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Abstract
We consider the problem of defining the integers in Ho-
motopy Type Theory (HoTT). We can define the type of
integers as signed natural numbers (i.e., using a coproduct),
but its induction principle is very inconvenient to work with,
since it leads to an explosion of cases. An alternative is to
use set-quotients, but here we need to use set-truncation
to avoid non-trivial higher equalities. This results in a re-
cursion principle that only allows us to define function into
sets (types satisfying UIP). In this paper we consider higher
inductive types using either a small universe or bi-invertible
maps. These types represent integers without explicit set-
truncation that are equivalent to the usual coproduct rep-
resentation. This is an interesting example since it shows
how some coherence problems can be handled in HoTT. We
discuss some open questions triggered by this work. The
proofs have been formally verified using cubical Agda.

CCSConcepts: •Theory of computation→Categorical
semantics; Type theory.
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1 Introduction
How to define the integers in HoTT? This can sound like a
trivial question. The first answer is as signed natural num-
bers:

Definition 1.1. Let Zw be the inductive type generated by
the following constructors:

• 0 : Zw
• strpos : N→ Zw
• strneg : N→ Zw

However, this type is very inconvenient in practice be-
cause it creates a lot of unnecessary case distinctions. Nuo
[15] tried to prove distributivity of multiplication over addi-
tion, which resulted in a lot of cases. It is like working with
normal forms only, when working with λ-terms.

Nuo shows that it is much better to work with a quotient
type, representing integers as differences of natural numbers.
That is, we define Zq = N × N/∼ where (x+, x−) ∼ (y+,y−)
is defined as x+ + y− = y+ + x− 1. However, this is not the
end of the story. Here we use set-quotients, which can be
implemented as a higher inductive type with a set-truncation
constructor [18, Section 6.10]. However, the set-truncation
constructor implies that using its recursion principle we can
only define functions into sets, which seems to be an unrea-
sonable limitation when working in HoTT. For example, in
the proof that the loop space of the circle is isomorphic to
the integers [17], we must map from the integers to the loop
space of the circle, when we do not yet know that this will
end up being a set.
We would like to have a definition of the integers which

is convenient to work with (i.e., does not reduce them to
normal forms) but which is not forced to be set-truncated
by a set-truncation constructor. Paolo Capriotti suggested
the following definition:

Definition 1.2. Let Zh be the higher inductive type with
the following constructors:

• 0 : Zh ;
• succ : Zh → Zh ;
• pred : Zh → Zh ;
• sec : (z : Zh) → pred(succ(z)) = z;
• ret : (z : Zh) → succ(pred(z)) = z;
• coh : (z : Zh) → apsucc(sec(z)) = ret(succ(z)).

1This is actually the definition in [18].
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We add succ and pred as constructors, but then we postu-
late that they are inverse to each other using sec and ret. At
this point we could add a set-truncation but then we would
suffer from the same shortcoming as the definition using a
set-quotient. However, we can add just one coherence con-
dition coh which should look familiar to anybody who has
read the HoTT book: indeed the constructors pred, sec, ret,
and coh exactly say that succ is a half-adjoint equivalence
[18, Section 4.2]. More precisely, sec postulates that succ is a
section, ret postulates that succ is a retraction, and coh rep-
resents the triangle identity in the definition of half-adjoint
equivalence.
The question that now remains is the following. Is Zh a

correct definition of the integers, in particular is it a set with
decidable equality? The strategy to prove this is to define
a normalisation function into the signed integers, Zw , and
show that this normalisation function, together with the
obvious embedding of Zw into Zh , forms an equivalence. It
turns out that this is actually quite hard to prove, due to the
presence of higher equalities, and nobody has so far been
able to formally verify this.
In this paper, we follow the same idea but use a simpler

definition of equivalence, namely bi-invertible maps [18, Sec-
tion 4.3]:
Definition 1.3. Let Zb be the higher inductive type with
the following constructors:

• 0 : Zb ;
• succ : Zb → Zb ;
• pred1 : Zb → Zb ;
• pred2 : Zb → Zb ;
• sec : (z : Zb ) → pred1(succ(z)) = z;
• ret : (z : Zb ) → succ(pred2(z)) = z;

