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Abstract. We study the expressive power of successor-invariant first-order logic, which is
an extension of first-order logic where the usage of an additional successor relation on the
structure is allowed, as long as the validity of formulas is independent of the choice of a
particular successor on finite structures.

We show that when the degree is bounded, successor-invariant first-order logic is no
more expressive than first-order logic.

1. Introduction

First-order logic, FO, is the standard formalism to express properties of finite structures.
Its expressive power is well known, and very restrained, as it can only express properties
that are local, which roughly means that it can only talk about the immediate surroundings
of a small number of elements, and it is unable to count.

A number of logics with higher expressivity can be defined with FO as a building block,
such as MSO, in which quantification over sets is allowed, and LFP, which adds a fixpoint
operator to FO. These additions break the local character of the logic.

Another way to define logics from FO is through the addition, in an invariant way, of
arithmetic predicates on the structure that are exterior to the vocabulary. This amounts to
arbitrarily identifying the universe of the structure with an initial segment of the integers, and
allowing some arithmetic on them. However, we want these extensions to define properties
of the structures, and not to depend on a particular ordering on their elements: thus we
focus on invariant extensions of FO.

If the only predicate allowed is the order, we get order-invariant first-order logic,
< -inv FO. Restricting a bit the additional relation, we get successor-invariant first-order,
Succ-inv FO. In this formalism, we only grant access to the successor relation derived
from the order, provided that the evaluation of a sentence using this successor relation is
independent of the choice of a particular successor.

The problem of determining whether an FO-sentence using an order or a successor
relation is invariant wrt. this relation is undecidable, by reduction from the finite satisfiability
problem (cf. Trakhtenbrot’s theorem [Tra50]). In fact, it is shown in [BS09] that this problem
in undecidable even on strings. Hence we use here the term “logic” somewhat liberally, since
having a recursively enumerable syntax is a usual requirement for a logic.
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The study of these two formalisms finds its motivation, among other topics such as
descriptive complexity, in database theory. As databases are commonly stored on disk that
implicitly order their memory segments, when one wishes to express a query in FO, one has
access to an additional order on the elements of the database. However, making use of this
order without care could result in queries that evaluate differently on two implementations
of the same database, which is clearly an undesirable behavior. We want to use this order
only in an invariant fashion; this way, the result of a query depends only on the database
it is run on, and not on the way the data is stored on disk. This amounts exactly to the
definition of < -inv FO, or Succ-inv FO if we restrict the way this order can be accessed.

It is straightforward that < -inv FO is at least as expressive as Succ-inv FO, which in
turn can express any FO-definable property. Gurevich constructed a class of finite structures
that can be defined by an < -inv FO sentence, but which is not FO-definable. Though this
construction was not published by Gurevich, it can be found, e.g., in Section 5.2 of [Lib04].
Rossman extended this result, and proved in [Ros07] that on finite structures, Succ-inv FO
is strictly more expressive than FO.

Grohe and Schwentick [GS00] proved that these logics were Gaifman-local, giving an
upper bound to their expressive power. Other upper bounds were given by Benedikt and
Segoufin [BS09], who proved that < -inv FO, and hence Succ-inv FO, are included in MSO
on classes of bounded treewidth and on classes of bounded degree. Elberfeld, Frickenschmidt
and Grohe [EFG16] extended the first inclusion to a broader setting, that of decomposable
structures. Whether these logics are included in MSO in general is still an open question.

The classes of structures involved in the separating examples by Gurevich and Rossman
are dense, and no other example is known on classes that are sparse. Far from it, < -inv FO
and a fortiori Succ-inv FO are known to collapse to FO on several sparse classes. Benedikt
and Segoufin [BS09] proved the collapse on trees; Eickmeyer, Elberfeld and Harwarth [EEH14]
obtained an analogous result on graphs of bounded tree-depth; Grange and Segoufin [GS20]
proved the collapse on hollow trees.

Whether < -inv FO or Succ-inv FO collapse to FO on classes of graphs of bounded
treewidth (or even bounded pathwidth) are still open questions. We go in another direction
in this paper, and prove that Succ-inv FO collapses to FO on classes of structures of bounded
degree. To do this, we show how to construct successors on two FO-similar structures
of bounded degree, such that the two structures remain FO-similar when considering the
additional successor relation.

Related work: The general method used in [EEH14] to prove that < -inv FO collapses
to FO when the tree-depth is bounded is the same as ours: starting from two FO-similar
structures, they show how to construct orders that maintain the similarity. However, the
techniques we use to construct our successors are nothing like the ones used in [EEH14], as
the assumptions on the classes at hand (bounded tree-depth versus bounded degree) are
very different.

Instead of directly constructing similar orders on two similar structures, [BS09] and
[GS20] exhibit a chain of intermediate structures and intermediate orders that are pairwise
similar, in order to prove the collapse on trees and hollow trees. Although all these
constructions, as well as ours, rely on a careful manipulation of the neighborhoods, our
construction differs widely from these ones. Indeed, instead of chaining local modifications of
the structures, we construct all at once our successor relations, without intermediate steps.
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The classes of graphs on which the model checking problem for FO (denoted MC(FO))
is fixed-parameter tractable has been widely studied. It has originally been proven by
Seese [See96] that MC(FO) is fixed-parameter linear on any class of bounded degree. After
a series of improvements on this result, Grohe, Kreutzer and Siebertz [GKS17] showed that
this problem is fixed-parameter tractable on any nowhere dense class of graphs.

Concerning the model checking problem for Succ-inv FO, Van den Heuvel, Kreutzer,
Pilipczuk, Quiroz, Rabinovich and Siebertz [vdHKP+17] proved that MC(Succ-inv FO) is
fixed-parameter tractable on any class of bounded expansion (which is less general than the
nowhere dense setting, but also includes any class of bounded degree). Since there is no
indication that Succ-inv FO is more expressive than FO on classes of bounded expansion,
this could possibly be due to a collapse of Succ-inv FO to FO on those classes. Our
result showing that Succ-inv FO collapses to FO on classes of bounded degree, together
with the aforementioned result from [See96], gives an alternative proof of the fact that
MC(Succ-inv FO) is non-uniform fixed-parameter linear when the degree is bounded.

2. Preliminaries

The remainder in the division of n ∈ N by m > 0 is denoted n[m].
A binary relation on a finite set X is a successor relation on X if it is the graph of a

circular permutation of X, i.e. a bijective function from X to X with a single orbit. This
differs from the standard notion of successor in that there is neither minimal nor maximal
element. However, this does not have any impact on our result, as discussed at the end of
the present section.

We use the standard definition of first-order logic FO(Σ) over a signature Σ composed
of relation and constant symbols. We only consider finite Σ-structures, which are denoted
by calligraphic upper-case letters, while their universes are denoted by the corresponding
standard upper-case letters; for instance, A is the universe of the structure A.

Definition 2.1 (Succ-inv FO). A sentence ϕ ∈ FO(Σ ∪ {S}), where S is a binary relation
symbol, is said to be successor-invariant if for every Σ-structure A, and every successor
relations S1 and S2 on A, (A, S1) |= ϕ iff (A, S2) |= ϕ. We can then omit the interpretation
for the symbol S, and if (A, S1) |= ϕ for any (every) successor S1, we write A |= ϕ.

The set of successor-invariant sentences on Σ is denoted Succ-inv FO(Σ).

Definition 2.2 (L-similarity). Given two Σ-structures A and B, and L being either FO(Σ)
or Succ-inv FO(Σ), we write A ≡Lk B, and say that that A and B are L-similar at depth
k, if A and B satisfy the same L-sentences of quantifier rank at most k. For FO(Σ) as well
as for Succ-inv FO(Σ), we omit Σ when it is clear from the context.

We write A ' B if A and B are isomorphic.

Definition 2.3 (Gaifman graph). The Gaifman graph GA of a Σ-structure A is defined as
(A, V ) where (x, y) ∈ V iff x and y are distinct and appear in the same tuple of a relation
of A. In particular, if a graph is seen as a relational structure on the vocabulary {E}, its
Gaifman graph is the unoriented version of itself. By distA(x, y), we denote the distance
between x and y in GA. The degree of A is the degree of its Gaifman graph, and a class C
of Σ-structures is said to be of bounded degree if there exists some d ∈ N such that the
degree of every A ∈ C is at most d.
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Definition 2.4 (Neighborhood types). Let c be a constant symbol that does not appear
in Σ.

