉, 〈G2, B2〉, . . . , 〈Gk, Bk〉}. A µ-Safra tree for

Streett determinization of the NSA S is a labeled ordered tree

〈To,V, l, h,Mb, E, F, stor〉, where To is an ordered tree, and

• V is the set of all nodes in To.

• l: V → 2Q is a state label of nodes with subsets of Q.

The label of every node is equal to the union of its sons.

The labels of two siblings are disjoint.

• h: V → 2[k] is an index label, which annotates every node

with a set of indices from [k]. The root is annotated by

[k]. The annotation of every node is contained in that of

its parent and it misses at most one element from the

annotation of the parent. Every node that is not a leaf

has at least one son with strictly smaller annotation. In

addition, each leaf τl satisfies h(τl) = ∅ or Mini([k] −

h(τl)) = ∅, where Mini is defined in Definition 2 for

determining the index labels of nodes.

• Mb: V → [n].[µ + 1], where µ = min(n, k), assigns each

node a unique name by the batch-mode naming scheme.

• E, F ⊆ V are two disjoint subsets of V . They are used to

define the Rabin acceptance condition.

• stor is an additional structural ordering on nodes. For

every non-root node τ, let j(τ) = max{(h(τp)∪{0})−h(τ)}

where τp is the parent of τ. stor means that for any two

siblings τ and τ′, τ′ is placed to the right of τ if, and

only if, j(τ) > j(τ′), or j(τ) = j(τ′) and τ is older than

τ′.

The following lemma has been proved in [5].

Lemma 1. For a µ-Safra tree for Streett determinization of

a NSA with n states and k Streett pairs, there are at most n

left spines, and each left spine has at most µ+1 nodes, where

µ = min(n, k). Therefore, [n].[µ+ 1] node names are sufficient

[5].

Accordingly, Lemma 2 is easily obtained.

Lemma 2. The number of nodes in a µ-Safra tree for Streett

determinization is at most n(µ + 1) [5].

Fig. 1 illustrates a µ-Safra tree for Streett determinization

of a NSA with 5 states, namely, a, b, c, d and e. This µ-

Safra tree contains 12 nodes. The state sets shown in nodes

are state labels. The batch-mode names and index labels of

nodes are given in red and blue, respectively. There are four

left spines, i.e. {1.1, 1.2, 1.3, 1.4}, {2.1, 2.2, 2.3}, {3.1, 3.2} and

{4.1, 4.2, 4.3}.

a, b, c, d, e

b, e c a, d

b e a, d

h={1,2,3}

h={1,2} h={1,3} h={1,3}

h={1} h={2} h={3}

1.1

1.2

1.3

2.1

3.1

4.1

4.2

b e

c

c a, d
4.3

h={ } h={ } h={ } h={ }

h={1}

1.4

2.2

2.3
3.2

Fig. 1. A µ-Safra tree for Streett determinization

Along a sequence of µ-Safra tree for Streett determinization

transformations, there may exist some node whose name is

changed. For instance, when a node moves into another left

spine, the node should be renamed. The renaming scheme is

stated by Rule 2 [5].

Rule 2 (Batch-mode renaming scheme). When a left spine is

created, nodes in the left spine are assigned names from an

unused name bucket. When a left spine is removed, the name

bucket of the left spine is recycled. When a left spine ls is

grafted into another left spine ls′, the name bucket of ls is

recycled and nodes on ls are renamed as if they were on ls′,

originally.

In the transformations, the index labels h of the new created

nodes also need to be defined. The index label h of a node

τ is a subset of the indices set of all Streett pairs. We will

check whether all states in l(τ) visits the first elements Gs of

these Streett pairs one by one. But there may exist a situation

that some G of a Streett pair 〈G, B〉 is contained by another

G′. If G′ has been checked, it is redundant to further check

G. In order to reduce unnecessary inspections, the functions

Mini, which decreases the combination of index labels h, will

be utilized in the determinization construction. In [5], it has

been proved that using Mini to select the index labels of the

children is sound and complete.

B. Construction of µ-Safra Trees for Streett Determinization

Fix a NSA S = (Σ,Q,Q0, δ, 〈G, B〉[k]). The initial µ-Safra

tree for Streett determinization of S is a single-branch (only

a left spine) labelled tree TI . Every node is named by the

batch-mode naming scheme. For each node τ, l(τ) = Q0 and

h(τ) = h(τp) − max{Mini([k] − h(τp))}. Specially, for the root

τr, h(τr) = [k], and the leaf τl satisfies h(τl) = ∅ or Mini([k]−

h(τl)) = ∅. Set E = ∅ and F = ∅. Given a µ-Safra tree Tµ
for Streett determinization of S and σ ∈ Σ, we construct a

new µ-Safra tree T̂µ for Streett determinization, called the σ-

successor of Tµ, in six steps as follows.
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1) Update: Set E and F to empty sets and replace the state

label of every node τ in Tµ by
⋃

q∈l(τ) δ(q, σ). Call the

resultant labelled tree Tµ1
.

2) Create siblings: Apply the following transformations to

non-leaf nodes of Tµ1
. Let τ be a node with m children

τ1, . . . , τm. Sequentially consider the following cases for

each i ∈ [1..m] from 1 to m.

a) If l(τi) ∩ G j(τi) , ∅, add a child τ′ to τ with l(τ′) =

l(τi) ∩G j(τi) and h(τ′) = h(τ) −max{[0.. j(τi)) ∩ ({0} ∪

Mini([k]−h(τ)))}, and remove the states in l(τi)∩G j(τi)

from τi as well as all its descendants.

b) If l(τi) ∩ G j(τi) = ∅ and l(τi) ∩ B j(τi) , ∅, add a child

τ′ to τ with l(τ′) = l(τi)∩ B j(τi) and h(τ′) = h(τi), and

remove the states in l(τi)∩B j(τi) from τi as well as all

its descendants.

Call the resultant labelled tree Tµ2
.

3) Horizontal merge: For any two siblings τ and τ′ in Tµ2

and any state q ∈ l(τi) ∩ l(τi′ ), if j(τ) < j(τ′), or j(τ) =

j(τ′) and τ is older than τ′, then remove q from τ′ and

all its descendants. Remove nodes with empty state label

and add their names, if defined, to E. Call the resultant

labelled tree Tµ3
.

4) Vertical merge: For each non-leaf τ in Tµ3
, if all children

are annotated by h(τ), then remove all the children and

their descendants. Add the name of τ to F. Call the

resultant labelled tree Tµ4
.

5) Rename: Rename nodes whose names are defined in Tµ4

according to Rule 2 and add nodes that are renamed to

E, which results in Tµ5
.

6) Create children: Repeat the following procedure until no

new nodes can be added: For each leaf τ in Tµ5
such that

h(τ) , ∅ and Mini([k] − h(τ)) , ∅, add to τ a new child

τ′. Set l(τ′) = l(τ), h(τ′) = h(τ) − max{Mini([k] − h(τ))}.

Then name nodes whose names are undefined according

to the batch-mode naming scheme. The resultant labelled

tree is denoted as T̂µ.

T̂µ is a µ-Safra tree for Streett determinization.

