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Université de Paris, IRIF, CNRS, F-75013 Paris, France

Abstract

For overcoming the limitations of probabilistic coherence
spaces which do not seem to provide natural interpretations
of continuous data types such as the real line, we introduced
with Pagani and Tasson a model of probabilistic higher or-
der computation based on (positive) cones, and a class of to-
tally monotone functions that we called “stable”. Then Cru-
billé proved that this model is a conservative extension of
the earlier probabilistic coherence space model. We continue
these investigations by showing that the category of cones
and linear and Scott-continuous functions is a model of in-
tuitionistic linear logic. To define the tensor product, we use
the special adjoint functor theorem, and we prove that this
operation is an extension of the standard tensor product of
probabilistic coherence spaces. We also show that these lat-
ter are dense in cones, thus allowing to lift the main proper-
ties of the tensor product of probabilistic coherence spaces
to general cones. Finally we define in the same way an ex-
ponential of cones and extend measurability to these new
operations.

Keywords: Denotational semantics, probabilistic program-
ming languages, linear logic

1 Introduction

We continue a series of investigations initiated in [4] on a
class of models of higher order computation, based on an
initial idea of Girard [11]. In these models, types are inter-
preted as concrete structures called probabilistic coherence
spaces (PCSs) consisting of a set (the web) and a collection
of Ro-valued families indexed by the web generalizing dis-
crete probability distributions: a typical example of PCS is N
equipped with subprobability’ distributions on N. Another
example is N x N equipped with all families (t; ;) j)ensx
such that, for all subprobability distribution (x;);eny on N,
the family (3;cy ti,jXi)jen is a subprobability distribution
on N. Such a t is a N x N substochastic matrix which repre-
sents a sub-Markov process with w states. In [4] it is proven
that PCSs are a categorical model of classical linear logic
(LL), that is, a Seely category ([15]?) Pcoh, where all recur-
sive types can be interpreted, and which provides an ade-
quate interpretation of a probabilistic extension of Plotkin’s
PCF [16].

!Not probability, in order to interpret also partial computation.

2Qur main reference for the category theory of models of linear logic, see
also that paper for thorough discussions on the complicated history of the
notions involved.

[2, 6-8, 10] extended these results, proving full abstrac-
tion properties for probabilistic versions of PCF and Levy’s
Call-by-Push-Value, and proving that the exponential of PCSs
introduced in [4] is the free one. One essential feature of
this model is that the morphisms of the associated Kleisli
category are extremely regular and can be seen as analytic
functions, some consequences of this fact are presented in
in [5] and crucially used in proofs of full abstraction.

The main weakness of the PCS model is that it does not
host “continuous data types” such as the real line equipped
with its standard Borel X-algebra, required for taking into
account modern probabilistic languages used in Bayesian
programming. [4] suggested that PCSs might be generalized
using a well-suited notion of ordered Banach space or pos-
itive cone. This was done in [9], using a notion of positive
cone’ considered earlier in particular in [17]. Any PCS gives
rise naturally to such a cone, and one can also associate with
any measurable space the cone of all measures which have a
finite global weight. [9] shows that, equipped with suitable
stable morphisms (which are Scott-continuous functions sat-
isfying a total monotonicity requirement which has some
similarities with Berry’s stability), these objects form a carte-
sian closed category (CCC) Cstab providing an adequate in-
terpretation of an extension of PCF with a type of real num-
bers and a sampling primitive. Then, Crubillé showed that
this CCC contains the Kleisli category of the PCS model as
a full sub-CCC [1], providing a very satisfactory connection
between these constructions.

Following [17], it is noticed in [9] that there is a natu-
ral notion of linear and Scott-continuous functions between
cones, which coincides with the notion of linear morphisms
of Pcoh when restricted to cones induced by PCSs: this de-
fines the category CLin we study here. Given cones P and
Q, one can build a cone P —o Q whose elements are those
of CLin(P, Q) so we could reasonably expect the functor
P — _ to have a left adjoint for each P, hopefully turning
CLin into a symmetric monoidal closed category (SMCC)*.

With cones P and Q we should associate functorially a
cone P ® Q such that (at least) there is a natural bijection
between CLin(P ® Q,R) and CLin(P,Q — R). Our first at-
tempt was concrete: since the elements of this second hom-
set are continuous and bilinear functions PXQ — R, our ten-
sor product should classify such functions and hence it was

3There is a long tradition of research on this kind of structures, rooted in
the theory of Banach spaces. Such cones have been used in semantics quite
successfully for instance in [13] and subsequent work.

4Probably not a *-autonomous category however.
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natural to look for P ® Q as a sub-cone® of B(P, Q)’ where
B(P, Q) is the cone of continuous bilinear maps P X Q —
Ry and R” = (R — Ryg) (the dual of R): with any x € P
and y € Q we can indeed associate the linear and continu-
ous function x ® y : B(P, Q) — R, f — f(x,y). Whence
a definition of P ® Q: the least subcone of 8(P, Q) which
contains all the x ® y, for x € P and y € Q. This also gives
us a continuous and bilinear map 7 : PX Q — P ® Q,
(x,y) » x®uy.

We should now prove the universal property: for any bi-
linear and continuous f : P X Q — R, there is exactly one
f € CLin(P ® Q,R) such that f = ff. It is easy to define f
on the elements of P ® Q of shape x ® y (under a mild sepa-
rateness assumption on our cones), but how can we extend
this map to the whole of PQQ? Our “top-down” definition of
P®Q is ineffective for this, we need a “bottom-up” approach,
something like: an element of P ® Q is a (possibly infinite)
linear combination };; @i (x(i) ® y(i)) where ; € R»o and
Ylier @ = 1 (convex combination of pure tensors). But this
is not enough because we could perfectly have two convex
combinations of pure tensors z and z’ such that z’ < z (in
B(P,Q)’) and then P ® Q will also contain z — z’ (Exam-
ple 13 shows that such subtractions are mandatory at least
if we want our ® to extend that of Pcoh). In the usual al-
gebraic case, coefficients form a ring and such elements are
just combinations of pure tensors, with possibly negative
coefficients. Here on the contrary we have to take such dif-
ferences into account explicitly since our coefficients are in
Rxo.

Another problem arises from the very peculiar complete-
ness of cones and continuity of morphisms, which are de-
fined purely in terms of the algebraic order relation (accord-
ing to which x; < x; if there exists x such that x; + x = x3),
and not of the norm: if a given element z of P® Q can be writ-
ten in two different ways as a convex combination of pure
tensors z = ;e i (x(D®Y(0)) = 3 e B (x' ()@Y’ (/). itis
not obvious, though certainly true, that }’;c; a; f (x (i), y(i)) =

Zjes Bif (' (), y" (1)

Contents. After several attempts, we arrived to the con-
clusion that the concrete approach would lead to rather com-
plicated (though quite interesting) developments. Fortunately
a shorter road was open, based on the following observation:
our category CLin is small complete and the functor P — _
preserves all small limits so we are in position of applying
the special adjoint functor theorem (because CLin is also
well-powered, and, under the aforementioned separateness
condition on objects, it admits R as cogenerating object).
So the functor P — _ has a left adjoint: we get our tensor
product ® almost for free! This is not the end of the story
however because the simple fact that ® is a bifunctor de-
fined as a left adjoint to —o is not sufficient to prove that

3 A notion to be defined carefully.
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it defines a monoidal structure. Though, we are lucky again
because

e it turns out that Pcoh is a dense subcategory of CLin
(that is, any cone is a colimit of a diagram of PCSs),
which per se is quite an interesting property;

e being a left adjoint, ® commutes with all existing col-
imits of cones;

e restricted to Pcoh, our new tensor product coincides
with the ordinary one, which defines a monoidal struc-
ture on Pcoh.

Combining these facts we lift the monoidal structure (asso-
ciativity isomorphisms etc) from Pcoh to CLin, thus prov-
ing that CLin is an SMCC, which contains Pcoh as a full
sub-SMCC and this was our main goal.

Then we use the same method to define an exponential
functor ! : CLin — CLin and show that it is a resource
modality in the sense of Seely categories (again, see [15]).

We conclude the paper by explaining shortly how the
measurability structure introduced for cones in [9] can be
extended to our tensor product and exponential. Such struc-
tures are indeed essential for interpreting the sampling con-
structs of probabilistic programming languages.

Related work. Positive cones have been used in various
contexts in the semantics of probabilistic programming lan-
guages, notably under the name of Kegelspitzen (which are
“unit balls” of cones) for which we refer to [12, 13]. The
main difference with our approach is that such cones are
usually equipped with an additional “extensional” order re-
lation whereas the only order relation we consider in our
work is the algebraic one: this constraint, strongly suggested
by PCSs, obliged the authors of [9] to introduce stable func-
tions.

Closer to our approach are [18] and [3] where types are
interpreted as ordered Banach spaces and tensor products
are also defined. The main difference that we can see be-
tween their approaches and ours is that they put more stan-
dard continuity requirements on linear morphisms, based
on the norm, whereas we insist on our linear (and stable)
morphisms to be Scott continuous, a purely® order-theoretic
notion which implies boundedness and thus norm-based con-
tinuity, but the converse implication does not hold in gen-
eral. The main benefit of insisting on this kind of continuity
is that, our stable morphisms being Scott-continuous, they
have least fixed points (and by cartesian closeness, the func-
tion computing these fixed points is itself stable). Deeply
related with this choice is the fact that stable functions are
defined only on the unit ball of the source cone: the use of
fixed points prevents in general stable functions from being
extended to the whole cone, see [5] for examples illustrating
this fact.

®Not completely actually, since we require commutation with lubs of
bounded monotone sequences, and the definition of boundedness involves
the norm.
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2 Density

The categorical notion of density (see [14], Chap. X Sec. 6)
plays a crucial role, we spend some time to introduce it and
present useful properties’. But we start with the following
simple lemma which will be quite useful.

Lemma 1. Let C and D be categories, F,G : C — D be func-
tors and ycp : D(F(C),D) — D(G(C), D) be a natural bijec-
tion. Then the family of morphisms nc = Yc,rc)(Idr(c)) €
D(G(C),F(C)) is a natural isomorphism whose inverse is the
family of morphisms 0c = 1//5,1G<C) (Idg(c)) € D(F(C),G(C)).

A functor F : C — D is cocontinuous if it preserves all
small colimits which exist in C: given a functor A : J — C
where J is small (one says that A is a diagram) and given
a colimiting cocone y : A = ¢ on A (initial object in the
category of cocones on A) for some object ¢ of C, then the
cocone Fy : FA = F(c) is a colimiting cocone in D.

Given categories D and E, we use [D, E] for the category
of functors and natural transformations from D to E.

Lemma 2. Let F : C X D — E be a functor which is cocon-
tinuous in its first argument (that is, given any object d of D,
the functor F(_,d) is cocontinuous). Then the curried functor
F’ : C — [D,E] is cocontinuous.

Let I : C° — C (where we assume C° to be small) and
let ¢ € Obj(C). Let I/c be the comma category (its objects
are the pairs (x, f) where x € Obj(C°) and f € C(I(x),c)
and I/c((x, f), (y, g)) is the set of all t € C°(x,y) such that
gI(t) = f)and A, : I/c — C be the functor which maps
(x, f) to I(x) and similarly for morphisms. Let y° : A, = ¢
be the cocone defined by yfx, n= f. One says that the func-
tor I is dense (see [14], Chap. X, Sec. 6) if y€ is a colimiting
cocone for each ¢ € Obj(C). If C° is a full subcategory of C
and I is the inclusion, C° is said to be a dense subcategory
of C.

Lemma 3. Let ] : C° — C bedense andlet F : C — D
be cocontinuous. Let ¢ € Obj(C), d € Obj(D) and I,I' €
D(F(c),d). If, for all x € C° and f € C(I(x),c) one has
LF(f) =U'F(f) thenl=1.