For k ∈ N and x ∈ A, the k-neighborhood N k
A(x) of x is the (Σ∪{c})-structure whose

Σ-restriction is the substructure of A induced by {y ∈ A : distA(x, y) ≤ k}, and where c is
interpreted as x.

The k-neighborhood type τ = tpkA(x) is the isomorphism class of its k-neighborhood.
We say that τ is a neighborhood type over Σ, and that x is an occurrence of τ . We denote
by |A|τ the number of occurrences of τ in A, and we write [[A]]k =t [[B]]k to mean that for
every k-neighborhood type τ , |A|τ and |B|τ are either equal, or both larger than t.

Definition 2.5 (Path and cycles). A cycle of length l ≥ 3 in the Σ ∪ {S}-structure A
is a sequence (x0, . . . , xl−1) of distinct vertices of A such that for every 0 ≤ i < l, xi and
xi+1[l] appear in the same tuple of some relation of A (in other words, it is a cycle in GA).
If furthermore (xi, xi+1[l]) ∈ S for every i, then we say that it is an S-cycle. If for some i,
(xi, xi+1[l]) ∈ S or (xi+1[l], xi) ∈ S, then we say that the cycle goes through an S-edge. A
path is defined similarly, without the requirement on xl−1 and x0, and its length is l − 1
instead of l.

From now on, we assume that Σ is purely relational (i.e. contains only relation symbols)
and does not contain the binary symbol S.

For a class C of Σ-structures, we say that

Succ-inv FO = FO on C
if the properties of C definable in Succ-inv FO and in FO are the same. In other words, if
for every ϕ ∈ Succ-inv FO, there exists some ϕ̄ ∈ FO such that

∀A ∈ C, A |= ϕ iff A |= ϕ̄ .

The reverse inclusion, i.e. FO ⊆ Succ-inv FO, always holds and needs no verification.
We are now ready to state our main result:

Theorem 2.6. For every vocabulary Σ and for every class C of Σ-structures of bounded
degree,

Succ-inv FO = FO on C .

The proof of Theorem 2.6 is given in Section 4, and constitutes the core of this paper.
We give here a sketch of this proof; this will motivate the definitions given in Section 3.

Proof overview. Our goal is, given two structures G1 and G2 of degree at most d that are
FO-similar (that is, such that G1 ≡FO

n G2 for a large enough n), to construct a successor
relation S1 on G1 and S2 on G2 such that (G1, S1) and (G2, S2) stay FO-similar. We will
see that this entails that ≡FO refines ≡Succ-inv FO when the degree is bounded. From there,
a standard finite-model-theoretic argument (namely, that ≡FO

n has finite index and that
each one of its classes is FO-definable) gives the inclusion Succ-inv FO ⊆ FO on classes of
bounded degree.

It thus remains to construct suitable successor relations S1 and S2. First, we separate
the neighborhood types occurring in G1 and G2 into two categories:

• on the one hand, the rare neighborhood types, which have few occurrences in G1 and G2
(and thus, that have the same number of occurrences in both structures, by FO-similarity)
• on the other hand, the frequent neighborhood types, which have many occurrences both

in G1 and G2.
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In order to make the proof of FO-similarity of (G1, S1) and (G2, S2) as simple as possible,
we want an element of G1 and its successor by S1 (and similarly for G2 and S2) to have the
same neighborhood type in G1 as much as possible, and to be far away in G1, in order for the
neighborhood types occurring in (G1, S1) to be as “regular” as possible. As long as there are
at least two different neighborhood types, the first constraint obviously cannot be satisfied,
but we will construct S1 as close as possible to satisfying it.

For instance, suppose that G1 contains three frequent neighborhood types τ0, τ1 and τ2,
and one rare neighborhood type χ with two occurrences. At the end of the construction,
S1 will (mostly) look like in Figure 1, where the relations of G1 have been omitted and the
arrows represent S1, which is indeed a circular successor.

Note that all the elements of neighborhood type τ1 form a segment wrt. S1, as well as
all the elements of neighborhood type τ2. The first frequent neighborhood type, τ0, has a
special role in that it is used to embed all the elements of rare neighborhood type (here,
χ). Furthermore, and this is not apparent in the figure, two successive elements for S1 are
always distant in G1.
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Figure 1: Illustration of S1 when there are three frequent neighborhood types (τ0, τ1, τ2)
and one rare neighborhood type (χ) in G1. The elements of rare neighborhood
type are surrounded by occurrences of the first frequent neighborhood type, τ0.
Junction elements are circled.

Keeping this idea in mind, S1 (and similarly, S2) is constructed iteratively, by adding
S-edges to the initial structures one at a time. For practical reasons, we will start the
construction of S1 around occurrences of rare neighborhood types: for each element x of
rare neighborhood type, we find two elements of neighborhood type τ0 that are far apart in
G1, and far from x. Then we add two S-edges in order for those two elements to become
the S1-predecessor and the S1-successor of x. We repeat this process for every element of
rare neighborhood type (and actually, for every element that belongs to the neighborhood



20:6 Julien Grange Vol. 17:3

of a rare element) until each one is protected by a ball of elements of frequent neighborhood
type. This is possible because there are few elements of rare neighborhood type, and many
elements of any frequent neighborhood type; since the degree is bounded, those elements of
frequent neighborhood type are spread across the structure, and can be found far from the
current construction.

Once this is done, we apply a similar construction around elements of frequent neigh-
borhood types that will, in the end, be the S1-predecessor or S1-successor of an element
of another frequent neighborhood type - that is, elements that will be at the border of
the segments (for S1) of a given frequent neighborhood type. Such elements are circled in
Figure 1. We must choose only a small number of such elements (two for each frequent
neighborhood type, of which there are few due to the degree boundedness hypothesis), hence
we can find enough far-apart elements of frequent neighborhood type to embed them. Once
again, degree boundedness is crucial.

After these two steps, S1 has been constructed around all the singular points. It only
remains to complete S1 by adding edges between the remaining elements (all of which are
occurrences of frequent neighborhood types), in such a way that elements of a same frequent
neighborhood type end up forming a segment for S1, and such that S1 brings together
elements that were far apart in the initial structure G1. Once again, the high number of
occurrences of each frequent neighborhood type allows us to do so.

Applying the same construction to G2, we end up with two structures (G1, S1) and
(G2, S2) that cannot be distinguished by FO-formulas of small (wrt. the initial FO-similarity
index between G1 and G2) quantifier rank, which concludes the proof.

We have given a global overview of the construction process of S1; however, there are
technical difficulties to take care of, which are dealt with in Section 4. For that, we need the
definitions given in Section 3, which formalize the notion of regularity of a neighborhood
type in (G1, S1) and (G2, S2).

Let us now prove that our decision to consider circular successors instead of the more
traditional linear ones (with a minimal and a maximal element) bears no consequence on
this result. If we define LinSucc-inv FO in the same way as Succ-inv FO, but where the
invariant relation is a linear successor S̄, we get:

Lemma 2.7. For every vocabulary Σ, LinSucc-inv FO and Succ-inv FO define the same
properties of Σ-structures.

Proof. Given ϕ ∈ Succ-inv FO, let us prove that there exists a formula ψ ∈ LinSucc-inv FO
such that ψ is equivalent to ϕ (i.e. for every Σ-structure A, A |= ϕ iff A |= ψ).

Let ψ be defined as ϕ in which every atom S(x, y) has been replaced with the formula
S̄(x, y) ∨ ¬∃z(S̄(x, z) ∨ S̄(z, y)).

Let A be a Σ-structure and S̄ be a linear successor on A. Then (A, S̄) |= ψ iff (A, S) |= ϕ,
where S is the circular successor obtained from S̄ by adding an edge from the maximal
element to the minimal one.

This guarantees that ψ ∈ LinSucc-inv FO, and that ψ and ϕ are equivalent.