Thus, given a NSA S = (Σ,Q,Q0, δ, 〈G, B〉[k]), by applying

the above six-step procedure recursively until no new µ-Safra

trees can be created, an associated DRA DR = (Σ,QDR, TµI
,

δDR, λDR) can be constructed. Here, QDR is the set of µ-Safra

trees for Streett determinization of S , TµI
is the initial µ-

Safra tree for Streett determinization, δDR is the µ-Safra-tree-

Streett transition relation (i.e. Tµ
σ
−→ T̂µ whenever T̂µ is the σ-

successor of Tµ), and λDR = {(Aτ1
,Rτ1

), . . . , (Aτk
,Rτk

)} (where

k ≥ 1) is the Rabin acceptance condition. For each i, the node

τi is given by its name, Aτi
is the set of µ-Safra trees for

Streett determinization (node τi belongs to F ), and Rτi
the set

of µ-Safra trees for Streett determinization (node τi belongs

to E).

Given an input ω-word α : ω→ Σ, we call the sequenceΠ =

Tµ0
Tµ1

Tµ2
Tµ3
. . . of µ-Safra trees for Streett determinization

such that Tµ0
= TµI

, and for all i ∈ ω, Tµi+1
is the α(i)-successor

of Tµi
, the µ-Safra Streett trace of the NSA S over α. We

view the µ-Safra Streett trace of S over α as the run of the

DRA DR over α. Then we say that α is accepted by the DRA

if there exists i ∈ {1, . . . , k} such that Inf(Π) ∩ Aτi
, ∅ and

Inf(Π) ∩ Rτi
= ∅.

Theorem 3 (Cai and Zhang [5], [6]). Given a NSA S with n

states and k Streett pairs, a DRA with n7n(n!)n+1 states, O(n2)

Rabin pairs for k = ω(n), and n5nkn(k+2)n! states, O(nk) Rabin

pairs for k = O(n) can be constructed that recognizes the

language L(S ).

By deleting the two sets E and F of each µ-Safra tree in

the Streett determinization and recording the accepting and

rejecting nodes throughout each transition, a DRTA can be

constructed.

Corollary 4. Given a NSA S with n states and k Streett pairs,

a DRTA with n5n(n!)n+1 states, O(n2) Rabin pairs for k = ω(n),

and n5nknkn! states, O(nk) Rabin pairs for k = O(n) can be

constructed that recognizes the language L(S ).

IV. H-SAFRA TREES AND LIR-H-SAFRA TREES FOR

STREETT DETERMINIZATION

This section presents two new data structures, called H-

Safra trees and LIR-H-Safra trees for Streett determinization.

A. H-Safra Trees for Streett Determinization

As for Büchi determinization, Schewe proposes a tight

construction via history trees which results in an equivalent

DRTA [10]. In Schewe’s construction, instead of explicit

names, nodes are implicitly named. This leads to a reduction of

state complexity. With this motivation, we put forward a new

data structure namely H-Safra trees for Streett determinization.

Compared with µ-Safra trees for Streett determinization, the

only difference is the naming scheme of nodes.

For a structural ordered tree with state and index labels

(i.e. a µ-Safra tree for Streett determinization without names,

E and F), denoted by T si (Fig. 2 is an example), we give a

new naming scheme depending only on the index label h of

nodes, which is expressed by Rule 3.

a, b, c, d, e

b, e c a, d

b e a, d

h={1,2,3}

h={1,2} h={1,3} h={1,3}

h={1} h={2} h={3}

b e

c

c a, d

h={ } h={ } h={ } h={ }

h={1}

Fig. 2. A structural ordered tree with state and index labels

Rule 3 (Naming scheme Mn).

• For the root τr , Mn(τr) = ǫ;

• for each node τ in the second level, Mn(τ) = j(τ)i+1 where

i = |{τ′|τ′ is the left sibling of τ, and j(τ′) = j(τ)}|;
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• for any other node τ, Mn(τ) = Mn(τp). j(τ)i+1.

Utilizing the new naming scheme, we can get a H-Safra

tree for Streett determinization.

Definition 4 (H-Safra trees for Streett determinization). A

H-Safra tree for Streett determinization of a given NSA

S = (Σ,Q,Q0, δ, λ) with n states and k Streett pairs is a pair

〈T si,Mn〉 where T si is a structural ordered tree with state and

index labels of S , and Mn is the new naming scheme.

Fig. 3 is a H-Safra tree for Streett determinization obtained

from Fig. 2 by using the new naming scheme. Here, the names

of nodes are given in red. For the node τ with l(τ) = {a, d} and

h(τ) = {1, 3} ( j(τ) = 2), it belongs to the second level nodes,

and there exists a left sibling τ′ such that j(τ′) = j(τ) = 2.

Thus the name of τ is 22.

j = 2 j = 2

j = 2 j = 1 j = 1

31 21 22

31.21 22.11

ǫ

a, b, c, d, e

b, e c a, d

b e a, d

h={1,2,3}

h={1,2} h={1,3} h={1,3}

h={1} h={2} h={3}

b e

c

c a, d

h={ } h={ } h={ } h={ }

h={1}

31.11

31.21.11 31.11.21

21.31

21.31.11
22.11.31

j = 3

j = 3

j = 1 j = 2 j = 1 j = 3

Fig. 3. A H-Safra tree

Obviously, each node in a structural ordered tree with state

and index labels can be uniquely named.

The new naming scheme is the core of our determinization

construction. Given a NSA, H-Safra trees for Streett deter-

minization will be taken as the states of the final DRTA. By the

naming scheme, once the index label h of each node is fixed,

the name is also determined, which makes the state complexity

decrease.

Lemma 5. The number of H-Safra trees for Streett deter-

minization of a given NSA is equal to the number of structural

ordered trees with state and index labels, i.e. µ-Safra trees for

Streett determinization without names, E, and F, occurring in

the determinization construction.

Proof. By the naming scheme Mn, for each node τ occurring

in a structural ordered tree with state and index labels, a unique

name Mn(τ) is assigned to τ. Mn(τ) depends on the index

label and the position of τ in the tree. Thus, the number of

H-Safra trees for Streett determinization of a NSA is equal

to the number of structural ordered trees with state and index

labels. �

B. LIR-H-Safra Trees for Streett Determinization

In order to transform a NSA to a DPTA, we need a dynamic

node identification scheme that captures the order in which

the nodes are created when constructing the σ-successors.

Consequently, the state complexity of the DPTA transform will

increase. Similar to the constructions of Schewe from NBA

to DPA [10] and from NPA to DPA [11], the data structure

we shall use is H-Safra trees for Streett determinization with

later introduction record (LIR), called LIR-H-Safra trees for

Streett determinization. A LIR is a sequence of nodes in the

H-Safra tree for Streett determinization according to the order

the nodes are generated.

Definition 5 (LIR-H-Safra trees for Streett determinization).

Given a NSA S = (Σ, Q,Q0, δ, λ) with n states and k Streett

pairs, a LIR-H-Safra tree for Streett determinization is a pair

〈H, LIR〉 where H is a H-Safra tree for Streett determinization

and LIR stores the order in which the nodes of H are created.

31 21 22

31.21 22.11

ǫ

a, b, c, d, e

b, e c a, d

b e a, d

h={1,2,3}

h={1,2} h={1,3} h={1,3}

h={1} h={2} h={3}

b e

c

c a, d

h={ } h={ } h={ } h={ }

h={1}

31.11

31.21.11 31.11.21

21.31

21.31.11
22.11.31

LIR={ǫ, 31, 21, 31.21, 22, 31.11, 22.11, 21.31,

2
1.31.11, 31.21.11, 31.11.21, 21.11.31}

Fig. 4. A LIR-H-Safra tree

Fig. 4 is a LIR-H-Safra tree for Streett determinization. The

LIR contains all nodes of the tree such that each node appears

after its left siblings. Every node in LIR is represented by its

name for simplicity.