In this case we postulate that succ has a left inverse, given
by pred1 and sec, and a right inverse, given by pred2 and ret.
The reason why Zb is simpler than Zh is because it only has
0- and 1-dimensional constructors. The higher coherence
coh is not needed in this case for the same reason that a
2-dimensional constructor is not needed in the definition of
bi-invertible map: having two, a priory, unrelated inverses
makes the type of witnesses that a certainmap is bi-invertible
a proposition ([18, Theorem 4.3.2]).

For this definition we can give a complete proof that Zb is
equivalent to Zw , which has been formalized in cubical Agda.
We remark that this has previously been verified by Evan
Cavallo [7] in RedTT [1]. However, our approach to prove
the equivalence is more general. Our main result is Theo-
rem 2.4, which says that only the components witnessing
the preservation of 0 and succ are relevant when comparing
morphisms out of Zb .

Another presentation of the integers follows from directly
implementing the idea that the integers can be specified as
the initial type with an inhabitant and an equivalence:

• 0 : ZU ;

• s : ZU = ZU .
The problem is that this is not a standard definition of a
higher inductive type becausewe state an equality of the type
itself. However, this can be fixed by using a small universe:

Definition 1.4. DefineU : U and El : U → U inductively
with the constructors:

• z : U ;
• q : z = z;
• 0 : El(z)

Now, let ZU :≡ El(z).

While we can show that this is a set without using set-
truncation, its recursion principle isn’t directly amenable to
recursive definitions of functions because even succ is not a
constructor. On the other hand the fact that the integers are
the loop space of the circle is a rather easy consequence of
this definition.

The definition of the integers is also closely related to the
free group, indeed as suggested in [13] we can define the
free group over a type A by simply parametrizing all the
constructors but 0:

Definition 1.5. Given A : U, define F(A) inductively with
the constructors:

• 0 : F(A);
• succ : A → F(A) → F(A);
• pred1 : A → F(A) → F(A);
• pred2 : A → F(A) → F(A);
• sec : (a : A) → (z : F(A)) → pred1(a, succ(a, z)) = z;
• ret : (a : A) → (z : F(A)) → succ(a, pred2(a, z)) = z;

The integers arise as the special case Z = F(1). However,
the normal forms get a bit more complicated because we
must allow alternating sequences of succ and pred but only
for different a : A. This means that a normalisation function
is only definable for sets a : A with a decidable equality. The
general problem of whether F(A) is a set, if A is, is still open
— in [13] it is shown to be the case, if we 1-truncate the HIT.

The problem of defining the integers with convenient
constructors, and adding only the right coherences to make
it a set, can be seen as a simple instance of a more general
class of coherence problems in HoTT. Another example that
we have in mind is the intrinsic definition of the syntax of
type theory as the initial category with families as developed
in [3]. If we carry out this definition in HoTT, we need to
set-truncate the syntax, but this stops us from interpreting
the syntax in the standard model formed by sets. We hope
that also in this case we can add the correct coherence laws
and show that they are sufficient to deduce that the initial
algebra is a set.

1.1 Contributions
We show that the definitions of the signed integers, Zw , the
definition of the integers as a higher inductive type using
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bi-invertible maps, Zb , and the definition using a higher
inductive-inductive type with a mini universe, ZU , are all
equivalent (Theorem 4.7).

For Zb we establish some useful principles such as a recur-
sion principle (Proposition 2.1) which only uses one prede-
cessor, and an induction principle which says that to prove
a predicate (i.e., a family of propositions), you only need to
prove closure under 0, succ, and pred1 (Proposition 2.2). This
is sufficient to verify all algebraic properties of the integers,
e.g., that the integers form a commutative ring. We have
formalized [5] the constructions using cubical Agda [2].
When formalizing the constructions involving Zb we de-

veloped the theory of bi-invertible maps in cubical Agda,
which wasn’t available. In particular, we prove that bi-inverti-
ble maps are equivalent to contractible-fibers maps [18, Sec-
tion 4.4], and the principle of equivalence induction for bi-
invertible maps.