Proof. By our assumption on/ and I’ we define in D a unique
cocone § : FA. = d by setting 8,5y = [F(f) = I"F(f)
and the fact that Fy° is a colimiting cocone (because F is
cocontinuous) implies that [ = I’. O

Lemma 4. Let [ : C° — C be dense, let F,G : C — D be
functors and assume that F is cocontinuous. Lett : FI = G,
there is exactly one T : F = G such that TI = t. Moreover if
7 is a natural isomorphism and G is also cocontinuous, then T
is an isomorphism.

"There is no doubt that they are all quite standard, we provide the state-
ments in a form convenient for our purpose.
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Now we extend the previous results to separately cocon-
tinuous multi-ary functors since we want to apply them to
our tensor product.

Lemma 5. Fori=1,...,nlet] : C? — C; be dense func-
tors. Let F : []-; C; — D be separately cocontinuous (that
is, for each i = 1,...,n and each ¢; € Obj(Cy),...,ci—1 €
Obj(Ci-1),ci+1 € Obj(Cit1),...,cn € Obj(Cy,), the functor

F(ci,...,Ciz1,_,Cit1, ..., Cn) is cocontinuous). Let ¢ € Obj ([T, Cy),
d € Obj(D) andletl,l’ € D(F(C),d).If, forall ¥ € Obj([T%, C?)

- — —
and all f e T[], Ci(Li(xi),c;) one has IF(f) = I'F(f),
thenl =1.

Theorem 6. Fori=1,...,nlet]; : C? — C; be dense func-
tors. Let F,G : [][-; C; — D be functors and assume that F
is separately cocontinuous. For any natural transformation
t: F([1L L) = G(I1, L), there is exactly one natural
transformation T : F = G such that T ([, ;) = . If G
is also separately cocontinuous and if T is a natural bijection,
then T is also a natural bijection.

3 The category of cones and linear maps

There is an unfortunate though hardly avoidable clash of
terminology between the cones that we introduce now and
the categorical cocones used to deal with density. We use
“cone” for the former and “cocone” for the latter to prevent
any misunderstanding.

A positive cone is a structure (P, ||_||) where P is an Ryo-
semimodule and ||_|| is a function P — R, which satisfies
the usual conditions of a norm®. It is assumed moreover that
P is cancellative (meaning x; + x = x2 + x = X1 = X3) and
that (P, ||_||) is positive (meaning ||x;|| < ||x1 + x2]|). A sub-
set C of P is bounded if {||x]| | x € C} is bounded in R,.
We use BP for the closed unit “ball” {x € P | ||x|| < 1}.
The algebraic order relation of P is defined by: x; < x; if
dx € P x; + x = x3. When such an x exists it is unique by
cancellativity, and we use the notation x = x; — x;; apart
from its partiality, this subtraction obeys all the usual alge-
braic laws. One says that P is complete if any monotone
w-indexed’ sequence in BP has a lub which lies in BP.

The semiring R is a complete positive cone, with norm
defined as the identity.

Example 7. Given a measurable space X (with X-algebra
3 x), the set M(X) of all non-negative measures y1 on X such
that p(X) < oo is a complete positive cone, when equipped
with algebraic operations defined pointwise and norm ||p|| =

H(X).

Continuity and linearity. When dealing with cones, the
word “continuity” always applies to functions which are mono-
tone wrt. the algebraic order, and means commutation with

81t is essential to notice that this norm is part of the structure of the cone.
9 And not arbitrary directed sets as a domain-theorist might expect, because
we need to apply the monotone convergence theorem of measure theory
at some point.
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lubs of such monotone sequences in the unit ball. It is easy
to check that all the operations of a cone (addition, scalar
multiplication and norm) are monotone and continuous.

Given P and Q complete positive cones,amap f : P — Q
is linear if it commutes with the algebraic operations. If f is
moreover continuous then it is not hard to prove that it is
bounded in the sense that it maps 8P to a bounded subset of
Q ([17]). Therefore we can define ||f|| = sup,..gp [lf(x)]| €
R>o. We use P’ for the set of linear and continuous maps
P — Ry. We say that P is separated'® if (Vx’ € P’ (x;,x’) =
(x2,x")) = x1 = x2, where we set {x,x’) = x’(x) for x € P
and x’ € P'.

Infinite sums. Let P be a cone and ¥ = (xi)ier be a fam-
ily of elements of P indexed by a set I which is at most count-
able. We say that X is summable if the family of real num-
bers (|| X;es Xill) yeps, (n) is bounded. In that case one can de-
fine };c; x; € P in an unique way. Indeed, take a monotone
sequence I(n) of finite subsets of I such that | J, v I(n) =1,
then the sequence (3;cj(n) Xi)nen is monotone and norm-
bounded and hence has a lub in P. This lub does not depend
on the choice of the sequence (I(n)),en because any two
such sequences are cofinal. We use }};¢; x; for this lub. Ob-
viously any sub-family of a summable family is summable.

Lemma 8. Let f : P — Q be linear and continuous. Then
for any summable family (x;)ier in P, the family (f(xi))ier
is summable in Q and we have f (X ;c; xi) = 2ier f(xi).

Lemma9. Let X = (xi,j) (i,j)eixJ be a doubly-indexed family
of elements of a cone P and assume that for each i € I the fam-
ily (xi ;) jey is summable and that the family (ZjE] Xij)iel is
summable. Then the familyX is summable and Yjerjey Xij =
2iel Zje] Xij = Zje] iel Xij-

We use CLin for the category whose objects are the sep-
arated complete positive cones and morphisms are the con-
tinuous linear functions whose norm is < 1, in other words,
the f : P — Q which are linear and continuous and satisfy
f(8P) C BQ.

3.1 Linear function spaces

Let P and Q be object of CLin, we define the cone P —o
Q whose elements are the linear and continuous functions
P — Q with algebraic operations defined pointwise and
norm defined by [|f|| = sup,gp llf(x)|lo which is well-
defined by continuity of f. Notice that in this cone, the al-
gebraic order relation coincides with the pointwise order
on functions. Let indeed f,g € P —o Q be such that Vx €
P f(x) < g(x). Then we define a linear function h : P —
Q by setting h(x) = g(x) — f(x) by the usual laws satis-
fied by subtraction. Let us prove that this linear function h
is continuous so let (x,)nen be a non-decreasing sequence

101t is not completely clear to us that all cones are separated as one would
expect with Banach spaces in mind.
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in BP and let x € BP be its lub, we need to prove that
h(x) < sup, o h(x,), the converse resulting from the mono-
tonicity of h, that is, we have to prove that g(x) < f(x) +
sup, e h(xn). Let k € N, one has g(xg) = f(xx) + h(xx) <
f(x) +sup, oy h(x,) and we are done since g is continuous.

The cone P — Q is complete, lubs being computed point-
wise (since the order relation is the pointwise order on func-
tions). This cone is separated because, given fi, f, € P — Q
with fi # f, there exists x € P such that fi(x) # fa(x)
and hence there exists y’ € Q’ which separates fi(x) from
f2(x). Now the operation h +— (h(x),y’) is an element of
(P —o Q)’ which separates f; from f,.

Moreover the operation _ —o _ is a functor CLin° X
CLin — CLin, the action of morphisms being defined as
follows. Let f € CLin(P,, P;) and g € CLin(Q1, Q2), then
f — g € CLin((P1 — Q1),(P; — Q2)) is given by (f —
g)(h) = gh f. The fact that f — g is a well defined linear
function (P; — Q1) — (P, —o Q) results from the linearity
of f and g. The fact that it is continuous results from the fact
that the lubs in P; —o Q; are computed pointwise and from
the continuity of g. The fact that ||f — g|| < 1 results from
the fact that the norms of f and g are < 1.

Bilinear maps. Given cones P, Q and R, a function f :
P X Q — R is bilinear and separately continuous if for all
x € BP and y € BQ, one has f(_,y) € CLin(P,R) and
f(x,_) € CLin(Q,R). We use CLin(P; Q, R) for the set of
these bilinear and separately continuous functions!!.
Lemma 10. There is a natural bijection  : CLin(P,Q —o
R) = CLin(P; Q,R) of functors CLin°® X CLin°? X CLin —
Set.

Proof. Let g € CLin(P,Q — R), we define f : PXQ — R
by f(x,y) = g(x)(y). It is clear that f is separately linear
(that is the maps f(_,y) and f(x,_) are linear) because the
algebraic operations of Q — R are defined pointwise, let
us prove separate continuity. Let (x(n)),en be monotone in

BPandy € BQ. Then f(sup, gy x(n),y) = g(sup, o x(n))(y) =

sup, o f (x(n),y) because lubs of linear functions are com-
puted pointwise in Q — R. Let x € BP and (y(n)),en be
monotone in BQ, we have

f(x,supy(n)) = g(x)(supy(n)) = sup f(x,y(n))
neN neN neN

since the linear function g(x) is continuous, hence f € CLin(P; Q, R),

we set f(g) = f. Let now f € CLin(P; Q,R). Let x € BP,
then we set g(x) = f(x,_) € Q — R. Linearity and con-
tinuity of g follow again from the fact that all the opera-
tions of Q —o R (including lubs) are defined pointwise. Let
g = B'(f) € CLin(P,Q — R). It is clear that § and f’ are
natural and inverse of each other. O

1 Actually separate continuity is equivalent to continuity on P x Q be-
cause our notion of continuity is defined as preservation of lubs of bounded
monotone families.
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3.2 Probabilistic coherence spaces

Let I be a set (that we can assume to be at most countable).
Given i € I, we use ¢; for the element of (Rs) such that
(€)= 8ij.

Givenu,u’ € (Rxo)!, we set'? (u,u’) = 3 uju) € RyoU
{co}. Given U C (Rsp)!, we set U+ = {u’ € (Rxo)! | Vu €
U (u,u")y < 1}. A probabilistic coherence space (PCS) is a pair
X = (|X|,PX) where |X| is a set (which can be assumed at
most countable) and PX C (Rso)™! such that PX = PX*+
and Va € |X| 0 < sup{u, | u € PX} < oo, the purpose
of this second condition being of keeping all coefficients fi-
nite. We set PX = {u € (Rso)X! | 34 > 0 Au € PX}.
Equipped with algebraic operations defined pointwise, it is
a cancellative R»(-semimodule. We define a norm by set-
ting ||lu|| = sup{{w,v’) | ¥’ € PX*} and it is easily checked
that this turns PX into a separated complete cone such that
B(PX) = PX.

We use N for the PCS defined by |N| = N and PN = {u €
(Rxo)™ | % u, < 1}. Given PCSs X and Y we define a
PCSX o Yby|X Y| =|X|x|Y]|and t € P(X —o Y) if
forallu € PX, one has t u € PY where (t u)p = X ¢|x| tabUa
(matrix application). The proof that this is indeed a PCS, as
well as the proof of most of the next results can be found
in [4]. Such matrices can be composed: given s € P(X —o Y)
andt € P(Y — Z),ts € P(X — Z) is defined as an ordi-
nary composition of (usually infinite-dimensional) matrices
(tS)ac = Xpe|y| Sablv.c In that way we define the category
Pcoh whose objects are the PCSs and Pcoh(X,Y) = P(X —
Y) (Id € Pcoh(X, X) is given by Id,p = d,p which is equal
to1if a = b and to 0 otherwise). This category is sym-
metric monoidal closed, and actually *-autonomous, with
X®Y = (X — Y1) which satisfies |[X ® Y| = |[X|x|Y| and
P(X®Y)={u®uv|uecPXando € PY}*+*. Itis also carte-
sian with product of the family (at most countable) (X;);er
given by &;e; X; = X where |X| = U;er{i} X |X;| and v € PX
if v € (Rso)X! satisfies Vi € T (vi,a)aclx;| € PX; and projec-
tion pr; € Pecoh(X, X;) given by (pr;)(jp).a = 6;,i0p.a-

PCSs as cones. There is a fully faithful functor P : Pcoh —
CLin which mapsa PCS X to PX and amatrix ¢ € Pcoh(X,Y)
to the map P(t) : PX — PY defined by P(t)(u) = tu. We
use Lo, for the full subcategory of Pcoh whose objects are
the PCSs X such that PX = {u € (Rs¢)X! | Va € |X] u, <
1}. This category contains in particular the objects 1 (with
|1] = {*}), N* and is closed under &. Notice that Pcoh (and
hence L) is essentially small since we only consider PCSs
with at most countable webs so we can assume that their
webs are all subsets of N (in the sequel we consider Lo, as
small). We use P, for the inclusion functor Lo, — CLin (it
is simply the restriction of P, so quite often we will drop the
subscript o).