Conversely, let ψ ∈ LinSucc-inv FO and let ϕ be the formula ∃min Cut(ψ), where
Cut(ψ) is obtained by replacing in ψ every S̄(x, y) with S(x, y) ∧ ¬y = min.

Let A be a Σ-structure, let S be a circular successor on A, and let min ∈ A. Then
(A, S,min) |= Cut(ψ) iff (A, S̄) |= ψ, where S̄ is the linear successor obtained from S by
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removing the edge pointing to min. Hence (A, S) |= ϕ iff there exists a linear successor S̄
obtained from S by an edge removal such that (A, S̄) |= ψ, that is iff A |= ψ.

This ensures that ϕ ∈ Succ-inv FO and that ϕ and ψ are equivalent.

3. Fractal types and layering

To prove Theorem 2.6, we will start from two structures G1 and G2 that are FO-similar,
and construct successor relations S1 and S2 on their universes so that the structures remain
FO-similar when we take into account these additional successor relations.

We want to construct Sε, for ε ∈ {1, 2}, in a way that makes tpk(Gε,Sε)(a) as regular as

possible for every a ∈ Gε, in order to ease the proof of FO-similarity of (G1, S1) and (G2, S2).
Ideally, the Sε-successors and Sε-predecessors of any element should have the same

k-neighborhood type in Gε as this element. On top of that, there should not be any
overlap between the k-neighborhoods in Gε of elements that are brought closer by Sε (this
“independence” is captured by the layering property, introduced in Definition 3.2).

Let us now try to visualize what tpk(Gε,Sε)(a) would look like in those perfect conditions,

for some a of k-neighborhood type τ in Gε, with Figure 2 as a visual aid.
Let a+ be the successor of a by Sε: in the k-neighborhood of a in (Gε, Sε) appears the

(k − 1)-neighborhood of a+ in Gε. But in these ideal conditions, we have that tpkGε(a
+) =

tpkGε(a), hence in tpk(Gε,Sε)(a), we see that the pattern tpkGε(a) is repeated around the Sε-

successor of a, with a radius shrunk by one. If we follow again Sε, the same neighborhood
type will appear once more, this time with radius k − 2, and so on.

Let us now take a step sideways in the k-neighborhood of a in Gε (i.e. in the horizontal
plane in the figure), and consider some element x at distance d from a in Gε. In these perfect
conditions, x and its Sε-successor have the same k-neighborhood type in Gε. Of course, only
a part of these neighborhoods will appear in the k neighborhood of a in (Gε, Sε); namely, the
(k− d)-neighborhood of x in Gε and the (k− d− 1)-neighborhood of x+ in Gε. If we move to
the Sε-successor of x+, we will find that the visible part in tpk(Gε,Sε)(a) of its neighborhood

in Gε will have the same (k − d− 2)-radius type as x+.
Of course, everything we have said about Sε-successors also holds for Sε-predecessors,

and for any iteration of upward/downward (i.e. along Sε-edges) and sideways (i.e. in Gε)
steps, thus encapsulating a in a very regular neighborhood of radius k in (Gε, Sε).

It should now be visible that this construction is reminiscent of a fractal, in that some
patterns - here, the neighborhood types - are repeated each time we follow the successor
relation, their size shrinking time after time (although in our setting, the patterns are
obviously repeated only a finite number of times).

This is why we introduce in Definition 3.1 the fractal type [τ ]k.
Aside from a small number of exceptions (namely, for neighborhood types that do not

occur frequently enough, and around the transitions between frequent neighborhood types),
every element of k-neighborhood type τ in Gε will have the fractal neighborhood type [τ ]k
in (Gε, Sε).

If N is a representative of a neighborhood type τ , cN is called the center of N . Recall
from Definition 2.4 that c is the constant symbol added to Σ when considering neighborhood
types to pinpoint the central element of a neighborhood.
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Definition 3.1 (Fractal types). We define by induction on k ∈ N, for every k-neighborhood
type τ over Σ, the k-neighborhood types [τ ]k, [τ ]+k and [τ ]−k over Σ ∪ {S}.

For k = 0, [τ ]0 = [τ ]+0 = [τ ]−0 = τ (meaning that S is interpreted as the empty relation
in [τ ]0, [τ ]+0 and [τ ]−0 ).

Starting from a representative N of center a of the isomorphism class τ , we construct
N ′, whose role is to serve as an intermediate step in the construction of the full fractal
neighborhood, as follows.

For every x ∈ N at distance d ≤ k − 1 from a, let M+
x and M−x be structures of

respective isomorphism type [χ]+k−d−1 and [χ]−k−d−1, where χ is the (k− d− 1)-neighborhood

type of x in N , and of respective center x+ and x−.
N ′ is defined as the disjoint union of N and all theM+

x and theM−x , for x 6= a, together
with all the edges S(x, x+) and S(x−, x).

From there, N+ (resp. N−) is defined as the the disjoint union of N ′ and M+
a (resp.

M−a ) together with the edge S(a, a+) (resp. S(a−, a)). Likewise, N+/− is defined as the
disjoint union of N ′, M+

a and M−a together with the edges S(a, a+) and S(a−, a). In each
case, a is taken as the center.

Now, [τ ]k, [τ ]+k and [τ ]−k are defined respectively as the isomorphism type of N+/−, N+

and N−.
An illustration of this definition is given in Figure 2.

a•

a+•

a−•

x•

x+•

τ

τ|k−1

τ|k−1

χ|k−d−1

d

Figure 2: Partial representation of N+/−, of type [τ ]k. Here, χ is the (k − d)-neighborhood
type of the element x, at distance d from a in τ . The dashed arrows represent
S-edges.

Definition 3.2 (Layering). We say that an r-neighborhood N over Σ∪ {S, c} is layered if
it does not contain any cycle going through an S-edge. Every [τ ]r is obviously layered by
construction.

We say that a structure over Σ ∪ {S} satisfies the property (Layer[r]) iff all the
r-neighborhoods of this structure are layered.

It turns out (Layer[r]) can be reformulated in a way that does not involve the r-
neighborhoods of the structure.

Lemma 3.3. A structure G over Σ ∪ {S} satisfies (Layer[r]) if and only if it contains no
cycle of length at most 2r + 1 going through an S-edge.

Proof. If G contains a cycle of length at most 2r + 1 going through an S-edge, then the
r-neighborhood of any vertex of this cycle contains the whole cycle, thus (Layer[r]) does
not hold in G.
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Conversely, we show that if some r-neighborhood contains a cycle going through an
S-edge, then it must also contain a small (i.e. of length at most 2r + 1) such cycle.

Suppose that there exists x ∈ G such that N r
G(x) contains a cycle going through an

S-edge, and let S(y, z) be such an edge.
For any u ∈ N r

G(x), we define the cone Cu at u as the set of elements v ∈ N r
G(x) such

that every shortest path from x to v in N r
G(x) goes through u.

There are two cases, depending on the relative position of y, z and their cones:

• If z /∈ Cy and y /∈ Cz, let py→x (resp. px→z) be a path of minimal length from y to x, not
going through z (resp. from x to z, not going through y).

Let X be the set of nodes appearing both in py→x and px→z. X is not empty, as x ∈ X,
and y, z /∈ X. Let v ∈ X such that distG(x, v) is maximal among the nodes of X, and let
py→v (resp. pv→z) be the segment of py→x (resp. of px→z) from y to v (resp. from v to z).

Then pv→z · (z, y) · py→v is a cycle going through an S-edge, and is of length ≤ 2r + 1.
This is illustrated in Figure 3.

x
•

y• z•

v•

Cy
Cz

S

Figure 3: Existence of a short cycle joining y, z and v

• Otherwise, suppose without loss of generality that z ∈ Cy. This entails that y /∈ Cz and
distG(x, z) = d+ 1 where d := distG(x, y).

Let the initial cycle be (z, v1, · · · , vm−1, y), with the notation v0 = z and vm = y.
Let i be the minimal integer such that vi /∈ Cz. Let px→vi be a shortest path from x to

vi: by definition, it does not intersect Cz, and has length at most r. Thus, there exists a
path py→vi = py→x · px→vi from y to vi of length at most r + d going only through nodes
outside of Cz.