As for each node τ of a given LIR-H-Safra tree for Streett

determinization, we introduce an extra notation p(τ) to denote

the position of τ in the LIR.

V. DETERMINIZATION VIA H-SAFRA TREES AND

LIR-H-SAFRA TREES FOR STREETT

This section presents a NSA-to-DRTA determinization

transform via H-Safra trees and a NSA-to-DPTA determiniza-

tion transform via LIR-H-Safra trees.

A. Construction of H-Safra Trees for Streett Determinization

Fix a NSA S = (Σ,Q,Q0, δ, 〈G, B〉[k]). The initial H-Safra

tree for Streett determinization of S is a single-branch labelled

tree HI . For each node τ of HI , the state label l(τ) = Q0 and

index label h(τ) = h(τp) − max{Mini([k] − h(τp))}. Specially,

for the root τr, h(τr) = [k], and the leaf τl satisfies h(τl) = ∅

or Mini([k] − h(τl)) = ∅. Every node in HI is named by the

new naming scheme.
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Given a H-Safra tree H for Streett determinization of S and

σ ∈ Σ, we construct a new H-Safra tree Ĥ for Streett deter-

minization, called the σ-successor of H, and the signatures

sigacc and sigre j of the transition, in six steps as follows.

We intuitively illustrate the six steps of construction by an

example. Fig. 5 shows all transitions for an input letter σ

from the states in the H-Safra tree for Streett determinization

in Fig. 3.

a

e

b

dc

G1 = {a}, B1 = {b}

G2 = {e, d}, B2 = {c}

G3 = {c}, B3 = ∅

Fig. 5. Relevant fragment of a Streett automaton

Step 1: Update: Replace the state label of every node τ

in H by
⋃

q∈l(τ) δ(q, σ). Call the resultant labelled tree H1.

Let H be the H-Safra tree for Streett determinization in

Fig.3 for the NSA whose transition is depicted in Fig.5. Fig.6

shows the tree structure H1 resulting from H after Step 1 of

the construction procedure. Compared with H, state labels of

all nodes in H1 are updated.

31 21 22

31.21 22.11

ǫ

a, b, c, d, e

b, c, d e a, c, e

c, d b

h={1,2,3}

h={1,2} h={1,3} h={1,3}

h={1} h={2} h={3}

c, d b
h={ } h={ } h={ } h={ }

h={1}

31.11

31.21.11 31.11.21

21.31

21.31.11 22.11.31

e

e

a, c, e

a, c, e

Fig. 6. Step 1 of the construction procedure

Step 2: Create siblings: Apply the following transfor-

mations to non-leaf nodes of H1 from the root. Let τ be a node

with m children τ1, . . . , τm. Sequentially consider the following

two cases for each i ∈ [1..m] from 1 to m:

a) If l(τi) ∩ G j(τi) , ∅, add a youngest child τ′ to τ with

l(τ′) = l(τi)∩G j(τi) and h(τ′) = h(τ)−max{[0.. j(τi))∩ ({0}∪

Mini([k] − h(τ)))}, and remove the states in l(τi) ∩ G j(τi)

from τi and all its descendants; then

b) if l(τi) ∩ B j(τi) , ∅, add a youngest child τ′ to τ with

l(τ′) = l(τi)∩B j(τi) and h(τ′) = h(τi), and remove the states

in l(τi) ∩ B j(τi) from τi and all the descendants.

Note that the names of the new created nodes are not defined

currently. Then rearrange sibling nodes by the structural or-

dering from the second level to the last level.

We use a simple example illustrated in Fig.7 to show how

the sibling nodes are rearranged. For the siblings τ1, τ2, τ3 and

τ4 in Fig.7 (a), we have j(τ1) = 2, j(τ2) = 3, j(τ3) = 1, and

j(τ4) = 2. We rearrange the siblings according to the value

of j from the largest to the smallest. As for τ1 and τ4 with

j(τ1) = j(τ4), τ4 is younger than τ1, since the later the node

is generated, the younger it is. It indicates that the relative

order of nodes with the same j will not change. The resultant

tree after structural ordering is shown in Fig.7 (b). Compared

with Fig.7 (a), the positions of τ1 and τ2, and τ3 and τ4 are

swapped, respectively.

3121 22

ǫ

a, b, c, d, e

b, d e

h={1,2,3}

h={1,2} h={2,3} h={1,3}

a c

11

h={1,3}

31 21 22

ǫ

a, b, c, d, e

b, d e

h={1,2,3}

h={1,2} h={2,3}h={1,3}

a c

11

h={1,3}

j = 2 j = 3 j = 1 j = 2

j = 3 j = 2 j = 2 j = 1

structural ordering

τ1 τ2 τ3 τ4

τ1τ2 τ3τ4

(a)

(b)

Fig. 7. Structural ordering

After Step 2, the resultant labelled tree, called H2, is shown

in Fig.8. The nodes without names are new created in this

step, and every node observes the structural ordering. The state

labels of the nodes in grey will be deleted in Step 3.

a, b, c, d, e

b, d c

b

h={1,2,3}

h={1,2}

h={1,3} h={1,3}

h={1} h={2} h={3}

31 21 22

31.21 31.11 22.11

ǫ

a c e e

d a

h={1,3}

h={1,3}h={2,3} h={2,3}

h={2} h={1,3}h={1}

h={ } h={ }h={ } h={ }

31.21.11 31.11.21

21.31

21.31.11 22.11.31

h={2}

Fig. 8. Step 2 of the construction procedure

Step 3: Horizontal merge: For each node τ in H2

starting from the root, and every state q ∈ l(τ), if q also occurs

in the state label of a sibling τ′ of τ such that j(τ′) < j(τ), or

j(τ′) = j(τ) and τ′ is older than τ, then remove q from τ as

well as all its descendants. Afterward, for any node τ, remove
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τ if l(τ) = ∅. A removed node whose name is defined is called

rejecting.

Let H3 be the resultant tree. Next, we define sigre j = {τ | τ

is the rejecting node occurring in the current tree}, called the

rejecting signature of the δ-successor / transition being de-

fined. The resulting tree is depicted in Fig. 9 with sigre j = {2
1,

31.21, 31.11, 21.31, 22.11, 31.21.11, 31.11.21, 21.31.11, 22.11.31}.

In the resultant tree, the state labels of the siblings are pairwise

disjoint and there exists no empty node. Nevertheless, there

may exist a node which is equal to each of its children in

index label.

a, b, c, d, e

b, d c

b

h={1,2,3}

h={1,2}
h={1,3}

h={2}

31 22

ǫ

a e

d a

h={1,3}
h={2,3}

h={2} h={1,3}

Fig. 9. Step 3 of the construction procedure

Step 4: Vertical merge: For each non-leaf τ in H3

starting from the root, if the index label of each child is equal

to h(τ), then remove all the children of τ as well as their

descendants. The nodes whose descendants have thus been

removed are called accepting.