12This notation is compatible with our previous use of {_, ) in the context
of cones as u’ can be thought of as a linear form acting on u.
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Lemma 11. Let I be an at most countable set and let U C
(Rs0)! be such thatVa € 10 < sup{u, | u € U} < co. Then
(I, U) is a PCS iff U is convex, downwards closed and closed
under lubs of monotone sequences.

This characterization was already stated and sketchily proven

in [11], a more detailed proof can be found in [5].

Lemma 12. Let I be an at most countable set and let U C
(Rso)! be such thatVa € T0 < sup{u, | u € U} <
oo, Let P be a cone and let h : I — P be such that Vu €
U Y, uah(a) € BP. ThenYu € U+ Y, ush(a) € BP
andh : u— Y o5 ugh(a) belongs to CLin(P(I, U*L), P).

Proof. Let G € (Rx¢)!. Let cvx(G) be the set of all the el-
ements of (Rs)! which are of shape Z§:1 aju(j) where
u(j) € G and Z’;Zl aj = 1. We use G* for the set of all u €
(Rs0)! such that there is a monotone sequence (u(n))nen
of elements of cvx(G) such that u < sup,, ¢y u(n). Clearly
G C G*. For each ordinal B, we define U(f) C (Rso)! by
induction as follows: U(0) = U, U(S + 1) = U(P)* and, if
p is limit and > 0, then U () = U,<gU(y). This sequence
is clearly monotone for C. Let f be the least ordinal number
such that U(f + 1) = U(P). We have U+ = U(p) since
U(p) is the least subset of (Rx()! which contains U, is con-
vex, downwards-closed and closed under the lubs of mono-
tone sequences, and therefore satisfies U () = U(B) by
Lemma 11.

To prove our contention, it suffices therefore to prove
that, for any G € (Rso)! and any h : I — P such that
Yu € G Y, erah(a) € BP,onehasYu € G* Y, uqh(a) €
BP, the result will follow by ordinal induction. So assume
that G and h satisfy these hypotheses. First let v € cvx(G),
say v = Z§:1 a;jv(j) whereo(j) € G and a; € Ry such that

k

j=1@j = 1. Then
k
> veh(a) =’ (Z ajou)a) h(a)
ael ael \j=1
k
=29 (Zvu)ah(a) € 8P
j=1 acl

by convexity'® of BP.

Let now u € G* and let (u(n)),en be a monotone se-
quence in cvx(&G) such that u < sup, g u(n). For each n
we have ) ,c; u(n),h(a) € BP by what we have just proven
and hence sup, oy 245 u(n)gh(a) € BP by completeness of
P since the sequence (3 c; u(n)qh(a))nen is monotone. By
continuity of the algebraic operations in P we have

sup Z u(n)zh(a) = Z sup u(n),h(a)

neN ael ael "€

13 And actually also closeness because this computation uses implicitly re-
strictions of the sum over I to finite subsets of I.
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and since Va € T u, < sup, oy u(n)e we get 3,1 ugh(a) €
BP as contended.

The fact that h € CLin(P(I, U*+), P) results clearly from
its definition and from the fact that it maps U*+ to BP. O

Notice that it is not true that U+ is the set of all (at most
countable) convex combinations 3’ ;c; aju(j) for u(j) € U,
simply because the set of these convex combinations is not
downwards closed in general.

Example 13. To illustrate this fact, take I = {1,2} x {1,2}
and U = {u®ov | u,o € P(1 & 1)} so that (I, U++) =
(1&1) ® (1&1). In the set V of convex combinations of
elements of U we have for instancee;; = e1®ey, €22 = e28¢€3,
e11t+eiatey1+ezs = (e +e3)®(e1 + ez), but we do not have
e12 + ez1 (which cannot be obtained as a convex combination
of e12 and ey ). Notice that this latter element can be obtained
as an iterated difference of convex combinations: e;» + €31 =
((e1+e)®(e1+ey) —e; ®ep) —ey ®ey.

3.3 Density of probabilistic coherence spaces

We prove that the functor P is dense!®, in the sense ex-

plained in Section 2. Let P € Obj(CLin), the objects of the
category P, /P are the pairs (X, f) where X € Obj(Lw) and
f € CLin(PX,P). And t € (Po/P)((X, f),(Y,g)) means
that t € Pcoh(X,Y) and g P(t) = f. Then Ap is the first pro-
jection functor P/P — CLin mapping (X, f) to P(X) and ¢
to P(t). And y” : Ap = P is the cocone (X, f) > f.

Given x € P where P € Obj(CLin), we use x for the
element of the cone P1 —o P defined by X(A) = Ax (so that
%115, p = Ilx11)-

Theorem 14. The functor Po : Lo, — CLin is dense, that is,
the cocone y* is colimiting, for any object P of CLin.

Proof. Let § : Ap = Q be another cocone. This means
that for each X € Obj(Ls) and each f € CLin(P.X,P)
we are given a 8(X, f) € CLin(PX, Q) such that for any
t € Lo(X,Y) we have the following implication of triangle
commutations:

PO ) PO — e By

=
f\ P ‘/y S(X,f)\ 0] /6(Y,g)

In other words for all t € Lo (X, Y) and g € CLin(PY, P)

8(X,gP(1)) = 5(Y,9) P(1). (1)

We first build a function k : P — Qsoletx € P. Assume
first that ||x|| < 1. Then X € CLin(P1, P). We set

k(x) = 6(1,%)(ex)

14This is already true if we replace Po with the full subcategory which has
N+ as single object. Our formulation is motivated by Lemma 22.
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(remember that * is the sole element of |1]) so that [|k(x)|lo <
1 since 8(1,X) € CLin(P1, Q). Notice that if A € [0,1] we
have A1d € Lo (1,1) and hence

k(Ax) = 8(1,Ax)(e.) = 8(1, % (A1d))(es)
=5(1,%) (lex) = Ak(x)

by (1) and linearity of §(1,x). Notice that we should have
written P(A1d) instead of AId in the formulas above, we
will systematically keep the P implicit'® in this context to
increase readability.

Therefore, given x € P we can set k(x) = A~1k(Ax) where
A € (0,1] is such that A||x|| < 1; by the property we have
just proven, this definition of k(x) does not depend on the
choice of A. Notice that Vx € P ||k(x)|| < ||x]|| (since this
holds when ||x|| = 1) and that k(Ax) = Ak(x) holds for all
x € Pand A € Ry, that is, k is homogeneous.

Now we prove that the function k is linear. Let x1, x; € P,
we must prove that k(x; + x2) = k(x1) + k(xz). Since k is
homogeneous we can assume that ||x;|| + ||xz]| < 1. Let a :
P(1 & 1) — P be defined by a(u) = uyx; + uzx; (where 1,2
are the elements of |1 & 1|). This map is linear, continuous
(by continuity of scalar multiplication and addition in P) and
satisfies ||al]| < 1 by our assumption on the x;’s, hence a €
CLin(P(1 & 1), P).

For i = 1,2 we have k(x;) = 6(1,%;)(ex) = 6(1,ae;)(es) =
8(1 & 1,a)(e;) by (1) (and the fact that x(e.) = x). Hence
k(x1) + k(x2) = 6(1 & 1,a)(e; + e2) by linearity of 6(1 &
1,a). Applying again (1), as well as the definition of a, we get
k(x1 +x2) = 8(L,x1+x2)(ex) = 8(Laer +ez)(en) = 5(1 &
1,a)(e; + e2) which proves our contention.

Next we prove that k is continuous, so let x(0) < x(1) <
-+ be a non-decreasing sequence in BP and let x € BP be
its lub. For each n € N we set y(n) = x(n) — x(n—1) (we set
x(—1) = 0 for convenience).

Letu € P(N*+): this means thatu € (Rso)" and SUpP, ey Un <
oo.Let A € Ryg be such that Vn € Nu, < A. Foreach N € N
we have in P

N

N
upy(n) < Zly(n) = Ax(N) < Ax

n=0 n=0

and hence the non-decreasing sequence (21,:’:0 uny(n))Nen
has alubin P whichis },_ u,y(n), see Section 3. So we can
define a function

s:P(NY) > P, um—s Zuny(n) .
n=0
Notice that Yu € P(N*) ||s(w)]| < ||x|| < 1 since s(u) < x.
This map s is linear by continuity of the algebraic oper-
ations of P. We prove that it is continuous so let (u(q))gen
be a non-decreasing sequence in P(N*) and let u € P(N*)
be its lub (that is u, = SUPen u(q), for each n € N). We

15That is, consider morphisms of Pcoh as morphisms of CLin.
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already know that sup,¢y s(u(q)) < s(u) by linearity of s
(which implies monotonicity) so let us prove that s(u) <
SUPgeny s(u(q)). This results from the fact that forany N € N
we have

N N
> uny(n) = sup > u(q)ny(n) < sups(u(g))
n=0 9N 350 qeN

where the first equation results from the continuity of the
algebraic operations of P.

We have 5(1,:[//(;))(6*) = 6(1,s¢€y)(ex) = S(N*,5)(en)
by (1) (we use also the observation that, setting u = Ae, € P1,
one has (s €,)(u) = s(Ae,) = Ay(n) = ﬁ\n)(u) by definition
of s). Let e(N) = Z],:]:O e, € P(N*) so that s(e(N)) = x(N).
We have

N N
k(x(N)) = k(z y(n)) = Z k(y(n)) by linearity of k
n=0 n=0

N
= Z S5(N*,s)(e,) what we have just proven
n=0

=68(N*,s)(e(N)) linearity of S(N*,s)

and since §(N*, s) is continuous we have sup o k(x(N)) =
S8(N*,s)(e) where e = Yo en (that is e, = 1 for all n € N).

Next k(x) = §(1,%)(e.) = S(N*,se)(e.) = (N, 5)(e)
by (1) (we use also the observation that (se)(u) = s(de) =
Ax = x(u) where u = Ae,, by definition of s) which proves
that k(x) = supy ey k(x(N)) and hence that k is continuous,
so k € CLin(P, Q).

Now we prove that k is a morphism of cocones Ap = 6,
that is, for any X € Obj(Ls) and f € CLin(PX,P), the
following triangle commutes:

PX
f 5(X, f)
/ k \
p Q

Letu € E(X), we have

k(f () = 8(1, F(u)) () = 8(1, f ) (en) = 8(X, f) (u)

by (1) (we use also the observation that (fu)(v) = f(Au) =
Af(u) = ]T(u\)(v), where v = le,, by linearity of f).

We end the proof that y* is a colimiting cocone by ob-
serving that k is unique with these properties since its very
definition is just a particular case of the commutation ex-
pressing that k is a morphism of cocones (for f = X with
x € P). O

3.4 Completeness of the category of cones
Theorem 15. The category CLin is complete, well-powered
and admits Ry as co-generating object.

Proof. First let (P;);er be a family of cones (where I is any
set). We already have defined a cone P = [];; P; as the set
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of all families X = (x;);er such that x; € P; and Nxillp,)ier
is bounded.

Equipped with the algebraic laws defined pointwise, it is a
cancellative Rso-semi-module. We endow it with the norm
%l = sup;¢; ||xi||p, which clearly satisfies all required ax-
ioms. The cone order of P coincides with the product order
which shows readily that P is a complete cone.

