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First-order tree-to-tree functions
Mikołaj Bojańczyk and Amina Doumane

Abstract
We study tree-to-tree transformations that can be defined in
first-order logic or monadic second-order logic. We prove a
decomposition theorem, which shows that every transfor-
mation can be obtained from prime transformations, such
as tree-to-tree homomorphisms or pre-order traversal, by
using combinators such as function composition.

1 Introduction
The purpose of this paper is to decompose tree transforma-
tions into simple building blocks. An important inspiration
is the Krohn-Rhodes theorem [24, p. 454], which says that ev-
ery string-to-string function recognised by a Mealy machine
can be decomposed into certain prime functions.

Regular functions. The transformations studied in this
paper are the regular functions.
In [19, Theorem 13], Engelfriet and Hoogeboom proved

that deterministic two-way transducers recognise the same
string-to-string functions as mso transductions. Because of
this and other properties – such as closure under composi-
tion [13, Theorem 1] and decidable equivalence [22, Theorem
1] – this class of functions is now called the regular string-to-
string functions. Other equivalent descriptions of the regular
functions include: string transducers of Alur and Černý [2],
and several models based on combinators [4, 11, 16].
There are also regular functions for trees, which can be

defined using any of the following equivalent models: mso
tree-to-tree transductions [7, Section 3], single use attributed
tree grammars [7], macro tree transducers of linear size in-
crease [18, Theorem 7.1], and streaming tree transducers [3,
Theorem 4.6].

The goal of this paper is to prove a decomposition result
for regular tree-to-tree functions. As in the Krohn-Rhodes
theorem, we want to show that every such function can be
obtained by combining certain prime functions.
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First-order transductions. Although mso transductions
are the more popular model, we work mainly with the less
expressive model of first-order transductions. Why?
As we explain in Section 7, every mso tree-to-tree trans-

duction can be decomposed as: (a) first, a relabelling defined
in mso, which does not change the tree structure; followed by
(b) a first-order tree-to-tree transduction. In this sense, as far
as transformations of the tree structure are concerned, first-
order and mso transductions have the same expressive power.
Another argument for the importance of first-order tree-to-
tree transductions is a connection with the 𝜆-calculus. As
we explain in Section 6, first-order tree-to-tree transductions
are expressive enough to capture evaluation of 𝜆-terms (as-
suming linearity, i.e. every variable is used once), and such
evaluation turns out to be one of the core computational
steps implicit in a tree-to-tree transduction.

Another advantage of first-order logic on trees, compared
to mso, is a better decomposition theory, in the sense of de-
composing formulas into simpler ones [8, 20, 23]. For our
paper, the most useful decomposition is a remarkable theo-
rem of Schlingloff, which says that first-order logic on trees is
equivalent to a certain two-way variant of ctl [26, Theorem
4.5]. In contrast, there are no such results for mso.

Summing up, we believe that first-order tree transforma-
tions are expressive, have a strong theory, and deserve to
leave the shadow of their better known mso cousin.

Structured datatypes. We present our main decomposition
result in a formalism based on functional programming (in
a combinatory variant, i.e. without variables), with struc-
tured datatypes such as pairs or co-pairs. The motivation
behind this approach – which is inspired by [11] – is to avoid
encoding datatypes in our constructions using syntactic an-
notation such as endmarkers and separators. Thanks to the
structured datatypes, we can use established operations such
as map, and we can assign informative types to our functions,
such as Σ1 × Σ2 → Σ𝑖 for projection, as opposed to saying
that all functions input and output trees.
The choice of datatypes for trees is harder than for the

string case that was studied in [11]. The difficulty is in split-
ting the input into smaller pieces. A piece of a string is also
a string, but this is no longer true for trees, where the pieces
have dangling edges (or variables). As a result, more compli-
cated datatypes are needed; and our design choices lead us
to functions that operate on ranked sets, where each element
has an associated arity.
This is a long paper. Given the limited space, we have

decided to prioritise explaining design choices and intuitions,
with examples and many pictures. As a result, almost all of
the proofs are in the appendix.
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2 Trees and tree-to-tree functions
In this section, we describe the trees and tree-to-tree func-
tions that are discussed in this paper. A ranked set is a set
where each element has an associated arity in {0, 1, 2, . . .}. If
𝑎 of a ranked set has arity 𝑛, then elements of {1, . . . , 𝑛} are
called ports of 𝑎. We adopt the convention that ranked sets
are red, e.g. Σ or Γ, and other objects (elements of ranked sets,
or unranked sets) are black. We use ranked sets as building
blocks for trees. The following picture describes the notion
of trees that we use and some terminology:

arity 2

arity 1

arity 0

a ranked alphabet a tree
this node has a 
label of arity 2,
and therefore it has 
2 children

this node is 
child 2
(children are 
ordered)

We use standard tree terminology, such as ancestor, de-
scendant, child, parent. We write treesΣ for the (unranked)
set of trees over a ranked set Σ. This paper is about tree-to-
tree functions, which are functions of the type

𝑓 : treesΣ→ treesΓ.