1.2 Related work
The claim that Zh is a set can be found in [4] but the proof
was flawed: it relies on the assumption that we can ignore
propositional parts of an algebra for a certain signature when
constructing algebra morphisms, which is not the case in
general (Example 6.1). Cavallo [7] verified that Zb ≃ Zw in
RedTT. Higher inductive representations of the integers are
discussed in [6] and it is shown there that Zh without the last
constructor is not a set. [14] also discuss [4] and note that it
is a corollary of their higher Seifert-van Kampen theorem —
however, they derive it from initiality not from the induction
principle.

1.3 Background
We use Homotopy Type Theory as presented in the book
[18]. We adopt the following notational conventions.

If two terms a and b are definitionally equal, we write a ≡

b, and we reserve a = b to denote the type of propositional
equalities between a and b.
Given a type A : U and a type family P : A → U, we

write the corresponding Π-type as (a : A) → P(a), and the
corresponding Σ-type as (a : A) × P(a).

Given a type A : U, a type family P : A → U, an equality
e : a = b inA, and p : P(a), we denote the coercion of p along
e by e∗(p) : P(b). This is defined by induction on e .

A type is contractible if it has exactly one inhabitant.
That is, given a type A : U, we define isContr(A) :≡ (a0 :
A) × ((a : A) → a = a0). A type is a proposition if any two
inhabitants are equal. That is, given a type A : U, we define
isProp(A) :≡ (a,b : A) → a = b, [18, Definition 3.3.1]. A
type is a set if it satisfies UIP. That is, given a type A : U, we
define isSet(A) :≡ (a,b : A) → (p,q : a = b) → p = q, [18,
Definition 3.1.1].

An equivalence between typesA and B is a map f : A → B
together with a proof that (b : B) → isContr((a : A)× f (a) =

b). The type of equivalences between A and B is denoted by
A ≃ B.

The general syntax of Higher Inductive Inductive Types
(HIITs) is specified in [11], where also the types of the elim-
inators are derived. In the informal exposition, and in the
formalisation, we use the cubical approach to path algebra
introduced in [16].
For the formalisation we use cubical Agda [2] which is

based on the cubical type theory of [8]. The development of
HIITs in Agda is based on [9].

2 Representing Z using bi-invertible maps
The typeN of natural numbers is usually defined as the induc-
tive type generated by an inhabitant 0 : N and an endomap
succ : N→ N. In this section, we define the integers Zb in a
similar way. The idea is to give constructors that guarantee
that we have 0 : Zb , succ : Zb → Zb , and that succ is an
equivalence using bi-invertible maps, see Definition 1.3. To
make it easy to work with this definition, we prove three
theorems that let us: map out of Zb (Proposition 2.1), prove
properties about Zb (Proposition 2.2), and recognise when
two maps out of Zb are equal (Theorem 2.4).
The result about mapping out of Zb is very simple, and

follows immediately from the recursion principle of Zb .

Proposition 2.1 (recZsimp). Given a typeT with an inhab-
itant t : T and two maps f : T → T , д : T → T , such that д is
a left and right inverse of f , we get a map r : Zb → T such
that r (0) ≡ t and r (succ(z)) ≡ f (r (z)), definitionally.

The next result is only slightly more involved.

Proposition 2.2 (indZsimp). Given a type family P : Zb →

U such that (z : Zb ) → isProp(P(z)), if we have P(0), (z :
Zb ) → P(z) → P(succ(z)), and (z : Zb ) → P(z) → P(pred1(z)),
then it follows that (z : Zb ) → P(z).

Proof. We use the induction principle of Zb . The main idea
is that we do not have to check any coherences, since we
are proving a proposition. Concretely, this means that we
only have to provide inhabitants for the following types:
P(0), (z : Zb ) → P(z) → P(succ(z)), (z : Zb ) → P(z) →

P(pred1(z)), and (z : Zb ) → P(z) → P(pred2(z)). For the
first three we just use the assumptions. For the fourth one,
we make use of the fact that, for every z : Zb , there is an
equality pred1(z) = pred2(z). This is because pred2(z) =
pred1(succ(pred2(z))) = pred1(z) using sec and then ret. □

The result that allows us to compare maps out of Zb is
considerably more complicated to prove. In order to explain
its proof, we need to talk about bi-invertible maps.