Together with the usual projections pr; : CLin(P, P;), this
cone P is the cartesian product of the P;’s as easily checked.
As usual, given f; € CLin(Q,P;) for each i € I we use
(f)ier for the morphism f € CLin(Q, P) such that f(y) =
(fi(y))ier which is well defined by our definition of CLin
which requires'® that all linear morphisms are bounded by
1. To finish we check that P is separated, so let_x),_y) € Pbe
such that ¥ # _y) Let i € I be such that x; # y;. Let x” € P}’
be such that (x;, x’) # (y;, x"). Then x" pr; € P’ separates X
from 7.

Let P and Q be cones and let f,g € CLin(P, Q). Let E =
{x € P | f(x) = g(x)}. By linearity of f and g, this set
E inherits the algebraic structure of cancellative R (-semi-
module from P. We use e for the inclusion E C P which is a
semi-module morphism. Given x € E we set ||x||g = ||x]|p,
which clearly defines a norm on E. Completeness of E fol-
lows from the fact that f and g are continuous: indeed let
(x(n))nen be a sequence of elements of E which is non-
decreasing in E and hence in P and satisfies Vn € N ||x(n)|| <
1 (for the norm of E, that is, for the norm of P). Let x € BP be
the lub of the x(n)’s in P, by continuity of f and g we have
f(x) = g(x) and hence x € E. We finish the proof by show-
ing that x is the lub of the x(n)’s in E, so let y € E be such
that x(n) <g y for all n € N. We have x(n) <p y and hence
x <p y since x is the lub of the x(n)’s in P. By linearity of f
and g we have f(y—x) = f(y)—f(x) = g(y)—g(x) = g(y—x)
and hence y — x € E which shows that x <g y as contended.
The fact that x € BE results obviously from the definition
of the norm of E.

Next we prove that E is separated. Let x,y € E be such
that x # y. By separateness of P there is an x” € P’ such
that (x,x") # (y, x"). Let y’ be the restriction of x’ to E, we
have y’ € E’ because all operations in E (including the lubs)
are defined as in P and of course y’ separates x from y.

Last we check that (E,e) is the equalizer of f and g in
CLin: let h € CLin(H, P) be such that f h = g h, this means
exactly that Vu € H h(u) € E so that we have a function
ho : H — E such that h = e h (actually hy = h but it is safer
to use distinct names). The linearity and continuity of hgy
results from the fact that the operations of E are defined as in
P (including lubs). Last hy(BH) ¢ ENBP = BE. Uniqueness
of hy with these properties is obvious.

1®Without this condition, the category CLin has only finite products a
priori.
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This proves that the category CLin is complete. The fact
that Ry is a cogenerator results from the fact that all the
objects of CLin are separated.

We are left with proving that CLin is well-powered. This
results from the following simple observation.

Let H be an object of CLin and h € CLin(H, P) be a mono.
This implies that h is an injective function. Indeed, let u,v €
H with u # v. Wlog. we can assume that ||u]|, ||[o]] < 1. We
have u,9 € CLin(Rx¢, H) and u(1) # 9(1) hence u # v and
therefore hu # hv from which it follows by linearity of hu
and ho that h(u) = h(u(1)) # h(v(1)) = h(v).

Let H; = h(H) (so that h is a bijection between H and H;)
and equip H; with the addition and scalar multiplication of
P so that h becomes an isomorphism of Rx-semi-module
from H to H; (by linearity of h). We endow H; with the norm
defined by ||x||g, = ||h7(x)||r. The cone H; defined in that
way is isomorphic to H in our category CLin. Let S be the
category whose objects are the objects of CLin which, as
sets, are subsets of P and morphisms are the monos of CLin
(that is, the morphisms which are injective functions), we
have shown that there is an equivalence between S and the
category of subobjects of P (by the operation (H, h) +— H;
described above), and since S is small (because the collec-
tion of all possible norms on a given R»(-semi-module is a
set, and § is locally small because CLin is), this shows that
CLin is well-powered. O

Theorem 16. Any limit-preserving functor F : CLin — C,
where the category C is locally small, is a right adjoint.

Proof. This is a direct application of the special adjoint func-
tor theorem, see [14] (Chap. V, Sec. 8, Corollary). O

4 The tensor product of cones

We use these categorical results to introduce the tensor prod-
uct of cones and prove its main properties.

Lemma 17. For any given object P of CLin, the functor P —
_ : CLin — CLin is continuous (that is, preserves all limits).

We are now in position of defining the tensor product of
cones. For the time being we use a notation different from
the one we used for the tensor product of PCSs.

Theorem 18. There is a unique functor ® : CLin?> — CLin
such that for each P € Obj(CLin), the functor _ ® P is left
adjoint to P —o _ and that the bijection of the adjunction is
natural in the three involved parameters.

Proof. By Th. 16 and Lemma 17, for each P € Obj(CLin) the
functor P —o _ has a left adjoint _ ® P. By the Adjunctions
with a parameter theorem [14] (Chap. IV, Sec. 7), this opera-
tion extends uniquely to a functor CLin?> — CLin in such a
way that the bijection of the adjunction extends to a natural
bijection CLin(P; ® P,, Q) = CLin(P;, P, — Q) of functors
CLin°P x CLin°? X CLin — Set. O
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Classification of bilinear maps. We refer to Section 3.1
for basic definitions on bilinear maps. We use cur for the
natural bijection CLin(R ® P, Q) = CLin(R,P — Q). We
set

tp0 = flcur(ldpg,)) € CLin(P;Q, P& Q)

and we use also the notation x ® y for po(x,y) € P ®0
(forx e Pand y € Q).

Theorem 19. Let P, Q and R be objects of CLin. For any
f € CLin(P; Q,R) there is exactly one f € CLin(P ® Q,R)
such that f r = f.

Proof. We setf: cur }(B71(f)). We have
fr = pleur(id))

= B((Q — f) cur(Id)) by naturality of A

= ﬁ(cur(f)) by naturality of cur

=f.
Now we prove uniqueness so let h € CLin(P ® Q,R) be
such that A7 = f. By the same kind of computation we have
Bleur(h)) = ((Q — h) cur(Id)) = hf(cur(Id)) = ht = f
from which it follows that h = f. ]

This important universal property is however not suffi-
cient for proving that ® defines a monoidal structure on
CLin. One might solve this problem by showing that the nat-
ural bijection CLin(P® Q,R) = CLin(P, Q —o R) is actually
a natural isomorphism (P® Q — R) = (P — (Q — R))
of functors CLin°" X CLin°? X CLin — CLin. This almost
works, the only non trivial point seems to be the fact that
the inverse of this map has norm < 1 (we would probably
need more information about the elements of B(P ® Q)).

Action of ® on probabilistic coherence spaces. We use
another method, based on the density of PCSs in cones that
we have proven; on the way we also learn that our new ten-
sor product coincides with the old one on PCSs.

Theorem 20. There is a natural isomorphism
axy : P(X®Y) = (PX ® PY)
of functors Pcoh? — CLin.

Proof. Define 6 € CLin(PX; PY,P(X®Y)) by 8(u,0) = u®v
(it is the bilinear continuous map associated with the canon-
ical morphism X —o (Y — X ® Y) in Pcoh). By Theorem 19
we have an associated § € CLin(PX ® PY,P(X ® Y)). Now
we define p € CLin(P(X ® Y), PX ® PY).

Remember that P(X ® Y) = {u ® v | u € PXandv €
PY}++ (warning: u ® v is the element of P(X ® Y) defined
by (4 ® v)4p = Uqvp, not to be confused, for the time being,
with u ® v € PX ® PY). Given u € PX and v € PY we have

(u®0v)gpr(eq ep) =u ®v € B(PX ® PX)
a€|X|,be|Y]|
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by bilinearity and separate continuity of 7. By Lemma 12

wapT(eq €p) € B(PX ® PX)
a€|X|,be|Y|
for all w € P(X ® Y) and the map

p Wk Z

a€|X|,bel|Y|

WabT(eq, €p)

is linear and continuous P(X ® Y) — PX ®PY and | p|| < 1.

Fora € |X|and b € |Y|, we have é\(p(ea,b)) = é\(eaé?eb) =
eq ® ep = eqp so that 0 p = Id by linearity and continuity.
Nextforu € PX andv € PY we have p 5‘[(1,{, v) = p0O(u,v) =
p(u®0v) = u®v = 7(u,v) and hence p 6=1d by the unique-
ness part of the universal property satisfied by 7. Naturality
of § follows from its definition. O

Cocontinuity of ®. There is a natural transformation
U;,Pz,Q € CLin(P; — (P; — Q),P, —o (P; — Q))

(of functors CLin°? X CLin°? XCLin — CLin) from which we
derive a natural isomorphism ¢p, p, o : CLin(P; P, Q)=
CLin(P, ® P;, Q) by Theorem 18 and by the fact that there is
a natural isomorphism CLin(P, Q) = CLin(1,P — Q)). By
Lemma 1 we get a natural isomorphism Gp, p, € CLin(P; ®
Py, P, ® Py).

Theorem 21. The bifunctor® : CLin? — CLin is separately
cocontinuous.

Proof. Being a left adjoint, the functor _ ® P is cocontinuous.
By the existence of the natural isomorphism g, it follows
that ® is cocontinuous separately in both parameters. O

4.1 Associativity isomorphisms of the tensor
product

We lift associativity of ® on Pcoh (more precisely on the
smaller category L) to associativity of ® on CLin by den-
sity.

Lemma 22. IfX andY are objects of Lo, then X ® Y is also
an object of Leo.

Proof. For a set I, let 17 € (Rso)! be defined by (17); = 1 for
all i € I. If X is an object of Lo, then 1x| € PX and hence
Tixixy = 1ix ® Ljy| € PX®Y)IfweP(X®Y),ac|X|
and b € |Y|, we have w,), < 1 because e(,p) € P(X® Y)*
since (u ® v,e(qp)) < 1forallu € PX and v € PY. O

Given X; € Obj(L) for i = 1,2,3, we deﬁng a n_atural
isomorphism ag(l x,.x € CLin((PX ® PX,) ® PX5,PX; ®
(PX; ® PX3)) as the following composition of natural iso-
morphisms
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TTX1,X éﬁ)@

P(X: ® X,) ® PX;

| maexexs

P((X: ® X2) ® X3)

(PX; ® PX;) ® PX;

Pax x;,x;5

P(X; ® (X2 ® X3))
l”)}ll,xz@)g

PX; ® P(X; ® X3)

By o -1
PX; ® Ty X3

PX; ® (PX; ® PX3)

Now observe that both functors T,T’ : CLin®> — CLin
defined respectively by T(Py, Ps, P3) = (P; ® P) ® P; and
T’(Py, Py, P3) = P; ® (P; ® P;) (and similarly on morphisms)
are separately cocontinuous, because ® is separately cocon-
tinuous, see Theorem 21. We have just exhibited a natu-

ral isomorphism a? : TP = T'P . Since the functor P :
Lo — CLin is dense by Theorem 14, we can apply Theo-
rem 6 which shows that there is exactly one natural isomor-
phism @ : T = T’ such that (753 = °. In other words,
there are uniquely defined natural isomorphisms ap, p, p, €
CLin((P; ® P;) ® P3, P, ® (P, ® P3)) such that, for all objects
X1, X2, X3 € Obj(Lw), one has 55X1,5X2,5X3 = ag(l’XZ’&.

Using the naturalities of 7, @ and «, and the fact that «
satisfies Mac Lane’s pentagon diagram in L., diagram chas-
ing shows that @ makes the following diagram commutative
for any objects X; (i = 1,2,3,4) of Lo

((PX; ® PXz) ® PX3) & PXy —— (PX1 ® PX2) & (PX;3 ® PXy)

!

PX; ® (PX, ® (PX3 ® PXy))

!