Since vi−1 ∈ Cz, there exists a path pvi−1→z from vi−1 to z of length at most r− (d+ 1)
going only through nodes of Cz.

Hence py→vi · (vi, vi−1) · pvi−1→z · (z, y) is a cycle going though an S-edge, and its length
is at most 2r + 1. This is depicted in Figure 4.

This characterization of (Layer[r]) allows us to state the following lemma, which is now
straightforward. It provides a method to add an S-edge without breaking the property
(Layer[r]).

Lemma 3.4. Let r ∈ N, and (G, S) be a structure satisfying (Layer[r]).
If x, y ∈ G are such that dist(G,S)(x, y) > 2r, then (Layer[r]) holds in (G, S ∪ {(x, y)})
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x
•

y•

z•

vi−1• vi•
Cz

S

Figure 4: Existence of a short cycle joining y, z, vi−1 and vi

4. Proof of Theorem 2.6

We are now ready to prove Theorem 2.6. Recall the sketch of proof from Section 2. We
proceed in several steps:

Section 4.1 details the general framework of the proof. In Section 4.2, we divide the
neighborhood types into rare ones and frequent ones.

We then begin the construction of S1: Section 4.3 is dedicated to the construction
of S1 around the occurrences in G1 of rare neighborhood types. Then, in Section 4.4, we
keep constructing S1 around the occurrences (two for each neighborhood type) of frequent
neighborhood types that are designed to make, when the construction is complete, the
S1-junction between two frequent neighborhood types.

At this point, S1 will be fully built around the singular points of G1. Section 4.5 deals
with the transfer of this partial successor relation S1 over to G2: this will result in a partial
S2, built in a similar way around the singular points of G2.

In Section 4.6, S1 and S2 are completed independently, to cover G1 and G2. These
expansions do not need to be coordinated, since at this point, the elements that are not
already covered by S1 and S2 are occurrences of frequent neighborhood types and their
resulting neighborhood types will be regular (i.e. fractal) both in (G1, S1) and (G2, S2).

We then give some simple examples in Section 4.7, before establishing properties of S1
and S2 in Section 4.8, and concluding the proof in Section 4.9.

4.1. General method. Let C be a class of Σ-structures of degree at most d. We show
the following: for every α ∈ N, there exists some f(α) ∈ N such that, given G1,G2 ∈ C, if
G1 ≡FO

f(α) G2 then G1 ≡Succ-inv FO
α G2. For that, we will exhibit successor relations S1 and S2

such that (G1, S1) ≡FO
α (G2, S2).

More precisely, using the notations from Definition 2.4, we will show that [[(G1, S1)]]r =t

[[(G2, S2)]]r where r and t depend on α and are large enough to ensure that (G1, S1) ≡FO
α

(G2, S2). The existence of such r and t follows from the well-known Hanf threshold theorem,
whose finite version is given in [FSV95], and stated as Theorem 4.24 in [Lib04].

We will construct S1 and S2 iteratively in a way that ensures, at each step, that the
property (Layer[r]) holds in (G1, S1) and in (G2, S2). The property (Layer[r]) is obviously
satisfied in (G1, ∅). Each time we add an S1-edge or an S2-edge, we will make sure that we
are in the right conditions to call upon Lemma 3.4, so that (Layer[r]) is preserved.
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Definition 4.1. Let us define the two-variable function N by N(d, r) := d · (d−1)
r−1

d−2 + 1 if

d 6= 2, and by N(2, r) := 2r + 1.
Note that the size of any r-neighborhood of degree at most d is bounded by N(d, r).

4.2. Separation between rare and frequent neighborhood types. Knowing the val-
ues of r and t as defined in Section 4.1, we are now able to divide the r-neighborhood types
into two categories: the rare neighborhood types and the frequent neighborhood
types. The intent is that the two structures have the same number of occurrences of every
rare neighborhood type, and that frequent neighborhood types have many occurrences (wrt.
the total number of occurrences of rare neighborhood types) in both structures. This “many
occurrences wrt.” is formalized through a function g which is to be specified later on.

More precisely,

Lemma 4.2. Given d, r ∈ N and an increasing function g : N→ N, there exists p ∈ N such
that for every Σ-structures G1,G2 ∈ Cd satisfying G1 ≡FO

p G2, we can divide the r-neighborhood
types over Σ of degree at most d into rare neighborhood types and frequent neighborhood
types, such that

• every rare neighborhood type has the same number of occurrences in G1 and in G2
• both in G1 and in G2, every frequent neighborhood type has at least g(β) occurrences, where
β is the number of occurrences of all the rare neighborhood types in the structure
• if there is no frequent neighborhood type, then G1 and G2 are isomorphic.

Proof. Let G1 and G2 be such that G1 ≡FO
p G2, for an integer p whose value will become

apparent later in the proof.
Let χ1, · · · , χn be an enumeration of all the r-neighborhood types over Σ of degree at

most d, ordered in such a way that ∀i < j, |G1|χi ≤ |G1|χj . Note that n is a function of d
and r.

The classification of neighborhood types between rare ones and frequent ones is done
through Algorithm 1. The idea is to go through the r-neighborhood types in increasing
order of occurrences in G1; if at some point we reach a neighborhood type with at least
g(β) occurrences in G1, where β is the total number of occurrences of the previously visited
neighborhood types, then we have found a separation between rare and frequent types.
Otherwise, it means that there are few (wrt. g) occurrences of each neighborhood type,
hence G1 is small and, as long as p is large enough, G2 must be isomorphic to G1.

Algorithm 1 Separation between rare and frequent neighborhood types

1: β ← 0
2: i← 1
3: while i ≤ n and |G1|χi < g(β) do
4: β ← β + |G1|χi
5: i++
6: end while

. If i ≤ n, χi is the frequent neighborhood type with the
least occurrences in G1.
If i = n+ 1, all the neighborhood types are rare.

At the end of Algorithm 1, we call χ1, · · · , χi−1 the rare neighborhood types, and
χi, · · · , χn the frequent ones.
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Note that β indeed counts the total number of occurrences of rare neighborhood types
in G1.

We now define the integers (ai)1≤i≤n as a1 := g(0) and ai+1 := g(iai).
As g is monotone, it is easy to show by induction that for each rare neighborhood

type χj with j < i, |G1|χj < aj .

As long as p is chosen large enough so that G1 ≡FO
p G2 entails [[G1]]r =an [[G2]]r, we have

by construction that every rare neighborhood type has the same number of occurrences
(which is smaller that an) in G1 and in G2. Furthermore, in G1 as in G2, if β denotes the
total number of occurrences of rare neighborhood types, every frequent neighborhood type
has at least g(β) occurrences.

We just need to make sure that the two structures are isomorphic when all the neigh-
borhood types are rare. If this is the case, then |G1| = |G2| ≤ n(an − 1). Hence, as long as
p ≥ n(an − 1), G1 ≡FO

p G2 implies G1 ' G2 when all the neighborhood types are rare.

Let τ0, · · · , τm−1 be the frequent neighborhood types. From now on, we suppose that
m ≥ 1: there is nothing to do if m = 0, since G1 and G2 are isomorphic. Let β be the total
number of occurrences of rare neighborhood types in G1.

4.3. Construction of S1 around elements of rare neighborhood type. To begin with,
let us focus on G1, and start the construction of S1 around occurrences of rare neighborhood
types. Algorithm 2 deals with this construction. In the following, R≤k will denote

⋃
0≤j≤k

Rj .

For a given occurrence x of some rare neighborhood type, we choose as its S1-successor
and S1-predecessor two occurrences of neighborhood type τ0 (the first frequent neighborhood
type), far apart from one another and from x. The existence of those elements relies on the
bounded degree hypothesis. This is done on lines 8 and 11.

When line 14 is reached, every occurrence of rare neighborhood type has an S1-
predecessor and an S1-successor of neighborhood type τ0.

It is not enough, however, only to deal with the occurrences of rare neighborhood types.
We need to “protect” them up to distance r in (G1, S1). For that purpose, we construct the
subsets Rk of G1, for 0 ≤ k ≤ r.