2.1 First-order logic and transductions
To define tree-to-tree functions and tree languages, we use
logic, mainly first-order logic and monadic second-order
logic mso. The idea is to view a tree as a model, and to
use logic to describe properties and transformations of such
models.

A vocabulary is defined to be a set of relation names, each
one with associated arity. We do not use function symbols in
this paper. A vocabulary can be formalised as a ranked set,
which is why we use red letters like 𝜎 or 𝜏 for vocabularies.

Definition 2.1 (Tree as a model). For a tree 𝑡 over a ranked
alphabet Σ, its associated model is defined as follows. The
universe is the nodes of the tree, and it is equipped with the
following relations:

𝑥 < 𝑦 𝑥 is an ancestor of 𝑦 arity 2
child𝑖 (𝑥) 𝑥 is an 𝑖-th child (𝑖 ∈ {1, 2, . . .}) arity 1
𝑎(𝑥) 𝑥 has label 𝑎 (𝑎 ∈ Σ) arity 1

The 𝑖-th child predicates are only needed for 𝑖 up to the
maximal arity of letters in the ranked alphabet, and hence
the vocabulary in the above definition is finite. We refer to
this vocabulary as the vocabulary of trees over Σ. A sentence
of first-order logic (or mso) over this vocabulary describes
a tree language, namely the set of trees whose associated

models satisfy the sentence. For example, the sentence

∀𝑥 𝑎(𝑥) ⇒ ∃𝑦 𝑥 < 𝑦 ∧ 𝑏 (𝑥)

is true in (the models associated to) trees 𝑡 where every
node with label 𝑎 has a descendant with label 𝑏. For more
background about defining properties of trees using logic,
see the survey of Thomas [32].
The regular tree languages are exactly those that can be

defined in mso, which was proved by Doner [17, Corollary
3.11], and also Thatcher and Wright [30, p. 74]. The tree
languages definable in first-order logic are a proper subset of
those definable in mso, and it is an open problem whether or
not one can decide if a regular tree language can be defined in
first-order logic [9, Section 3]. This is in contrast to the case
of words, where the decidable characterisation of first-order
logic by Schützenberger-McNaughton-Papert [25, Theorem
10.5] is a cornerstone of algebraic language theory.

Tree-to-tree functions. Apart from defining tree languages,
logic can also be used to define transformations on models.
In the context of this paper, we are interested mainly in
first-order transductions, defined below. Roughly speaking,
a first-order transduction uses first-order logic to define a
new tree structure on the input tree.

Definition 2.2 (First-order tree-to-tree transduction). A
tree-to-tree function is called a first-order transduction if
it can be obtained by composing any number of operations1
of the following two kinds:

1. Copying. Let 𝑘 ∈ {1, 2, . . .}. Define 𝑘-copying to be the
operation which inputs a tree and outputs a tree where
every node is preceded by a chain of 𝑘 −1 unary nodes
with a fresh label , as in the following picture:

k – 1 = 2}

After 𝑘-copying, the number of nodes grows 𝑘 times.
2. Non-copying first-order transductions. This is a tree-to-

tree function which uses first-order logic to define a
new tree structure over the nodes of the input tree.
The syntax of such a transduction is given by:
a. Input and output alphabets Σ and Γ, which are finite

ranked sets. We use the name input vocabulary for
the vocabulary of trees over the input alphabet Σ,
likewise we define the output vocabulary.

b. A first-order formula over the input vocabulary, with
one free variable, called the universe formula.

1There is a normal form of first-order transductions, where at two phases
are used: first item 1, then item 2. We do not need the normal form, so we
do not prove it, but it can be shown similarly to [15, Section 7.1.5].
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c. For each relation of the output vocabulary, of arity 𝑛,
a corresponding first-order formula over the input
vocabulary with 𝑛 free variables.

The transduction inputs a tree over the input alphabet,
and outputs a tree over the output alphabet where:
• the nodes are those nodes of the input tree that sat-
isfy the universe formula in item 2b;
• the labels, descendant, and child relations are defined
by the formulas in item 2c.

In order for the transduction to be well defined, the
formulas in item 2c must be such that they produce a
tree model for every input tree.

If we allowed monadic second-order logic mso in items 2b
and 2c (the free variables of the formulas would still be first-
order variables ranging over tree nodes), then we would
get the mso tree-to-tree transductions of Bloem and Ensgel-
friet [7, Section 3]. We discuss these in Section 7.

We conclude this section with two examples of first-order
tree-to-tree transductions.