(PX; ® (PX2 ® PX3)) ® PXy — PX; ® ((PX2 ® PX3) ® PXy)

where the various morphisms are defined using a. This means
that the natural isomorphisms

Yoo ¥ (PL® P) ® Ps) 8 Py = P18 (P ® (P ® Py))
defined by
‘ﬁ% = p, p, p,5P, %P,P, PP,

2 ~_ — — ~
Iﬁ? =P ® aPZ,PS,PAL) Qp, P &P,,Ps (aP1,P2,P3 ® Py)

satisfy 4 P = 2 P" and hence by the uniqueness statement
of Theorem 6 we must have 1//1 = l//z, that is, « itself satis-
fies Mac Lane’s pentagon diagram. One deals similarly with
the other coherence diagrams of symmetric monoidal cate-
gories (remember that we have defined a symmetry natural
isomorphism o in the proof of Theorem 21, the other natu-
ralisos Ap : 18P = P and pp : P®1 = P are easy to define
too).

We can summarize as follows what we have proven so
far.

Theorem 23. The category CLin equipped with the tensor
product ®, the unit 1, the natural isos A, p, @ and o is a sym-
metric monoidal category. It is closed, with object of morphisms
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fromP toQ the coneP —o Q and evaluationev € CLin((P — Q)® pointwise. So it makes sense to define g as in the statement

P, Q) induced by the bilinear and continuous map (f,x) —

fx).

5 The exponential

Using again the special adjoint functor theorem, we equip
CLin with a comonad1_ whose Kleisli category is (isomor-
phic to) our category Cstab of cones and stable functions.
We start with recalling the definition of the category!’.

Given n € N we use P*(n) (resp. P~ (n)) for the set of all
I € {1,...,n} such that n — #I is even (resp. odd).

Let P and Q be cones, in [9] is defined the notion of stable
function P — Q and proven that cones equipped with these
functions form a cartesian closed category. Such a function
is defined only on 8P,

e is bounded (that is {||f(x)]| | x € BP} is bounded),

e totally monotone: for any n € N and any xy,...,x, €
BP with 3" x; € BP, one has A" f(X) < A*f(X)
where A”f(¥) = Yiep-(n) f(Zierxi) and A*f(¥) =
2rep+(n) f (2ier xi) (notice that the conditions for n =
1,2, namely f(0) < f(x) and f(x1) + f(x2) < fox1 +
xz) + £(0), imply that f is monotone),

e and Scott-continuous (that is commutes with lubs of
monotone sequences in BP).

Equipped with algebraic operations defined pointwise and
with the norm defined by |[|f|| = sup,cgp |[f(x)]l, the set
of stable functions is an object of CLin that we denote as
[P — Q], separateness being proven as in the case of P —
Q. We use Cstab for the category whose objects are those
of CLin and morphisms are the stable functions f such that

Il < 1.

Theorem 24 ([9]). The category Cstab is cartesian closed
with cartesian product defined as in CLin, internal hom ob-
ject [P — Q] and evaluation map defined as in Set.

Notice that CLin(P, Q) C Cstab(P, Q) since linearity im-
plies total monotonicity, this induces a “forgetful” faithful
functor D : CLin — Cstab which acts as the identity on
objects and morphisms. For the same reason we can con-
sider [_ — _] as a functor CLin°? X CLin — CLin defined
exactly in the same way as the functor _ —o _

Lemma 25. With any f € CLin(P, [Q — R]) we can asso-
ciate an element g of Cstab(Q, P —o R) defined by g(y)(x) =
f(x)(y). This correspondence is a natural bijection of functors
CLin°P x CLin°? X CLin — Set.

Proof. Let f € CLin(P,[Q — R]). Let y € BQ, the func-
tion f(_)(y) : P — Ris linear and continuous because the
algebraic operations and lubs in [Q — R] are computed

7Since we have a direct description of this CCC, the situation might be
more naturally described by the concept of linear-non-linear adjunction,
see [15]; we prefer this Seely category presentation with which we are
more familiar.
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of the lemma, we must prove that this function is stable.
First since f is linear and continuous, it is bounded so let
A € Ryg be such that Vx € BP ||f(x)lljo-r] < A. This
means that Vx € BPVy € BQ ||f(x)(y)llo < A. Therefore
Vy € BO |lg(y)|lp-r < A. Next we prove that g is totally
monotone so let yy, ..., y, € BQ be such that I, y; € BO.
Let x € BP, we have

(A 9(7))(x) = A (f(x))(Y) app. is lin. in the function
< AY(f(x) (—y)) f(x) is stable
= (A"g(9)) (%)

and hence A"g(7) < A*g(7) since the algebraic order of
Q —o R coincides with the pointwise order. Continuity of g
follows similarly from that of each f(x) and from the fact
that lubs are computed pointwise in Q — R.

Conversely let g € Cstab(Q,P — R). Let x € P and let
us check that the function f(x) = g(_)(x) is stable. Let
A € Ry be such that Yy € BQ ||lg(y)|lp-or < A. Then we
have Vy € BQ ||lg(y)(x)|lr < Allx||p and this shows that
f(x) maps BQ to abounded subset of R. Let yy,. .., y, € BQ
be such that )7, y; € BQ, for the same reasons as above
we have A™(f(x))(7) < A*(f(x))(Y) because A g() <
A*g() by stability of g. Therefore f(x) is totally monotone.
Continuity of f(x) results from that of g and from the fact
that lubs are computed pointwise in P — R. So f(x) is well
defined and belongs to [Q — R]. Now we prove that the
function f is linear. Let xy,...,xx € Pand ay, ..., ax € Ry,
we have ¥y € BO F(SX, ax)(y) = T, a;f (x;)(y) by
linearity of each g(y) and hence f(ZI;ZI ajxj) = Zle ajf(x;)
because algebraic operations are defined pointwise in [Q —
R]. Continuity of f holds for a similar reason.

These two operations are obviously natural and inverse
of each other. ]

Lemma 26. The functor D is continuous.

So by the special adjoint functor theorem D has a left ad-
joint E : Cstab — CLin. Let (T der, dig) be the associated
comonad (in particularTz ED : CLin — CLin).

Let ypo : CLin(EP,Q) — Cstab(P, DQ) be the natural
bijection associated with this adjunction. We have prom, =

x(Idep) € Cstab(P,TP) since D(EP) = 1P; for any x € BP
we set x' = promp(x) € B(TP). This function promp is the
universal stable function:

Lemma 27. For any g € Cstab(P, Q) there is exactly one
function § € CLin(\P, Q) such that g = § o promp, that is
Vx € BP g(x) = §(xT). Hence if fi, f» € CLin('P, Q) satisfy
Vx € BPflezfngthenfl = f.

Proof. The first part is an immediate consequence of the
adjunction, taking g = )(Ile(g) since g € Cstab(P, DQ).
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The second part is a consequence of the first for g = f; o
promp = f; o promp. O
Lemma 28. Let f € CLln(P Q) Then 'f € CLm('P 'Q) is
characterized by 'fx = (fx) Derellctlon and digging are
characterized by der x' = x and dig x' = x".

These are direct consequences of the adjunction. Given
an unlabeled binary tree B with n leaves and Py,...,P, €
Obj(CLin), we use B(Py,...,P,) for the cone obtained by
replacing each node of B with the ® operator and the ith leaf
withTPi. For instance if B = (_,(_,_)) then B(Py, P, P;) =
TPI ® (TPZ @TPg). We define similarly B(xy, ..., x,) replacing
the ith leaf with xiT; in the example B(xi,x2,x3) = xlT ®

(x5 ® x3'). The next statement uses these notations.

Lemma 29. Let fi, f> € CLin(B(—P>), Q) and assume that for
any x; € BPy,...,x, € BP,, one has f,(B(¥)) = f,(B(X))
then fi = f,.

Proof. By induction on B. If B consists of one leaf this is just
Lemma 27. Assume B = (By, B;) (with n = n;+n, and B; has

—
n; leaves). Let P(i) be a list of cones of length n; (for i = 1, 2)
— — —

and P be the concatenation of P(1) and P(2). We use simi-

i
lar notations for elements of these cones. We have B(P) =

B,(P(1))@B,(P(2)) so that cur f; € CLin(By (P(1)), By(P(2)) —

Q) for j =1,2. Letm € BFTl_)). For all;(_Z_)> € ﬂm we
have

(cur ) (By (x(1)) (B2(x(2))) = fi (B(R))
= f,(B(X)) by the assumption on f; and f;
= (cur £2) (By (x(1))) (Bo(x(2)))

and hence (cur f;) (B1(x(1))) = (cur f3) (B1 (x(1))) by induc-
tive hypothesis applied to B;. Next by inductive hypothesis
applied to By we get cur f; = cur f; and hence f; = f2. O

Lemma 30. There is an isom° € CLin(1, T‘I’) and a natural
iso mPQ € CLln('P ® 'Q '(P & Q)) such that m®1 = 0' and

m? (' ®y)) = (x.y)"
Proof. We have a sequence of natural isomorphisms
CLin('P ®10,1(P & Q))

= CLin(TP,TQ —o T(P & Q)) by Theorem 23
= Cstab(P,1Q0 — (P & Q))
= CLin(TQ, [P SN P& Q)]) by Lemma 25
= Cstab(Q, [P — (P & Q)])
= Cstab(Q & P, (P & Q))
= Cstab(P & Q,T(P & Q)) by symmetry of &
= CLin(I(P & 0),/(P & Q)) > 1d

since E 4 D
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whence a natural mIZJ’Q € CLin(1P @TQ,T(P & Q)). This def-
inition implies that m? (xT§ yT) = (x, y)!. Next we define
f:B(P&Q)— ﬂ(TP @JTQ) by f(x,y) = B yT. This func-
tion is stable because prom is stable and ® is bilinear and
continuous. So we have f € CLm('(P & Q), P 'Q) which
satisfies f (x, y) = x'® ¢'. By Lemma 29 it follows that f is
the inverse of m?.

Since T = {0} and 1 = R5o we haveg € Cstab(T, 1) given
by g(O) =1 and hence g € CLin(1T, 1) fully characterized
by g0' = 1. We define m0 € CLin(1, 'T) by m°®(1) = 20",
Lemma 29 shows that m® g = Id and gm° = Id is straightfor-
ward. O

Theorem 31. Equipped with the above natural transforma-
tions (der, dig, m®, m?), the functor ! is a strong symmetric

monoidal comonad from the symmetric monoidal category (CLin, &

) to the symmetric monoidal category (CLin, ®) and Cstab is
equivalent to the Kleisli category of this comonad.

Proof. This boils down to proving the commutation of a few
diagrams (see [15]) using the above characterizations of maps

by their action on tensors of elements of shape x". O

6 Measurability

We use notations introduced in Example 7. Let X and Y be
measurable spaces. A substochastic kernel X ~» Y is a map
K : XXXy — Ry¢ suchthatforeachr € X, the map K(r,_)
is a subprobability measure on Y and, for each V € X y, the
map K(_,V) is measurable. Such a kernel K induces fx €
CLin(M(X), M(¥)) given by fi(0)(V) = [K(r,V)u(dr)
from which K can be recovered since K(r,V) = fx(5,)(V)
(where 6, is the Dirac measure at r). It is not true however
that any k € CLin(M(X), M(Y)) allows to define a kernel
K by setting K(r, V) = k(5,)(V) because there is no reason
for this function to be measurable in r.

As explained in [9] this transformation of an element of
CLin(M(X), M(Y)), and even of Cstab(M(X), M(Y)), into
akernel X ~» Y is essential for interpreting the sample con-
struct of probabilistic programming languages. This is why
the objects of CLin must be equipped with an additional
measurability structure and the linear and continuous mor-
phisms must respect this structure. This set of definitions is
very close in spirit to quasi-Borel spaces [19].