Definition 2.3. A map between types f : A → B is a bi-
invertible map if there exist д,h : B → A, and homotopies
s : д ◦ f = idA and r : f ◦ h = idB .
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f (succ(pred1(x))) д(succ(pred1(x)))

s(p(f (x))) s(p(д(x)))

f (x) д(x)

f (x) д(x)

apf (sec(x ))

r (succ(pred1(x )))

apд (sec(x ))

apsucc(appred1 (r (x )))

sec(д(x ))
r (x )

r (x )

sec(f (x ))

Figure 1. Cube needed for lemma 2.6

The type of bi-invertible structures on such a map f is
denoted by isBiInv(f ). The type (f : A → B) × isBiInv(f ) is
denoted by A ≃b B.

Whenever we have f : A ≃b B, we will abuse notation,
and write f : A → B for the underlying function of the
bi-invertible map f .
Notice that the constructors succ, pred1, pred2, sec, and

ret form a bi-invertible map. Suppose given a type T with
an inhabitant t : T and a bi-invertible map s : T ≃b T . The
recursion principle of Zb gives us recZb (T , t, s) : Zb → T .
Now, assume given another map f : Zb → T . What do we
have to check to be able to conclude that f = recZb (T , t, s)?

The following theorem gives a simple answer to the ques-
tion and is the main focus of this section.

Theorem 2.4 (uniquenessZ). Given a typeT , an inhabitant
t : T , a bi-invertible map s : T ≃b T , and a map f : Zb → T ,
if f (0) = t and s ◦ f = f ◦ succ then f = recZb (T , t, s).

In order to prove Theorem 2.4 we must study the preser-
vation of bi-invertible maps, which we introduce next.

Fix types A,B,A′,B′ : U, bi-invertible maps e : A ≃b B
and e ′ : A′ ≃b B′, and maps α : A → A′ and β : B → B′:

A B

A′ B′.

e

α
e ′

β

We now define what it means for α and β to respect e and
e ′. By a slight abuse of notation, let the bi-invertible maps e
and e ′ be given by (e,д,h, s, r ) and (e ′,д′,h′, s ′, r ′).

Definition 2.5. We define the type prBiInv(e, e ′,α, β) as the
iterated Σ-type with the following fields:

• (preservation of e) pe : e ′ ◦ α = β ◦ e;
• (preservation of д) pд : д′ ◦ β = α ◦ д;
• (preservation of h) ph : h′ ◦ β = α ◦ h;
• (preservation of s) ps : (a : A) → s ′(α(a)) = apд′(pea)
pд(e(a)) apα (s(a));

• (preservation of r ) pr : (b : B) → r ′(β(b)) = ape ′(phb)
pe (h(b)) apβ (r (a)).

The next proposition follows from the initiality of Zb ,
although it is a bit involved to prove formally using the
constructors and the induction principle.

Proposition 2.6 (uniqueness). Suppose given a typeT with
an inhabitant t : T , a bi-invertible map s : T ≃b T , and a
map f : Zb → T . If f (0) = t and prBiInv(succ, s, f , f ), then
f = recZb (T , t, s).

Proof. We write д for recZb (T , t, s). By function extensional-
ity, it is enough to construct a term r : Πx :Zb f (x) = д(x). We
do this using the induction principle. The case for 0 follows
directly from the assumption f (0) = t , and r (succ(x)) =
aps (д(x)) and the corresponding equalities for pred1 and
pred2 follow directly from the assumption that f respect the
bi-invertible maps succ and s .