For each k, the subset Rk is the set of elements at distance exactly k in (G1, S1) from
the set of occurrences of rare neighborhood types. Until we have reached k = r (that is,
distance r from occurrences of rare neighborhood types), every element of Rk is given an
S1-successor (line 21) and/or an S1-predecessor (line 26) of its neighborhood type, if it does
not already have one. Once again, those elements are required to be far (i.e. at distance
greater than 2r) from what already has been constructed.

Provided that g is large enough, it is always possible to find x+ and x− on lines 8,
11, 21 and 26. Indeed, all the neighborhood types considered are frequent ones, and the
size of the 2r-neighborhood of R≤k+1 is bounded by a function of d, r and β (the total
number of occurrences of rare neighborhood types in G1). More precisely, at any point of
the construction, (G1, S1) has degree at most d+ 2. Hence, the 2r-neighborhood of Rr has
size at most

βN(d+ 2, 3r)

(recall the definition of N from Definition 4.1), and it is enough to make sure that

g(β) ≥ βN(d+ 2, 3r) + 1 .
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Algorithm 2 Construction of S1 around elements of rare neighborhood type

1: S1 ← ∅
2: R0 ← {x ∈ G1 : tprG1(x) is rare}
3: R1, · · · , Rr ← ∅
4: for all x ∈ R0 do
5: for all neighbors y /∈ R≤1 of x in G1 do
6: R1 ← R1 ∪ {y}
7: end for
8: find x+ such that

tprG1(x+) = τ0 and

dist(G1,S1)(x
+, R≤1) > 2r

. We pick a node at distance greater than 2r in
compliance with Lemma 3.4, so that neighbor-
hoods stay layered.
Recall that τ0 is the first frequent neighborhood
type.

9: R1 ← R1 ∪ {x+}
10: S1 ← S1 ∪ {(x, x+)}
11: find x− such that

tprG1(x−) = τ0 and

dist(G1,S1)(x
−, R≤1) > 2r

12: R1 ← R1 ∪ {x−}
13: S1 ← S1 ∪ {(x−, x)}
14: end for

. At this point, every element of rare neighborhood
type has an S1-predecessor and an S1-successor
of neighborhood type τ0

15: for k from 1 to r − 1 do
16: for all x ∈ Rk do . tpkG1(x) is a frequent neighborhood type
17: for all neighbors y /∈ R≤k+1 of x in G1 do
18: Rk+1 ← Rk+1 ∪ {y}
19: end for
20: if x does not have a successor by S1 then
21: find x+ such that

tprG1(x+) = tprG1(x) and

dist(G1,S1)(x
+, R≤k+1) > 2r

22: Rk+1 ← Rk+1 ∪ {x+}
23: S1 ← S1 ∪ {(x, x+)}
24: end if
25: if x does not have a predecessor by S1 then
26: find x− such that

tprG1(x−) = tprG1(x) and

dist(G1,S1)(x
−, R≤k+1) > 2r

27: Rk+1 ← Rk+1 ∪ {x−}
28: S1 ← S1 ∪ {(x−, x)}
29: end if
30: end for
31: end for
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4.4. Construction of S1 around the junctions between two frequent neighborhood
types. Recall that there is a second kind of singular elements: those which will be at
the junction between two successive frequent neighborhood types. That is, elements of
neighborhood type τi that will, in the final structure (G1, S1), have an S1-successor of
neighborhood type τi+1[m], or an S1-predecessor of neighborhood type τi−1[m].

Those junction elements need to be treated in a similar way as the occurrences of rare
neighborhood types in Section 4.3. This construction is done following Algorithm 3.

The idea of Algorithm 3 is very similar to that of Algorithm 2. We start by picking two
elements xmin

i and xmax
i for every frequent neighborhood type τi (for loop line 2), that are

far from each other and from the previous construction. Once the construction is done, xmin
i

will be the first (wrt. S1) element of the sequence of occurrences of type τi, and xmax
i the last

one. The elements that will appear between (in the sense of S1) x
min
i and xmax

i will exactly
be those of neighrborhood type τi, except possibly for i = 0, where all the occurrences of
the rare neighborhood types will also appear between xmin

0 and xmax
0 .

Once these 2m elements are chosen, we add an S1-edge between each xmax
i and the

corresponding xmin
i+1[m] on line 9: in the final structure, these edges will mark the transition

(in the sense of S1) between the range of elements of neighborhood type τi and those of
neighborhood type τi+1[m].

The set P0 of those 2m elements will have the same role as the set R0 of occurrences of
rare neighborhood types for Algorithm 2: we build S1-edges at depth r around it. This is
done through the subsets Pk of G1, for 0 ≤ k ≤ r, Pk being the set of elements at distance k
from P0 in (G1, S1). Once again, P≤k denotes

⋃
0≤j≤k

Pj .

For the same reason as for Algorithm 2, it is always possible to find elements x+ and
x− on lines 17 and 22.

Note that if m = 1, there is obviously no transition elements: we simply construct an
S1-edge between xmax

0 and xmin
0 .

4.5. Carrying S1 over to G2. In Sections 4.3 and 4.4, S1 has been constructed around the
singular points of G1, i.e. occurrences of rare neighborhood types and elements that are to
make the junction between two S1-segments of frequent neighborhood types.

Before we extend S1 to the remaining elements (all of them being occurrences of frequent
neighborhood types) of G1, we carry it over to G2. This transfer is possible under the starting
hypothesis that G1 and G2 are FO-similar.

Indeed, we made the assumption that G1 ≡FO
f(α) G2; now, provided that f(α) is large

enough, this ensures that there exists a substructure of G2 which is isomorphic to the part
of G1 around which we have already constructed S1. This isomorphism will make it possible
to carry this partial successor relation over to G2. We make this precise in the following.

Let
A1 := R≤r ∪ P≤r

and
B := {x ∈ G1 : dist(G1,S1)(x,A1) ≤ r} .

If we let tdr be the number of r-neighborhood types of degree at most d over Σ, we must
have that m ≤ n thus |A1| can be bounded by

(β + 2tdr)N(d+ 2, r) .
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Algorithm 3 Construction of S1 around the junctions between two frequent neighborhood
types

1: P0, · · · , Pr ← ∅
2: for i from 0 to m− 1 do
3: find xmin

i such that
tprG1(xmin

i ) = τi and

dist(G1,S1)(x
min
i , R≤r ∪ P0) > 2r

4: P0 ← P0 ∪ {xmin
i }

5: find xmax
i such that

tprG1(xmax
i ) = τi and

dist(G1,S1)(x
max
i , R≤r ∪ P0) > 2r

6: P0 ← P0 ∪ {xmax
i }

7: end for
8: for i from 0 to m− 1 do
9: S1 ← S1 ∪ {(xmax

i , xmin
i+1[m])}

10: end for
11: for k from 0 to r − 1 do
12: for all x ∈ Pk do
13: for all neighbors y /∈ P≤k+1 of x in G1 do
14: Pk+1 ← Pk+1 ∪ {y}
15: end for
16: if x does not have a successor by S1 then
17: find x+ such that

tprG1(x+) = tprG1(x) and

dist(G1,S1)(x
+, R≤r ∪ P≤k+1) > 2r

18: Pk+1 ← Pk+1 ∪ {x+}
19: S1 ← S1 ∪ {(x, x+)}
20: end if
21: if x does not have a predecessor by S1 then
22: find x− such that

tprG1(x−) = tprG1(x) and

dist(G1,S1)(x
−, R≤r ∪ P≤k+1) > 2r

23: Pk+1 ← Pk+1 ∪ {x−}
24: S1 ← S1 ∪ {(x−, x)}
25: end if
26: end for
27: end for

Similarly, the size of B can be bounded by

(β + 2tdr)N(d+ 2, 2r) ,

which is a function of β, r and d. Hence as long as f(α) is larger than that number, the
Duplicator has a winning strategy in the Ehrenfeucht-Fräıssé game between G1 and G2 in
which the Spoiler chooses every element of B. Let h : B → G2 be the function resulting
from such a strategy.