Let H4 be the resultant tree. Next define sigacc = {τ | τ

is the accepting node occurring in the current tree}, called

the accepting signature of the δ-successor / transition being

defined. The resulting tree is depicted in Fig. 10 with sigacc =

{22}. The state labels of the siblings are pairwise disjoint, and

no node is equal to each of its children in index label. The

names of nodes might not follow the new naming scheme. The

nodes that will be renamed in Step 4 are drawn in red.

a, b, c, d, e

b, d c

b

h={1,2,3}

h={1,2}
h={1,3}

h={2}

31 22

ǫ

a e

d

h={1,3}
h={2,3}

h={2}

Fig. 10. Step 4 of the construction procedure

Step 5: Rename: Rename nodes whose names are

defined in H4 starting from the root by applying the naming

scheme (Rule 3). The nodes which should be renamed are also

rejecting in this step. Add these rejecting nodes to sigre j. As for

this example, sigre j = {2
1, 31.21, 31.11, 21.31, 22.11, 31.21.11,

31.11.21, 21.31.11, 22.11.31, 22}.

Call the resultant labelled tree H5. Fig. 11 shows the tree

that results from Step 5. All nodes observe the naming scheme.

Then the resultant tree will spawn in the next step.

a, b, c, d, e

b, d c

b

h={1,2,3}

h={1,2}
h={1,3}

h={2}

31 21

ǫ

a e

d

h={1,3}
h={2,3}

h={2}

Fig. 11. Step 5 of the construction procedure

Step 6: Create children: Repeat the following procedure

until no new nodes can be added: For each leaf τ in H5, if

h(τ) , ∅ and Mini([k]−h(τ)) , ∅, add to τ a new child τ′. Set

l(τ′) = l(τ) and h(τ′) = h(τ) − {max(Mini([k] − h(τ)))}. Then

define names of the nodes which have not been named by the

new naming scheme yet.

The resultant labelled tree is a H-Safra tree for Streett

determinization, which we call Ĥ. Note that given H and

σ ∈ Σ, there are a unique σ-successor Ĥ, sigacc, and sigre j.

Fig. 12 shows Ĥ, called the σ-successor of H, obtained

through the six steps. Note that states in the resultant DRTA

are H-Safra trees for Streett determinization, and the signatures

sigacc, sigre j are part of the transition relation of the DRTA

transform.

h={2}

22

31.11

h={ } h={ }h={ }

a, b, c, d, e

b, d c

b

h={1,2,3}

h={1,2}
h={1,3}

h={2}

31 21

ǫ

a e

d

h={1,3}
h={2,3}

h={2}

d b

a

a

c

c

e

e

h={ } h={ }

h={1} h={1}

31.12

11

21.31 22.31

22.31.11

11.31

11.31.2131.11.21 31.12.21 21.31.11

Fig. 12. Step 6 of the construction procedure

Based on the six-step procedure, given a NSA S = (Σ,Q,

Q0, δ, 〈G, B〉[k]), an equivalent DRTA RT = (Σ,QRT ,QRT0,

δRT , λRT ) can be obtained. Here QRT is the set of H-Safra trees

for Streett determinization w.r.t S ; QRT0 is the initial H-Safra

tree for Streett determinization; δRT is a transition relation

that is established during the construction of H-Safra trees

for Streett determinization, consisting of transitions (typically

δ) which are of the form H
σ
−−→
δsig

Ĥ where δsig = (sigacc, sigre j)

is the signature of the transition δ, with σ ranging over Σ, and

H ranging over QRT ; and λRT = {(AI1,RI1), . . . , (AIk,RIk)} is

the Rabin acceptance condition. Note that, in each Rabin pair
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(AI ,RI), I ranges over the names appearing in the H-Safra

trees for Streett determinization. AI is the set of transitions

through which node τ with name being I is accepting, while

RI is the set of transitions through which node τ with name

being I is rejecting.

Given an input ω-word α: ω → Σ, we call the sequence

Π = (H0, α(0),H1) (H1, α(1),H2)(H2, α(2),H3) . . . of transi-

tions where H0 = HI , and for all i ∈ ω, Hi+1 is the α(i)-

successor of Hi, the H-Safra Streett trace of the NSA S over

α. We view the H-Safra Streett trace of S over α as the run

of the DRTA RT over α. Then we say that α is accepted by

the DRTA if Inf(Π) ∩ AIi , ∅ and Inf(Π) ∩ RIi = ∅ for some

(AIi,RIi).

Let RT be the DRTA obtained from the given NSA S .

Theorem 6 is formalized and proved.

Theorem 6. L(RT ) = L(S ).

Proof. This proof is similar to the one in [5].

⇐: This part of proof is almost identical to the one in [3].

We ought to show that if Π = H0H1 · · · is a run of RT over

an infinite word α = α0α1 · · · ∈ L(S ), then (1) a node τ exists

in every state in Π from some point on, (2) τ turns accepting

infinitely often, and (3) τ has a fixed name Ii. The argument

in [3] guarantees the existence of such a node τ with the first

two properties. The only complication comes from renaming.

We have the situation that τ with name Ii exists in Hm, but it

is renamed to Ii′ in the succeeding state Hm+1. This happens

when the left sibling τ′, whose index label h(τ′) = h(τ), of τ

in Hm is removed from Hm+1. However, it can only happen

to τ finitely many times, as the left siblings with the same

index labels of τ are finite and the new created siblings whose

index labels are the same as τ will be placed to the right of

τ. Therefore, τ is eventually assigned a fixed name Ii, which

provide us the third property.

⇒: Given an ω-word α = α0α1 · · · ∈ L(RT ), there exists an

accepting run Π = H0H1 · · · of RT over α. We ought to show

that there is also an accepting run of S over α. Π is accepting

means that there exists an Ii ∈ I such that Π eventually never

visits RIi, but visits AIi infinitely often. Since renamed nodes

or deleted nodes are rejecting, all nodes named by Ii have to

be the same node. It follows that a node τ eventually stays

in every state in a suffix of Π and τ turns accepting infinitely

often. The rest of the proof is the same as the one in [3]. �

Theorem 7. Given a NSA S with n states and k Streett pairs,

we can construct a DRTA with n5n(n!)n states, O(nn2

) Rabin

pairs for k = ω(n) and n5nknk states, O(knk) Rabin pairs for

k = O(n) that recognizes the language L(S ).

Proof. For the state complexity, by Lemma 5, we can calculate

the number of structural ordered trees with state and index

labels (i.e. µ-Safra trees for Streett determinization without

names, E and F). According to the result in [5], [6], there are at

most n4n structural ordered trees. For every structural ordered

tree, there are at most nn possibilities of state labeling. Besides,

the number of possibilities of index labeling is bounded by

(n!)n for k = ω(n), and knk for k = O(n). Thus, the state

complexity is n4n · nn · (n!)n
= n5n(n!)n for k = ω(n), and

n4n · nn · knk
= n5nknk for k = O(n).

For the index complexity, we have that for any branch from

the root to a leaf of a H-Safra tree, there are at most µ nodes,

say τ, such that j(τ) , 0. Moreover, a H-Safra tree contains

at most n nodes, say τ, with j(τ) = 0 [5]. Therefore, there

are at most n + µ nodes in a branch. The name of a node is

denoted by x
y1

1
.x

y2

2
. · · · .x

yn+µ

n+µ, where xi ∈ {0, j1, j2, . . . , jµ} ( jm
is obtained by Mini for 1 ≤ m ≤ µ) and yi ∈ {1, 2, . . . , n}. The

number of i such that xi = 0 is exactly n. Thus, the number

of names is
(

n

n + µ

)

· nn · (µ!)n
= O(µnµ).