Let Meas be the category of measurable spaces and mea-
surable functions and let Mref : M — Meas be a functor
from a cartesian reference category M. We require Mref to
preserve all finite cartesian products. The choice of this ref-
erence functor depends on the data-types of the language
we want to interpret. If, as in [9], the language has the real

numbers as ground type, one takes M = N, M(n, m) = Meas(R", R™),

Mref(n) = R" and Mref(h) = h for h € M(n, m). We use 0
for the terminal object of M (in our example it is 0 € N) and,
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with this example in mind, we use + for the cartesian prod-
uct in M. Hence Mref(0) is the one-point measurable space
and Mref(p + q) = Mref(p) x Mref(q). To simplify nota-
tions a little we assume that, as in our motivating example,
the functor Mref acts as the identity on morphisms, that is
M(p, q) = Meas(Mref(p), Mref(q)).

A measurable cone is a pair P = (P, M(P)) where P €
Obj(CLin) and M(P) = (M(P),)pem is a family of sets
M(P), C (PMref(?) whose elements satisfy'®: if | € M(P),
then Vx € P Ari(r)(x) € Meas(Mref(p),R5¢). Moreover
this family is closed under precomposition'’ by morphisms
in M: if I € M(P), then Vh € M(q,p) AsAxI(h(s))(x) €
M(P)q. The I € M(P), are the measurability tests of arity
pofP.

A measurable path of arity p of P is a map y : Mref(p) —
B(P) such that, for all ¢ € M and all m € M(P), the func-
tion A(r,s) m(s)(y(r)) belongs to Meas(Mref(p + q), Rxo).
We use paths, (P), for the set of these paths. Notice that
for any x € BP one has Arx € paths,(P), for any p. An
f € CLin(P, Q) is measurable if Vy € paths;(P), f oy €
paths; (Q),. We use CLiny, for the category of measurable
cones and measurable continuous linear functions. Let (P;);<r
be a family of measurable cones. Given i € Tandl € M(P;),,
we define in;([) as the element of ([];¢; Pj)’Mref(P) defined
by ini(1) (r) (X) = 1(r) (x;). We set™ M([T;¢; Pi)p = {ini(D) |
i € ITandl € M(P;),} thus defining a measurable cone
[1;e; Pi which is easily seen to be, when equipped with the
ordinary projection maps, the cartesian product of the P;’s
in CLin,, so this category is cartesian®.

Let P —o., Q be the cone? of linear and continuous func-
tions P — Q which are measurable in the sense that Af
is measurable for some A > 0. It is easy to check that one
turns this cone into a measurable cone P —o,,, Q by equip-
ping it with M(P —, Q), = {y»! |y € paths,(P), and [ €

M(Q),} whereyel = Ar Af I(r)(f(y(r))) € (M)/Mref(p).

Given two measurable cones P and Q, we define P ® Q
as the measurable cone (P ® O, M(P ® Q)) where m €

(P® Q)’Mref(k) belongs to M(P ® Q)i if forallz € P® Q,
one has Aw m(w)(z) € Meas(Mref(k),R5¢) and for all y €

181t is convenient to use A_ _ notation borrowed to the A-calculus to write
some of the involved functions.

9This can be described in terms of presheaves of sets.

2glightly simpler definition than in [9], but the sets of measurable paths
to [1;er P; are the same. This also explains why we have dropped the first
requirement on families of sets of measurability tests.

211t is not difficult to check that it is actually small-complete by showing
that it has also binary equalizers but we don’t use this completeness here.
21t is easy to check that these functions equipped with the norm defined as
in P —o Q, is a cone. The only point which deserves a mention is the proof
of completeness which uses in a crucial way the monotone convergence
theorem; as mentioned in [9] this explains why cones are complete only
for bounded monotone sequences and not arbitrary directed families.
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paths, (P), and § € paths, (Q),
A(r, s, w) m(w)(y(r) ® d(s)) € Meas(Mref(p +q +k),Rxy) .

It is easily checked that (P ® Q9 M(P ® Q)) is indeed a mea-
surable cone P ® Q.

Lemma 32. Lety € paths,(P)q and § € paths,(Q)4. Then
A(r,s) y(r) ® 8(s) € paths, (P ® Q)p+q, We use y ® & for this
path.

Lemma 33. Given measurable cones P, Q, R, the bijection cur :
CLin(P ® Q,R) — CLin(P,Q —o R) restricts to a bijection

CLiny, (P ® Q,R) — CLiny (P, Q —om R).

Lemma34. Letf € CLin(B@Q, R). One has f € CLin,,(P®
Q,R) iff for all y € paths,(P), and § € paths,(Q)q, one has
fo(y®9d) € paths, (P ® Q)piq-

Immediate consequence of the above. It generalizes easily,
replacing P ® Q with any tensorial tree like P; ® (P, ® P3).
It is then routine to prove the following.

Theorem 35. The functor ® restricts to a functor CLin2, —
CLiny, (still denoted ®). Equipped with ®, the category CLin
is symmetric monoidal closed.

Example 36. Let X be a measurable space (with X-algebra
Yx). Givenp € MandU € Sx we definesy € (M(X)")Mref(®)
by eu(r)(p) = p(U) (for r € Mref(p)). The measurable cone
M(X) is defined by M(X) = M(X) and M(M(X)), = {eu |
U € Xx}. This means that paths, (M(KX)), is the set of all
maps y : Mref(p) — M(X) such that {y(r)(X) | r €
Mref(p)} € Ryg is bounded by 1 and, for each U € Xy,
the map Ar y(r)(U) is in Meas(Mref(p),Rx¢); in other words
Y : Mref(p) ~ X.LetK : X ~ Y, the associated map
fx € CLin(M(X), M(Y)) is measurable because, giveny €
M(M(X))p, fk © y is nothing but the usual composition of
the substochastic kernels’® K and y. Remember that K can be
recovered from fx by K(r) = fx(8,) and hence the operation
X — M(X) and K — fx is a faithful functor M from the cat-
egory Kern of measurable spaces and substochastic kernels to
CLin,,.

Conversely let f € CLin(M(X), M(Y)) and assume that
X = Mref(p) for some p € M. Then

y = Aré, € paths;(M(X)),

(it is the identity kernel) and hence K = f o y : X ~»
Y by measurability of f. However the functor M is not full.
Take Y =1 (the one point measurable space) so that a kernel
X ~ Y is simply a measurable function X — Ry. Given
1€ M(X) andU € 3 x we definedisc(u)(U) = 3,y p({r})
(the discrete component of ). Notice that, even if it is indexed
by an uncountable set, this latter sum has at most countably
many non-zero summands because we know that p(X) <
co. Then disc(y) € M(X) and it is easy to see that yu

ZWe are implicitly using the Giry monad.
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disc(p) is a linear, continuous and measurable function disc :
M(X) — M(X) and that disc < Id. Hence ¢ = Id—disc
is also linear, continuous and measurable M(X) — M(X).
Finally we define a linear, continuous and measurable func-
tion f : M(X) > M(Rxo) by f(r) = () (X) = p(X) -
Direx H({r}). In general f # 0, but by construction f(5,) =0
for eachr € X, and hence f cannot be of shape f = fx.

It seems clear that M(X x YY) = M(X) ® M(Y), with 1 ®
v = p ® v (the usual tensor product of measures), this will be
checked in further work.

The exponential. We only sketch this case which is quite
similar to that of ®. As in [9] we say that f € Cstab(P, Q)
is measurable if Vy € paths,(P)q f o y € paths;(Q),. We
use Cstab,, for the category of measurable cones and mea-
surable stable functions, it is a CCC.

Let P be a measurable cone. We define M(TP),] as the

set of all elements [ of (TB)’Mref(q) such that for all z € TB,
Asl(s)(z) € Meas(Mref(q),Rx¢) and for all y € paths, (P),,

A(r, ) 1(s)(y(r)") € Meas(Mref(p + q),Rso). In that way,
as easily checked, we have defined a measurable cone !P. If

Y € paths, (P), then clearly yT =Ar (y(r))T € pathsl(TP)p.

Theorem 37. The bijection CLin(TB, Q) — Cstab(P, Q) re-
stricts to a bijection CLiny, (TP, Q) — Cstab, (P, Q).

Hence, if f € CLin(TB, 9) then f € CLiny, (TP, Q) iff for
all y € paths, (P),, it holds that f o yT € paths, (Q),. The

required properties of |_ and of its associated structures fol-
low easily.

7 Conclusion

We need to understand better the internal structure of P® Q
and 1P (without and with measurability structure), for in-
stance as suggested in the Introduction we conjecture that
P®Q is the smallest subcone of CLin(P, Q; Rs¢)’ which con-
tains all the operators x®y : f + f(x,y) on bilinear forms,
and similarly of 1P. We also conjecture that 1PX and P!X are
naturally isomorphic (for PCSs X).

The framework of measurable complete positive cones
seems now to be quite a general and flexible one, allow-
ing to interpret probabilistic higher-order programming lan-
guages using continuous data types such as the real line
and also general recursive data types (this feature will be
presented in a forthcoming paper). With the tensor prod-
uct and exponential presented here, we should be able to
extend our probabilistic call-by-push-value [10] to continu-
ous data-types. This framework also hosts naturally differ-
ential operations on programs. For instance, given a stable
f: BP — Ry and elements x,u € BP such that x+u € BP
we know thanks to [1] that the map ¢, : [0,1] — Ry,
A = f(x + Au) belongs to Pcoh(!1, 1) and hence has a de-
rivative ¢;,(0) € Ryo. The map u — ¢,,(0) is linear and
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continuous P, — Rsq (where Py is the “local cone” of P at
x, that is the cone of all u € P such that x + Au € BP for
some A > 0, equipped with a suitable norm, the obvious gen-
eralization of a construction of [5] for PCSs) thus allowing
to introduce a general differential calculus for stable func-
tions on cones with expected applications in optimization
as well as static analysis of programs. Of course the linear
constructs on cones of this paper will be essential in these
forthcoming developments.

Another interesting outcome of this work is the fact that
PCSs are dense in the category CLin, a fact which might
be quite useful for transferring the full abstraction results
obtained so far to probabilistic programming languages han-
dling continuous data-types. The completeness of CLin might
also be quite an useful feature and an incentive for extend-
ing linear logic with dependent types; as an illustration we
exhibit a natural cone which arises as an equalizer of two
linear endomorphisms of a PCS.

Example 38. Let X be the least solution of the equation X =
1 & (N ® X) in Pcoh in the sense explained in [4], it can be
seen as a type of streams of integers. Indeed, this PCS can be
described simply: |X| is the set of finite sequences of integers
andu € (Rso)X! is in PX if ¥ 4ca tta < 1 for all antichains
A C |X] (that is, set of finite sequences which are pairwise
incomparable for the prefix order). Then we have a morphism
s € Pcoh(X, X) which is defined by s,p = 1 if a is of shape
b.n (n € N added at the end of the sequence b) and s, = 0
otherwise. In other words (su)p = X, en Up.n- It is not hard
to see that the equalizer of s and Id € Pcoh(PX, PX) is iso-
morphic to M(X) where X is the Baire space (the Polish space
N@) equipped with its Borel X-algebra: if su = u then u can
be seen as the measure which maps the basic clopen set of all
sequences € N extending a to u,. It is even possible to check
that the measurability structure introduced in [1] for general
PCSs seen as cones induces a measurability structure on this
equalizer such that its measurable paths are exactly the sub-
stochastic kernels to X.