It remains to check the cases of sec and ret. Since these are
symmetric, we only describe the case of sec. In this case, we
have to provide a filler for the following square of equalities:

f (succ(pred1(x))) д(succ(pred1(x)))

f (x) д(x).

apf (sec(x ))

r (succ(pred1(x )))

apд (sec(x ))

r (x )

This filler can be obtained by filling the cube in figure 1,
as follows. All the sides apart from the square in question
can be filled using the fact that f preserves the bi-invertible
maps, and simple path algebra, so we can conclude the proof
using the Kan filling property of cubes: any open box can be
filled. □

Given a type A : U, let idA : A → A be the identity
function.We have idbA : isBiInv(idA), so we can define amap
toBiInv : A = B → A ≃b B by path induction, sending refl :
A = A to idbA. By [18, Corollary 4.3.3] and the univalence
axiom, the map toBiInv is an equivalence. Let toEq : A ≃b
B → A = B be its inverse.
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From this we can derive the principle of (based) equiva-
lence induction, which we now state.

Lemma 2.7 (BiInduction). Fix a type A : U and a type
family P : (B : U) → A ≃b B → U. If we have P0 :
P(A, idA, idbA), then we have (B : U) → (e : A ≃b B) →

P(B, e).

Proof. This is proven by path induction, after translating
bi-invertible maps to equalities, using toEq and toBiInv. □

Using equivalence induction, and singleton elimination,
one can finally prove that a map between types together
with bi-invertible maps that respects the maps, automatically
respects the bi-invertible structure.

Lemma 2.8. The type prBiInv(e, e ′,α, β) is equivalent to the
type e ′ ◦ α = β ◦ e .

Proof. We use equivalence induction (Lemma 2.7) for e and
e ′ and then observe that the type

prBiInv((id, idb), (id, idb),α, β)

is equivalent to the type of equalities α = β . □

Proof of Theorem 2.4. The theorem is a corollary of Proposi-
tion 2.6 and Lemma 2.8. □

One should notice that Lemma 2.8 can be proven directly,
avoiding the usage of the univalence axiom (which was used
to prove that toBiInv is an equivalence). The reason why we
don’t do this, is because the path algebra involved in proving
Lemma 2.8 directly is non-trivial.

3 Z is a set
In this section we relate Zb with the usual definition of the
integers as signed natural numbers, which we call Zw . We
show that Zb ≃ Zw , and since we already know that Zw is a
set, we deduce that Zb is a set too.

Definition 3.1. Let Zw be the inductive type with the fol-
lowing constructors:

• 0 : Zw
• strpos : N→ Zw
• strneg : N→ Zw

Theorem 3.2 (ZisZ). We have an equivalence Zb ≃ Zw .

Proof. On the one hand, one can define succw : Zw → Zw
by induction, by mapping:

• 0 7→ strpos(0);
• strpos(n) 7→ strpos(succ(n));
• strneg(0) 7→ 0;
• strneg(succ(n)) 7→ strneg(n).

Similarly one defines predw . The fact that predw provides
a left and right inverse for succw is straightforward. So, by
Proposition 2.1 we get a map nf : Zb → Zw . On the other
hand, it is easy to construct a map i : Zw → Zb by induction.

Induction on Zw shows that nf ◦ i = idZw . The hard part is
to show that i ◦ nf = idZb . This is where Theorem 2.4 comes
in handy. Theorem 2.4 implies that it is enough to check that
(i ◦ nf)(0) = 0 and that succ ◦ (i ◦ nf) = (i ◦ nf) ◦ succ, and
this follows directly by construction. □

4 Representing Z using a universe
In this section we give another definition of the integers,
denoted byZU , which allows one to easily prove that they are
the initial type together with an inhabitant and an equality
from the type to itself.
To make sense of initiality, we first define the type of

Z-algebras and of Z-algebra morphisms.

Definition 4.1. A Z-algebra is a type T : U together with
an inhabitant t : T , and an equality e : T = T . We denote
such a Z-algebra as (T , t, e), or T if the rest of the structure
can be inferred from the context.

Definition 4.2. A morphism of Z-algebras from (T , t, e) to
(T ′, t ′, e ′) is given by a map f : T → T ′, together with an
equality f (t) = t ′, and a proof that e∗(f ) = e ′∗(f ). We denote
the type of morphisms of Z-algebras between T and T ′ by
T →Z T

′.