Since µ = min(n, k), for k = ω(n), by replacing µ with n,

the index complexity O(nn2

) is obtained; for k = O(n), by

replacing µ with k, O(knk) is obtained. �

B. Construction of LIR-H-Safra Trees for Streett Determiniza-

tion

Fix a NSA S = (Σ,Q,Q0, δ, 〈G, B〉k). The initial LIR-H-

Safra tree for Streett determinization LHI of S is HI with a

LIR. The order of all nodes in the LIR follows the order a

node is generated.

Given a LIR-H-Safra tree LH of S and a σ ∈ Σ, we construct

a new LIR-H-Safra tree ˆLH, called the σ-successor of LH,

and the signature sig of the transition, also in six steps similar

to the transformation from NSA to DRTA. The differences

are: (1) For a node τ in LH, if p(τ) changes during the

transformation, τ is rejecting; otherwise, τ is stable. (2) The

signature is defined by sig = (st, p). If there is no accepting

or rejecting node, sig = ∅. Otherwise, in the case τ̂ is the

node with the minimal position in the LIR among accepting

or rejecting nodes in the transformation, it has p = p(τ̂),

st := acc if τ̂ is accepting, and st := rej if τ̂ is rejecting. As

a result, an equivalent DPTA PT = (Σ,QPT ,QPT0, δPT , λPT )

can be obtained. Here QPT is the set of LIR-H-Safra trees for

Streett determinization w.r.t S ; QPT0 is the initial LIR-H-Safra

tree for Streett determinization; δPT is a transition relation that

is established during the construction of LIR-H-Safra trees for

Streett determinization, consisting of transitions (typically δ)

which are quintuples of the form LH
σ
−−→
δsig

ˆLH where δsig is

the signature of the transition δ, with σ ranging over Σ, and

LH ranging over QPT ; λRT = {λ2, λ3, · · · , λ2n(µ+1), λ2n(µ+1)+1} is

the parity acceptance condition. Notice that for each 1 ≤ i ≤

2n(µ + 1),

λ2i := {δ ∈ δPT | δsig = (acc, i)}

λ2i−1 := {δ ∈ δPT | δsig = (rej, i)}

λ2n(µ+1)+1 := {δ ∈ δPT | δsig = ∅ or δsig = (rej, 1)}

Given an input ω-word α : ω → Σ, we call the sequence

Π = (LH0, α(0), LH1) (LH1, α(1), LH2)(LH2, α(2), LH3) . . . of

transitions such that LH0 = LHI , and for all i ∈ ω, LHi+1 is

the α(i)-successor of LHi, the LIR-H-Safra Streett trace of the

NSA S over α. We view the LIR-H-Safra Streett trace of S

over α as the run of the DPTA PT over α. Then we say that

8



α is accepted by the DPTA if the minimal index k for which

Inf(Π) ∩ λk , ∅ is even.

Let PT be the DPTA obtained from the given NSA S .

Theorem 8 is formalized.

Theorem 8. L(PT ) = L(S ).

Proof. As it has been proved that S is equivalent to the DRTA

RT in Section V-A, we further prove this theorem by showing

L(PT ) = L(RT ).

⇐: Given an ω-word α ∈ L(RT ), there is a node τ that

is accepting infinitely often and its name keeps unchanged

eventually in the H-Safra Streett trace about α. It indicates that

the position of τ in the LIR is non-increasing. Note that the

position of τ in the LIR decreases when a node τ̂ at a smaller

position with h(τ̂) , h(τ) is removed. However, this can only

happen for finitely many times. The node τ will eventually

remain in the same position p in the LIR and every node τ′

with p(τ′) ≤ p will be stable. Hence, no odd priority < 2p

occurs infinitely often. And from that time onward, the node

τ is accepting infinitely many times. Therefore, the smallest

priority occurring infinitely often is even. It indicates that α ∈

L(PT ).

⇒: Let α be an ω-word in L(PT ). There is a LIR-H-Safra

Streett trace Π and an index 2i such that Inf(Π) ∩ λ2i , ∅ and

Inf(Π) ∩ λk = ∅ for any k < 2i. It indicates that each node τ

with p(τ) ≤ i remains stable in the LIR from a time onward.

That is τ is not rejecting. Meanwhile, the node on position

i is accepting infinitely often from that time onward. Thus

α ∈ L(RT ). �

Theorem 9. Given a NSA S with n states and k Streett pairs,

we can construct a DPTA with 3(n(n + 1) − 1)!(n!)n+1
=

2O(n2 log n) states, 2n(n + 1) priorities for k = ω(n) and

3(n(k + 1) − 1)!n!knk
= 2O(nk log nk) states, 2n(k + 1) priorities

for k = O(n) that recognizes the language L(S ).

Proof. The number of nodes in a LIR-H-Safra tree is also at

most n(µ + 1). Similar to the analysis in [10], there are at

most (n(µ+1)−1)! LIR-H-Safra trees without state and index

labels. For the state labelling function, let t(n,m) denote the

number of LIR-H-Safra trees without index labels, say ˜LH,

such that there are m nodes in ˜LH and n states in the state

label of the root of ˜LH. Fist, we have t(n, n(µ + 1)) = (n(µ +

1)−1)!n!. A conclusion has been proved in [10] that for every

m ≤ n(µ + 1), t(n,m − 1) ≤ 1
2
t(n,m). Hence,

∑n(µ+1)

i=1
t(n, i) ≤

2(n(µ + 1) − 1)!n!. If there are n′ (n′ < n) states labelled in

the root, the number of the LIR-H-Safra trees without index

labels is 2(n′(µ′ + 1) − 1)!n′!
(

n′

n

)

≤ 2(n′(µ′ + 1) − 1)!n!, where

µ′ = min(n′, k). Thus, the number of LIR-H-Safra trees without

index label is
∑n

n′=1 2(n′(µ′ + 1) − 1)!n! ≤ 3(n(µ + 1) − 1)!n!.

By the result in [5], [6], the number of possibilities of index

labeling is bounded by (n!)n for k = ω(n), and knk for k = O(n).

It follows that the number of LIR-H-Safra trees is at most

3(n(n+ 1)− 1)!(n!)n+1
= 2O(n2 log n) for k = ω(n) by replacing µ

with n and 3(n(k + 1) − 1)!n!knk
= 2O(nk log nk) for k = O(n) by

replacing µ with k. �

VI. LOWER BOUND COMPLEXITY

As for the state lower bound, it means the minimum states

required by the equivalent deterministic automata, regard-

less of whether the acceptance condition is state-based or

transition-based. In this section, we prove a lower bound

state complexity for determinization construction from NSA

to DR(T)A, which exactly matches the state complexity of

the proposed determinization construction. Further, we put

forward a lower bound state complexity for determinization

construction from NSA to DP(T)A, which is the same as the

state complexity of the proposed determinization construction

in the exponent.

A. L-Game

Definition 6 (L-game [14]). An L-game for two players, Adam

and Eva, is a tuple G = (V,VE ,VA, pI ,Σ,Move, L), where

• V is a set of positions which is partitioned into the

positions for Eva VE and the positions for Adam VA,

• pI ∈ V is the initial position of G,

• Σ is the labelling alphabet,

• Move ⊆ V × Σ × V is the set of possible moves, and

• L ⊆ Σω is the winning condition.

A tuple (p, σ, p′) ∈ Move indicates that there is a move

from p to p′, which produces a letter σ. A play is a maximal

sequence π = (p0, σ0, p1, σ1, p2, σ2, . . .) such that p0 = pI ,

and for each i, (pi, σi, pi+1) ∈ Move. The player who be-

longs to the current position will choose the next move. Let

πΣ = (σ0, σ1, σ2, . . .). If πΣ ∈ L, Eva wins the play. Otherwise,

Adam wins the play.