This example shows that equalizers of simply definable mor-
phisms on recursively definable types can have quite an inter-
esting structure.
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8 Appendix
8.1 Proofof Lemma 1

Proof. We prove first naturality of 5, so let f € C(C,C’), we
have

F(f) nc = (D(G(C),F(f)) o Ycrc))(Idr(c))
= (Yercy © D(F(C),F(f)))Adr(c))
=Ycrc)(F(f))
= (Ye.rcry © DF(f), F(C))(IdE(cr))
= (D(G(f),F(C")) o e p(cry) Tdp ()
=nc G(f)

by commutation of the diagrams

D(F(C), F(C)) — "0, D(G(C), F(O))
D(F(C),F(f))l lD(G(C),F(f))
D(F(O), F(C")) — ", b(G(0),F(C)
D(F(f).F(C) T TD(G(f),F(C’))
Yer rct)

D(F(C"),F(C") D(G(C"), F(C)

and naturality of 6 is similar. Next, by naturality of i and
definition of ¢ we have

0c nc = Oc Yo (o) (Idp(c))
=D(G(0),0c) o Y r(c))(Idr(c))
= (Yec(c) © D(F(C), 0c))(Idr(c))
=Yccc)(0c) =1dg(c)

The equation 5c 6c = Idg(c) is proven similarly. ]

8.2 Proof of Lemma 2

Proof. Let A : J — C be a diagram and y : A = c be a
colimiting cocone, we must prove that F'y : F'A = F'(c) is
a colimiting cocone in [D,E], so let § : A = H be another
cocone based on A in [D, E]. For any objects j of ] and d of D
we have that (6;)4 (which we simply denote as §; 4) belongs
to E(F(A(j),d),H(d)) and is natural in j and d, that is, for
any ¢ € J(j,j') and g € D(d,d’), the following diagram
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commutes.

FAG).d) —2 H(d)
F(A(w),g)l lH(g)
Sy
FOAG).d) 24 H(d)

this results from the definition of [D, E] and F’.

By our assumption on F, for each object d of D the J-
cocone F(y,d) : F(A,d) = F(c,d) is colimiting in E and
hence there is exactly one morphism 6; € E(F(c, d), H(d))
such that,

Vj € Obj(J) 6aF(yjd)=0ja- )

We prove that 0 = (04)4cobj(p) is a natural transformation
F’(c¢) = H solet g € D(d,d’), we must prove that the fol-
lowing diagram commutes.

Fle,d) — > H(d)
F(c,g9) l lH(g)
Fle.d') — H(d)

For any j € Obj(J), we have
H(g) 04 F(yj,d) =H(g) ;4 by definition of 6
=384 F(A(j),g) by naturality of §
=04 F(yj,d") F(A(j).9)
=04 F(c,g) F(y;.d)
and the required commutation follows by the uniqueness
part of universality from the fact that the cocone F(y, d) is
colimiting.
This shows that § € [D,E](F’(c), H). It follows from (2)
that for any j € Obj(J), one has 8 F'(y;) = 6. Uniqueness
follows from the fact that any n € [D, E](F’(c), H) such that

n F'(y;) = 6 must satisfy the analogue of (2) for each given
d € Obj(D) and hence must be equal to 6. O

8.3 Proof of Lemma 4
Proof. Let ¢ € C, for each (x,f) € Obj(I/c) (so that f €
C(I(x),c)) we define é(xp) : (FA)(x, f) = (FD(x) —
G(c) by

S,y = G(f) 7x
(remember indeed that 7, € C((F I)(x), (GI)(x))).
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that, for each (x, f) € Obj(I/c), one has d(x,f) = 7. F(y(cxf))
that is (coming back to the definitions of § and y¢), the fol-
lowing diagram commutes

F(I(x)) —— G(I(x))
F(f)l lG(f)
F(c) G(c)

Tc

Notice that the uniqueness of this morphism implies, in the
case ¢ = I(x) and f = Id, that 7, = 14, so, for the first
statement of the theorem, we are left with proving that 7.
is natural in c. So let h € C(c,¢’) and let us prove that
7o F(h) = G(h) 7. So let f € C(I(x),c), we have

e F(h) F(f) =7¢ F(h f)
=G(hf) 7, by definition of T
=G(h) G(f) =
=G(h) e F(f)

and we obtain the expected commutation by Lemma 3 and
the fact that Fy¢ is colimiting.

As to the second part of the lemma, assume that 7 is a
natural isomorphism whose inverse is o, and that G is also
cocontinuous, we get a unique natural transformation o :
G = F such that 61 = 0. Now 70 : G = G satisfles
(to) I = 7o = 1d and hence by the uniqueness (applied to
that natuarl transformation Id : GI = GI) we get7o = 1Id
and similarly ¢ 7 = Id as contended. m]

8.4 Proof of Lemma 5

Proof. By induction on n, the base case n = 0 being trivial.
Sofori=1,...,nletl: C? — C; be dense functors and let
I:C% — Cbe a dense functor. Let F : C x [[%, C; — D be
a separately cocontinuous functor.

Given ¢ € Obj(C), we use F, : [[-;C; — D for the
functors obtained by fixing the first argument to c, notice
that F,. is separately cocontinuous.

Let ¢ € Obj(C), @ € Obj([1%,C;), d € Obj(D) and let
I,I' € D(F(c, @), d) be such that for all x € Obj(C°), X €
Obj(IT; CY) andall f € C(I(x),c) and? € [T, Ci(Li(x:), ci)

one has [ F(f, f) = ' F(f, ).
To prove that [ = I’ it suffices, by inductive hypothesis ap-

Then §isacocone F A, = G(c) because, given t € I/c((x, f), (yp¥itM to the functor F,, to prove that for al X e Obj(TTE, C?)

we have
d(yg) (FI)(t) = G(g) Ty (FI(t)) by definition of &
=G(9) (GI)(t) x
=G(gI(1)) 7«
=G(f)rx sincet €I/c((x,f), (y,9)).

Since the cocone Fy‘ : F A, = F(c) is colimiting, it follows
that there is exactly one morphism 7. € C(F(c), G(c)) such

by naturality of 7
by functoriality of G
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and7 € [T, Ci(Li(x;), c;) one has lF(c,?) = l’F(c,?).
Let k be the first of these morphisms and k’ be the sec-
ond one (with X and? as above). By Lemma 3 applied to

the cocontinuous functor F(_, I;(x1),..., I,(x,)) it suffices
to show that for any x € Obj(C®) and f € C(I(x),c), one

hask F(f,I(x1), ..., I,(xn)) = k" F(f,L1(x1), ..., I,(x,)) which

results from our assumption on [ and I’ and functoriality of
F. o
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8.5 Proof of Theorem 6

Proof. By induction on n, the base case being trivial. So for
i=1,...,nlet] : C? — C; be dense functors and let I :
C" — C be a dense functor. Let F,G : C x [[7.,C; — D be
functors and assume that F is separately cocontinuous.

For each x € Obj(C)°, we define a natural transformation

(%) Frio ([ [ 1) = Greo (] [ 1)

i=1 i=1
by setting 7(x)y = 7,3. By inductive hypothesis, there is
an unique natural transformation TF(;) : Fi(x) = Gi(x) such
that 7(x) ([T%, I) = 7(x). So for each x € Obj(C®), we have
defined a morphism 1?(‘;) € [F'(I(x)),G’(I(x))], we prove
now that it is natural in x.

Lett € CO(x,y) andlet @ € Obj([T%; C;), we must prove
that the following diagram commutes

- e —
F(I(x), ¢) — G(I(x), ¢)
F(I(t),—c))l = lG(I(t),?)
(Y —C>
F(I(y),¢) — G(I(y), )
Let ¥ € Obj([1%; C)) :':1nd7”> € [1%, Ci(Ii(x;), ¢;), we have

G(U(1), ) t(x)» FU(x), 1)

by naturality of TF(;C/)
_)
=G), f) 1z
2 -
=G(I(y), f)GU(t), X) 1, func.of G

by ind. hyp. applied to 7(x)

= G(I(y),?) T,® F(I(t),X) mnat.of r
= 1(y)= F(I(y), f) F(I(1). %) by ind. hyp. for z(y)
= 1(y) FU(1), @) FU(x), )

and hence by Lemma 5, G(I(), ) TF(;)? = @? F(I(1),7©)
as contended. .

Let p : F'I = G’I be defined by px = 7(x). Since F’ is
cocontinuous by Lemma 2, we know by Lemma 4 that there
is exactly one p such that pI = p.

We set 7,2 = (pc), this family of morphisms 7 is a nat-
ural transformation F = G such that7 (I x [[1L, ;) = 7.

Uniqueness is straightforward: assume 6 : F = G satis-

fies 0 (I [1 L) = rihen Ql(x)’—f(?) = 7(x)> and hence

by the uniqueness of 7(x) we must have 91<x),—c> = TF(TC)—L) =
(px ). Therefore, the natural transformation 6’ : F/ = G’
defined by (6;)z = 0, satisfies '] = p from which it
follows that 8" = p, thatis 0 = 7.

The last statement of the lemma is proven exactly as the

last statement of Lemma 4. O
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8.6 Proof of Lemma 9

Proof. Let K C Ix ] be finiteandles K; C Iand K, C J beits
projections, |1,y ex %isll < l[Siex, Sjex, %11l by mono-
tonicity of the norm. So || X jyex Xijll < [ 2iek, Zjey il
and hence the family |2 ; ;) ex Xi.jllkepy, (1x7) is bounded by
our assumption that (}; ey Xi, j)ier is summable. The stated
equations result from continuity of addition. ]

8.7 Proof of Lemma 11

Proof. The = implication is easy (see [4]), we prove the
converse, which uses the Hahn-Banach theorem in finite
dimension. Let v € (Rso)! be such that v ¢ U. We must
prove that there exists v’ € U+ such that (v,u’) > 1 and
Yu € U{u,u’) < 1.Given ] C Tand w € (Rxo)!, let w|;
be the element of (Rx)! which takes value w; for j € J
and 0 for j ¢ J. Then v is the lub of the increasing sequence
{ol{i,...iny | n € N} (Where iy, iy, ... is any enumeration of
I) and hence there must be some n € N such thato|g, ;.1 ¢
U. Therefore it suffices to prove the result for I finite, what
we assume now. Let G = {u € R’ | (Jui|)ies € U} which
is a convex subset of R, Let Ay = sup{A € Rsq | Ao € U}.
By our closeness assumption on U, we have Apv € U and
therefore Ay < 1.Let h : Ro — R be defined by h(Av) = 1/
(Ao # 0 by our assumptions about U and because I is fi-
nite). Let ¢ : R — Ry, be the gauge of G, which is the
semi-norm given by g(w) = inf{e > 0 | w € ¢G}. Itis
actually a norm by our assumptions on U. Observe that
h(w) < g(w) for all w € Ro: this boils down to showing
that A < Apq(Av) = |A| Aoq(v) for all A € R which is clear
since Apq(v) = 1 by definition of these numbers. Hence, by
the Hahn-Banach Theorem, there exists a linear [ : R — R
such that |I| < ¢ and which coincides with h on Ro. Let
o’ € R! be such that (w,0’) = I(w) for all w € R! (us-
ing again the finiteness of I). Let u’ € (Rso)! be defined
by u; = |Ul’| It is clear that (v,u’) > 1:since v € (Rxo)!
we have (v,u’) > (v,0’) = l(v) = h(v) = 1/A; > 1. Let
N={iel] o <0})Givenw € U, letw € R! be
given by w; = —w; if i € N and w; = w; otherwise. Then
(w,v") = (w,u’) =I(w) < 1since w € G (by definition of
G and because w € U). It follows that u’ € U~ O

8.8 Proof of Lemma 12

Proof. Let G C (Rx¢)!. Let cvx(G) be the set of all the el-
ements of (Rso)! which are of shape Zle aju(j) where
u(j) € G and ZI;=1 aj = 1. We use G* for the set of all u €
(Rs¢)! such that there is a monotone sequence (u(n))nen
of elements of cvx(G) such that u < sup,, ¢y u(n). Clearly
G C G*. For each ordinal B, we define U(f) C (Rso)! by
induction as follows: U(0) = U, U+ 1) = U(P)" and, if
p is limit and > 0, then U(fB) = U,<gU(y). This sequence
is clearly monotone for C. Let f be the least ordinal number

such that U (B + 1) = U(B). We have U+ = U(P) since
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U(p) is the least subset of (Rx()! which contains U, is con-
vex, downwards-closed and closed under the lubs of mono-
tone sequences, and therefore satisfies U(f8)**+ = U(S) by
Lemma 11.