We are interested in initial Z-algebras.

Definition 4.3. A initial Z-algebra is a Z-algebra (T , t, e)
such that for any otherZ-algebra (T ′, t ′, e ′) the typeT →Z T

′

is contractible.

See Definition 1.4 for the definition of the initial Z-algebra
using a mini universe2. Then define an interpretation func-
tion El : U → U, as the higher inductive family with only
one constructor 0 : El(z). Define the type ZU :≡ El(z). The
type ZU has the structure of a Z-algebra, since we have
0 : ZU and s :≡ apEl(q) : ZU = ZU . The following result
follows by a routine application of the induction principle
of ZU .

Theorem 4.4 (ZisInitial). The Z-algebra ZU is initial.
□

In particular, we have.

Proposition 4.5. Given a type T with an inhabitant t : T
and an equality e : T = T , we get a morphism of Z-algebras
ZU → T . □

Again, comparing maps out of ZU is easy, thanks to the
following theorem.

Theorem4.6. Given a typeT , an inhabitant t : T , an equality
e : T = T , and a map f : ZU → T , if f (0) = t and e∗ ◦ f =
f ◦ s∗ then f = recZU (T , t, e). □

2This is inspired by Zongpu Xie’s proposal how to represent HIITs in
Agda[10].
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Analogously to the case of Zb , this is proven by combining
the initiality of ZU with the fact that to preserve an equality
in the universe e : T = T , it is enough to commute with its
corresponding coercion function e∗ : T → T .
Following the argument given in Section 3, one deduces

the following.

Theorem 4.7. There is an equivalence ZU ≃ Zw . □

We omit the proof since it is basically the same as the con-
struction presented in [17] when proving that the integers
are the loop space of the circle.
Indeed, the mini universeU is nothing but the higher in-

ductive type presentation of the circle S1 of [18, Section 6.1],
so that (z = z) ≡ ΩS1. Moreover, the type family El is equiva-
lent to the path space fibration of the circle, in the following
sense.

Theorem 4.8 (ElisPath). For every u : U we have ed(u) :
El(u) ≃ (z = u).

Proof. We construct a map ed(u) : El(u) → (z = u) using
induction on U and mapping 0 : El(z) to reflz , To construct
a map going the other way, we use path induction and map
reflz to 0. It is then straightforward to see that these maps
give an equivalence as in the statement. □

As a corollary, we obtain the well-known equivalence
between the loop space of the circle and the integers.

Corollary 4.9. We have an equivalence ΩS1 ≃ Zw . □

This suggests that alternatively one could view the rep-
resentation of the integers as a universe as an inductive-
inductive presentation of the circle equipped with a family
that has a point in the fiber over the base point.

5 Formalization in cubical Agda
We formally checked the results of this paper [5] using cubi-
cal Agda [2]. There are two differences between the informal
presentation in the paper and the formalisation. The first one
is that the presentation in the paper is done using book-HoTT
[18], whereas the formalisation is done using a cubical type
theory. In this case, this difference is not important, since it
is easy to translate the formalized arguments to book-HoTT.
The real difference is in the definition of higher induc-

tive types. In the paper we define higher inductive types
as initial algebras for a certain signature (Section 1.3). In
the formalisation, we use higher inductive types as imple-
mented in cubical Agda, which are based on [9]. Although
it is natural to assume that the Agda higher inductive type
should be initial in the sense of Section 1.3, proving this fact
is actually one of the main difficulties in the formalisation
(Proposition 2.6).

In proving the results of Section 2, we developed the theory
of bi-invertible maps in cubical Agda, which wasn’t available.
We prove that the type of bi-invertible maps between A and

B is equivalent to the type of equivalences between A and B,
and the principle of bi-invertible induction.

