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Abstract

For overcoming the limitations of probabilistic coherence
spaces which do not seem to provide natural interpretations
of continuous data types such as the real line, we introduced
with Pagani and Tasson a model of probabilistic higher or-
der computation based on (positive) cones, and a class of to-
tally monotone functions that we called “stable”. Then Cru-
billé proved that this model is a conservative extension of
the earlier probabilistic coherence spacemodel.We continue
these investigations by showing that the category of cones
and linear and Scott-continuous functions is a model of in-
tuitionistic linear logic. To de�ne the tensor product, we use
the special adjoint functor theorem, and we prove that this
operation is an extension of the standard tensor product of
probabilistic coherence spaces. We also show that these lat-
ter are dense in cones, thus allowing to lift the main proper-
ties of the tensor product of probabilistic coherence spaces
to general cones. Finally we de�ne in the same way an ex-
ponential of cones and extend measurability to these new
operations.

Keywords: Denotational semantics, probabilistic program-
ming languages, linear logic

1 Introduction

We continue a series of investigations initiated in [4] on a
class of models of higher order computation, based on an
initial idea of Girard [11]. In these models, types are inter-
preted as concrete structures called probabilistic coherence

spaces (PCSs) consisting of a set (the web) and a collection
of R≥0-valued families indexed by the web generalizing dis-
crete probability distributions: a typical example of PCS isN
equipped with subprobability1 distributions on N. Another
example is N × N equipped with all families (C8, 9 ) (8, 9) ∈N×N
such that, for all subprobability distribution (G8)8 ∈N on N,
the family (

∑
8 ∈N C8, 9G8) 9 ∈N is a subprobability distribution

on N. Such a C is a N ×N substochastic matrix which repre-
sents a sub-Markov process with l states. In [4] it is proven
that PCSs are a categorical model of classical linear logic
(LL), that is, a Seely category ([15]2) Pcoh, where all recur-
sive types can be interpreted, and which provides an ade-
quate interpretation of a probabilistic extension of Plotkin’s
PCF [16].

1Not probability, in order to interpret also partial computation.
2Our main reference for the category theory of models of linear logic, see

also that paper for thorough discussions on the complicated history of the

notions involved.

[2, 6–8, 10] extended these results, proving full abstrac-
tion properties for probabilistic versions of PCF and Levy’s
Call-by-Push-Value, and proving that the exponential of PCSs
introduced in [4] is the free one. One essential feature of
this model is that the morphisms of the associated Kleisli
category are extremely regular and can be seen as analytic
functions, some consequences of this fact are presented in
in [5] and crucially used in proofs of full abstraction.
The main weakness of the PCS model is that it does not

host “continuous data types” such as the real line equipped
with its standard Borel Σ-algebra, required for taking into
account modern probabilistic languages used in Bayesian
programming. [4] suggested that PCSs might be generalized
using a well-suited notion of ordered Banach space or pos-
itive cone. This was done in [9], using a notion of positive
cone3 considered earlier in particular in [17]. Any PCS gives
rise naturally to such a cone, and one can also associate with
anymeasurable space the cone of all measures which have a
�nite global weight. [9] shows that, equipped with suitable
stablemorphisms (which are Scott-continuous functions sat-
isfying a total monotonicity requirement which has some
similarities with Berry’s stability), these objects forma carte-
sian closed category (CCC) Cstab providing an adequate in-
terpretation of an extension of PCF with a type of real num-
bers and a sampling primitive. Then, Crubillé showed that
this CCC contains the Kleisli category of the PCS model as
a full sub-CCC [1], providing a very satisfactory connection
between these constructions.
Following [17], it is noticed in [9] that there is a natu-

ral notion of linear and Scott-continuous functions between
cones, which coincides with the notion of linear morphisms
of Pcoh when restricted to cones induced by PCSs: this de-
�nes the category CLin we study here. Given cones % and
& , one can build a cone % ⊸ & whose elements are those
of CLin(%,&) so we could reasonably expect the functor
% ⊸ _ to have a left adjoint for each % , hopefully turning
CLin into a symmetric monoidal closed category (SMCC)4.
With cones % and & we should associate functorially a

cone % ⊗ & such that (at least) there is a natural bijection
between CLin(% ⊗ &,') and CLin(%,& ⊸ '). Our �rst at-
tempt was concrete: since the elements of this second hom-
set are continuous and bilinear functions %×& → ', our ten-
sor product should classify such functions and hence it was

3There is a long tradition of research on this kind of structures, rooted in

the theory of Banach spaces. Such cones have been used in semantics quite

successfully for instance in [13] and subsequent work.
4Probably not a *-autonomous category however.
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natural to look for % ⊗ & as a sub-cone5 of B(%,&) ′ where
B(%,&) is the cone of continuous bilinear maps % × & →

R≥0 and '
′
= (' ⊸ R≥0) (the dual of '): with any G ∈ %

and ~ ∈ & we can indeed associate the linear and continu-
ous function G ⊗ ~ : B(%,&) → R≥0, 5 ↦→ 5 (G,~). Whence
a de�nition of % ⊗ & : the least subcone of B(%,&) ′ which
contains all the G ⊗ ~, for G ∈ % and ~ ∈ & . This also gives
us a continuous and bilinear map g : % × & → % ⊗ & ,
(G,~) ↦→ G ⊗ ~.
We should now prove the universal property: for any bi-

linear and continuous 5 : % × & → ', there is exactly one

5̂ ∈ CLin(% ⊗ &,') such that 5 = 5̂ g . It is easy to de�ne 5̂
on the elements of % ⊗& of shape G ⊗ ~ (under a mild sepa-
rateness assumption on our cones), but how can we extend
this map to thewhole of %⊗&? Our “top-down” de�nition of
%⊗& is ine�ective for this, we need a “bottom-up” approach,
something like: an element of % ⊗ & is a (possibly in�nite)
linear combination

∑
8 ∈� U8 (G (8) ⊗~(8)) where U8 ∈ R≥0 and∑

8 ∈� U8 = 1 (convex combination of pure tensors). But this
is not enough because we could perfectly have two convex
combinations of pure tensors I and I′ such that I′ ≤ I (in
B(%,&) ′) and then % ⊗ & will also contain I − I′ (Exam-
ple 13 shows that such subtractions are mandatory at least
if we want our ⊗ to extend that of Pcoh). In the usual al-
gebraic case, coe�cients form a ring and such elements are
just combinations of pure tensors, with possibly negative
coe�cients. Here on the contrary we have to take such dif-
ferences into account explicitly since our coe�cients are in
R≥0.
Another problem arises from the very peculiar complete-

ness of cones and continuity of morphisms, which are de-
�ned purely in terms of the algebraic order relation (accord-
ing to which G1 ≤ G2 if there exists G such that G1 + G = G2),
and not of the norm: if a given element I of %⊗& can bewrit-
ten in two di�erent ways as a convex combination of pure
tensors I =

∑
8 ∈� U8 (G (8)⊗~(8)) =

∑
9 ∈� V 9 (G

′( 9 )⊗~′( 9 )), it is
not obvious, though certainly true, that

∑
8 ∈� U8 5 (G (8),~(8)) =∑

9 ∈� V 9 5 (G
′( 9 ),~′( 9 )).

Contents. After several attempts, we arrived to the con-
clusion that the concrete approachwould lead to rather com-
plicated (thoughquite interesting) developments. Fortunately
a shorter roadwas open, based on the following observation:
our categoryCLin is small complete and the functor % ⊸ _
preserves all small limits so we are in position of applying
the special adjoint functor theorem (because CLin is also
well-powered, and, under the aforementioned separateness
condition on objects, it admits R≥0 as cogenerating object).
So the functor % ⊸ _ has a left adjoint: we get our tensor
product ⊗ almost for free! This is not the end of the story
however because the simple fact that ⊗ is a bifunctor de-
�ned as a left adjoint to ⊸ is not su�cient to prove that

5A notion to be de�ned carefully.

it de�nes a monoidal structure. Though, we are lucky again
because

• it turns out that Pcoh is a dense subcategory of CLin
(that is, any cone is a colimit of a diagram of PCSs),
which per se is quite an interesting property;

• being a left adjoint, ⊗ commutes with all existing col-
imits of cones;

• restricted to Pcoh, our new tensor product coincides
with the ordinary one, which de�nes amonoidal struc-
ture on Pcoh.

Combining these facts we lift the monoidal structure (asso-
ciativity isomorphisms etc) from Pcoh to CLin, thus prov-
ing that CLin is an SMCC, which contains Pcoh as a full
sub-SMCC and this was our main goal.
Then we use the same method to de�ne an exponential

functor !_ : CLin → CLin and show that it is a resource
modality in the sense of Seely categories (again, see [15]).
We conclude the paper by explaining shortly how the

measurability structure introduced for cones in [9] can be
extended to our tensor product and exponential. Such struc-
tures are indeed essential for interpreting the sampling con-
structs of probabilistic programming languages.

Related work. Positive cones have been used in various
contexts in the semantics of probabilistic programming lan-
guages, notably under the name of Kegelspitzen (which are
“unit balls” of cones) for which we refer to [12, 13]. The
main di�erence with our approach is that such cones are
usually equipped with an additional “extensional” order re-
lation whereas the only order relation we consider in our
work is the algebraic one: this constraint, strongly suggested
by PCSs, obliged the authors of [9] to introduce stable func-
tions.
Closer to our approach are [18] and [3] where types are

interpreted as ordered Banach spaces and tensor products
are also de�ned. The main di�erence that we can see be-
tween their approaches and ours is that they put more stan-
dard continuity requirements on linear morphisms, based
on the norm, whereas we insist on our linear (and stable)
morphisms to be Scott continuous, a purely6 order-theoretic
notionwhich implies boundedness and thus norm-based con-
tinuity, but the converse implication does not hold in gen-
eral. The main bene�t of insisting on this kind of continuity
is that, our stable morphisms being Scott-continuous, they
have least �xed points (and by cartesian closeness, the func-
tion computing these �xed points is itself stable). Deeply
related with this choice is the fact that stable functions are
de�ned only on the unit ball of the source cone: the use of
�xed points prevents in general stable functions from being
extended to the whole cone, see [5] for examples illustrating
this fact.

6Not completely actually, since we require commutation with lubs of

bounded monotone sequences, and the de�nition of boundedness involves

the norm.

2



Cones as a model of intuitionistic linear logic LICS’20, July, 2020, Saarbrücken, Germany

2 Density

The categorical notion of density (see [14], Chap. X Sec. 6)
plays a crucial role, we spend some time to introduce it and
present useful properties7. But we start with the following
simple lemma which will be quite useful.

Lemma 1. Let C and D be categories, �,� : C → D be func-

tors andk�,� : D(� (�), �) → D(� (�), �) be a natural bijec-

tion. Then the family of morphisms [� = k�,� (�) (Id� (�) ) ∈

D(� (�), � (�)) is a natural isomorphism whose inverse is the

family of morphisms \� = k−1
�,� (�)

(Id� (�) ) ∈ D(� (�),� (�)).

A functor � : C → D is cocontinuous if it preserves all
small colimits which exist in C: given a functor Δ : � → C

where � is small (one says that Δ is a diagram) and given
a colimiting cocone W : Δ ⇒ 2 on Δ (initial object in the
category of cocones on Δ) for some object 2 of C, then the
cocone �W : �Δ ⇒ � (2) is a colimiting cocone in D.
Given categories D and E, we use [D, E] for the category

of functors and natural transformations from D to E.

Lemma 2. Let � : C × D → E be a functor which is cocon-

tinuous in its �rst argument (that is, given any object 3 of D,

the functor � (_, 3) is cocontinuous). Then the curried functor

� ′ : C → [D,E] is cocontinuous.

Let � : C0 → C (where we assume C
0 to be small) and

let 2 ∈ Obj(C). Let �/2 be the comma category (its objects
are the pairs (G, 5 ) where G ∈ Obj(C0) and 5 ∈ C(� (G), 2)

and �/2 ((G, 5 ), (~,6)) is the set of all C ∈ C
0 (G,~) such that

6 � (C) = 5 ) and Δ2 : �/2 → C be the functor which maps
(G, 5 ) to � (G) and similarly for morphisms. Let W2 : Δ2 ⇒ 2

be the cocone de�ned by W2
(G,5 )

= 5 . One says that the func-

tor � is dense (see [14], Chap. X, Sec. 6) if W2 is a colimiting
cocone for each 2 ∈ Obj(�). If C0 is a full subcategory of C
and � is the inclusion, C0 is said to be a dense subcategory
of C.

Lemma 3. Let � : C0 → C be dense and let � : C → D

be cocontinuous. Let 2 ∈ Obj(C), 3 ∈ Obj(D) and ;, ; ′ ∈

D(� (2), 3). If, for all G ∈ C
0 and 5 ∈ C(� (G), 2) one has

; � (5 ) = ; ′ � (5 ) then ; = ; ′.

Proof. By our assumption on ; and ; ′ we de�ne inD a unique
cocone X : � Δ2 ⇒ 3 by setting X (G,5 ) = ; � (5 ) = ; ′ � (5 )

and the fact that �W2 is a colimiting cocone (because � is
cocontinuous) implies that ; = ; ′. �

Lemma 4. Let � : C0 → C be dense, let �,� : C → D be

functors and assume that � is cocontinuous. Let g : � � ⇒ � � ,

there is exactly one g̃ : � ⇒ � such that g̃ � = g . Moreover if

g is a natural isomorphism and� is also cocontinuous, then g̃

is an isomorphism.

7There is no doubt that they are all quite standard, we provide the state-

ments in a form convenient for our purpose.

Now we extend the previous results to separately cocon-
tinuous multi-ary functors since we want to apply them to
our tensor product.

Lemma 5. For 8 = 1, . . . , = let �8 : C
0
8 → C8 be dense func-

tors. Let � :
∏=
8=1C8 → D be separately cocontinuous (that

is, for each 8 = 1, . . . , = and each 21 ∈ Obj(C1), . . . , 28−1 ∈

Obj(C8−1), 28+1 ∈ Obj(C8+1), . . . , 2= ∈ Obj(C=), the functor

� (21, . . . , 28−1, _, 28+1, . . . , 2=) is cocontinuous). Let
−→2 ∈ Obj(

∏=
8=1 C8 ),

3 ∈ Obj(�) and let ;, ; ′ ∈ D(� (−→2 ), 3). If, for all−→G ∈ Obj(
∏=
8=1C

0
8 )

and all
−→
5 ∈

∏=
8=1 C8 (�8 (G8 ), 28 ) one has ; � (

−→
5 ) = ; ′ � (

−→
5 ),

then ; = ; ′.