To prove our contention, il suffices therefore to prove that,
for any G C (Rso)! and any h : I — P such that Yu €
G YacrUah(a) € BP, one has Vu € G* Y 1 uqh(a) € BP,
the result will follow by ordinal induction. So assume that
G and h satisfy these hypotheses. First let v € cvx(G), say
v = Zle aju(j) where v(j) € G and «; € Ry such that
Z§=1 aj = 1. Then

k
D vah(a) = Y1 ajo(j)a)h(a)

ael acl j=1

k
= > @(Dv(j)ah(a)) € BP

j=1 acl

by convexity?* of BP.

Let now u € G and let (u(n)),en be a monotone se-
quence in cvx(&G) such that u < sup, oy u(n). For each n
we have ) ,c; u(n)qsh(a) € BP by what we have just proven
and hence sup, oy X gy u(n)gh(a) € BP by completeness of
P since the sequence (2 ,¢; #(n)qh(a))nen is monotone. By
continuity of the algebraic operations in P we have
SUP ety Vact #(W)ah(@) = Tyer SUppers t(n)ah(a) and since
Va € Tu, < sup,gyu(n)a we get 3 cruqh(a) € BP as
contended.

The fact that o € CLin(P(I, U*"), P) results clearly from
its definition and from the fact that it maps U++ to BP. O

8.9 Proof of Lemma 17

Proof. Tt suffices to check that it preserves all small prod-
ucts and binary equalizers. Let ﬁrst—Q> = (Qi)ies be a family
of objects of CLin. Any element of P —o ]—15 is of shape
(fi)ier with f; € P —o Q; for each i and this defines a map
95 : (P —o H@) — [l;ef(P — Q;) which is a bijection.
This map is linear and continuous because all operations are
calculated pointwise (wrt. the argument of functions) and

componentwise (in the product indexed by I). The fact that
||95 || = 1 results from the fact that all the norms involved

are computed as lubs in Ry. To check that 95 is an iso it suf-

fices to check that 05! is continuous. Let us check this point:

let (f(n))nen be anon-decreasing sequence in B([];¢;(P —o
Qi) so that f(n) = (f(n);)ier, where f(n); € P —o Q; and
for each i € I the sequence of functions (f(n);)nen is non-
decreasing, and foreach x € B8P, onehasVn € N ||f(n);(x)|| <
1. Then f = sup, f(n) € B(I];e(P — Qy)) is character-
ized by f(x); = sup,qy f(n)i(x). On the other hand, g =

24 And actually also closeness because this computation uses implicitely
restrictions of the sum over I to finite subsets of I.
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Og(f) € P —o ]—[_Q) is given by g(x) = (f(x)i)ier so that

N
g(x) is the lub in [] Q of the sequence (f(n)(x))nen and
since lubs of sequences of functions are computed point-
wise, this proves our contention. So 95 is an iso in CLin

and its naturality is obvious.

Next consider fi, f> € CLin(Q, R) and let (E, e) be the cor-
responding equalizer (E is the cone of elements x of Q such
that fi(x) = fo(x) and e : E — Q is the inclusion). Then
P — f; € CLin(P — Q,P — R) (for i = 1,2) maps h
to f; h. The equalizer of these two maps is the cone of all
h € P — Q such that fi h = f, h, that is Vx € P fi(h(x)) =
f2(h(x)), equivalently h € P — E. And the inclusion map
(P — E) > (P — Q) is equal to P —o e. Hence the equal-
izer of P — f; and P —o f5 is (P — E, P —o e) which proves
that the functor P —o _ preserves equalizers, and hence pre-
serves all small limits. m]

8.10 Proof of Lemma 26

Proof. Tt suffices to prove that D preserves small products
and binary equalizers. The first statement results from the
fact that Cstab is cartesian with products defined as in CLin.
Let us prove the second one so let fi, ; € CLin(P, Q) and
(E,e) be the corresponding equalizer in CLin (that is E =
{x € P| fi(x) = fa(x)} and e : E — P is the obvious
inclusion, see the proof of Theorem 15). We prove that (E, e)
is the equalizer of f; and f; in Cstab so let g € Cstab(R, P)
be such that fi o g = f; o g, thatis Vz € BR g(z) € E.
Let h : BR — E be defined by h(z) = g(z), then h is stable
because g is and E inherits its structure from P (which also
entails that h(BR) C BE since g(BR) C BP). And h is the
unique element of Cstab(R, E) such that ¢ = e o h which
proves our contention. a

8.11 Proof of Lemma 33

Proof. Let f € CLiny,(P ® Q,R) and g = cur(f), we prove
that g € CLiny, (P, Q —om R). Let first x € P, we prove that
g(x) € Q —oy Rsolet 5 € M(Q)p, we prove that g(x) o § €
paths, (R),. Let m € M(Q)4, we have

Alr,s) m(s)(g(x)(8(r)) = A(r,s) m(s)(f (x ® 8(r))) .

Let y = Awx € M(P)y we have f o (y® ) € paths, (R),
by Lemma 32 and by our assumption about f and hence
A(r,s) m(s)(g(x)(6(r))) € Meas(Mref(p + q),R5o) so that
g(x) € Q —m R. We prove that g € CLiny(P,Q —on
R) so let y € paths;(P), and let us show that g o y €
paths,(Q —om R),; applying the definition of Q —op, R, let
6 € paths,(Q)q and I € M(R)4, we have

A(r,s) (8> D)(s)(g(y(r)) = A(r,s) 1(s)(g(y(r))(5(5)))
= A(r,s) () (f(y(r) ® 8(5)))
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and we know by our assumtion on f and by Lemma 32 that
fo(y®9d) e paths, (R)+q) and hence

A(r,s,s) 1(s") (f(y(r) ® 8(s))) € Meas(Mref(p+q+q),Rxo)

from which A(r,s) (§>1)(s)(g(y(r)) € Meas(Mref(p+q), R>o)
follows since M is cartesian and measurability tests are closed
under precomposition by morphisms of M.

Conversely, let g € CLiny,(P,Q —om R) and let f =
cur~'(g) € CLin(P ® Q.R) so that f is uniquely character-
ized by the fact that f(x ® y) = g(x)(y) for all x € P and
y € Q. We must prove that f € CLiny (P ®Q,R)soletd €
pathsl(P§>Q)po,we must show that f o 0 € paths, (R),,. Let
I € M(R)y and let us prove that A(ro, w) I[(w)(f(0(ry)) €
Meas(Mref(py + k), Rx¢). For each w € Mref(k), we have
Azl(w)(f(z)) € (P ® 9)’ because f is linear and contin-
uous and I(w) € R.Soletm € (P ® Q)’Mref(k) be de-
fined as m = Aw Az l(w)(f(z)), we claim that m € M(P ®
Q). The first condition (namely for all z € P ® Q, one has
Aw m(w)(z) € Meas(Mref(k),R5)) being obviously satis-
fied, we check the second one so let y € paths,(P), and
6 € paths, (Q)4. We have

A(r,5,w) m(w) (y(r) @ 8(s)) = A(r,5,w) L(w)(f(y(r) ® §(s)))
= A(r,s,w) I(w)(g(y(r))(6(s))) .
We set
8" = A(s,w) 8(s) : Mref(q+k) — Q
I = A(s, w) Azl(w)(z) € R"Mreflah)

Then® &' € paths,(Q)g+k and I’ € M(R)g+k and there-
fore &' » I’ € M(Q —om R)gsk. We know that g o y €
paths; (Q —om R), and hence A(r,s,w) (6" > I") (s, w)(g(y(r)))
is measurable Mref(p + q + k) — R5(. Now observe that
A(r,s,w) (8" > 1) (s, w)(g(y(r)) = A(r, s, w) L(w)(g(y(r))((s)))

so we have proven that m € M(P® Q). But remember that

0 € pathsl(P§Q)po,we have therefore A(rg, w) m(w)(6(rg)) €
Meas(Mref(py + k), R5¢) and since m(w)(6(ry)) is nothing
but I(w)(f(6(r))) we have f o 0 € paths; (R),. O

8.12 Proof of Theorem 37

Proof. Let f € CLiny (1P, Q), the associated g € Cstab(P, Q)
is defined by g(x) = f(xT). Let y € paths,(P),, we have
goy=foy € paths (Q), since y' € pathsl(TP)p and
hence g € Cstab(P, Q). Now let g € Cstab,,(P, Q) and let
f € CLin(!P, Q) be the associated linear map, uniquely char-
acterized by Vx € B8P g(x) = f(xT). Let 0 € pathsl(TP)p,
we prove that f o 0 € paths;(Q), so let m € M(Q)q,

we define [ = AsAzm(s)(f(z)) € ’!\E’Mmf(q) (linearity and
continuity of I(s) follows from those of f). The fact that

Z5Because M is cartesian and measurability tests and paths are closed under
precomposition by morphisms of M.
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Asl(s)(z) € Meas(Mref(q),R5¢) for each z € TB follows
from m € M(Q)q. Let y € paths, (P),,, we have

A(ro,s) 1(s) (y(r)') = A(ro, s) m(s)(g(y(ro))
€ Meas(Mref(ry +5s),R50)

since g is measurable, hence m € M(TP) Since 8 € pathsl(TP)p
it follows that A(r,s) [(s)(0(r)) € Meas(Mref(r + s),R>q)
but I(s)(0(r)) = m(s)(f(6(r))) and so we have proven that
f o 0 € paths, (Q),. O

8.13 The pentagon

We have to prove commutation of the external pentagon of
Figure 1 where the morphisms f;, y; are instances® of a, a;
are obtained by applying P to & and 7; are instances of 7,
that is S, f1 = Ps s Ps- This is reduced to the commutation
of the internal pentagon involving aj,. .., a5 by observing
that

B Br = (i1 710 719) ™" 0tz ay (713 702 711)

that is JT11 10 TT9 ﬁz ﬁl = 00 (7'[3 T 7[1) and similarly for
Bs Pa P3. This is done by pasting five kinds of commutative
squares of which we give examples, explaining why they
commute.

e The diagram involving f, 74, 7; and y; which com-
mutes by naturality of a.

e The diagram involving 4, 7, 75 and m; which com-
mutes by functoriality of ®.

e The diagram involving y1, 76, 73, 72, 713 and a; whose
commutation results from the definition of «° and a.

e The diagram involving fs, 713, 714, 711, 72 and g whose
commutation results from the definition of a° and a.

o The diagram involving as, 712, 73 and a3 which results
from the naturality of 7.

26possibly involving tensorisations with identities, the same for the next
uses of the word “instance”.
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((PX; ® PX2) ® PX3) ® PX4

Bs

T

(P(X1 ® X2) ® PX3) ® PXy

P((X1 ®X2)

B
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® X3) ® FX4

73

P(((X1® X2) ® X3) ® X4) s P((X1® X32)

)4t

as

E(Xl ® X3) ® (EXg ® 5X4)

T4

(ﬁXl @ ﬁXg) <§ 5(X3 ® X4)

TT6
77

P(X1 ® X2) ® P(X3 ® X4)

T8

az

Y2

® (X3 ® Xy))

PX; ® (PXo ®

9

ﬁXl @ (ﬁXg @ ﬁ(Xg Q X4))

TT10

(PX1® P(X2 ® (X3 ® X4)))

711

P(X1® (X2 ® (X3 ® X4)))

as

ay

PG ® (X ® X)) ® Xy) —— P(X; ® ((Xp ® X3) ® Xy))

712

P(X1 ® (X2 ® X3)) ® PXy

TT14

(ﬁXl ® ﬁ(Xz ® X3)) ® §X4

13

(PX1 ® (PX2 ® PX3)) ® PXy

Y3

Ba

17

PX1 ® P((Xy

® X3) ® X4)

ﬁXl ® (ﬁ(Xz ® X3) ® EX4)

715

Figure 1. Pentagon diagram
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(PX1 ® PXy) ® (PX3 ® PXy)

Be

(PX3 ® PXy))

Bs

PX; ® ((PXz ® PX3) ® PXy)
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