6 Open questions
Preservation of properties
The key result in the above discussion is Lemma 2.8, which
can be reformulated as follows. Let T ,T ′ : U, s : T → T ,
s ′ : T ′ → T ′, ϕ : isBiInv(s), and ϕ ′ : isBiInv(s ′). We can
define the following two types of morphisms betweenT and
T ′:

Mapend(T ,T
′) :≡ (f : T → T ′) × (s ′ ◦ f = f ◦ s)

MapbiInv(T ,T
′) :≡ (f : T → T ′) × prBiInv(s, s ′, f , f ).

Informally, Mapend(T ,T
′) is the type of maps that respect

the endomorphism, and MapbiInv(T ,T
′) is the type of maps

that respect the endomorphism and the proof that the endo-
morphism is a bi-invertible map.

We have a forgetful mapMapbiInv(T ,T
′) → Mapend(T ,T

′),
and what Lemma 2.8 says is that this map is an equivalence.

There is something special about the type family isBiInv :
(A → B) → U, and that is that it is valued in propositions.
One might wonder if Lemma 2.8 is a general principle, in
the following sense. Say that we have a signature S for a
type of algebras, and we extend it to a signature S ′, such that
the fields we added take values in propositions. In the above
example S corresponds to (T : U)(f : T → T ) and S ′ corre-
sponds to the extension (T : U)(f : T → T )(ϕ : isBiInv(s)).
As usual, given S ′-algebras T ,T ′, we have a forgetful map
MapS ′(T ,T

′) → MapS (T ,T
′). Is this map an equivalence in

general?
The following example, suggested by Paolo Capriotti, shows

that this is not necessarily the case.

Example 6.1. Consider S , the signature (T : U)(o : T →

T → T ), and S ′, the extension

(T : U)(o : T → T → T )(tr : isSet(T ))
(e : T ) (u : (t : T ) → o(t, e) = t × o(e, t) = t) .

The S-algebras are the types with a binary operation, and
the S ′-algebras are the sets with a binary operation with a
distinguished element that is a left and right unit.

The extension S ′ is propositional. This is because being a
set is a proposition ([18, Theorem 7.1.10]), so tr inhabits a
proposition, two left and right units must necessarily coin-
cide, so e inhabits a proposition (assumingu), and the identity
types of a set are propositions and these are closed under
pi-types ([18, Theorem 7.1.9]), so u inhabits a proposition
(assuming tr ).

Let us see that for S ′-algebras T ,T ′ the forgetful map
MapS ′(T ,T

′) → MapS (T ,T
′) is not an equivalence in gen-

eral. LetT be (N,+,ϕ, 0,ψ ), whereϕ is a proof that the natural
numbers form a set, andψ is a proof that 0 is a left and right
unit for +. Let T ′ be (bool,∨,ϕ ′,⊥,ψ ′), where ϕ ′ is a proof
that the booleans form a set, and ϕ is a proof that ⊥ is a left
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and right unit for ∨. Then we have λn.⊤ : N→ bool. This
map clearly respects the operations, so we get an inhabitant
ofMapS (T ,T

′). But this morphism does not respect the units,
so it cannot come from a morphism in MapS ′(T ,T

′).

This discussion leaves open an interesting question.

Question 1. Given a signature S and a propositional exten-
sion S ′, are there useful necessary and sufficient conditions
for the forgetful map MapS ′(T ,T

′) → MapS (T ,T
′) to be an

equivalence for every pair of S ′-algebras T and T ′?

Initiality of HIITs
Our original goal was to complete the conjectured result from
[4] and formally verify that Zh is a set. Using the strategy
from this paper this is fairly straightforward: we can show
that the natural notion of morphism of Zh-algebras satisfies
a principle analogous to Lemma 2.8, and hence that Zh is a
set. When attempting to formalize this construction we hit
an unexpected problem: it turns out that it is rather difficult
to verify that the higher inductive type defining Zh is initial
in its corresponding wild category of algebras. Specifically,
the proof seems to require the construction of a filler for a
4-dimensional cube which is rather laborious. In [12] it is
shown that for QIITs (i.e., set-truncated HIITs) elimination
and initiality are equivalent, but the extension to higher
dimensional HIITs seems non-trivial. In particular it may
require developing the higher order categorical structure of
the category of algebras.
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