Theorem 6. For 8 = 1, . . . , = let �8 : C
0
8 → C8 be dense func-

tors. Let �,� :
∏=
8=1 C8 → D be functors and assume that �

is separately cocontinuous. For any natural transformation

g : � (
∏=
8=1 �8 ) ⇒ � (

∏=
8=1 �8), there is exactly one natural

transformation g̃ : � ⇒ � such that g̃ (
∏=
8=1 �8 ) = g . If �

is also separately cocontinuous and if g is a natural bijection,

then g̃ is also a natural bijection.

3 The category of cones and linear maps

There is an unfortunate though hardly avoidable clash of
terminology between the cones that we introduce now and
the categorical cocones used to deal with density. We use
“cone” for the former and “cocone” for the latter to prevent
any misunderstanding.
A positive cone is a structure (%, ‖_ ‖) where % is an R≥0-

semimodule and ‖_ ‖ is a function % → R≥0 which satis�es
the usual conditions of a norm8. It is assumedmoreover that
% is cancellative (meaning G1 + G = G2 + G ⇒ G1 = G2) and
that (%, ‖_ ‖) is positive (meaning ‖G1‖ ≤ ‖G1 + G2‖). A sub-
set � of % is bounded if {‖G ‖ | G ∈ �} is bounded in R≥0.
We use B% for the closed unit “ball” {G ∈ % | ‖G ‖ ≤ 1}.
The algebraic order relation of % is de�ned by: G1 ≤ G2 if
∃G ∈ % G1 + G = G2. When such an G exists it is unique by
cancellativity, and we use the notation G = G2 − G1; apart
from its partiality, this subtraction obeys all the usual alge-
braic laws. One says that % is complete if any monotone
l-indexed9 sequence in B% has a lub which lies in B% .

The semiring R≥0 is a complete positive cone, with norm
de�ned as the identity.

Example 7. Given a measurable space X (with Σ-algebra

ΣX), the set M(X) of all non-negative measures ` on X such

that `(X) < ∞ is a complete positive cone, when equipped

with algebraic operations de�ned pointwise and norm ‖`‖ =

`(X).

Continuity and linearity. When dealingwith cones, the
word “continuity” always applies to functionswhich aremono-
tone wrt. the algebraic order, and means commutation with

8It is essential to notice that this norm is part of the structure of the cone.
9And not arbitrary directed sets as a domain-theorist might expect, because

we need to apply the monotone convergence theorem of measure theory

at some point.
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lubs of such monotone sequences in the unit ball. It is easy
to check that all the operations of a cone (addition, scalar
multiplication and norm) are monotone and continuous.
Given % and& complete positive cones, a map 5 : % → &

is linear if it commutes with the algebraic operations. If 5 is
moreover continuous then it is not hard to prove that it is
bounded in the sense that it mapsB% to a bounded subset of
& ([17]). Therefore we can de�ne ‖5 ‖ = supG ∈B% ‖5 (G)‖ ∈

R≥0. We use % ′ for the set of linear and continuous maps
% → R≥0. We say that % is separated10 if (∀G ′ ∈ % ′ 〈G1, G

′〉 =

〈G2, G
′〉) ⇒ G1 = G2, where we set 〈G, G

′〉 = G ′(G) for G ∈ %

and G ′ ∈ % ′.

In�nite sums. Let % be a cone and −→G = (G8)8 ∈� be a fam-
ily of elements of % indexed by a set � which is at most count-
able. We say that −→G is summable if the family of real num-
bers (‖

∑
8 ∈� G8 ‖) � ∈P�n (� ) is bounded. In that case one can de-

�ne
∑
8 ∈� G8 ∈ % in an unique way. Indeed, take a monotone

sequence � (=) of �nite subsets of � such that
⋃
=∈N � (=) = � ,

then the sequence (
∑
8 ∈� (=) G8)=∈N is monotone and norm-

bounded and hence has a lub in % . This lub does not depend
on the choice of the sequence (� (=))=∈N because any two
such sequences are co�nal. We use

∑
8 ∈� G8 for this lub. Ob-

viously any sub-family of a summable family is summable.

Lemma 8. Let 5 : % → & be linear and continuous. Then

for any summable family (G8)8 ∈� in % , the family (5 (G8))8 ∈�
is summable in & and we have 5 (

∑
8 ∈� G8) =

∑
8 ∈� 5 (G8 ).

Lemma9. Let−→G = (G8, 9) (8, 9) ∈�×� be a doubly-indexed family

of elements of a cone % and assume that for each 8 ∈ � the fam-

ily (G8, 9 ) 9 ∈� is summable and that the family (
∑
9 ∈� G8, 9)8 ∈� is

summable. Then the family−→G is summable and
∑
8 ∈�, 9 ∈� G8, 9 =∑

8 ∈�

∑
9 ∈� G8, 9 =

∑
9 ∈�

∑
8 ∈� G8, 9 .

We use CLin for the category whose objects are the sep-
arated complete positive cones and morphisms are the con-
tinuous linear functions whose norm is ≤ 1, in other words,
the 5 : % → & which are linear and continuous and satisfy
5 (B%) ⊆ B& .

3.1 Linear function spaces

Let % and & be object of CLin, we de�ne the cone % ⊸
& whose elements are the linear and continuous functions
% → & with algebraic operations de�ned pointwise and
norm de�ned by ‖5 ‖ = supG ∈B% ‖5 (G)‖& which is well-
de�ned by continuity of 5 . Notice that in this cone, the al-
gebraic order relation coincides with the pointwise order
on functions. Let indeed 5 , 6 ∈ % ⊸ & be such that ∀G ∈

% 5 (G) ≤ 6(G). Then we de�ne a linear function ℎ : % →

& by setting ℎ(G) = 6(G) − 5 (G) by the usual laws satis-
�ed by subtraction. Let us prove that this linear function ℎ
is continuous so let (G=)=∈N be a non-decreasing sequence

10It is not completely clear to us that all cones are separated as one would

expect with Banach spaces in mind.

in B% and let G ∈ B% be its lub, we need to prove that
ℎ(G) ≤ sup=∈N ℎ(G=), the converse resulting from the mono-
tonicity of ℎ, that is, we have to prove that 6(G) ≤ 5 (G) +

sup=∈N ℎ(G=). Let : ∈ N, one has 6(G:) = 5 (G: ) + ℎ(G: ) ≤

5 (G) + sup=∈N ℎ(G=) and we are done since 6 is continuous.
The cone % ⊸ & is complete, lubs being computed point-

wise (since the order relation is the pointwise order on func-
tions). This cone is separated because, given 51, 52 ∈ % ⊸ &

with 51 ≠ 52 there exists G ∈ % such that 51 (G) ≠ 52 (G)

and hence there exists ~′ ∈ & ′ which separates 51 (G) from
52(G). Now the operation ℎ ↦→ 〈ℎ(G),~′〉 is an element of
(% ⊸ &) ′ which separates 51 from 52.
Moreover the operation _ ⊸ _ is a functor CLinop ×

CLin → CLin, the action of morphisms being de�ned as
follows. Let 5 ∈ CLin(%2, %1) and 6 ∈ CLin(&1, &2), then
5 ⊸ 6 ∈ CLin((%1 ⊸ &1), (%2 ⊸ &2)) is given by (5 ⊸

6) (ℎ) = 6ℎ 5 . The fact that 5 ⊸ 6 is a well de�ned linear
function (%1 ⊸ &1) → (%2 ⊸ &2) results from the linearity
of 5 and6. The fact that it is continuous results from the fact
that the lubs in %8 ⊸ &8 are computed pointwise and from
the continuity of 6. The fact that ‖5 ⊸ 6‖ ≤ 1 results from
the fact that the norms of 5 and 6 are ≤ 1.

Bilinear maps. Given cones % , & and ', a function 5 :
% × & → ' is bilinear and separately continuous if for all
G ∈ B% and ~ ∈ B& , one has 5 (_ ,~) ∈ CLin(%, ') and
5 (G, _ ) ∈ CLin(&,'). We use CLin(% ;&, ') for the set of
these bilinear and separately continuous functions11.

Lemma 10. There is a natural bijection V : CLin(%,& ⊸
') ⇒ CLin(% ;&,') of functors CLinop × CLin

op × CLin →

Set.

Proof. Let 6 ∈ CLin(%,& ⊸ '), we de�ne 5 : % × & → '

by 5 (G,~) = 6(G) (~). It is clear that 5 is separately linear
(that is the maps 5 (_ , ~) and 5 (G, _ ) are linear) because the
algebraic operations of & ⊸ ' are de�ned pointwise, let
us prove separate continuity. Let (G (=))=∈N be monotone in
B% and~ ∈ B& . Then 5 (sup=∈N G (=),~) = 6(sup=∈N G (=)) (~) =
sup=∈N 5 (G (=),~) because lubs of linear functions are com-
puted pointwise in & ⊸ '. Let G ∈ B% and (~(=))=∈N be
monotone in B& , we have

5 (G, sup
=∈N

~(=)) = 6(G) (sup
=∈N

~(=)) = sup
=∈N

5 (G,~(=))

since the linear function6(G) is continuous, hence 5 ∈ CLin(% ;&, '),
we set V (6) = 5 . Let now 5 ∈ CLin(% ;&, '). Let G ∈ B% ,
then we set 6(G) = 5 (G, _ ) ∈ & ⊸ '. Linearity and con-
tinuity of 6 follow again from the fact that all the opera-
tions of & ⊸ ' (including lubs) are de�ned pointwise. Let
6 = V ′(5 ) ∈ CLin(%,& ⊸ '). It is clear that V and V ′ are
natural and inverse of each other. �

11Actually separate continuity is equivalent to continuity on % × & be-

cause our notion of continuity is de�ned as preservation of lubs of bounded

monotone families.
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3.2 Probabilistic coherence spaces

Let � be a set (that we can assume to be at most countable).
Given 8 ∈ � , we use 48 for the element of (R≥0)

� such that
(48 ) 9 = X8, 9 .

Given D,D ′ ∈ (R≥0)
� , we set12 〈D,D ′〉 =

∑
8 ∈� D8D

′
8 ∈ R≥0 ∪

{∞}. Given U ⊆ (R≥0)
� , we set U⊥

= {D ′ ∈ (R≥0)
� | ∀D ∈

U 〈D,D ′〉 ≤ 1}. A probabilistic coherence space (PCS) is a pair
- = (|- |, P- ) where |- | is a set (which can be assumed at
most countable) and P- ⊆ (R≥0)

|- | such that P- = P-⊥⊥

and ∀0 ∈ |- | 0 < sup{D0 | D ∈ P- } < ∞, the purpose
of this second condition being of keeping all coe�cients �-

nite. We set P- = {D ∈ (R≥0)
|- | | ∃_ > 0 _D ∈ P- }.

Equipped with algebraic operations de�ned pointwise, it is
a cancellative R≥0-semimodule. We de�ne a norm by set-
ting ‖D‖ = sup{〈D,D ′〉 | D ′ ∈ P-⊥ } and it is easily checked

that this turns P- into a separated complete cone such that

B(P- ) = P- .
We use N for the PCS de�ned by |N| = N and PN = {D ∈

(R≥0)
N |

∑∞
==0D= ≤ 1}. Given PCSs - and . we de�ne a

PCS - ⊸ . by |- ⊸ . | = |- | × |. | and C ∈ P(- ⊸ . ) if
for allD ∈ P- , one has C D ∈ P. where (C D)1 =

∑
0∈|- | C0,1D0

(matrix application). The proof that this is indeed a PCS, as
well as the proof of most of the next results can be found
in [4]. Such matrices can be composed: given B ∈ P(- ⊸ . )

and C ∈ P(. ⊸ / ), C B ∈ P(- ⊸ / ) is de�ned as an ordi-
nary composition of (usually in�nite-dimensional) matrices
(C B)0,2 =

∑
1∈|. | B0,1C1,2 . In that way we de�ne the category

Pcoh whose objects are the PCSs and Pcoh(-,. ) = P(- ⊸

. ) (Id ∈ Pcoh(-,- ) is given by Id0,1 = X0,1 which is equal
to 1 if 0 = 1 and to 0 otherwise). This category is sym-
metric monoidal closed, and actually *-autonomous, with
- ⊗. = (- ⊸ .⊥ )⊥ which satis�es |- ⊗ . | = |- | × |. | and
P(- ⊗ . ) = {D ⊗ E | D ∈ P- and E ∈ P. }⊥⊥. It is also carte-
sian with product of the family (at most countable) (-8)8 ∈�
given by &8 ∈� -8 = - where |- | = ∪8 ∈� {8} × |-8 | and E ∈ P-

if E ∈ (R≥0)
|- | satis�es ∀8 ∈ � (E8,0)0∈|-8 | ∈ P-8 and projec-

tion pr8 ∈ Pcoh(-,-8) given by (pr8) ( 9,1),0 = X 9,8X1,0 .

PCSs as cones. There is a fully faithful functorP : Pcoh →

CLinwhichmaps a PCS- to P- and amatrix C ∈ Pcoh(-,. )

to the map P(C) : P- → P. de�ned by P(C) (D) = C D. We
use L∞ for the full subcategory of Pcoh whose objects are
the PCSs - such that P- = {D ∈ (R≥0)

|- | | ∀0 ∈ |- | D0 ≤

1}. This category contains in particular the objects 1 (with
|1| = {∗}), N⊥ and is closed under &. Notice that Pcoh (and
hence L∞) is essentially small since we only consider PCSs
with at most countable webs so we can assume that their
webs are all subsets of N (in the sequel we consider L∞ as

small). We use P∞ for the inclusion functor L∞ → CLin (it

is simply the restriction of P, so quite often we will drop the
subscript ∞).

12This notation is compatible with our previous use of 〈_, _〉 in the context

of cones as D′ can be thought of as a linear form acting on D.

Lemma 11. Let � be an at most countable set and let U ⊆

(R≥0)
� be such that ∀0 ∈ � 0 < sup{D0 | D ∈ U} < ∞. Then

(� ,U) is a PCS i� U is convex, downwards closed and closed

under lubs of monotone sequences.

This characterizationwas already stated and sketchily proven
in [11], a more detailed proof can be found in [5].

Lemma 12. Let � be an at most countable set and let U ⊆

(R≥0)
� be such that ∀0 ∈ � 0 < sup{D0 | D ∈ U} <

∞. Let % be a cone and let ℎ : � → % be such that ∀D ∈

U
∑
0∈� D0ℎ(0) ∈ B% . Then ∀D ∈ U⊥⊥

∑
0∈� D0ℎ(0) ∈ B%

and ℎ̄ : D ↦→
∑
0∈� D0ℎ(0) belongs to CLin(P(� ,U

⊥⊥), %).