The mapping h defines an isomorphism from G1|B to G2|Im(h). Let A2 := h(A1). By
making f(α) large enough, we can make sure that Im(h) covers the r-neighborhood in G2 of
every element of A2. We then have that for every x ∈ A1, tprG2(h(x)) = tprG1(x).
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We set S2 := {(h(x), h(y)) : (x, y) ∈ S1}. h now defines an isomorphism from (G1, S1)|B
to (G2, S2)|Im(h), and for every x ∈ A1, tpr(G2,S2)

(h(x)) = tpr(G1,S1)
(x).

Note that since G1 and G2 have the same number of occurrences of each rare neighborhood
type, every element lying outside of A2 must have a frequent neighrbohood type.

4.6. Completion of S1 and S2. Now that S1 and S2 are constructed around all the singular
points in G1 and G2, it remains to extend their construction to all the other elements of the
structures. Recall that all the remaining elements are occurrences of frequent neighborhood
types.

From (Gε, Sε), for ε ∈ {1, 2}, at any point in the construction, let us define the partial
function S∗ε : Gε → Gε that maps x ∈ Gε to the (unique) y that is Sε-reachable (while taking
the orientation into account) from x and that does not have an Sε-successor. This function
is defined on every element that does not belong to an Sε-cycle (and in particular, on every
element without an Sε-predecessor).

Likewise, we define S−∗ε by reversing the arrows of Sε.
At this point, for every x /∈ A1, S

∗
1(x) = S−∗1 (x) = x, and for every x /∈ A2,

S∗2(x) = S−∗2 (x) = x .

We now run Algorithm 4. We first treat G1, and then apply a similar method to G2,
replacing xmin

i and xmax
i by h(xmin

i ) and h(xmax
i ). The idea is, for every frequent neighborhood

type τi, to insert all its remaining occurrences between (in the sense of S1) x
min
i and xmax

i .
The first approach (the loop at line 2) is greedy: while constructing Sε on nodes of

neighborhood type τi, we choose as the successor of the current node any occurrence of
τi that is at distance greater than 2r from the current node s and the closing node of
neighborhood type τi, S

−∗
ε (xmax

i ). This, together with Lemma 3.4, ensures that (Layer[r])
holds after every addition. The conditions line 11 also ensure that the final edge addition,
line 15, does not break (Layer[r]).

Once we cannot apply this greedy approach anymore, we know that only a small number
(which can be bounded by 2N(d+ 2, 2r)) of nodes of neighborhood type τi remain without
S1-predecessor. The loop at line 17 considers one such node x at a time. As long as g is
large enough, we have constructed S1 around enough elements of neighborhood type τi in
the greedy approach to ensure the existence of some S1(y, z), with y, z of neighborhood type
τi and at distance greater than 2r from x; x is inserted between y and z (line 20). For that,
it is enough to have constructed at least

2N(d+ 2, 2r) + 1

S1-edges in the greedy phase. This is the case in particular when there are at least

4N(d+ 2, 2r) + 1

elements of neighborhood type τi without S1-predecessor at the beginning of Algorithm 4,
which can be ensured by having

g(β) ≥ |A1|+ 4N(d+ 2, 2r) + 1 .

This holds in particular when

g(β) ≥ (β + 2tdr)N(d+ 2, r) + 4N(d+ 2, 2r) + 1 .

We will prove in Lemma 4.6 that all these insertions preserve (Layer[r]).
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Algorithm 4 Completion of Sε

1: for ε from 1 to 2 do
2: for i from 0 to m− 1 do
3: if ε = 1 then
4: s← S∗1 (xmin

i )
5: t← S−∗1 (xmax

i )
6: else
7: s← S∗2 (h(xmin

i ))
8: t← S−∗2 (h(xmax

i ))
9: end if

10: while such an x exists do
11: find x with no Sε-predecessor, such that tprGε(x) = τi,

dist(Gε,Sε)(s, x) > 2r,
dist(Gε,Sε)(x, t) > 2r and
dist(Gε,Sε)(S

∗
ε (x), t) > 2r

12: Sε ← Sε ∪ {(s, x)}
13: s← S∗ε (x)
14: end while

. At this point, only a bounded number of elements
of neighborhood type τi are left without an Sε-
predecessor

15: Sε ← Sε ∪ {(s, t)}
16: end for
17: for i from 0 to m− 1 do
18: for all x without Sε-predecessor, s.t. tprGε(x) = τi do
19: find y, z /∈ Aε such that

tprGε(y) = tprGε(z) = τi,
(y, z) ∈ Sε,
dist(Gε,Sε)(y, x) > 2r and
dist(Gε,Sε)(S

∗
ε (x), z) > 2r

20: Sε ← Sε \ {(y, z)} ∪ {(y, x), (S∗ε (x), z)}
21: end for
22: end for
23: end for

4.7. Examples of construction. Before we give the proof of correctness of these algorithms,
let us see how they apply in some simple cases

Example 4.3. Suppose that there are no occurrences of rare neighborhood types, and only
one frequent neighborhood type τ0, and assume r = 2.

In this case, Algorithm 2 is irrelevant, and all Algorithm 3 does is pick xmax
0 and xmin

0

far from each other, and start building S1 around those nodes in order to construct their
complete r-neighborhood in (G1, S1). In order to make the figure more readable, let us
consider that xmax

0 and xmin
1 have only one neighbor. In Figure 5, the plain lines represent

edges in G1, and the dashed arrows represent S1.
We now apply Algorithm 4. The first step is to add elements between (in the sense of

S1) S
∗
1(xmin

0 ) and S−∗1 (xmax
0 ) in order to join them, in a greedy fashion. Once this is done,

there only remain a few elements that have not been assigned an S1-predecessor. This is
depicted in Figure 6.
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xmax
0

•
xmin
0

•
• •

•

•

•

•

•

•

• •

Figure 5: After Algorithm 3, with one frequent neighborhood type

xmax
0 xmin

0

x S∗1 (x)

• • •
•
•
•

••••
•
•
•

•
•

• • •

•

•

Figure 6: After the greedy part of Algorithm 4, with one frequent neighborhood type

Now we consider one by one each of the elements that do not have an S1-predecessor:
let us start with x in Figure 6. Our goal is to insert it in the S1-cycle while still respecting
(Layer[r]). For that, we find two successive elements y, z of the cycle that are far from x
and S∗1(x), and we insert x between them, as shown in Figure 7.

xmax
0 xmin

0

y
z

x S∗1 (x)

• • •
•
•
•

••••
•
•
•

•
•

• • •

•

•

Figure 7: Inserting x in the S1-cycle, as in the second part of Algorithm 4, with one frequent
neighborhood type

We treat all the elements without an S1-predecessor in the same way, until S1 is fully
built.

Example 4.4. Suppose now that there are two frequent neighborhood types τ0 and τ1, and
still no occurrences of rare neighborhood types.

The procedure is very similar: in Algorithm 3, we build the r-neighborhood in (G1, S1)
of the four nodes xmax

0 , xmin
0 , xmax

1 and xmin
1 .

After the greedy part of Algorithm 4, S1 looks like in Figure 8, where occurrences of
τ0 are represented as • and occurrences of τ1 as ◦. The remaining of Algorithm 4 is as
unchanged.

Note that if there existed some occurrences of rare neighborhood types, they would be
embedded in the τ0 part of the S1-cycle.
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xmax
0 xmin

1

xmax
1xmin

0

x S∗1 (x)

◦ ◦
◦
◦
◦

◦◦

◦

••
•
•
•

•

•

• • •

•

•

Figure 8: After the greedy part of Algorithm 4, with two frequent neighborhood types

4.8. Properties of S1 and S2. We are now ready to show that, after the successive run of
Algorithms 2, 3 and 4,

• S1 and S2 are indeed successor relations (Lemma 4.5),
• (G1, S1) and (G2, S2) satisfy (Layer[r]) (Lemma 4.6), and
• a singular element (around a rare or a junction element) of (G1, S1) and its corresponding

element via h in (G2, S2) have the same r-neighborhood type (Lemma 4.9), while any other
element in both structures has a regular (i.e. fractal) r-neighborhood type (Lemma 4.8).

These properties will allow us to prove in Section 4.9 that (G1, S1) and (G2, S2) have the
same number of occurrences of every r-neighborhood type, up to a threshold t.