Example 2.3. Let the input and output alphabets be:

arity 2 arity 1 arity 0

input alphabet

arity 2 arity 0

output alphabet{ {
and consider the function which removes the unary nodes:

This is a non-copying first-order transduction. The universe
formula selects nodes which have non-unary labels. The
descendant relation is inherited from the input tree. To define
the child relation on the output tree, we use the descendant
relation in the input tree. A node 𝑥 satisfies the unary 𝑖-th
child predicate in the output tree if it satisfies the following
first-order formula in the input tree:

∃𝑦 child𝑖 (𝑦) ∧ 𝑦 ≤ 𝑥 ∧ ∀𝑧 (𝑦 ≤ 𝑧 < 𝑥 ⇒ (𝑧))︸                                    ︷︷                                    ︸
𝑦 is the farthest ancestor that can be

reached from 𝑥 using only unary nodes

.

This example shows the usefulness of first-order logic with
descendant, as opposed to child only as used in [6].

Example 2.4. Define pre-order on nodes in a tree as follows:
𝑥 is before 𝑦 if either 𝑥 ≤ 𝑦, or there exist nodes 𝑥 ′ and
𝑦 ′ such that 𝑥 ′ ≤ 𝑥 , 𝑦 ′ ≤ 𝑦, and 𝑥 ′ is a sibling of 𝑦 ′ with
a smaller child number. Consider the tree-to-tree function
which transforms a tree into a list of its nodes in pre-order
traversal, as explained in the following picture:

nodes of the
input tree,
in preorder

ports of the input nodes are plugged by leaves 
with a fresh label of arity 0

nodes of the output 
tree are organised in 

a list, using binary 
node with a fresh 

label of arity 2

1

2 24

4
6

6
7

7

3 35

5

1

This function is a first-order tree-to-tree transduction, be-
cause the pre-order is first-order definable. Unlike Exam-
ple 2.3, we need copying, because a node of arity 𝑛 in the
input tree corresponds to 𝑛 + 2 nodes in the output tree.

3 Derivable functions
In this section, we state the main result of this paper, which
says that the first-order tree-to-tree transductions are exactly
those that can be obtained by starting with certain prime
functions (such as pre-order traversal from Example 2.4) and
applying certain combinators (such as function composition).

The guiding principle behind our approach is to describe
tree-to-tree functions without using any iteration mecha-
nisms, such as states or fold functions. This principle vali-
dates the choice of first-order logic. If we were to use mso, at
the very least we would need to have some mechanism for
groups, which are a basic building block for Krohn-Rhodes
decompositions, or for evaluating Boolean formulas.

3.1 Datatypes
The prime functions and combinators use datatypes such as
pairs of trees, or pairs of trees of pairs, etc. Although these
datatypes could be encoded in trees, we avoid this encoding
and use explicit datatype constructors.

An important property of our datatypes is that they repre-
sent ranked sets, i.e. each element of a datatype has an arity.
The datatypes are obtained from the atomic datatypes by
applying four datatype constructors, as described below.

Atomic datatypes. Every finite ranked set is an atomic
datatype. Apart from finite ranked sets, we allow one more
atomic datatype: the terminal ranked set ⊥ which contains
exactly one element of every arity. The set is called terminal
because it admits a unique arity preserving function from
every ranked set. We use ⊥ for partial functions: a partial
function with output type Σ can be seen as a total function
of output type Σ + ⊥, which uses ⊥ for undefined values.

Terms. The central datatype constructor is the term con-
structor, which is a generalisation of trees to higher arities.
A term is a tree with dangling edges, called ports. The dan-
gling edges ares used to decompose trees (and other terms)
into smaller pieces, as illustrated by the figure below.
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a tree a term with 4 ports that rep-
resents part of the tree

Formally speaking, terms are defined by induction as follows.
As term over a ranked set Σ is either the identity term denoted
by , which consists of a port and nothing else, or otherwise
it is an expression of the form 𝑎(𝑡1, . . . , 𝑡𝑛) where 𝑎 ∈ Σ has
arity 𝑛, and 𝑡1, . . . , 𝑡𝑛 are already defined terms. The arity of
a term is the number of ports. Terms of arity zero are the
same as trees. We write TΣ for the ranked set of terms over
a ranked set Σ. Because the term constructor – like other
datatype constructors – outputs a ranked set, it makes sense
to talk about terms of terms, etc.

Terms are amonad, in the category of ranked sets and arity
preserving functions2. The unit of the monad, an operation
of type Σ→ TΣ, is illustrated in the following picture:

The product of the monad, an operation of type TTΣ→ TΣ
that we call flattening, is illustrated in the following picture:

This monad structure will be part of our prime functions.

Products and coproducts. There are two binary datatype
constructors

Σ1 × Σ2︸  ︷︷  ︸
product

Σ1 + Σ2︸  ︷︷  ︸
coproduct

.