Proof. Let G ⊆ (R≥0)
� . Let cvx(G) be the set of all the el-

ements of (R≥0)
� which are of shape

∑:
9=1 U 9D ( 9 ) where

D ( 9 ) ∈ G and
∑:
9=1 U 9 = 1. We use G+ for the set of all D ∈

(R≥0)
� such that there is a monotone sequence (D (=))=∈N

of elements of cvx(G) such that D ≤ sup=∈ND (=). Clearly
G ⊆ G+. For each ordinal V , we de�ne U(V) ⊆ (R≥0)

� by
induction as follows:U(0) = U,U(V + 1) = U(V)+ and, if
V is limit and > 0, then U(V) = ∪W<VU(W). This sequence
is clearly monotone for ⊆. Let V be the least ordinal number
such that U(V + 1) = U(V). We have U⊥⊥

= U(V) since
U(V) is the least subset of (R≥0)

� which containsU, is con-
vex, downwards-closed and closed under the lubs of mono-
tone sequences, and therefore satis�es U(V)⊥⊥ = U(V) by
Lemma 11.
To prove our contention, it su�ces therefore to prove

that, for any G ⊆ (R≥0)
� and any ℎ : � → % such that

∀D ∈ G
∑
0∈� D0ℎ(0) ∈ B% , one has ∀D ∈ G+

∑
0∈� D0ℎ(0) ∈

B% , the result will follow by ordinal induction. So assume
that G and ℎ satisfy these hypotheses. First let E ∈ cvx(G),

say E =
∑:
9=1 U 9E ( 9 ) where E ( 9 ) ∈ G and U 9 ∈ R≥0 such that∑:

9=1 U 9 = 1. Then

∑

0∈�

E0ℎ(0) =
∑

0∈�

(
:∑

9=1

U 9E ( 9 )0

)
ℎ(0)

=

:∑

9=1

U 9

(∑

0∈�

E ( 9 )0ℎ(0)

)
∈ B%

by convexity13 of B% .
Let now D ∈ G+ and let (D (=))=∈N be a monotone se-

quence in cvx(G) such that D ≤ sup=∈N D (=). For each =
we have

∑
0∈� D (=)0ℎ(0) ∈ B% by what we have just proven

and hence sup=∈N
∑
0∈� D (=)0ℎ(0) ∈ B% by completeness of

% since the sequence (
∑
0∈� D (=)0ℎ(0))=∈N is monotone. By

continuity of the algebraic operations in % we have

sup
=∈N

∑

0∈�

D (=)0ℎ(0) =
∑

0∈�

sup
=∈N

D (=)0ℎ(0)

13And actually also closeness because this computation uses implicitly re-

strictions of the sum over � to �nite subsets of � .
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and since ∀0 ∈ � D0 ≤ sup=∈N D (=)0 we get
∑
0∈� D0ℎ(0) ∈

B% as contended.
The fact that ℎ̄ ∈ CLin(P(� ,U⊥⊥), %) results clearly from

its de�nition and from the fact that it mapsU⊥⊥ to B% . �

Notice that it is not true thatU⊥⊥ is the set of all (at most
countable) convex combinations

∑
9 ∈� U 9D ( 9 ) for D ( 9 ) ∈ U,

simply because the set of these convex combinations is not
downwards closed in general.

Example 13. To illustrate this fact, take � = {1, 2} × {1, 2}
and U = {D ⊗ E | D, E ∈ P(1 & 1)} so that (� ,U⊥⊥) =

(1 & 1) ⊗ (1 & 1). In the set V of convex combinations of

elements ofU we have for instance 41,1 = 41⊗41, 42,2 = 42⊗42,

41,1+41,2+42,1+42,2 = (41 + 42)⊗ (41 + 42), but we do not have
41,2 + 42,1 (which cannot be obtained as a convex combination

of 41,2 and 42,1). Notice that this latter element can be obtained

as an iterated di�erence of convex combinations: 41,2 + 42,1 =

((41 + 42) ⊗ (41 + 42) − 41 ⊗ 41) − 42 ⊗ 42.

3.3 Density of probabilistic coherence spaces

We prove that the functor P∞ is dense14, in the sense ex-
plained in Section 2. Let % ∈ Obj(CLin), the objects of the

category P∞/% are the pairs (-, 5 ) where - ∈ Obj(L∞) and

5 ∈ CLin(P-, %). And C ∈ (P∞/%) ((-, 5 ), (.,6)) means

that C ∈ Pcoh(-,. ) and 6 P(C) = 5 . Then Δ% is the �rst pro-

jection functor P/% → CLin mapping (-, 5 ) to P(- ) and C

to P(C). And W% : Δ% ⇒ % is the cocone (-, 5 ) ↦→ 5 .
Given G ∈ % where % ∈ Obj(CLin), we use Ĝ for the

element of the cone P1 ⊸ % de�ned by Ĝ (_) = _G (so that
‖Ĝ ‖P1⊸% = ‖G ‖).

Theorem 14. The functor P∞ : L∞ → CLin is dense, that is,

the cocone W% is colimiting, for any object % of CLin.

Proof. Let X : Δ% ⇒ & be another cocone. This means

that for each - ∈ Obj(L∞) and each 5 ∈ CLin(P∞-, %)

we are given a X (-, 5 ) ∈ CLin(P∞-,&) such that for any
C ∈ L∞(-,. ) we have the following implication of triangle
commutations:

P(- ) P(. )

%

⇒
P(- ) P(. )

&

P(C)

5 6

P(C)

X (-, 5 ) X (., 6)

In other words for all C ∈ L∞(-,. ) and 6 ∈ CLin(P., %)

X (-, 6 P(C)) = X (., 6) P(C) . (1)

We �rst build a function : : % → & so let G ∈ % . Assume

�rst that ‖G ‖ ≤ 1. Then Ĝ ∈ CLin(P1, %). We set

: (G) = X (1, Ĝ) (4∗)

14This is already true if we replace P∞ with the full subcategory which has

N⊥ as single object. Our formulation is motivated by Lemma 22.

(remember that ∗ is the sole element of |1|) so that ‖: (G)‖& ≤

1 since X (1, Ĝ) ∈ CLin(P1, &). Notice that if _ ∈ [0, 1] we
have _ Id ∈ L∞(1, 1) and hence

: (_G) = X (1, _̂G) (4∗) = X (1, Ĝ (_ Id)) (4∗)

= X (1, Ĝ) (_4∗) = _: (G)

by (1) and linearity of X (1, Ĝ). Notice that we should have

written P(_ Id) instead of _ Id in the formulas above, we

will systematically keep the P implicit15 in this context to
increase readability.
Therefore, given G ∈ % we can set : (G) = _−1: (_G) where

_ ∈ (0, 1] is such that _‖G ‖ ≤ 1; by the property we have
just proven, this de�nition of : (G) does not depend on the
choice of _. Notice that ∀G ∈ % ‖: (G)‖ ≤ ‖G ‖ (since this
holds when ‖G ‖ = 1) and that : (_G) = _: (G) holds for all
G ∈ % and _ ∈ R≥0, that is, : is homogeneous.

Now we prove that the function : is linear. Let G1, G2 ∈ % ,
we must prove that : (G1 + G2) = : (G1) + : (G2). Since : is
homogeneous we can assume that ‖G1‖ + ‖G2‖ ≤ 1. Let 0 :

P(1 & 1) → % be de�ned by 0(D) = D1G1 + D2G2 (where 1, 2
are the elements of |1 & 1|). This map is linear, continuous
(by continuity of scalarmultiplication and addition in %) and
satis�es ‖0‖ ≤ 1 by our assumption on the G8 ’s, hence 0 ∈

CLin(P(1 & 1), %).
For 8 = 1, 2 we have : (G8 ) = X (1, Ĝ8) (4∗) = X (1, 0 4̂8 ) (4∗) =

X (1 & 1, 0) (48 ) by (1) (and the fact that Ĝ (4∗) = G ). Hence
: (G1) + : (G2) = X (1 & 1, 0) (41 + 42) by linearity of X (1 &
1, 0). Applying again (1), as well as the de�nition of 0, we get
: (G1 + G2) = X (1, �G1 + G2) (4∗) = X (1, 0 �41 + 42) (4∗) = X (1 &
1, 0) (41 + 42) which proves our contention.

Next we prove that : is continuous, so let G (0) ≤ G (1) ≤
· · · be a non-decreasing sequence in B% and let G ∈ B% be
its lub. For each = ∈ N we set ~(=) = G (=) −G (= − 1) (we set
G (−1) = 0 for convenience).

LetD ∈ P(N⊥): thismeans thatD ∈ (R≥0)
N and sup=∈N D= <

∞. Let _ ∈ R≥0 be such that ∀= ∈ N D= ≤ _. For each # ∈ N

we have in %

#∑

==0

D=~(=) ≤

#∑

==0

_~(=) = _G (# ) ≤ _G

and hence the non-decreasing sequence (
∑#
==0D=~(=))# ∈N

has a lub in % which is
∑∞
==0D=~(=), see Section 3. So we can

de�ne a function

B : P(N⊥) → %, D ↦→

∞∑

==0

D=~(=) .

Notice that ∀D ∈ P(N⊥ ) ‖B (D) ‖ ≤ ‖G ‖ ≤ 1 since B (D) ≤ G .
This map B is linear by continuity of the algebraic oper-

ations of % . We prove that it is continuous so let (D (@))@∈N
be a non-decreasing sequence in P(N⊥) and let D ∈ P(N⊥)

be its lub (that is D= = sup@∈N D (@)= for each = ∈ N). We

15That is, consider morphisms of Pcoh as morphisms of CLin.
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already know that sup@∈N B (D (@)) ≤ B (D) by linearity of B

(which implies monotonicity) so let us prove that B (D) ≤

sup@∈N B (D (@)). This results from the fact that for any# ∈ N

we have

#∑

==0

D=~(=) = sup
@∈N

#∑

==0

D (@)=~(=) ≤ sup
@∈N

B (D (@))

where the �rst equation results from the continuity of the
algebraic operations of % .

We have X (1, ~̂(=)) (4∗) = X (1, B 4̂=) (4∗) = X (N⊥ , B) (4=)

by (1) (we use also the observation that, settingD = _4∗ ∈ P1,

one has (B 4̂=) (D) = B (_4=) = _~(=) = ~̂(=) (D), by de�nition

of B). Let 4 (# ) =
∑#
==0 4= ∈ P(N⊥) so that B (4 (# )) = G (# ).

We have

: (G (# )) = : (

#∑

==0

~(=)) =

#∑

==0

: (~(=)) by linearity of :

=

#∑

==0

X (N⊥ , B) (4=) what we have just proven

= X (N⊥ , B) (4 (# )) linearity of X (N⊥ , B)

and sinceX (N⊥ , B) is continuouswe have sup# ∈N : (G (# )) =

X (N⊥ , B) (4) where 4 =
∑
=∈N 4= (that is 4= = 1 for all = ∈ N).

Next : (G) = X (1, Ĝ) (4∗) = X (N⊥ , B 4̂) (4∗) = X (N⊥ , B) (4)

by (1) (we use also the observation that (B 4̂) (D) = B (_4) =
_G = Ĝ (D) where D = _4∗, by de�nition of B) which proves
that : (G) = sup# ∈N : (G (# )) and hence that: is continuous,
so : ∈ CLin(%,&).
Now we prove that : is a morphism of cocones Δ% ⇒ X ,

that is, for any - ∈ Obj(L∞) and 5 ∈ CLin(P-, %), the
following triangle commutes:

P-

% &

5 X (-, 5 )

:

Let D ∈ P(- ), we have

: (5 (D)) = X (1,�5 (D)) (4∗) = X (1, 5 D̂) (4∗) = X (-, 5 ) (D)
by (1) (we use also the observation that (5 D̂) (E) = 5 (_D) =

_5 (D) = �5 (D) (E), where E = _4∗, by linearity of 5 ).
We end the proof that W% is a colimiting cocone by ob-

serving that : is unique with these properties since its very
de�nition is just a particular case of the commutation ex-
pressing that : is a morphism of cocones (for 5 = Ĝ with
G ∈ %). �

3.4 Completeness of the category of cones

Theorem 15. The category CLin is complete, well-powered

and admits R≥0 as co-generating object.

Proof. First let (%8 )8 ∈� be a family of cones (where � is any
set). We already have de�ned a cone % =

∏
8 ∈� %8 as the set

of all families −→G = (G8)8 ∈� such that G8 ∈ %8 and (‖G8 ‖%8 )8 ∈�
is bounded.
Equippedwith the algebraic laws de�ned pointwise, it is a

cancellative R≥0-semi-module. We endow it with the norm
‖−→G ‖ = sup8 ∈� ‖G8 ‖%8 which clearly satis�es all required ax-
ioms. The cone order of % coincides with the product order
which shows readily that % is a complete cone.

Together with the usual projections pr8 : CLin(%, %8 ), this
cone % is the cartesian product of the %8 ’s as easily checked.
As usual, given 58 ∈ CLin(&, %8 ) for each 8 ∈ � we use
〈58〉8 ∈� for the morphism 5 ∈ CLin(&, %) such that 5 (~) =

(58 (~))8 ∈� which is well de�ned by our de�nition of CLin
which requires16 that all linear morphisms are bounded by
1. To �nish we check that % is separated, so let −→G ,−→~ ∈ % be

such that −→G ≠
−→~ . Let 8 ∈ � be such that G8 ≠ ~8 . Let G

′ ∈ %8
′

be such that 〈G8, G
′〉 ≠ 〈~8 , G

′〉. Then G ′ pr8 ∈ %
′ separates −→G

from −→~ .
Let % and & be cones and let 5 , 6 ∈ CLin(%,&). Let � =

{G ∈ % | 5 (G) = 6(G)}. By linearity of 5 and 6, this set
� inherits the algebraic structure of cancellative R≥0-semi-
module from % . We use 4 for the inclusion � ⊆ % which is a
semi-module morphism. Given G ∈ � we set ‖G ‖� = ‖G ‖% ,
which clearly de�nes a norm on �. Completeness of � fol-
lows from the fact that 5 and 6 are continuous: indeed let
(G (=))=∈N be a sequence of elements of � which is non-
decreasing in � and hence in % and satis�es∀= ∈ N ‖G (=)‖ ≤

1 (for the norm of �, that is, for the norm of %). Let G ∈ B% be
the lub of the G (=)’s in % , by continuity of 5 and 6 we have
5 (G) = 6(G) and hence G ∈ �. We �nish the proof by show-
ing that G is the lub of the G (=)’s in �, so let ~ ∈ � be such
that G (=) ≤� ~ for all = ∈ N. We have G (=) ≤% ~ and hence
G ≤% ~ since G is the lub of the G (=)’s in % . By linearity of 5
and6we have 5 (~−G) = 5 (~)−5 (G) = 6(~)−6(G) = 6(~−G)

and hence ~ − G ∈ � which shows that G ≤� ~ as contended.
The fact that G ∈ B� results obviously from the de�nition
of the norm of �.
Next we prove that � is separated. Let G,~ ∈ � be such

that G ≠ ~. By separateness of % there is an G ′ ∈ % ′ such
that 〈G, G ′〉 ≠ 〈~, G ′〉. Let ~′ be the restriction of G ′ to �, we
have ~′ ∈ � ′ because all operations in � (including the lubs)
are de�ned as in % and of course ~′ separates G from ~.
Last we check that (�, 4) is the equalizer of 5 and 6 in

CLin: let ℎ ∈ CLin(�, %) be such that 5 ℎ = 6ℎ, this means
exactly that ∀D ∈ � ℎ(D) ∈ � so that we have a function
ℎ0 : � → � such that ℎ = 4 ℎ0 (actually ℎ0 = ℎ but it is safer
to use distinct names). The linearity and continuity of ℎ0
results from the fact that the operations of � are de�ned as in
% (including lubs). Lastℎ0(B� ) ⊂ �∩B% = B�. Uniqueness
of ℎ0 with these properties is obvious.