A strategy for the player X is a function which tells the

player what move he should choose depending on the finite

history of moves played so far. A strategy is called a winning

strategy for Eva (resp. Adam), if Eva (resp. Adam) wins every

play with this strategy. A strategy with memory m for Eva is

described as (M, update, choice, init), in which M is a set

of memory with the size being m, update is a mapping from

M ×Move to M, choice is a mapping from VE × M to Move,

and init ∈ M. A player X wins a game with memory m if it

has a winning strategy with memory m.

The following Lemma proved in [14] provides an argument

for proving lower bounds on determinization problems.

Lemma 10. If Eva wins an L-game, and requires memory m

for that, then every deterministic Rabin automaton for L has

states at least m [14].

B. Lower Bound State Complexity for NSA to DR(T)A

Inspired by the approach in [14], in order to prove the lower

bound state complexity for the determinization construction

from NSA to DR(T)A, the essence is to define full Streett

automata and the relevant game.

For convenience, we first introduce some notations. For a

tree T , every node τ ∈ T can be expressed by a sequence

se(τ) = se(τ)(0)se(τ)(1)se(τ)(2) · · · , where se(τ)(i) (i ≥ 0) is a

positive integer. For the root τr of T , we have se(τr) = 1. As

for any other node τ, se(τ) = se(τp)i, where τp is the parent of
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τ and i = 1+ |{τ′ ∈ T | τ′ is the left sibling of τ}|. For any two

nodes τ and τ′, we define τ <lex τ
′ if se(τ) is the proper prefix

of se(τ′); or there exists i such that se(τ)(i) < se(τ′)(i) and for

all j < i, se(τ)( j) = se(τ′)( j). Further, τ ≤lex τ
′ if τ <lex τ

′ or

se(τ) = se(τ′).

Definition 7 (Full Streett Automata). A full Streett automaton

is a quintuple (Q,Σ,Q0, δ, 〈G, B〉[k]) where Q is a finite set

of states, Q0 ⊆ Q is a set of initial states, Σ = P(Q ×

{∅,G1, . . . ,Gk, B1, . . . , Bk} ×Q) is the alphabet, and the transi-

tion relation is defined by δ ⊆ Q × Σ × Q. 〈G, B〉[k] are Streett

pairs, where k is a positive integer, and Gi and Bi are sets

of transitions for 1 ≤ i ≤ k. For a Streett pair 〈Gi, Bi〉 and

a letter σ ∈ Σ, a transition δ = (p, σ, q) ∈ Gi (or Bi) iff

(p,Gi (or Bi), q) ∈ σ.

For the full Streett automaton with n states Sn = (Q,Σ,Q, δ,

〈G, B〉[k]), where Q is also the set of initial states, and L(Sn) =

Ln. A DRTA RT = (QRT ,Σ,QRT0, δRT , λRT ) can be constructed

via H-Safra trees for Streett determinization.

We introduce some useful notations. For a set of states S ⊆

Q, let ΣS be the set of letters σ ∈ Σ such that
⋃

q∈S δ(q, σ) = S .

We also let LS
n = Ln ∩ Σ

ω
S

and QS
RT
= {H ∈ QRT : l(τr) =

S where τr is the root of H}. Thus, for all words u ∈ Σ∗
S

and

all H ∈ QS
RT

, we have δRT (H, u) ∈ QS
RT

.

Given a set of states S ⊆ Q, we define a LS
n -S -gameGS such

that Eva wins GS but she cannot win with memory less than

|QS
RT
|. This indicates that any determinization Rabin automaton

accepting LS
n has at least |QS

RT
| states.

Definition 8 (LS
n -S -game). The LS

n -S -game is a tuple GS
=

(V,VE,VA, pI ,Σ
+

S
,Move, LS

n ), where VE is a singleton set {pE}

and VA consists of the initial position pI and one position pH

for each H-Safra tree H ∈ QS
RT

. The Move of GS includes:

• (pI , u, pE), u is a non-ǫ word in Σ+
S

.

• (pE , ǫ, pH), for each H-Safra tree H in QS
RT

.

• (pH , u, pE), if there exists a node τ̂ in Ĥ = δRT (H, u) that

satisfies one of the three following conditions during the

transformation from H to Ĥ:

1) τ̂ is accepting, and for all τ̂′ ≤lex τ̂ in Ĥ, τ̂′ is not

rejecting, h(τ̂′) = h(τ′) and l(τ̂′) = l(τ′),

2) j(τ̂) < j(τ), and for all τ̂′ <lex τ̂ in Ĥ, τ̂′ is not

rejecting, h(τ̂′) = h(τ′), and l(τ̂′) = l(τ′),

3) j(τ̂) = j(τ), l(τ̂) ⊃ l(τ), and for all τ̂′ <lex τ̂ in Ĥ, τ̂′

is not rejecting, h(τ̂′) = h(τ′) and l(τ̂′) = l(τ′),

for each H-Safra tree H in QS
RT

and a word u ∈ Σ+
S

. Note

that τ and τ′ are the nodes in H with se(τ) = se(τ̂) and

se(τ′) = se(τ̂′), respectively.

The LS
n -S -game has a flower shape, which is intuitively

illustrated in Fig. 13. The central position is controlled by

Eva and the petals belong to Adam. Moreover, each petal

corresponds to a H-Safra tree.

Lemma 11. Eva has a winning strategy in GS .

Proof. There is a winning strategy for Eva: if a word u was

produced after a finite play and Eva is to make a move from

pE

pH3

pI

pH1

pH2
pH4

pH5

.

.

.

u
ε

u

Fig. 13. The LS
n -S -game GS

pE , then she chooses to go to a position indexed by δRT (H0, u)

where H0 = QRT0.

To see that Eva wins the LS
n -S -game GS with this strategy,

we consider the run ρRT of RT on the word defined by the

play (pI , u0, pE)(pE, ε, pH1
)(pH1

, u1, pE)(pE , ε, pH2
) · · · , which

refers to the word u0u1u2 · · · . Each segment ρRT (Hi, ui,Hi+1)

(i ≥ 1) of the run ρRT and a corresponding node τi ∈ Hi+1

satisfie one of the conditions 1, 2 and 3 in Definition 8. We

denote τ =≤lex-min{τi | τi occurs infinitely often}, then each

τ′, such that τ′ ≤lex τ, is not rejecting in each segment of ρRT .

Obviously, if τ is infinitely often accepting, then Eva wins.

Assume that there is a position in ρRT such that τ is not

accepting, but the value of j(τ) becomes smaller infinitely

often from the position onwards. However, this can only

happen finitely often since j(τ) has the minimal value 0, which

is a contradiction.

Also, assume that from some position in ρRT onwards,

τ is not accepting and the index label remains constant.

Nevertheless, the state label l(τ) would grow monotonously

and would infinitely often grow strictly. It can only happen

finitely many times since l(τ) ⊆ l(τp), which is a contradiction.

Therefore, Eva wins GS with this strategy. �

Next, for each H-Safra tree H ∈ QS
RT

, a game GS
H

is defined,

which is a modification of GS by removing the position pH

of Adam and the corresponding moves. For this game, the

following Lemma holds.

Lemma 12. For any two H-Safra trees H , H′ in QS
RT

,

there exists a word u such that (pH′ , u, pE) is a move in GS
H

,

δRT (H′, u) = δRT (H, u) = H, and for any node τ in H, τ is not

accepting.