Lemma 4.5. S1 (resp. S2) is a successor relation on G1 (resp. G2).

Proof. This result is rather transparent, but a rigorous proof requires the usage of a somewhat
cumbersome invariant.

Let us focus on G1: the proof is the same for G2, replacing every xmin
i and xmax

i with
h(xmin

i ) and h(xmax
i ).

Let a ∈ G1 be defined as S−∗1 (xmax
m−1) at the beginning of Algorithm 4. By construction,

tprG(a) = τm−1 and a has no S1-predecessor as of now.
We show that at any point before line 15 of the loop iteration i = m− 1 of Algorithm 4,

(i) S−∗1 (s) = a
(ii) S−∗1 (xmax

m−1) = a
(iii) let y, z /∈ A1 such that (y, z) ∈ S1 and

tprG1(y) = tprG1(z) = τj

for some j; then S−∗1 (y) = a
(iv) for every i, (xmax

i , xmin
i+1[m]) ∈ S1

(v) there is no S1-cycle
(vi) for every j > i, tprG1(S−∗1 (xmax

j )) = τj

This is obviously satisfied at the beginning of Algorithm 4: there are not yet such y, z as
in (iii), and s = S∗1(xmin

0 ) is S1-reachable from xmax
m−1 (since (xmax

m+1, x
min
0 ) ∈ S1) hence (i)

holds.
Line 4 preserves the invariant. Indeed, the new value of s is S1-reachable from its

previous value (this is guaranteed by (iv)), which means that they have the same image
through S−∗1 , namely a.

Let us prove that line 12 preserves the invariant. (i) and (ii) still hold since x 6= a:
indeed, for i < m− 1, x and a do not share the same neighborhood type, while for i = m− 1,
a = t (because of (ii)) and the distance condition prohibits x = a. (iii) still holds, as the
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only new possibility for such a couple (y, z) is (s, x), which is such that S−∗1 (y) = a (because
of (i)). (iv) obviously holds, as does (v), since the only way for an S1-cycle to have been
created is if x = S−∗1 (s), that is x = a. We have seen that this is absurd. (vi) is satisfied, as
the only way for it to fail is for x to be some S−∗1 (xmax

j ), for j > i, which is impossible due
to neighborhood type requirements.

Now, let us move to line 13. Only (i) needs verification, and the argument is the same
as for line 4.

Finally, let us look at line 15, for i < m− 1. t 6= a since their neighborhood types are
different, hence (i), (ii) and (v) still hold. (iii) still holds, as the only new possibility for such
a couple (y, z) is (s, t), which is such that S−∗1 (y) = a because of (i) (actually, (s, t) does not
even fit the condition, since t ∈ A1). (iv) is still satisfied. (vi) holds, as the only way for
it to fail is for t to be some S−∗1 (xmax

j ), for j > i, which is impossible due to neighborhood
type requirements.

We now prove that from line 17 until the end of Algorithm 4, there is exactly one
S1-cycle, which contains every y, z /∈ A1 such that (y, z) ∈ S1 and tprG1(y) = tprG1(z) = τj
for some j.

This is true after line 15 of the loop iteration m− 1, which creates the first S1-cycle, as
(i) and (ii) ensure t = a = S−∗1 (s). (iii) guarantees that this newly created S1-cycle contains
all the couple (y, z) satisfying the condition.

It remains to show that line 20 preserves this property: by hypothesis, y and z belong
to the S1-cycle. After line 20, there is still exactly one S1-cycle, which corresponds to the
previous one where the S1-edge has been replaced by the S1-segment [x, S∗1(x)]. The only
S1-edges that have been added belong to the S1-cycle, hence the second part of the property
still holds.

In the end, every element of G1 has a predecessor by S1, hence S1 is a permutation
of G1. We have shown that it has a single orbit.

Lemma 4.6. (Layer[r]) holds in (Gε, Sε), for ε ∈ {1, 2}

Proof. This property is guaranteed by the distance conditions of the form

dist(Gε,Sε)(., .) > 2r

imposed throughout Algorithms 2, 3 and 4, and by Lemma 3.4.

One can very easily verify that (Layer[r]) is guaranteed by Lemma 3.4 to hold in
(Gε, Sε) prior to the run of Algorithm 4.

We focus on Algorithm 4, and we use Lemma 3.4 to prove that (Layer[r]) remains
valid in (Gε, Sε) throughout its run. There are three edge additions we have to prove correct:

• For the edge addition of line 12, this follows directly from Lemma 3.4.
• For the edge addition of line 15, we show that the invariant

dist(Gε,Sε)(s, t) > 2r

is satisfied at the beginning and at the end of the while at line 10. This invariant, together
with Lemma 3.4, will be enough to conclude.

The invariant holds before the first execution of the while loop.
Working towards a contradiction, suppose that the invariant is broken during an

execution of the loop. In the following, when mentioning a variable, we refer to its value
at the beginning of the loop. There must exists a path from S∗ε (x) (which is to become
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the new value of s at the end of the loop) to t in (Gε, Sε ∪ {(s, x)}) of length at most 2r;
consider a shortest one. As is cannot be valid in (Gε, Sε) by choice of x, it must go through
the newly added edge (s, x). This means that in (Gε, Sε), either there exist paths of length
at most 2r from S∗ε (x) to s and from x to t, or paths of length at most 2r from S∗ε (x) to
x and from s to t. The former is absurd considering the way x was chosen, and the latter
contradicts the previous invariant.
• Let us prove that the addition of the two Sε-edges of line 20 does not break (Layer[r]).

By choice of y, we know that dist(Gε,Sε)(y, x) > 2r. A fortiori, we must have

dist(Gε,Sε\{(y,z)})(y, x) > 2r ,

and Lemma 3.4 ensures that (Gε, Sε \{(y, z)}∪{(y, x)}) satisfies the property (Layer[r]).
Now, to the second addition: let us prove that, at the beginning of line 20,

dist(Gε,Sε\{(y,z)}∪{(y,x)})(S
∗
ε (x), z) > 2r .

We then conclude with Lemma 3.4.
Suppose it is not the case and consider a shortest path from S∗ε (x) to z, which must

be of length at most 2r. This path cannot be valid in (Gε, Sε), thus it has to go through
the new edge (y, x). Since there cannot exist a path of length at most 2r from S∗ε (x) to y
in (Gε, Sε) (as this would contradict dist(Gε,Sε)(S

∗
ε (x), z) > 2r), it has to borrow the edge

from x to y.
Then in (Gε, Sε \ {(y, z)}), there is a path of length at most 2r from y to z, which

contradicts (Layer[r]) in (Gε, Sε).

The following Lemma states that the only time Sε joins two nodes that have different
r-neighborhood types in Gε is when one of them is an occurrence of a rare neighborhood
type (in which case its Sε-predecessor and Sε-successor are of neighborhood type τ0) or when
they are the elements which make the transition between two frequent neighborhood types
(that is, one is xmax

i and the other is xmin
i+1[m], for some i < m):

Lemma 4.7. We have the following:

• ∀x, y ∈ G1 such that (x, y) ∈ S1 and (x /∈ R0 and y /∈ R0) and (x /∈ P0 or y /∈ P0), then
tprG1(x) = tprG1(y)
• ∀x, y ∈ G2 such that (x, y) ∈ S2 and (x /∈ h(R0) and y /∈ h(R0)) and (x /∈ h(P0) or
y /∈ h(P0)), then tprG2(x) = tprG2(y)

Proof. The property clearly holds at the end of Algorithm 2 and Algorithm 3.
For any i from 0 to m− 1, the only S1-edges (resp. S2-edges) that are added during the

i-th loop are between two nodes of neighborhood type τi.

Recall the discussion at the beginning of Section 3. We now prove that, as long as an
element is far from any occurrence of a rare neighborhood type and from the elements that
make the transition between two frequent neighborhood types, its neighborhood type in
(Gε, Sε) is the fractal of its neighborhood type in Gε:

Lemma 4.8. For ε ∈ {1, 2} and for every 0 ≤ k ≤ r and x /∈ R≤k ∪ P≤k (if ε = 1) or
x /∈ h(R≤k ∪ P≤k) (if ε = 2),

tpk(Gε,Sε)(x) = [tpkGε(x)]k .