16Without this condition, the category CLin has only �nite products a

priori.
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This proves that the category CLin is complete. The fact
that R≥0 is a cogenerator results from the fact that all the
objects of CLin are separated.
We are left with proving that CLin is well-powered. This

results from the following simple observation.
Let� be an object ofCLin and ℎ ∈ CLin(�, %) be a mono.

This implies that ℎ is an injective function. Indeed, letD, E ∈
� with D ≠ E . Wlog. we can assume that ‖D‖, ‖E ‖ ≤ 1. We
have D̂, Ê ∈ CLin(R≥0, � ) and D̂ (1) ≠ Ê (1) hence D̂ ≠ Ê and
therefore ℎ D̂ ≠ ℎ Ê from which it follows by linearity of ℎ D̂
and ℎ Ê that ℎ(D) = ℎ(D̂ (1)) ≠ ℎ(Ê (1)) = ℎ(E).
Let �1 = ℎ(� ) (so that ℎ is a bijection between � and �1)

and equip �1 with the addition and scalar multiplication of
% so that ℎ becomes an isomorphism of R≥0-semi-module
from� to�1 (by linearity ofℎ).We endow�1 with the norm
de�ned by ‖G ‖�1 = ‖ℎ−1 (G)‖� . The cone �1 de�ned in that
way is isomorphic to � in our category CLin. Let S be the
category whose objects are the objects of CLin which, as
sets, are subsets of % and morphisms are the monos of CLin
(that is, the morphisms which are injective functions), we
have shown that there is an equivalence between S and the
category of subobjects of % (by the operation (�,ℎ) ↦→ �1

described above), and since S is small (because the collec-
tion of all possible norms on a given R≥0-semi-module is a
set, and S is locally small because CLin is), this shows that
CLin is well-powered. �

Theorem 16. Any limit-preserving functor � : CLin → C,

where the category C is locally small, is a right adjoint.

Proof. This is a direct application of the special adjoint func-
tor theorem, see [14] (Chap. V, Sec. 8, Corollary). �

4 The tensor product of cones

Weuse these categorical results to introduce the tensor prod-
uct of cones and prove its main properties.

Lemma 17. For any given object % of CLin, the functor % ⊸

_ : CLin → CLin is continuous (that is, preserves all limits).

We are now in position of de�ning the tensor product of
cones. For the time being we use a notation di�erent from
the one we used for the tensor product of PCSs.

Theorem 18. There is a unique functor ⊗̂ : CLin2 → CLin

such that for each % ∈ Obj(CLin), the functor _ ⊗̂ % is left

adjoint to % ⊸ _ and that the bijection of the adjunction is

natural in the three involved parameters.

Proof. By Th. 16 and Lemma 17, for each % ∈ Obj(CLin) the
functor % ⊸ _ has a left adjoint _ ⊗̂ % . By the Adjunctions
with a parameter theorem [14] (Chap. IV, Sec. 7), this opera-
tion extends uniquely to a functor CLin2 → CLin in such a
way that the bijection of the adjunction extends to a natural
bijection CLin(%1 ⊗̂ %2, &) ⇒ CLin(%1, %2 ⊸ &) of functors
CLin

op × CLin
op × CLin → Set. �

Classi�cation of bilinearmaps. We refer to Section 3.1
for basic de�nitions on bilinear maps. We use cur for the
natural bijection CLin(' ⊗̂ %,&) ⇒ CLin(', % ⊸ &). We
set

g%,& = V (cur(Id% ⊗̂& )) ∈ CLin(% ;&, % ⊗̂ &)

and we use also the notation G ⊗̂ ~ for g%,& (G,~) ∈ % ⊗̂ &

(for G ∈ % and ~ ∈ &).

Theorem 19. Let % , & and ' be objects of CLin. For any

5 ∈ CLin(% ;&, ') there is exactly one 5̂ ∈ CLin(% ⊗̂ &,')

such that 5̂ g = 5 .

Proof. We set 5̂ = cur−1(V−1(5 )). We have

5̂ g = 5̂ V (cur(Id))

= V ((& ⊸ 5̂ ) cur(Id)) by naturality of V

= V (cur( 5̂ )) by naturality of cur

= 5 .

Now we prove uniqueness so let ℎ ∈ CLin(% ⊗̂ &, ') be
such thatℎ g = 5 . By the same kind of computation we have
V (cur(ℎ)) = V ((& ⊸ ℎ) cur(Id)) = ℎ V (cur(Id)) = ℎ g = 5

from which it follows that ℎ = 5̂ . �

This important universal property is however not su�-
cient for proving that ⊗̂ de�nes a monoidal structure on
CLin. One might solve this problem by showing that the nat-
ural bijection CLin(% ⊗̂&,') ⇒ CLin(%,& ⊸ ') is actually
a natural isomorphism (% ⊗̂ & ⊸ ') ⇒ (% ⊸ (& ⊸ '))

of functors CLinop × CLin
op × CLin → CLin. This almost

works, the only non trivial point seems to be the fact that
the inverse of this map has norm ≤ 1 (we would probably
need more information about the elements of B(% ⊗̂ &)).

Action of ⊗̂ on probabilistic coherence spaces. We use
another method, based on the density of PCSs in cones that
we have proven; on the way we also learn that our new ten-
sor product coincides with the old one on PCSs.

Theorem 20. There is a natural isomorphism

c-,. : P(- ⊗ . ) ⇒ (P- ⊗̂ P. )

of functors Pcoh2 → CLin.

Proof. De�ne \ ∈ CLin(P- ; P.,P(- ⊗. )) by \ (D, E) = D⊗ E
(it is the bilinear continuous map associated with the canon-
ical morphism - ⊸ (. ⊸ - ⊗ . ) in Pcoh). By Theorem 19

we have an associated \̂ ∈ CLin(P- ⊗̂ P.,P(- ⊗ . )). Now

we de�ne d ∈ CLin(P(- ⊗ . ),P- ⊗̂ P. ).
Remember that P(- ⊗ . ) = {D ⊗ E | D ∈ P- and E ∈

P. }⊥⊥ (warning: D ⊗ E is the element of P(- ⊗ . ) de�ned
by (D ⊗ E)0,1 = D0E1 , not to be confused, for the time being,

with D ⊗̂ E ∈ P- ⊗̂ P. ). Given D ∈ P- and E ∈ P. we have∑

0∈|- |,1∈|. |

(D ⊗ E)0,1g (40, 41) = D ⊗̂ E ∈ B(P- ⊗̂ P- )

8
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by bilinearity and separate continuity of g . By Lemma 12

∑

0∈|- |,1∈|. |

F0,1g (40, 41) ∈ B(P- ⊗̂ P- )

for allF ∈ P(- ⊗ . ) and the map

d : F ↦→
∑

0∈|- |,1∈|. |

F0,1g (40, 41)

is linear and continuous P(- ⊗. ) → P- ⊗̂ P. and ‖d ‖ ≤ 1.

For 0 ∈ |- | and 1 ∈ |. |, we have \̂ (d (40,1)) = \̂ (40 ⊗̂41) =

40 ⊗ 41 = 40,1 so that \̂ d = Id by linearity and continuity.

Next forD ∈ P- and E ∈ P. we have d \̂ g (D, E) = d \ (D, E) =

d (D ⊗ E) = D ⊗̂ E = g (D, E) and hence d \̂ = Id by the unique-
ness part of the universal property satis�ed by g . Naturality

of \̂ follows from its de�nition. �

Cocontinuity of ⊗̂. There is a natural transformation

f⊸%1,%2,& ∈ CLin(%1 ⊸ (%2 ⊸ &), %2 ⊸ (%1 ⊸ &))

(of functorsCLinop×CLinop×CLin → CLin) fromwhichwe
derive a natural isomorphism i%1,%2,& : CLin(%1 ⊗̂ %2, &) ⇒

CLin(%2 ⊗̂%1,&) by Theorem 18 and by the fact that there is
a natural isomorphism CLin(%,&) ⇒ CLin(1, % ⊸ &)). By
Lemma 1 we get a natural isomorphism f̃%1,%2 ∈ CLin(%1 ⊗̂

%2, %2 ⊗̂ %1).

Theorem21. The bifunctor ⊗̂ : CLin2 → CLin is separately

cocontinuous.

Proof. Being a left adjoint, the functor _ ⊗̂% is cocontinuous.
By the existence of the natural isomorphism f̃ , it follows
that ⊗̂ is cocontinuous separately in both parameters. �

4.1 Associativity isomorphisms of the tensor

product

We lift associativity of ⊗ on Pcoh (more precisely on the
smaller category L∞) to associativity of ⊗̂ on CLin by den-
sity.

Lemma 22. If - and . are objects of L∞ then - ⊗ . is also

an object of L∞.

Proof. For a set � , let 1� ∈ (R≥0)
� be de�ned by (1� )8 = 1 for

all 8 ∈ � . If - is an object of L∞ then 1 |- | ∈ P- and hence
1 |- |× |. | = 1 |- | ⊗ 1 |. | ∈ P(- ⊗ . ). If F ∈ P(- ⊗ . ), 0 ∈ |- |

and 1 ∈ |. |, we have F0,1 ≤ 1 because 4 (0,1) ∈ P(- ⊗ . )⊥

since 〈D ⊗ E, 4 (0,1) 〉 ≤ 1 for all D ∈ P- and E ∈ P. . �

Given -8 ∈ Obj(L∞) for 8 = 1, 2, 3, we de�ne a natural

isomorphism U0
-1,-2,-3

∈ CLin((P-1 ⊗̂ P-2) ⊗̂ P-3, P-1 ⊗̂

(P-2 ⊗̂ P-3)) as the following composition of natural iso-
morphisms

(P-1 ⊗̂ P-2) ⊗̂ P-3 P(-1 ⊗ -2) ⊗̂ P-3

P((-1 ⊗ -2) ⊗ -3)P(-1 ⊗ (-2 ⊗ -3))

P-1 ⊗̂ P(-2 ⊗ -3) P-1 ⊗̂ (P-2 ⊗̂ P-3)

c-1,-2 ⊗̂ P-3

c-1⊗-2,-3
PU-1,-2,-3

c−1
-1,-2⊗-3 P-1 ⊗̂ c−1

-2,-3

Now observe that both functors ) ,) ′ : CLin3 → CLin

de�ned respectively by ) (%1, %2, %3) = (%1 ⊗̂ %2) ⊗̂ %3 and
) ′(%1, %2, %3) = %1 ⊗̂ (%2 ⊗̂ %3) (and similarly on morphisms)
are separately cocontinuous, because ⊗̂ is separately cocon-
tinuous, see Theorem 21. We have just exhibited a natu-

ral isomorphism U0 : ) P
3
⇒ ) ′ P

3
. Since the functor P :

L∞ → CLin is dense by Theorem 14, we can apply Theo-
rem 6 which shows that there is exactly one natural isomor-

phism Ũ : ) ⇒ ) ′ such that Ũ P
3
= U0. In other words,

there are uniquely de�ned natural isomorphisms Ũ%1,%2,%3 ∈

CLin((%1 ⊗̂ %2) ⊗̂%3, %1 ⊗̂ (%2 ⊗̂ %3)) such that, for all objects
-1, -2, -3 ∈ Obj(L∞), one has ŨP-1,P-2,P-3

= U0
-1,-2,-3

.

Using the naturalities of c , Ũ and U , and the fact that U
satis�es Mac Lane’s pentagon diagram in L∞, diagram chas-
ing shows that Ũ makes the following diagram commutative
for any objects -8 (8 = 1, 2, 3, 4) of L∞

((P-1 ⊗̂ P-2) ⊗̂ P-3) ⊗̂ P-4 (P-1 ⊗̂ P-2) ⊗̂ (P-3 ⊗̂ P-4)

(P-1 ⊗̂ (P-2 ⊗̂ P-3)) ⊗̂ P-4 P-1 ⊗̂ ((P-2 ⊗̂ P-3) ⊗̂ P-4)

P-1 ⊗̂ (P-2 ⊗̂ (P-3 ⊗̂ P-4))

where the variousmorphisms are de�ned using Ũ . Thismeans
that the natural isomorphisms

k 1
−→
%
,k 2

−→
%
: ((%1 ⊗̂ %2) ⊗̂ %3) ⊗̂ %4 ⇒ %1 ⊗̂ (%2 ⊗̂ (%3 ⊗̂ %4))

de�ned by

k 1
−→
%
= Ũ%1,%2,%3 ⊗̂%4 Ũ%1 ⊗̂%2,%3,%4

k 2
−→
%
= (%1 ⊗̂ Ũ%2,%3,%4) Ũ%1,%1 ⊗̂%2,%3 (Ũ%1,%2,%3 ⊗̂ %4)

satisfyk1 P
4
= k2 P

4
and hence by the uniqueness statement

of Theorem 6 we must have k 1
= k 2, that is, Ũ itself satis-

�es Mac Lane’s pentagon diagram. One deals similarly with
the other coherence diagrams of symmetric monoidal cate-
gories (remember that we have de�ned a symmetry natural
isomorphism f̃ in the proof of Theorem 21, the other natu-

ral isos _̃% : 1 ⊗̂% ⇒ % and d̃% : % ⊗̂ 1 ⇒ % are easy to de�ne
too).
We can summarize as follows what we have proven so

far.