Proof. This lemma requires an analysis of the differences

between the two H-Safra trees H and H′. For the ≤lex-minimal

nodes τ in H and τ′ in H′ where se(τ) = se(τ′), but l(τ) , l(τ′)

or h(τ) , h(τ′), a letter σ is defined first which has the

following two cases, denoted as σ′ and σ′′, respectively.

(i) If τ and τ′ are the left most child of their parents τp

and τ′p, respectively, σ′ is produced such that {(s, ∅, sp) | s ∈

l(τ) ∪ l(τ′) and sp ∈ l(τp)} ⊆ σ′.
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(ii) If τ and τ′ have left siblings τl and τ′
l
, respectively, it is

apparent that l(τl) = l(τ′
l
) and h(τl) = h(τ′

l
). Then we construct

σ′′ such that {(s, ∅, sp) | s ∈ l(τ) ∪ l(τ′) and sp ∈ l(τp)\l(τl)} ⊆

σ′′.

For these two cases, after reading σ at H and H′, we have

l(τ) = l(τ′). Every node τ̂ <lex τ in H and τ̂′ <lex τ
′ in H′

remain unchanged. Meanwhile, for each node τm >lex τ in H

and τ′m >lex τ
′ in H′, we have l(τm) = ∅ and l(τ′m) = ∅.

Next, for two different nodes τ and τ′, there are four cases

to be considered:

(1) j(τ) > j(τ′). In the case that τ and τ′ are the

left most child of their parents τp and τ′p, respectively, let

w = σ j(τ′)σ j(τ′)−1 · · ·σ1. Here, for each 1 ≤ k ≤ j(τ′),

σk = {(s,Gk, s) | s ∈ l(τ′)}. By reading σ′w, H and H′ can

reach Ĥ and Ĥ′, respectively. The parent of τ′ is accepting

and τ stays unchanged. In the case that τ and τ′ have

left siblings τl and τ′
l
, respectively, it has l(τl) = l(τ′

l
) and

h(τl) = h(τ′
l
). Let s be a state in l(τl). We construct a word

w = σ j(τl)σ j(τl)−1 · · ·σ j(τ)+1. Here, for each j(τ)+1 ≤ k ≤ j(τl),

(s,Gk, s) ∈ σk. By reading σ′′w, a new node τs is created

as the sibling of τl with l(τs) = {s}, h(τs) = h(τ), and τ′s is

created as the sibling of τ′
l

with l(τ′s) = {s}, h(τ′s) = h(τ). Then

τs and τ′s are accepting in the next transformation. Later, let

l(τ) = l(τ′) = ∅ and remove τ and τ′, which makes τs renamed

(rejected), and τ′s not rejected. After the above operations, Ĥ

and Ĥ′ are obtained, respectively.

(2) j(τ) < j(τ′). Construct a word w = σ j(τ′)σ j(τ′)−1 · · ·

σ j(τ)+1. Here, for each j(τ) + 1 ≤ k ≤ j(τ′), it has σk =

{(s,Gk, s) | s ∈ l(τ′)}. By reading σw, H and H′ can reach

Ĥ and Ĥ′, respectively.

(3) j(τ) = j(τ′) and l(τ) ⊃ l(τ′). After reading σ at H and

H′, Ĥ and Ĥ′ are obtained, respectively.

(4) j(τ) = j(τ′) and l(τ′) \ l(τ) , ∅. We first construct a

word w, which makes τ′ being accepting after reading w at

H′. Then construct a letter σ̂ such that (s, B j(τ), s) ∈ σ̂ for each

state s ∈ l(τ). As a consequence, by reading wσ̂ at H and H′,

τ becomes rejected and τ′ is accepting. Furthermore, Ĥ and

Ĥ′ are obtained, respectively.

For the four cases, the next transformation makes both Ĥ

and Ĥ′ move to H.

Therefore, in the transformation from H′ to H, (1) and (4)

satisfy condition 1) of Definition 8. What is more, (2) and

(3) satisfy condition 2) and 3), respectively. Meanwhile, there

exists no accepting node during the transformation from H to

H. �

Further, by Lemma 12, the following lemma is obtained.

Lemma 13. For every H-Safra tree H in QS
RT

, Adam has a

winning strategy in the correspongding GS
H

.

Proof. There is a winning strategy for Adam as follows. When

he plays a word u from pI such that δRT (H0, u) where H0 =

QRT0, the best choice for Eva is to move to pH on the basis

of the proof of Lemma 11. However, this position has been

removed, she is forced to move to another position pH′ (H′ ,

H). Then Adam moves according to Lemma 12, and he can

always answer to the proposal of Eva similarly in the play.

Meanwhile, an infinite word α is produced. It is obvious that

RT does not accept α because of Lemma 12. Therefore, Adam

has a winning strategy in GS
H

. �

Then, it is easy to infer the following lemma.

Lemma 14. Eva has no winning strategy with memory less

than |QS
RT
| in GS .

Proof. For a contradiction, we suppose that Eva has a winning

strategy with memory |QS
RT
|−1. Then there would be a position

pH which is never visited by this strategy. It is a contradiction

with Lemma 13. �

Similar to the approach in [14], the main theorem is ready

to be proved.

Theorem 15. Every DR(T)A accepting L(Sn) has states at

least |QRT | = n5n(n!)n for k = ω(n) and n5nknk for k = O(n).

This theorem means that the proved lower bound state

complexity for the determinization construction from NSA to

DR(T)A exactly matches the state complexity of the proposed

determinization construction by H-Safra trees.

C. Lower Bound State Complexity for NSA to DP(T)A

To prove the lower bound state complexity for determiniza-

tion construction from NSA to DP(T)A, an appropriate L-

game, for recognizing the complement language of the NSA,

is constructed first.

For the full Streett automaton Sn = (Q,Σ,Q, δ, 〈G, B〉[k]), a

DPTA PT = (QPT ,Σ,QPT0, δPT , λPT ) can be constructed via

LIT-H-Safra trees. Let Lc
n be the complement of L(Sn), Σω

S

denote the infinite words over ΣS , and LcS
n = Lc

n ∩Σ
ω
S

. For any

S ⊆ Q, let QS
PT
= {LH ∈ QPT : l(ǫ) = S where ǫ is the root of

LH} be the set of LIR-H-Safra trees in which state label of

the root is S . We choose a subset QS h
PT

of QS
PT

, which satisfies:

For any two LIR-H-Safra trees LH, LH′ ∈ QS h
PT

and any nodes

τ in LH, τ′ in LH′, if se(τ) = se(τ′), then h(τ) = h(τ′).

Given a set of states S ⊆ Q, we define a LcS
n -S -game GcS

such that Eva wins GcS but she cannot win with memory less

than |QS h
PT
|.

Definition 9 (LcS
n -S -game). The LcS

n -S -game is a tuple GcS
=

(V,VE,VA, pI ,Σ
+

S
,Move, LcS

n ), where VE is a singleton set {pE}

and VA consists of the initial position pI and one position

pLH for each LIR-H-Safra tree LH ∈ QS h
PT

. The Move of GcS

includes:

• (pI , u, pE), u is a non-ǫ word in Σ+
S

.

• (pE , ǫ, pLH), for each LIR-H-Safra tree LH in QS h
PT

.