Proof. We prove the result by induction on k. For k = 0, there is nothing to do but note
that no edge Sε(x, x) has been created.
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Suppose that we have proven the result for some k < r, and let x /∈ R≤k+1 ∪ P≤k+1, or
x /∈ h(R≤k+1 ∪ P≤k+1).

Let y be such that distGε(x, y) = d, for some 1 ≤ d ≤ k + 1. By construction of the Ri
and Pi, and of h, we have that y /∈ R≤k+1−d ∪ P≤k+1−d, or y /∈ h(R≤k+1−d ∪ P≤k+1−d) (this

is easily shown by induction on d). Hence, tpk+1−d
(Gε,Sε)(y) = [tpk+1−d

Gε (y)]k+1−d.

Because Lemma 4.6 ensures that the (k + 1)-neighborhood of x in (Gε, Sε) is layered,
it only remains to show that the Sε-successor x+ and predecessor x− of x are such that
tpk(Gε,Sε)(x

+) = tpk(Gε,Sε)(x
−) = [tpkGε(x)]k. Let us show this for x+.

Lemma 4.7 ensures tprGε(x
+) = tprGε(x). It only remains to note that x+ /∈ R≤k ∪ P≤k,

or x+ /∈ h(R≤k ∪ P≤k), and the induction hypothesis allows us to conclude.

When we first defined h, it preserved r-neighborhood types by construction. The last
step before we are able to conclude the proof of Theorem 2.6 is to make sure that h still
preserves r-neighborhood types, taking into account the Sε-edges added during the run of
Algorithm 4:

Lemma 4.9. ∀x ∈ A1, tp
r
(G2,S2)

(h(x)) = tpr(G1,S1)
(x)

Proof. We prove by induction on 0 ≤ k ≤ r that ∀x ∈ A1, tp
k
(G2,S2)

(h(x)) = tpk(G1,S1)
(x)

There is nothing to prove for k = 0.
Moving from k to k + 1, let x ∈ A1 and let y be such that distG1(x, y) = d, for some

1 ≤ d ≤ k + 1. Note that y ∈ B, hence it has an image by h.
If y ∈ A1, the induction hypothesis allows us to conclude that

tpk+1−d
(G2,S2)

(h(y)) = tpk+1−d
(G1,S1)

(y) .

Else, Lemma 4.8 ensures that:

tpr(G2,S2)
(h(y)) = [tprG2(h(y))]r = [tprG1(y)]r = tpr(G1,S1)

(y) .

In both cases, tpk+1−d
(G2,S2)

(h(y)) = tpk+1−d
(G1,S1)

(y).

Because of (Layer[r]), it only remains to show that the Sε-successors of x and h(x),
as well as their Sε-predecessors, have the same k-neighborhood type in (Gε, Sε). Let us prove
this for the successors, respectively named x+ and h(x)+.

If x+ ∈ A1, then by construction h(x)+ = h(x+), and the induction hypothesis allows
us to conclude.

Otherwise, x+ /∈ A1 and h(x)+ /∈ A2. Under this hypothesis, Lemma 4.7 ensures that

tprG2(h(x)+) = tprG2(h(x)) = tprG1(x) = tprG1(x+) .

Now, Lemma 4.8 ensures that

tpr(G2,S2)
(h(x)+) = [tprG2(h(x)+)]r

= [tprG1(x+)]r

= tpr(G1,S1)
(x+) .
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4.9. Conclusion of the proof. We recall Theorem 2.6, whose proof we are now able to
conclude:

Theorem 2.6. For every vocabulary Σ and for every class C of Σ-structures of bounded
degree,

Succ-inv FO = FO on C .

Let α ∈ N. We want to prove that there exists some f(α) ∈ N such that for any
Σ-structures G1,G2 of degree at most d,

G1 ≡FO
f(α) G2 entails G1 ≡Succ-inv FO

α G2 . (4.1)

Indeed, this means that on the class of Σ-structures of degree at most d, any equivalence
class C for ≡Succ-inv FO

α is a finite union of equivalence classes for ≡FO
f(α), and is consequently

definable by an FO-sentence ϕC of quantifier rank f(α). Let now P be a property of
structures of degree at most d definable by a sentence of Succ-inv FO of quantifier rank
at most α. It is a finite union

⋃
i Ci of equivalence classes for ≡Succ-inv FO

α . Hence, the
FO[f(α)]-sentence

∨
i ϕCi defines P.

This proves the inclusion Succ-inv FO ⊆ FO on structures of degree at most d.

In order to prove (4.1), we need f(α) to be large enough so as to enable us, given

G1 ≡FO
f(α) G2 ,

to construct two successor relations S1 and S2 such that

(G1, S1) ≡FO
α (G2, S2) , (4.2)

which in turn ensures that
G1 ≡Succ-inv FO

α G2 .

Now, the Hanf threshold theorem yields two integers r and t, depending on α and d,
such that

[[(G1, S1)]]r =t [[(G2, S2)]]r (4.3)

entails (4.2).
We have seen throughout this section how to construct two successor relations S1 and

S2. All that remains is for us to show that, for the right value of g in Lemma 4.2, our
construction guarantees (4.3).

Let τ be an r-neighborhood type over Σ ∪ {S} which occurs in (G1, S1). There are two
cases to consider:

• if τ occurs outside of A1, then Lemma 4.8 ensures that τ = [χ]r for some frequent
r-neighborhood type χ. We can choose g so that χ is guaranteed to have at least t
occurrences in G1 outside of A1, and in G2 outside of A2. This is ensured as long as

g(β) ≥ |A1|+ t ,

and in particular when

g(β) ≥ (β + 2tdr)N(d+ 2, r) + t .

Lemma 4.8 then ensures that τ occurs at least t times both in (G1, S1) and in (G2, S2).
• if τ occurs only in A1, then it cannot occur in (G2, S2) outside of A2 (for the same reasons

as above). Lemma 4.9 guarantees that τ has the same number of occurrences in A1 and
in A2, hence in (G1, S1) and in (G2, S2).
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As long as g satisfies these conditions, (4.3) holds. We are now able to fix the value of
f(α) as prescribed by Lemma 4.2 for this g. This concludes the proof of Theorem 2.6.

5. Conclusion

We have shown that Succ-inv FO collapses to FO on any class of bounded degree. In other
words, we have shown that there exists a translation from Succ-inv FO to FO on classes
of bounded degree. As given by our proof, the quantifier rank of the translated sentence
is triple-exponential in the quantifier rank of the original formula. It is an easy exercise
to prove that the blowup is at least exponential, but we do not know if an exponential
translation is at all possible.

Similar considerations arise when we take into account the length of the sentences
instead of their quantifier rank - in this regard, our construction is even non-elementary,
and all we know is that the blowup is at least exponential.

An interesting task would be (i) to give an effective translation and (ii) to improve the
succinctness of this translation, or to give tighter lower bounds on such translations.

Apart from these considerations, there are two main directions in which one could look
to extend the present result. One possibility would be to keep looking at classes of bounded
degree while climbing up in the ladder of expressivity, and ask whether < -inv FO collapses
to FO as well on these classes of structures. New techniques would be needed, as contrary to
what was the case with a successor, the addition of an order does not preserve the bounded
degree property. Furthermore, even if < -inv FO = FO in this setting, it is not clear whether
such orders can be directly constructed. It may be necessary to construct, as in [BS09], a
chain of intermediate structures and orders.

Alternatively, we could change the setting, and study the expressivity of Succ-inv FO
on other sparse classes of structures, e.g., on classes of bounded treewidth. If showing the
collapse of Succ-inv FO to FO on these classes proved itself to be out of reach, a possibility
would be to aim at proving that Succ-inv FO is Hanf-local (which would be stronger than
the known Gaifman-locality). In that case, the starting hypothesis on the structures G1
and G2 would be stronger, as the existence of a k-neighborhood type-preserving bijection
between the two structures would be assumed.

These tasks are much harder without any bound on the degree, which was what
guaranteed that we could find elements of a given frequent neighborhood type far from each
other.
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