Theorem 23. The category CLin equipped with the tensor

product ⊗̂, the unit 1, the natural isos _̃, d̃ , Ũ and f̃ is a sym-

metricmonoidal category. It is closed, with object ofmorphisms

9
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from % to& the cone % ⊸ & and evaluation ev ∈ CLin((% ⊸ &)⊗̂

%,&) induced by the bilinear and continuous map (5 , G) ↦→

5 (G).

5 The exponential

Using again the special adjoint functor theorem, we equip

CLin with a comonad !̂_ whose Kleisli category is (isomor-
phic to) our category Cstab of cones and stable functions.
We start with recalling the de�nition of the category17.

Given = ∈ N we use P+(=) (resp. P−(=)) for the set of all
� ⊆ {1, . . . , =} such that = − #� is even (resp. odd).

Let % and& be cones, in [9] is de�ned the notion of stable
function % → & and proven that cones equipped with these
functions form a cartesian closed category. Such a function
is de�ned only on B% ,

• is bounded (that is {‖5 (G)‖ | G ∈ B%} is bounded),
• totally monotone: for any = ∈ N and any G1, . . . , G= ∈

B% with
∑=
8=1 G8 ∈ B% , one has Δ−5 (−→G ) ≤ Δ

+5 (−→G )

where Δ−5 (−→G ) =
∑
� ∈P− (=) 5 (

∑
8 ∈� G8) and Δ

+5 (−→G ) =∑
� ∈P+ (=) 5 (

∑
8 ∈� G8 ) (notice that the conditions for= =

1, 2, namely 5 (0) ≤ 5 (G) and 5 (G1) + 5 (G2) ≤ 5 (G1 +

G2) + 5 (0), imply that 5 is monotone),
• and Scott-continuous (that is commutes with lubs of
monotone sequences in B%).

Equipped with algebraic operations de�ned pointwise and
with the norm de�ned by ‖5 ‖ = supG ∈B% ‖5 (G)‖, the set
of stable functions is an object of CLin that we denote as
[% → &], separateness being proven as in the case of % ⊸
& . We use Cstab for the category whose objects are those
of CLin and morphisms are the stable functions 5 such that
‖5 ‖ ≤ 1.

Theorem 24 ([9]). The category Cstab is cartesian closed

with cartesian product de�ned as in CLin, internal hom ob-

ject [% → &] and evaluation map de�ned as in Set.

Notice that CLin(%,&) ⊆ Cstab(%,&) since linearity im-
plies total monotonicity, this induces a “forgetful” faithful
functor D : CLin → Cstab which acts as the identity on
objects and morphisms. For the same reason we can con-
sider [_ → _ ] as a functor CLinop × CLin → CLin de�ned
exactly in the same way as the functor _ ⊸ _ .

Lemma 25. With any 5 ∈ CLin(%, [& → ']) we can asso-

ciate an element 6 of Cstab(&, % ⊸ ') de�ned by 6(~) (G) =

5 (G) (~). This correspondence is a natural bijection of functors

CLin
op × CLin

op × CLin → Set.

Proof. Let 5 ∈ CLin(%, [& → ']). Let ~ ∈ B& , the func-
tion 5 (_ ) (~) : % → ' is linear and continuous because the
algebraic operations and lubs in [& → '] are computed

17Since we have a direct description of this CCC, the situation might be

more naturally described by the concept of linear-non-linear adjunction,

see [15]; we prefer this Seely category presentation with which we are

more familiar.

pointwise. So it makes sense to de�ne 6 as in the statement
of the lemma, we must prove that this function is stable.
First since 5 is linear and continuous, it is bounded so let
_ ∈ R≥0 be such that ∀G ∈ B% ‖5 (G)‖ [&→' ] ≤ _. This
means that ∀G ∈ B% ∀~ ∈ B& ‖5 (G) (~)‖& ≤ _. Therefore
∀~ ∈ B& ‖6(~) ‖%⊸' ≤ _. Next we prove that 6 is totally
monotone so let ~1, . . . , ~= ∈ B& be such that

∑=
8=1~8 ∈ B& .

Let G ∈ B% , we have

(Δ−6(−→~ )) (G) = Δ
−(5 (G))(−→~ ) app. is lin. in the function

≤ Δ
+(5 (G))(−→~ ) 5 (G) is stable

= (Δ+6(−→~ )) (G)

and hence Δ−6(−→~ ) ≤ Δ
+6(−→~ ) since the algebraic order of

& ⊸ ' coincides with the pointwise order. Continuity of 6
follows similarly from that of each 5 (G) and from the fact
that lubs are computed pointwise in & ⊸ '.
Conversely let 6 ∈ Cstab(&, % ⊸ '). Let G ∈ % and let

us check that the function 5 (G) = 6(_ ) (G) is stable. Let
_ ∈ R≥0 be such that ∀~ ∈ B& ‖6(~) ‖%⊸' ≤ _. Then we
have ∀~ ∈ B& ‖6(~) (G)‖' ≤ _‖G ‖% and this shows that
5 (G)mapsB& to a bounded subset of'. Let~1, . . . ,~= ∈ B&

be such that
∑=
8=1~8 ∈ B& , for the same reasons as above

we have Δ−(5 (G))(−→~ ) ≤ Δ
+(5 (G))(−→~ ) because Δ−6(−→~ ) ≤

Δ
+6(−→~ ) by stability of6. Therefore 5 (G) is totally monotone.

Continuity of 5 (G) results from that of 6 and from the fact
that lubs are computed pointwise in % ⊸ '. So 5 (G) is well
de�ned and belongs to [& → ']. Now we prove that the
function 5 is linear. Let G1, . . . , G: ∈ % and U1, . . . , U: ∈ R≥0,

we have ∀~ ∈ B& 5 (
∑:
9=1 U 9G 9 ) (~) =

∑:
9=1 U 9 5 (G 9 ) (~) by

linearity of each6(~) and hence 5 (
∑:
9=1 U 9G 9 ) =

∑:
9=1 U 9 5 (G 9 )

because algebraic operations are de�ned pointwise in [& →

']. Continuity of 5 holds for a similar reason.
These two operations are obviously natural and inverse

of each other. �

Lemma 26. The functor D is continuous.

So by the special adjoint functor theorem D has a left ad-

joint E : Cstab → CLin. Let (̂!, der, dig) be the associated

comonad (in particular !̂ = ED : CLin → CLin).
Let j%,& : CLin(E%,&) → Cstab(%,D&) be the natural

bijection associated with this adjunction. We have prom% =

j (IdE% ) ∈ Cstab(%, !̂%) since D(E%) = !̂% ; for any G ∈ B%

we set G !̂ = prom% (G) ∈ B(̂!%). This function prom% is the
universal stable function:

Lemma 27. For any 6 ∈ Cstab(%,&) there is exactly one

function 6̂ ∈ CLin(̂!%,&) such that 6 = 6̂ ◦ prom% , that is

∀G ∈ B% 6(G) = 6̂(G !̂). Hence if 51, 52 ∈ CLin(̂!%,&) satisfy

∀G ∈ B% 51 G
!̂
= 52 G

!̂ then 51 = 52.

Proof. The �rst part is an immediate consequence of the
adjunction, taking 6̂ = j−1

%,&
(6) since 6 ∈ Cstab(%,D&).

10
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The second part is a consequence of the �rst for 6 = 51 ◦

prom% = 52 ◦ prom% . �

Lemma 28. Let 5 ∈ CLin(%,&). Then !̂5 ∈ CLin(̂!%, !̂&) is

characterized by !̂5 G !̂ = (5 G) !̂. Dereliction and digging are

characterized by der G !̂ = G and dig G !̂ = G !̂̂!.

These are direct consequences of the adjunction. Given
an unlabeled binary tree � with = leaves and %1, . . . , %= ∈

Obj(CLin), we use �(%1, . . . , %=) for the cone obtained by
replacing each node of� with the ⊗̂ operator and the 8th leaf

with !̂%8 . For instance if � = 〈_ , 〈_ , _ 〉〉 then �(%1, %2, %3) =

!̂%1 ⊗̂ (̂!%2 ⊗̂ !̂%3). We de�ne similarly �(G1, . . . , G=) replacing

the 8th leaf with G8
!̂; in the example �(G1, G2, G3) = G1

!̂ ⊗̂

(G2
!̂ ⊗̂ G3

!̂). The next statement uses these notations.

Lemma 29. Let 51, 52 ∈ CLin(�(
−→
% ),&) and assume that for

any G1 ∈ B%1,. . . ,G= ∈ B%= , one has 51(�(
−→G )) = 52(�(

−→G ))

then 51 = 52.

Proof. By induction on �. If � consists of one leaf this is just
Lemma 27. Assume � = 〈�1, �2〉 (with = = =1+=2 and �8 has

=8 leaves). Let
−−→
% (8) be a list of cones of length =8 (for 8 = 1, 2)

and
−→
% be the concatenation of

−−−→
% (1) and

−−−→
% (2). We use simi-

lar notations for elements of these cones. We have �(
−→
% ) =

�1 (
−−−→
% (1))⊗̂�2 (

−−−→
% (2)) so that cur 59 ∈ CLin(�1 (

−−−→
% (1)), �2 (

−−−→
% (2)) ⊸

&) for 9 = 1, 2. Let
−−−→
G (1) ∈ B

−−−→
% (1). For all

−−−→
G (2) ∈ B

−−−→
% (2) we

have

(cur 51) (�1(
−−−→
G (1))) (�2 (

−−−→
G (2))) = 51 (�(

−→G ))

= 52 (�(
−→G )) by the assumption on 51 and 52

= (cur 52) (�1 (
−−−→
G (1))) (�2(

−−−→
G (2)))

and hence (cur 51) (�1 (
−−−→
G (1))) = (cur 52) (�1(

−−−→
G (1))) by induc-

tive hypothesis applied to �2. Next by inductive hypothesis
applied to �1 we get cur 51 = cur 52 and hence 51 = 52. �

Lemma 30. There is an iso m0 ∈ CLin(1, !̂⊤) and a natural

iso m2
%,& ∈ CLin (̂!% ⊗̂ !̂&, !̂(% & &)) such that m0 1 = 0̂! and

m2 (G !̂ ⊗̂ ~̂!) = (G,~) !̂.

Proof. We have a sequence of natural isomorphisms

CLin(̂!% ⊗̂ !̂&, !̂(% & &))

⇒ CLin (̂!%, !̂& ⊸ !̂(% & &)) by Theorem 23

⇒ Cstab(%, !̂& ⊸ !̂(% & &)) since E ⊣ D

⇒ CLin (̂!&, [% → !̂(% & &)]) by Lemma 25

⇒ Cstab(&, [% → !̂(% & &)])

⇒ Cstab(& & %, !̂(% & &))

⇒ Cstab(% & &, !̂(% & &)) by symmetry of &

⇒ CLin (̂!(% & &), !̂(% & &)) ∋ Id

whence a naturalm2
%,& ∈ CLin(̂!% ⊗̂ !̂&, !̂(% & &)). This def-

inition implies that m2 (G !̂ ⊗̂ ~̂!) = (G,~) !̂. Next we de�ne

5 : B(% & &) → B(̂!% ⊗̂ !̂&) by 5 (G,~) = G !̂ ⊗̂ ~̂!. This func-
tion is stable because prom is stable and ⊗̂ is bilinear and

continuous. So we have 5̂ ∈ CLin (̂!(% & &), !̂% ⊗̂ !̂&) which

satis�es 5̂ (G,~) !̂ = G !̂ ⊗̂ ~̂!. By Lemma 29 it follows that 5̂ is
the inverse of m2.
Since⊤ = {0} and 1 = R≥0 we have6 ∈ Cstab(⊤, 1) given

by 6(0) = 1 and hence 6̂ ∈ CLin(̂!⊤, 1) fully characterized

by 6̂ 0̂! = 1. We de�ne m0 ∈ CLin(1, !̂⊤) by m0 (_) = _0̂!.
Lemma 29 shows thatm0 6̂ = Id and 6̂m0

= Id is straightfor-
ward. �

Theorem 31. Equipped with the above natural transforma-

tions (der, dig,m0,m2), the functor !̂ is a strong symmetric

monoidal comonad from the symmetricmonoidal category (CLin,&
) to the symmetric monoidal category (CLin, ⊗̂) and Cstab is

equivalent to the Kleisli category of this comonad.

Proof. This boils down to proving the commutation of a few
diagrams (see [15]) using the above characterizations ofmaps

by their action on tensors of elements of shape G !̂. �

6 Measurability

We use notations introduced in Example 7. Let X and Y be
measurable spaces. A substochastic kernelX { Y is a map
 : X×ΣY → R≥0 such that for each A ∈ X, themap (A , _ )
is a subprobability measure onY and, for each+ ∈ ΣY , the
map  (_ ,+ ) is measurable. Such a kernel  induces 5 ∈

CLin(M(X),M(Y)) given by 5 (`) (+ ) =
∫
 (A ,+ )`(3A )

from which  can be recovered since  (A ,+ ) = 5 (XA ) (+ )

(where XA is the Dirac measure at A ). It is not true however
that any : ∈ CLin(M(X),M(Y)) allows to de�ne a kernel
 by setting  (A ,+ ) = : (XA ) (+ ) because there is no reason
for this function to be measurable in A .
As explained in [9] this transformation of an element of

CLin(M(X),M(Y)), and even ofCstab(M(X),M(Y)), into
a kernelX { Y is essential for interpreting the sample con-
struct of probabilistic programming languages. This is why
the objects of CLin must be equipped with an additional
measurability structure and the linear and continuous mor-
phisms must respect this structure. This set of de�nitions is
very close in spirit to quasi-Borel spaces [19].