• (pLH , u, pE), if there exists a node τ in LH with p(τ) = i

and τ satisfies one of the two following conditions in the

transition from LH to ˆLH = δPT (LH, u):

1) τ is rejecting and the priority of the transition is 2i−1,

and for each τ′ in LH such that p(τ′) < p(τ), it requires

that l(τ̂′) = l(τ′) and h(τ̂′) = h(τ′),

2) h(τ̂) = h(τ), l(τ̂) ⊂ l(τ), and the priority of the

transition is larger than 2i, and for each τ′ in LH
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such that p(τ′) < p(τ), it requires that l(τ̂′) = l(τ′)

and h(τ̂′) = h(τ′),

for each LIR-H-Safra tree LH in QS h
PT

and a word u ∈ Σ+
S

.

Note that τ̂ and τ̂′ are nodes in ˆLH with p(τ̂) = p(τ) and

p(τ̂′) = p(τ′), respectively.

Lemma 16. Eva has a winning strategy in GcS .

Proof. There is a winning strategy for Eva: if a word u was

produced after a finite play and Eva is to make a move

from pE , then she chooses to go to a position indexed by

δPT (LH0, u) where LH0 = QPT0.

To see that Eva wins the LcS
n -S -game GcS with this strategy,

we consider the run ρPT of PT on the word defined by the

play (pI , u0, pE)(pE , ǫ, pLH1
)(pLH1

, u1, pE)(pE, ǫ, pLH2
) · · · ,

which refers to the word u0u1u2 · · · . Each segment ρPT (LHk,

uk, LHk+1) (k ≥ 1) of the run ρPT satisfies one of the conditions

1), 2) and 3) in Definition 9, and there exists a node τk ∈ LHk

with p(τk) = ik. Let imin be the minimal one that occurs

infinitely often among these ik and τmin be the node on position

imin in the LIR. Hence, no priority smaller than 2imin − 1

can occur infinitely often in ρPT . It is obvious that if τmin is

infinitely often rejecting, then the minimal priority occurring

infinitely often is 2imin − 1 in ρPT , and Eva wins.

Next, we assume that there is a position po of ρPT such that

τmin is not rejecting, but satisfies condition 2) in Definition 9

infinitely often from the position po onwards. Consequently,

the state label of τmin would reduce monotonously from the

position po onwards, and would infinitely often reduce strictly.

It is a contradiction.

Therefore, Eva wins GcS with this strategy. �

Similar to the lower bound state complexity from NSA

to DR(T)A in Section VI-B, for each LIR-H-Safra tree

LH ∈ QS h
PT

, a game GcS
LH

can be defined by removing the

corresponding position pLH and the relevant moves from GcS .

The following lemma shows that Adam has a winning strategy

in GcS
LH

.

Lemma 17. For any two LIR-H-Safra trees LH , LH′ in QS h
PT

,

there exists a word u such that (pLH′ , u, pE) is a move in GcS
LH

,

δPT (LH′, u) = δPT (LH, u) = LH, and the minimal priority in

the transitions from LH to LH after reading u is even.

Proof. We first identify the position-minimal nodes τ in LH

and τ′ in LH′ such that p(τ) = p(τ′) = i, and se(τ) , se(τ′)

or l(τ) , l(τ′). We use W to denote a set of words such that

for each w ∈ W, τ is accepting and after reading w at LH, the

priority is 2i. Then two cases are considered:

(1) se(τ) = se(τ′). It has h(τ) = h(τ′). The only difference

between τ and τ′ is the state labels. In the case that l(τ) \

l(τ′) , ∅, a word w1 ∈ W is read at LH and LH′. Let σ be

a letter such that (s, B j(τ′), s) ∈ σ, where s ∈ l(τ′). By reading

w1σ, LH and LH′ can reach ˆLH and ˆLH′, respectively. In the

transformation from LH to ˆLH, τ is accepting and the priority

is 2i. Meanwhile, τ′ is rejecting and the priority is 2i − 1 in

the transformation from LH′ to ˆLH′. The next transformation

makes both ˆLH and ˆLH′ move to LH. In the case that l(τ) ⊂

l(τ′), let w2 be a word in W such that τ′ is not accepting

or rejecting after reading w2 at LH′. As a result, ˆLH and
ˆLH′ are obtained. The next transformation makes both ˆLH

and ˆLH′ move to LH and the priority is larger than 2i in the

transformation from ˆLH′ to LH.

(2) se(τ) , se(τ′). Let w3 be a word in W such that τ′

is rejecting and after reading w3 at LH′, the priority is 2i −

1. Then, ˆLH and ˆLH′ are obtained, respectively. The next

transformation makes both LH and LH′ move to LH.

As a result, in the transformation from LH′ to LH, the

first case of (1) and (2) satisfy condition 1) of Definition

9. The second case of (1) satisfies condition 2). Meanwhile,

the minimal priority is 2i in the transformation from LH to

LH. �

Thus, Eva has no winning strategy with memory less than

|QS h
PT
| in GcS . Based on the approach in [14] and Lemma 10,

we can obtain the following result.

Lemma 18. Every DR(T)A that recognises the complement

of L(Sn) must contain at least |
⋃

S⊆Q

QS h
PT
| states.

In [10], there is a result that the size of the smallest Rabin

automaton that recognises the complement of L(Sn) is equal

to the one of the smallest Streett automaton that recognises

L(Sn). Since parity automata are special Streett automata, the

main theorem is inferred.

Theorem 19. Every DS(T)A or DP(T)A accepting L(Sn) must

have states at least |
⋃

S⊆Q

QS h
PT
| = 2Ω(n2 log n) for k = ω(n) and

2Ω(nk log nk) for k = O(n).

Finally, we give the estimate for |
⋃

S⊆Q

QS h
PT
|. Since the index

label of each node is fixed, we can neglect the impact of the

index label. Therefore, by the proof of Theorem 9, we have

|
⋃

S⊆Q

QS h
PT | = 3(n(µ + 1) − 1)!n!.

Specifically, |
⋃

S⊆Q

QS h
PT
| = 3(n(n+ 1)− 1)!n! = 2Ω(n2 log n) for k =

ω(n) by replacing µ with n, and 3(n(k+1)−1)!n! = 2Ω(nk log nk)

for k = O(n) by replacing µ with k.

By the result in Section V-B, the state complexity for the

construction from NSA to DPTA is 3(n(n + 1) − 1)!(n!)n+1
=

2O(n2 log n) for k = ω(n) and 3(n(k+1)−1)!n!knk
= 2O(nk log nk) for

k = O(n). So, the above lower bound is the same as the upper

bound in the exponent. There is still a slight gap between the

lower and upper bounds.

VII. CONCLUSION

In this paper, we present determinization transformations

from NSA with n states and k Streett pairs to DRTA with

n5n(n!)n states, O(nn2

) Rabin pairs for k = ω(n) and n5nknk

states, O(knk) Rabin pairs for k = O(n); and to DPTA

with 3(n(n + 1) − 1)!(n!)n+1 states, 2n(n + 1) priorities for

k = ω(n) and 3(n(k+1)−1)!n!knk states, 2n(k+1) priorities for

k = O(n). Further, we prove a lower bound state complexity
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for determinization construction from NSA to DR(T)A, which

matches the state complexity of the proposed determinization

construction. Also, we put forward a lower bound state com-

plexity for determinization construction from NSA to DP(T)A

which is the same as the proposed determinization construction

in the exponent.

In the near future, we will implement the proposed deter-

minization constructions and evaluate efficiency of the algo-

rithms in practice.
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