Let Meas be the category of measurable spaces and mea-
surable functions and let Mref : M → Meas be a functor
from a cartesian reference category M. We require Mref to
preserve all �nite cartesian products. The choice of this ref-
erence functor depends on the data-types of the language
we want to interpret. If, as in [9], the language has the real
numbers as ground type, one takesM = N,M(=,<) = Meas(R=,R<),
Mref(=) = R= and Mref(ℎ) = ℎ for ℎ ∈ M(=,<). We use 0
for the terminal object ofM (in our example it is 0 ∈ N) and,

11
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with this example in mind, we use + for the cartesian prod-
uct in M. HenceMref(0) is the one-point measurable space
and Mref(? + @) = Mref(?) × Mref(@). To simplify nota-
tions a little we assume that, as in our motivating example,
the functor Mref acts as the identity on morphisms, that is
M(?,@) = Meas(Mref(?),Mref (@)).
A measurable cone is a pair % = (%,M(%)) where % ∈

Obj(CLin) and M(%) = (M(%)? )? ∈M is a family of sets

M(%)? ⊆ (% ′)Mref (?) whose elements satisfy18: if ; ∈ M(%)?
then ∀G ∈ % ,A ; (A ) (G) ∈ Meas(Mref (?),R≥0). Moreover
this family is closed under precomposition19 by morphisms
in M: if ; ∈ M(%)? then ∀ℎ ∈ M(@, ?) ,B ,G ; (ℎ(B)) (G) ∈

M(%)@ . The ; ∈ M(%)? are the measurability tests of arity

? of % .
A measurable path of arity ? of % is a map W : Mref (?) →

B(%) such that, for all @ ∈ M and all< ∈ M(%)@ the func-
tion ,(A , B)<(B) (W (A )) belongs to Meas(Mref(? + @),R≥0).
We use paths1 (%)? for the set of these paths. Notice that
for any G ∈ B% one has ,A G ∈ paths1(%)? for any ? . An
5 ∈ CLin(%,&) is measurable if ∀W ∈ paths1 (%)? 5 ◦ W ∈

paths1(&)? . We use CLinm for the category of measurable
cones andmeasurable continuous linear functions. Let (%8 )8 ∈�
be a family ofmeasurable cones. Given 8 ∈ � and ; ∈ M(%8 )? ,

we de�ne in8 (;) as the element of (
∏

9 ∈� % 9 )
′Mref (?) de�ned

by in8 (;) (A ) (
−→G ) = ; (A ) (G8).We set20 M(

∏
8 ∈� %8 )? = {in8 (;) |

8 ∈ � and ; ∈ M(%8 )?} thus de�ning a measurable cone∏
8 ∈� %8 which is easily seen to be, when equipped with the

ordinary projection maps, the cartesian product of the %8 ’s
in CLinm, so this category is cartesian21.
Let % ⊸m & be the cone22 of linear and continuous func-

tions % → & which are measurable in the sense that _5
is measurable for some _ > 0. It is easy to check that one
turns this cone into a measurable cone % ⊸m & by equip-
ping it withM(% ⊸m &)? = {W ⊲ ; | W ∈ paths1 (%)? and ; ∈

M(&)?}whereW⊲; = ,A ,5 ; (A ) (5 (W (A ))) ∈ (% ⊸m &) ′Mref (?) .

Given two measurable cones % and & , we de�ne % ⊗̂ &

as the measurable cone (% ⊗̂ &,M(% ⊗̂ &)) where < ∈

(% ⊗̂ &) ′
Mref (:)

belongs to M(% ⊗̂ &): if for all I ∈ % ⊗̂ & ,

one has ,F<(F) (I) ∈ Meas(Mref(:),R≥0) and for all W ∈

18It is convenient to use ,_ _ notation borrowed to the _-calculus to write

some of the involved functions.
19This can be described in terms of presheaves of sets.
20Slightly simpler de�nition than in [9], but the sets of measurable paths

to
∏

8∈� %8 are the same. This also explains why we have dropped the �rst

requirement on families of sets of measurability tests.
21It is not di�cult to check that it is actually small-complete by showing

that it has also binary equalizers but we don’t use this completeness here.
22It is easy to check that these functions equipped with the norm de�ned as

in % ⊸ & , is a cone. The only point which deserves a mention is the proof

of completeness which uses in a crucial way the monotone convergence

theorem; as mentioned in [9] this explains why cones are complete only

for bounded monotone sequences and not arbitrary directed families.

paths1(%)? and X ∈ paths1 (&)@

,(A , B,F)<(F) (W (A ) ⊗̂ X (B)) ∈ Meas(Mref(? + @ + :),R≥0) .

It is easily checked that (% ⊗̂&,M(% ⊗̂&)) is indeed a mea-

surable cone % ⊗̂ & .

Lemma 32. Let W ∈ paths1 (%)@ and X ∈ paths1 (&)@ . Then

,(A , B) W (A ) ⊗̂ X (B) ∈ paths1 (% ⊗̂ &)?+@, we use W ⊗ X for this

path.

Lemma33. Givenmeasurable cones %,&, ', the bijection cur :
CLin(% ⊗̂ &,') → CLin(%,& ⊸ ') restricts to a bijection

CLinm(% ⊗̂ &,') → CLinm(%,& ⊸m ').

Lemma34. Let 5 ∈ CLin(% ⊗̂&,'). One has 5 ∈ CLinm(% ⊗̂

&,') i� for all W ∈ paths1 (%)? and X ∈ paths1(&)@ , one has

5 ◦ (W ⊗̂ X) ∈ paths1(% ⊗̂ &)?+@.

Immediate consequence of the above. It generalizes easily,
replacing % ⊗̂ & with any tensorial tree like %1 ⊗̂ (%2 ⊗̂ %3).
It is then routine to prove the following.

Theorem 35. The functor ⊗̂ restricts to a functor CLin2m →

CLinm (still denoted ⊗̂). Equipped with ⊗̂, the category CLin

is symmetric monoidal closed.

Example 36. Let X be a measurable space (with Σ-algebra

ΣX). Given ? ∈ M and* ∈ Σ- we de�ne Y* ∈ (M(X) ′)Mref (?)

by Y* (A ) (`) = `(* ) (for A ∈ Mref(?)). The measurable cone

M(X) is de�ned byM(X) = M(X) andM(M(X))? = {Y* |

* ∈ ΣX}. This means that paths1(M(X))? is the set of all

maps W : Mref (?) → M(X) such that {W (A ) (X) | A ∈

Mref(?)} ⊆ R≥0 is bounded by 1 and, for each * ∈ ΣX,

the map,A W (A ) (* ) is inMeas(Mref(?),R≥0); in other words

W : Mref(?) { X. Let  : X { Y, the associated map

5 ∈ CLin(M(X),M(Y)) is measurable because, given W ∈

M(M(X))? , 5 ◦ W is nothing but the usual composition of

the substochastic kernels23  and W . Remember that  can be

recovered from 5 by  (A ) = 5 (XA ) and hence the operation

X → M(X) and  ↦→ 5 is a faithful functorM from the cat-

egory Kern of measurable spaces and substochastic kernels to

CLinm.

Conversely let 5 ∈ CLin(M(X),M(Y)) and assume that

X = Mref(?) for some ? ∈ M. Then

W = ,A XA ∈ paths1(M(X))?

(it is the identity kernel) and hence  = 5 ◦ W : X {

Y by measurability of 5 . However the functor M is not full.

Take Y = 1 (the one point measurable space) so that a kernel

X { Y is simply a measurable function X → R≥0. Given

` ∈ M(X) and* ∈ ΣX we de�ne disc(`) (* ) =
∑
A ∈* `({A })

(the discrete component of `). Notice that, even if it is indexed

by an uncountable set, this latter sum has at most countably

many non-zero summands because we know that `(X) <

∞. Then disc(`) ∈ M(X) and it is easy to see that ` ↦→

23We are implicitly using the Giry monad.
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disc(`) is a linear, continuous and measurable function disc :
M(X) → M(X) and that disc ≤ Id. Hence i = Id−disc
is also linear, continuous and measurable M(X) → M(X).

Finally we de�ne a linear, continuous and measurable func-

tion 5 : M(X) → M(R≥0) by 5 (`) = i (`) (X) = `(X) −∑
A ∈X `({A }). In general 5 ≠ 0, but by construction 5 (XA ) = 0

for each A ∈ X, and hence 5 cannot be of shape 5 = 5 .

It seems clear that M(X × Y) = M(X) ⊗̂ M(Y), with ` ⊗̂

a = ` ⊗ a (the usual tensor product of measures), this will be

checked in further work.

The exponential. Weonly sketch this case which is quite
similar to that of ⊗̂. As in [9] we say that 5 ∈ Cstab(%,&)

is measurable if ∀W ∈ paths1 (%)@ 5 ◦ W ∈ paths1(&)? . We
use Cstabm for the category of measurable cones and mea-
surable stable functions, it is a CCC.
Let % be a measurable cone. We de�ne M(̂!%)@ as the

set of all elements ; of (̂!%) ′
Mref (@)

such that for all I ∈ !̂% ,
,B ; (B) (I) ∈ Meas(Mref(@),R≥0) and for all W ∈ paths1 (%)? ,

,(A , B)) ; (B) (W (A )!̂) ∈ Meas(Mref(? + @),R≥0). In that way,

as easily checked, we have de�ned a measurable cone !̂% . If

W ∈ paths1 (%)? then clearly W !̂ = ,A (W (A ))!̂ ∈ paths1 (̂!%)? .

Theorem 37. The bijection CLin(̂!%,&) → Cstab(%,&) re-

stricts to a bijection CLinm (̂!%,&) → Cstabm (%,&).

Hence, if 5 ∈ CLin (̂!%,&), then 5 ∈ CLinm (̂!%,&) i� for

all W ∈ paths1 (%)? , it holds that 5 ◦ W !̂ ∈ paths1 (&)? . The

required properties of !̂_ and of its associated structures fol-
low easily.

7 Conclusion

We need to understand better the internal structure of % ⊗̂&

and !̂% (without and with measurability structure), for in-
stance as suggested in the Introduction we conjecture that
% ⊗̂& is the smallest subcone ofCLin(%,& ;R≥0)

′ which con-
tains all the operators G ⊗~ : 5 ↦→ 5 (G,~) on bilinear forms,

and similarly of !̂% . We also conjecture that !̂P- and P!- are
naturally isomorphic (for PCSs - ).
The framework of measurable complete positive cones

seems now to be quite a general and �exible one, allow-
ing to interpret probabilistic higher-order programming lan-
guages using continuous data types such as the real line
and also general recursive data types (this feature will be
presented in a forthcoming paper). With the tensor prod-
uct and exponential presented here, we should be able to
extend our probabilistic call-by-push-value [10] to continu-
ous data-types. This framework also hosts naturally di�er-
ential operations on programs. For instance, given a stable
5 : B% → R≥0 and elements G,D ∈ B% such that G +D ∈ B%

we know thanks to [1] that the map iD : [0, 1] → R≥0,
_ ↦→ 5 (G + _D) belongs to Pcoh(!1, 1) and hence has a de-
rivative i ′

D (0) ∈ R≥0. The map D ↦→ i ′
D (0) is linear and

continuous %G → R≥0 (where %G is the “local cone” of % at
G , that is the cone of all D ∈ % such that G + _D ∈ B% for
some _ > 0, equippedwith a suitable norm, the obvious gen-
eralization of a construction of [5] for PCSs) thus allowing
to introduce a general di�erential calculus for stable func-
tions on cones with expected applications in optimization
as well as static analysis of programs. Of course the linear
constructs on cones of this paper will be essential in these
forthcoming developments.
Another interesting outcome of this work is the fact that

PCSs are dense in the category CLin, a fact which might
be quite useful for transferring the full abstraction results
obtained so far to probabilistic programming languages han-
dling continuous data-types. The completeness ofCLinmight
also be quite an useful feature and an incentive for extend-
ing linear logic with dependent types; as an illustration we
exhibit a natural cone which arises as an equalizer of two
linear endomorphisms of a PCS.

Example 38. Let - be the least solution of the equation - =

1 & (N ⊗ - ) in Pcoh in the sense explained in [4], it can be

seen as a type of streams of integers. Indeed, this PCS can be

described simply: |- | is the set of �nite sequences of integers
and D ∈ (R≥0)

|- | is in P- if
∑
0∈� D0 ≤ 1 for all antichains

� ⊆ |- | (that is, set of �nite sequences which are pairwise

incomparable for the pre�x order). Then we have a morphism

B ∈ Pcoh(-,- ) which is de�ned by B0,1 = 1 if 0 is of shape

1.= (= ∈ N added at the end of the sequence 1) and B0,1 = 0
otherwise. In other words (B D)1 =

∑
=∈ND1.=. It is not hard

to see that the equalizer of B and Id ∈ Pcoh(P-,P- ) is iso-

morphic toM(X) where X is the Baire space (the Polish space

N
l ) equipped with its Borel Σ-algebra: if B D = D then D can

be seen as the measure which maps the basic clopen set of all

sequences ∈ Nl extending 0 to D0 . It is even possible to check

that the measurability structure introduced in [1] for general

PCSs seen as cones induces a measurability structure on this

equalizer such that its measurable paths are exactly the sub-

stochastic kernels to X.

This example shows that equalizers of simply de�nablemor-

phisms on recursively de�nable types can have quite an inter-

esting structure.
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8 Appendix

8.1 Proof of Lemma 1

Proof. We prove �rst naturality of [, so let 5 ∈ C(�,� ′), we
have

� (5 ) [� = (D(� (�), � (5 )) ◦ k�,� (�) ) (Id� (�) )

= (k�,� (�′) ◦ D(� (�), � (5 ))) (Id� (�) )

= k�,� (�′) (� (5 ))

= (k�,� (�′) ◦ D(� (5 ), � (� ′))) (Id� (�′) )

= (D(� (5 ), � (� ′)) ◦ k�′,� (�′) ) (Id� (�′) )

= [�′� (5 )

by commutation of the diagrams

D(� (�), � (�)) D(� (�), � (�))

D(� (�), � (� ′)) D(� (�), � (� ′))

D(� (� ′), � (� ′)) D(� (� ′), � (� ′))

k�,� (� )

D(� (�), � (5 )) D(� (�), � (5 ))

k�,� (�′ )

D(� (5 ), � (�′))

k�′,� (�′)

D(� (5 ), � (�′))

and naturality of \ is similar. Next, by naturality of k and
de�nition of \� we have

\� [� = \� k�,� (2) (Id� (�) )

= D(� (�), \� ) ◦ k�,� (�) ) (Id� (�) )

= (k�,� (�) ◦ D(� (�), \� )) (Id� (�) )

= k�,� (�) (\� ) = Id� (�)

The equation [� \� = Id� (�) is proven similarly. �

8.2 Proof of Lemma 2

Proof. Let Δ : � → C be a diagram and W : Δ ⇒ 2 be a
colimiting cocone, we must prove that � ′W : � ′Δ ⇒ � ′(2) is
a colimiting cocone in [D,E], so let X : Δ ⇒ � be another
cocone based on Δ in [D,E]. For any objects 9 of � and3 ofD
we have that (X 9 )3 (which we simply denote as X 9,3 ) belongs
to E(� (Δ( 9 ),3), � (3)) and is natural in 9 and 3 , that is, for
any i ∈ � ( 9 , 9 ′) and 6 ∈ D(3,3 ′), the following diagram
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commutes.

� (Δ( 9 ),3) � (3)

� (Δ( 9 ′), 3 ′) � (3 ′)

X 9,3

� (Δ (i),6) � (6)

X 9′,3′

this results from the de�nition of [D,E] and � ′.
By our assumption on � , for each object 3 of D the � -

cocone � (W,3) : � (Δ, 3) ⇒ � (2, 3) is colimiting in E and
hence there is exactly one morphism \3 ∈ E(� (2, 3), � (3))

such that,

∀9 ∈ Obj(� ) \3 � (W 9 , 3) = X 9,3 . (2)

We prove that \ = (\3 )3 ∈Obj(D) is a natural transformation
� ′(2) ⇒ � so let 6 ∈ D(3,3 ′), we must prove that the fol-
lowing diagram commutes.

� (2, 3) � (3)

� (2, 3 ′) � (3 ′)

\3

� (2, 6) � (6)

\3′

For any 9 ∈ Obj(� ), we have

� (6) \3 � (W 9 , 3) = � (6) X 9,3 by de�nition of \

= X 9,3′ � (Δ( 9 ),6) by naturality of X

= \3′ � (W 9 , 3
′) � (Δ( 9 ),6)

= \3′ � (2, 6) � (W 9 , 3)

and the required commutation follows by the uniqueness
part of universality from the fact that the cocone � (W,3) is
colimiting.
This shows that \ ∈ [D,E] (� ′(2), � ). It follows from (2)

that for any 9 ∈ Obj(� ), one has \ � ′(W 9 ) = X . Uniqueness
follows from the fact that any [ ∈ [D,E] (� ′(2), � ) such that
[ � ′(W 9 ) = X must satisfy the analogue of (2) for each given
3 ∈ Obj(�) and hence must be equal to \ . �

8.3 Proof of Lemma 4

Proof. Let 2 ∈ C, for each (G, 5 ) ∈ Obj(�/2) (so that 5 ∈

C(� (G), 2)) we de�ne X (G,5 ) : (� Δ2 ) (G, 5 ) = (� � ) (G) →

� (2) by

X (G,5 ) = � (5 ) gG

(remember indeed that gG ∈ C((� � ) (G), (� � ) (G))).
ThenX is a cocone � Δ2 ⇒ � (2) because, given C ∈ �/2 ((G, 5 ), (~,6)),

we have

X (~,6) (� � ) (C) = � (6) g~ (�� (C)) by de�nition of X

= � (6) (� � ) (C) gG by naturality of g

= � (6 � (C)) gG by functoriality of �

= � (5 ) gG since C ∈ �/2 ((G, 5 ), (~,6)) .

Since the cocone �W2 : � Δ2 ⇒ � (2) is colimiting, it follows
that there is exactly one morphism g̃2 ∈ C(� (2),� (2)) such

that, for each (G, 5 ) ∈ Obj(�/2), one has X (G,5 ) = g̃2 � (W
2
(G,5 )

)

that is (coming back to the de�nitions of X and W2 ), the fol-
lowing diagram commutes

� (� (G)) � (� (G))

� (2) � (2)

gG

� (5 ) � (5 )

g̃2

Notice that the uniqueness of this morphism implies, in the
case 2 = � (G) and 5 = Id, that g̃G = gG , so, for the �rst
statement of the theorem, we are left with proving that g̃2
is natural in 2 . So let ℎ ∈ C(2, 2 ′) and let us prove that
g̃2′ � (ℎ) = � (ℎ) g̃2 . So let 5 ∈ C(� (G), 2), we have

g̃2′ � (ℎ) � (5 ) = g̃2′ � (ℎ 5 )

= � (ℎ 5 ) gG by de�nition of g̃

= � (ℎ)� (5 ) gG

= � (ℎ) g̃2 � (5 )

and we obtain the expected commutation by Lemma 3 and
the fact that �W2 is colimiting.
As to the second part of the lemma, assume that g is a

natural isomorphism whose inverse is f , and that � is also
cocontinuous, we get a unique natural transformation f̃ :
� ⇒ � such that f̃ � = f . Now g̃ f̃ : � ⇒ � satis�es
(g̃ f̃) � = g f = Id and hence by the uniqueness (applied to
that natuarl transformation Id : � � ⇒ � � ) we get g̃ f̃ = Id
and similarly f̃ g̃ = Id as contended. �

8.4 Proof of Lemma 5

Proof. By induction on =, the base case = = 0 being trivial.
So for 8 = 1, . . . , = let �8 : C

0
8 → C8 be dense functors and let

� : C0 → C be a dense functor. Let � : C ×
∏=
8=1 C8 → D be

a separately cocontinuous functor.
Given 2 ∈ Obj(�), we use �2 :

∏=
8=1 C8 → D for the

functors obtained by �xing the �rst argument to 2 , notice
that �2 is separately cocontinuous.

Let 2 ∈ Obj(C), −→2 ∈ Obj(
∏=
8=1C8 ), 3 ∈ Obj(�) and let

;, ; ′ ∈ D(� (2,−→2 ), 3) be such that for all G ∈ Obj(C0), −→G ∈

Obj(
∏=
8=1 C

0
8 ) and all 5 ∈ C(� (G), 2) and

−→
5 ∈

∏=
8=1C8 (�8 (G8), 28 )

one has ; � (5 ,
−→
5 ) = ; ′ � (5 ,

−→
5 ).

To prove that ; = ; ′ it su�ces, by inductive hypothesis ap-

plied to the functor �2 , to prove that for all
−→G ∈ Obj(

∏=
8=1 C

0
8 )

and
−→
5 ∈

∏=
8=1C8 (�8 (G8), 28 ) one has ; � (2,

−→
5 ) = ; ′ � (2,

−→
5 ).

Let : be the �rst of these morphisms and : ′ be the sec-

ond one (with −→G and
−→
5 as above). By Lemma 3 applied to

the cocontinuous functor � (_, �1(G1), . . . , �= (G=)) it su�ces
to show that for any G ∈ Obj(C0) and 5 ∈ C(� (G), 2), one
has: � (5 , �1(G1), . . . , �= (G=)) = :

′ � (5 , �1(G1), . . . , �= (G=))which
results from our assumption on ; and ; ′ and functoriality of
� . �
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8.5 Proof of Theorem 6

Proof. By induction on =, the base case being trivial. So for
8 = 1, . . . , = let �8 : C0

8 → C8 be dense functors and let � :

C
0 → C be a dense functor. Let �,� : C ×

∏=
8=1C8 → D be

functors and assume that � is separately cocontinuous.
For each G ∈ Obj(�)0, we de�ne a natural transformation

g (G) : �� (G) (
=∏

8=1

�8) ⇒ �� (G) (

=∏

8=1

�8 )

by setting g (G)−→G = gG,−→G . By inductive hypothesis, there is

an unique natural transformation g̃ (G) : �� (G) ⇒ �� (G) such

that g̃ (G) (
∏=
8=1 �8) = g (G). So for each G ∈ Obj(C0), we have

de�ned a morphism g̃ (G) ∈ [� ′(� (G)),� ′(� (G))], we prove
now that it is natural in G .
Let C ∈ C

0(G,~) and let−→2 ∈ Obj(
∏=
8=1 C8 ), we must prove

that the following diagram commutes

� (� (G),−→2 ) � (� (G),−→2 )

� (� (~),−→2 ) � (� (~),−→2 )

�g (G)−→2

� (� (C), −→2 ) � (� (C), −→2 )
�g (~)−→2

Let −→G ∈ Obj(
∏=
8=1 C

0
8 ) and

−→
5 ∈

∏=
8=1 C8 (�8 (G8), 28), we have

� (� (C),−→2 ) g̃ (G)−→2 � (� (G),
−→
5 )

= � (� (C),−→2 )� (� (G),
−→
5 ) g̃ (G)�1 (G1),...,�= (G= )

by naturality of g̃ (G)

= � (� (C),
−→
5 ) gG,−→G by ind. hyp. applied to g (G)

= � (� (~),
−→
5 )� (� (C),−→G ) gG,−→G func. of�

= � (� (~),
−→
5 ) g~,−→G � (� (C),

−→G ) nat. of g

= g̃ (~)−→2 � (� (~), 5 ) � (� (C),
−→G ) by ind. hyp. for g (~)

= g̃ (~)−→2 � (� (C),
−→2 ) � (� (G),

−→
5 )

and hence by Lemma5,� (� (C),−→2 ) g̃ (G)−→2 = g̃ (~)−→2 � (� (C),
−→2 )

as contended.
Let d : � ′ � ⇒ � ′ � be de�ned by dG = g̃ (G). Since � ′ is

cocontinuous by Lemma 2, we know by Lemma 4 that there
is exactly one d̃ such that d̃ � = d .
We set g̃2,−→2 = (d̃2 )−→2 , this family of morphisms g̃ is a nat-

ural transformation � ⇒ � such that g̃ (� ×
∏=
8=1 �8) = g .

Uniqueness is straightforward: assume \ : � ⇒ � satis-
�es \ (� ×

∏=
8=1 �8) = g . Then \� (G),−→� (−→G ) = g (G)−→G and hence

by the uniqueness of g̃ (G) we must have \� (G),−→2 = g̃ (G)−→2 =

(dG )−→2 . Therefore, the natural transformation \ ′ : � ′ ⇒ � ′

de�ned by (\ ′2)−→2 = \2,−→2 satis�es \ ′ � = d from which it

follows that \ ′ = d̃ , that is \ = g̃ .
The last statement of the lemma is proven exactly as the

last statement of Lemma 4. �

8.6 Proof of Lemma 9

Proof. Let ⊆ �× � be �nite and les 1 ⊆ � and 2 ⊆ � be its
projections, ‖

∑
(8, 9) ∈ G8, 9 ‖ ≤ ‖

∑
8 ∈ 1

∑
9 ∈ 2

G8, 9 ‖ by mono-
tonicity of the norm. So ‖

∑
(8, 9) ∈ G8, 9 ‖ ≤ ‖

∑
8 ∈ 1

∑
9 ∈� G8, 9 ‖

and hence the family ‖
∑

(8, 9) ∈ G8, 9 ‖ ∈P�n (�×� ) is bounded by
our assumption that (

∑
9 ∈� G8, 9 )8 ∈� is summable. The stated

equations result from continuity of addition. �

8.7 Proof of Lemma 11

Proof. The ⇒ implication is easy (see [4]), we prove the
converse, which uses the Hahn-Banach theorem in �nite
dimension. Let E ∈ (R≥0)

� be such that E ∉ U. We must
prove that there exists D ′ ∈ U⊥ such that 〈E,D ′〉 > 1 and
∀D ∈ U 〈D,D ′〉 ≤ 1. Given � ⊆ � and F ∈ (R≥0)

� , let F | �
be the element of (R≥0)

� which takes value F 9 for 9 ∈ �

and 0 for 9 ∉ � . Then E is the lub of the increasing sequence
{E | {81,...,8= } | = ∈ N} (where 81, 82, . . . is any enumeration of
� ) and hence there must be some= ∈ N such that E | {81,...,8= } ∉
U. Therefore it su�ces to prove the result for � �nite, what
we assume now. Let G = {D ∈ R� | ( |D8 |)8 ∈� ∈ U} which
is a convex subset of R� . Let _0 = sup{_ ∈ R≥0 | _E ∈ U}.
By our closeness assumption on U, we have _0E ∈ U and
therefore _0 < 1. Letℎ : RE → R be de�ned byℎ(_E) = _/_0
(_0 ≠ 0 by our assumptions about U and because � is �-
nite). Let @ : R� → R≥0 be the gauge of G, which is the
semi-norm given by @(F) = inf{Y > 0 | F ∈ YG}. It is
actually a norm by our assumptions on U. Observe that
ℎ(F) ≤ @(F) for all F ∈ RE : this boils down to showing
that _ ≤ _0@(_E) = |_ | _0@(E) for all _ ∈ R which is clear
since _0@(E) = 1 by de�nition of these numbers. Hence, by
the Hahn-Banach Theorem, there exists a linear ; : R� → R
such that |; | ≤ @ and which coincides with ℎ on RE . Let
E ′ ∈ R� be such that 〈F, E ′〉 = ; (F) for all F ∈ R� (us-
ing again the �niteness of � ). Let D ′ ∈ (R≥0)

� be de�ned
by D ′8 =

��E ′8
��. It is clear that 〈E,D ′〉 > 1: since E ∈ (R≥0)

�

we have 〈E,D ′〉 ≥ 〈E, E ′〉 = ; (E) = ℎ(E) = 1/_0 > 1. Let
# = {8 ∈ � | E ′8 < 0}. Given F ∈ U, let F̄ ∈ R� be
given by F̄8 = −F8 if 8 ∈ # and F̄8 = F8 otherwise. Then
〈F, E ′〉 = 〈F̄,D ′〉 = ; (F̄) ≤ 1 since F̄ ∈ G (by de�nition of
G and becauseF ∈ U). It follows that D ′ ∈ U⊥ . �

8.8 Proof of Lemma 12

Proof. Let G ⊆ (R≥0)
� . Let cvx(G) be the set of all the el-

ements of (R≥0)
� which are of shape

∑:
9=1 U 9D ( 9 ) where

D ( 9 ) ∈ G and
∑:
9=1 U 9 = 1. We use G+ for the set of all D ∈

(R≥0)
� such that there is a monotone sequence (D (=))=∈N

of elements of cvx(G) such that D ≤ sup=∈ND (=). Clearly
G ⊆ G+. For each ordinal V , we de�ne U(V) ⊆ (R≥0)

� by
induction as follows:U(0) = U,U(V + 1) = U(V)+ and, if
V is limit and > 0, then U(V) = ∪W<VU(W). This sequence
is clearly monotone for ⊆. Let V be the least ordinal number
such that U(V + 1) = U(V). We have U⊥⊥

= U(V) since
16
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U(V) is the least subset of (R≥0)
� which containsU, is con-

vex, downwards-closed and closed under the lubs of mono-
tone sequences, and therefore satis�es U(V)⊥⊥ = U(V) by
Lemma 11.
To prove our contention, il su�ces therefore to prove that,

for any G ⊆ (R≥0)
� and any ℎ : � → % such that ∀D ∈

G
∑
0∈� D0ℎ(0) ∈ B% , one has ∀D ∈ G+

∑
0∈� D0ℎ(0) ∈ B% ,

the result will follow by ordinal induction. So assume that
G and ℎ satisfy these hypotheses. First let E ∈ cvx(G), say

E =
∑:
9=1 U 9E ( 9 ) where E ( 9 ) ∈ G and U 9 ∈ R≥0 such that∑:

9=1 U 9 = 1. Then

∑

0∈�

E0ℎ(0) =
∑

0∈�

(

:∑

9=1

U 9E ( 9 )0)ℎ(0)

=

:∑

9=1

U 9 (
∑

0∈�

E ( 9 )0ℎ(0)) ∈ B%

by convexity24 of B% .
Let now D ∈ G+ and let (D (=))=∈N be a monotone se-

quence in cvx(G) such that D ≤ sup=∈ND (=). For each =
we have

∑
0∈� D (=)0ℎ(0) ∈ B% by what we have just proven

and hence sup=∈N
∑
0∈� D (=)0ℎ(0) ∈ B% by completeness of

% since the sequence (
∑
0∈� D (=)0ℎ(0))=∈N is monotone. By

continuity of the algebraic operations in % we have
sup=∈N

∑
0∈� D (=)0ℎ(0) =

∑
0∈� sup=∈N D (=)0ℎ(0) and since

∀0 ∈ � D0 ≤ sup=∈ND (=)0 we get
∑
0∈� D0ℎ(0) ∈ B% as

contended.
The fact that ℎ̄ ∈ CLin(P(� ,U⊥⊥), %) results clearly from

its de�nition and from the fact that it mapsU⊥⊥ to B% . �

8.9 Proof of Lemma 17

Proof. It su�ces to check that it preserves all small prod-

ucts and binary equalizers. Let �rst
−→
& = (&8)8 ∈� be a family

of objects of CLin. Any element of % ⊸
∏−→
& is of shape

〈58〉8 ∈� with 58 ∈ % ⊸ &8 for each 8 and this de�nes a map

\−→
&

: (% ⊸
∏−→
& ) →

∏
8 ∈� (% ⊸ &8 ) which is a bijection.

Thismap is linear and continuous because all operations are
calculated pointwise (wrt. the argument of functions) and
componentwise (in the product indexed by � ). The fact that
‖\−→
&
‖ = 1 results from the fact that all the norms involved

are computed as lubs inR≥0. To check that \−→& is an iso it suf-

�ces to check that \−1−→
&

is continuous. Let us check this point:

let (5 (=))=∈N be a non-decreasing sequence inB(
∏
8 ∈� (% ⊸

&8)) so that 5 (=) = (5 (=)8)8 ∈� , where 5 (=)8 ∈ % ⊸ &8 and
for each 8 ∈ � the sequence of functions (5 (=)8)=∈N is non-
decreasing, and for eachG ∈ B% , one has∀= ∈ N ‖5 (=)8 (G)‖ ≤

1. Then 5 = sup= 5 (=) ∈ B(
∏
8 ∈� (% ⊸ &8)) is character-

ized by 5 (G)8 = sup=∈N 5 (=)8 (G). On the other hand, 6 =

24And actually also closeness because this computation uses implicitely

restrictions of the sum over � to �nite subsets of � .

\−1−→
&
(5 ) ∈ % ⊸

∏−→
& is given by 6(G) = (5 (G)8)8 ∈� so that

6(G) is the lub in
∏−→
& of the sequence (5 (=) (G))=∈N and

since lubs of sequences of functions are computed point-
wise, this proves our contention. So \−→

&
is an iso in CLin

and its naturality is obvious.
Next consider 51, 52 ∈ CLin(&, ') and let (�, 4) be the cor-

responding equalizer (� is the cone of elements G of & such
that 51 (G) = 52(G) and 4 : � → & is the inclusion). Then
% ⊸ 58 ∈ CLin(% ⊸ &, % ⊸ ') (for 8 = 1, 2) maps ℎ
to 58 ℎ. The equalizer of these two maps is the cone of all
ℎ ∈ % ⊸ & such that 51 ℎ = 52 ℎ, that is ∀G ∈ % 51(ℎ(G)) =

52(ℎ(G)), equivalently ℎ ∈ % ⊸ �. And the inclusion map
(% ⊸ �) → (% ⊸ &) is equal to % ⊸ 4 . Hence the equal-
izer of % ⊸ 51 and % ⊸ 52 is (% ⊸ �, % ⊸ 4) which proves
that the functor % ⊸ _ preserves equalizers, and hence pre-
serves all small limits. �

8.10 Proof of Lemma 26

Proof. It su�ces to prove that D preserves small products
and binary equalizers. The �rst statement results from the
fact thatCstab is cartesian with products de�ned as in CLin.
Let us prove the second one so let 51, 52 ∈ CLin(%,&) and
(�, 4) be the corresponding equalizer in CLin (that is � =

{G ∈ % | 51 (G) = 52 (G)} and 4 : � → % is the obvious
inclusion, see the proof of Theorem 15). We prove that (�, 4)
is the equalizer of 51 and 52 in Cstab so let 6 ∈ Cstab(', %)

be such that 51 ◦ 6 = 52 ◦ 6, that is ∀I ∈ B' 6(I) ∈ �.
Let ℎ : B' → � be de�ned by ℎ(I) = 6(I), then ℎ is stable
because 6 is and � inherits its structure from % (which also
entails that ℎ(B') ⊆ B� since 6(B') ⊆ B%). And ℎ is the
unique element of Cstab(', �) such that 6 = 4 ◦ ℎ which
proves our contention. �

8.11 Proof of Lemma 33

Proof. Let 5 ∈ CLinm(% ⊗̂ &,') and 6 = cur(5 ), we prove
that 6 ∈ CLinm(%,& ⊸m '). Let �rst G ∈ % , we prove that
6(G) ∈ & ⊸m ' so let X ∈ M(&)? , we prove that 6(G) ◦ X ∈

paths1(')? . Let< ∈ M(&)@ , we have

,(A , B)<(B) (6(G) (X (A ))) = ,(A , B)<(B) (5 (G ⊗̂ X (A ))) .

Let W = ,F G ∈ M(%)0 we have 5 ◦ (W ⊗̂ X) ∈ paths1(')?
by Lemma 32 and by our assumption about 5 and hence
,(A , B)<(B) (6(G) (X (A ))) ∈ Meas(Mref(? + @),R≥0) so that
6(G) ∈ & ⊸m '. We prove that 6 ∈ CLinm(%,& ⊸m

') so let W ∈ paths1 (%)? and let us show that 6 ◦ W ∈

paths1(& ⊸m ')? ; applying the de�nition of & ⊸m ', let
X ∈ paths1(&)@ and ; ∈ M(')@ , we have

,(A , B) (X ⊲ ;) (B) (6(W (A )) = ,(A , B) ; (B) (6(W (A )) (X (B)))

= ,(A , B) ; (B) (5 (W (A ) ⊗̂ X (B)))

17
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and we know by our assumtion on 5 and by Lemma 32 that
5 ◦ (W ⊗̂ X) ∈ paths1 (')?+@) and hence

,(A , B, B ′) ; (B ′) (5 (W (A ) ⊗̂ X (B))) ∈ Meas(Mref(?+@+@),R≥0)

fromwhich,(A , B) (X ⊲ ;) (B) (6(W (A )) ∈ Meas(Mref(?+@),R≥0)

follows sinceM is cartesian andmeasurability tests are closed
under precomposition by morphisms ofM.
Conversely, let 6 ∈ CLinm(%,& ⊸m ') and let 5 =

cur−1(6) ∈ CLin(% ⊗̂ &,') so that 5 is uniquely character-

ized by the fact that 5 (G ⊗̂ ~) = 6(G) (~) for all G ∈ % and

~ ∈ & . We must prove that 5 ∈ CLinm(% ⊗̂ &,') so let \ ∈

paths1(% ⊗̂&)?0 , wemust show that 5 ◦ \ ∈ paths1 (')?0 . Let
; ∈ M('): and let us prove that ,(A0,F) ; (F) (5 (\ (A0)) ∈

Meas(Mref (?0 + :),R≥0). For each F ∈ Mref (:), we have
,I ; (F) (5 (I)) ∈ (% ⊗̂ &) ′ because 5 is linear and contin-

uous and ; (F) ∈ '′. So let < ∈ (% ⊗̂ &) ′Mref (:) be de-

�ned as< = ,F ,I ; (F) (5 (I)), we claim that< ∈ M(% ⊗̂

&): . The �rst condition (namely for all I ∈ % ⊗̂ & , one has

,F<(F) (I) ∈ Meas(Mref (:),R≥0)) being obviously satis-
�ed, we check the second one so let W ∈ paths1(%)? and
X ∈ paths1 (&)@ . We have

,(A , B,F)<(F) (W (A ) ⊗̂ X (B)) = ,(A , B,F) ; (F) (5 (W (A ) ⊗̂ X (B)))

= ,(A , B,F) ; (F) (6(W (A )) (X (B))) .

We set

X ′ = ,(B,F) X (B) : Mref(@ + :) → &

; ′ = ,(B,F) ,I ; (F) (I) ∈ '′Mref (@+:) .

Then25 X ′ ∈ paths1(&)@+: and ; ′ ∈ M(')@+: and there-
fore X ′ ⊲ ; ′ ∈ M(& ⊸m ')@+: . We know that 6 ◦ W ∈
paths1(& ⊸m ')? and hence,(A , B,F) (X

′
⊲ ; ′) (B,F) (6(W (A )))

is measurableMref(? + @ + :) → R≥0. Now observe that

,(A, B,F) (X ′ ⊲ ; ′)(B,F)(6(W (A ))) = , (A, B,F) ; (F)(6(W (A ))(X (B)))

so we have proven that< ∈ M(% ⊗̂&): . But remember that
\ ∈ paths1 (% ⊗̂&)?0 , we have therefore,(A0,F)<(F) (\ (A0)) ∈

Meas(Mref (?0 + :),R≥0) and since<(F) (\ (A0)) is nothing
but ; (F) (5 (\ (A0))) we have 5 ◦ \ ∈ paths1 (')?0 . �

8.12 Proof of Theorem 37

Proof. Let 5 ∈ CLinm (̂!%,&), the associated 6 ∈ Cstab(%,&)

is de�ned by 6(G) = 5 (G !̂). Let W ∈ paths1 (%)? , we have

6 ◦ W = 5 ◦ W !̂ ∈ paths1(&)? since W !̂ ∈ paths1 (̂!%)? and
hence 6 ∈ Cstab(%,&). Now let 6 ∈ Cstabm(%,&) and let

5 ∈ CLin(̂!%,&) be the associated linear map, uniquely char-

acterized by ∀G ∈ B% 6(G) = 5 (G !̂). Let \ ∈ paths1 (̂!%)? ,
we prove that 5 ◦ \ ∈ paths1(&)? so let < ∈ M(&)@ ,

we de�ne ; = ,B ,I<(B) (5 (I)) ∈ !̂% ′Mref (@) (linearity and
continuity of ; (B) follows from those of 5 ). The fact that

25BecauseM is cartesian andmeasurability tests and paths are closed under

precomposition by morphisms of M.

,B ; (B) (I) ∈ Meas(Mref(@),R≥0) for each I ∈ !̂% follows
from< ∈ M(&)@ . Let W ∈ paths1(%)?0 , we have

,(A0, B) ; (B) (W (A0)
!̂) = ,(A0, B)<(B) (6(W (A0))

∈ Meas(Mref(A0 + B),R≥0)

since6 ismeasurable, hence< ∈ M(̂!%). Since\ ∈ paths1 (̂!%)?
it follows that ,(A , B) ; (B) (\ (A )) ∈ Meas(Mref(A + B),R≥0)

but ; (B) (\ (A )) =<(B) (5 (\ (A ))) and so we have proven that
5 ◦ \ ∈ paths1(&)? . �

8.13 The pentagon

We have to prove commutation of the external pentagon of
Figure 1 where the morphisms V8 , W8 are instances

26 of Ũ , U8
are obtained by applying P to U and c8 are instances of c ,
that is V2 V1 = V5 V4 V3. This is reduced to the commutation
of the internal pentagon involving U1, . . . , U5 by observing
that

V2 V1 = (c11 c10 c9)
−1 U2 U1 (c3 c2 c1)

that is c11 c10 c9 V2 V1 = U2 U1 (c3 c2 c1) and similarly for
V5 V4 V3. This is done by pasting �ve kinds of commutative
squares of which we give examples, explaining why they
commute.

• The diagram involving V1, c4, c1 and W1 which com-
mutes by naturality of Ũ .

• The diagram involving c4, c6, c5 and c7 which com-
mutes by functoriality of ⊗̂.

• The diagram involving W1, c6, c8, c2, c3 and U1 whose
commutation results from the de�nition of U0 and Ũ .

• The diagram involving V3,c13,c14, c1,c2 andU6 whose
commutation results from the de�nition of U0 and Ũ .

• The diagram involving U6, c12, c3 andU3 which results
from the naturality of c .

26Possibly involving tensorisations with identities, the same for the next

uses of the word “instance”.
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((P-1 ⊗̂ P-2) ⊗̂ P-3) ⊗̂ P-4

(P(-1 ⊗ -2) ⊗̂ P-3) ⊗̂ P-4

P((-1 ⊗ -2) ⊗ -3) ⊗̂ P-4

P(-1 ⊗ (-2 ⊗ -3)) ⊗̂ P-4

P(((-1 ⊗ -2) ⊗ -3) ⊗ -4)

(P-1 ⊗̂ P-2) ⊗̂ (P-3 ⊗̂ P-4)

(P-1 ⊗̂ P-2) ⊗̂ P(-3 ⊗ -4)

P-1 ⊗̂ (P-2 ⊗̂ P(-3 ⊗ -4))

P(-1 ⊗ -2) ⊗̂ (P-3 ⊗̂ P-4)

P(-1 ⊗ -2) ⊗̂ P(-3 ⊗ -4)

P((-1 ⊗ -2) ⊗ (-3 ⊗ -4))

(P-1 ⊗̂ (P-2 ⊗̂ P-3)) ⊗̂ P-4

(P-1 ⊗̂ P(-2 ⊗ -3)) ⊗̂ P-4

P-1 ⊗̂ ((P-2 ⊗̂ P-3) ⊗̂ P-4)

P-1 ⊗̂ (P(-2 ⊗ -3) ⊗̂ P-4)

P-1 ⊗̂ (P-2 ⊗̂ (P-3 ⊗̂ P-4))

P(-1 ⊗ (-2 ⊗ (-3 ⊗ -4)))

(P-1 ⊗̂ P(-2 ⊗ (-3 ⊗ -4)))

P(-1 ⊗ ((-2 ⊗ -3) ⊗ -4))

P-1 ⊗̂ P((-2 ⊗ -3) ⊗ -4)

P((-1 ⊗ (-2 ⊗ -3)) ⊗ -4)

V1

c1

c2

U6

c3

c4

c5
W1

c6

c8

c7

U1

V3

V4

c13

c14

V5

V2

c9

W2

U2

c10

c11

c15

W3

U5

c16

c17

U7

U4

U3

c12

Figure 1. Pentagon diagram
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