An element of the product is a pair (𝑎1, 𝑎2) where 𝑎𝑖 ∈ Σ𝑖 .
The arity of the pair is the sum of arities of its two coordinates
𝑎1 and 𝑎2. An element of the coproduct is a pair (𝑖, 𝑎) where
𝑖 ∈ {1, 2} and 𝑎 ∈ Σ𝑖 . The arity is inherited from 𝑎.

The set of terms can be defined in terms of products and
coproducts, as the least solution of the equation:

TΣ = { }+
∐
𝑎∈Σ
(TΣ)arity of 𝑎

2An almost identical monad is used in [10, Section 9.2], which differs from
ours in that it allows multiple uses of a single port.

where
∐

denotes possibly infinite coproduct and𝑋𝑛 denotes
the 𝑛-fold product of a ranked set 𝑋 with itself.

Folding. The final – and maybe least natural – datatype
constructor called folding. Folding has two main purposes:
(1) reordering ports in a term; and (2) reducing arities by
grouping ports into groups.

Folding is not one constructor, but a family of unary con-
structors F𝑘Σ, one for every 𝑘 ∈ {1, 2, 3, . . .}. An 𝑛-ary ele-
ment of F𝑘Σ, which is called a 𝑘-fold, consists of an element
𝑎 ∈ Σ together with an injective grouping function

𝑓 : {1, . . . , arity of 𝑎}︸                ︷︷                ︸
an element of this set is

called a port of 𝑎

→ {1, . . . , 𝑛} × {1, . . . , 𝑘}︸                      ︷︷                      ︸
these pairs are called sub-ports

We denote such an element as 𝑎/𝑓 and draw it like this:
port 4

port 3, subport 1

f
a

Already for 𝑘 = 1, the constructor F1 is non-trivial. For
example, F1TΣ is a generalisation of terms where ports are
not necessarily ordered left-to-right (because the grouping
function need not be monotone), and some ports need not
appear (because the grouping function need not be total); in
other words this is the same as terms in the usual sense of
universal algebra, with the restriction that each variable is
used at most once (sometimes called linearity).
When viewed as a family of datatype constructors, folds

have a monad-like structure: they are a graded monad in the
sense of [21, p. 518]. The unit is the operation

of type Σ→ F1Σ, while the product (or flattening) in the
graded monad is the family of operations of type

F𝑘2F𝑘1Σ→ F𝑘1 ·𝑘2Σ,

indexed by 𝑘1, 𝑘2 ∈ {1, 2, . . .}, that is illustrated below:

More formally, the flattening of a double fold (𝑎/𝑓1)/𝑓2 has
the grouping function defined by

𝑖 ↦→ (𝑖2, 𝜋 (𝑝1, 𝑝2)) where

{
(𝑖1, 𝑝1) = 𝑓1 (𝑖)
(𝑖2, 𝑝2) = 𝑓2 (𝑖1)

and 𝜋 is the natural bijection between {1, . . . , 𝑘1}×{1 . . . , 𝑘2}
and {1, . . . , 𝑘1𝑘2}.

4
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• Function composition.

𝑓 ◦ 𝑔 : Σ→ Δ for 𝑓 : Σ→ Γ and 𝑔 : Γ → Δ

• Lifting of functions along datatype constructors

𝑓1 + 𝑓2 : Σ1 + Σ2 → Γ1 + Γ2 for {𝑓𝑖 : Σ𝑖 → Γ𝑖 }𝑖=1,2
(𝑓1, 𝑓2) : Σ1 × Σ2 → Γ1 × Γ2 for {𝑓𝑖 : Σ𝑖 → Γ𝑖 }𝑖=1,2

F𝑘 𝑓 : F𝑘Σ→ F𝑘Γ for 𝑓 : Σ→ Γ
T𝑓 : TΣ→ TΓ for 𝑓 : Σ→ Γ

Figure 1. Combinators

• Unit and product in the monad T.

unit : Σ → TΣ flat : TTΣ → TΣ

• Unit and product in the graded monad F𝑘 .

unit : Σ → F1Σ flat : F𝑘F𝑙Σ → F𝑘.𝑙Σ

• Inductive structure of terms (for finite Σ only).

TΣ
decompose // { } +∐𝑎∈Σcompose

oo (TΣ)arity of 𝑎

• Remove unused fold.
F𝑘Σ → Σ + ⊥
(𝑎/𝑓 ) ↦→ 𝑎 if 𝑎 has arity 0, undefined otherwise

Figure 2. Prime functions for terms and fold.

This completes the list of datatype constructors.

Definition 3.1 (Datatypes). The datatypes are the least class
of ranked sets which contains all finite ranked sets, the termi-
nal set, and which is closed under applying the constructors

TΣ Σ1 × Σ2 Σ1 + Σ2 F𝑘Σ.

3.2 Derivable functions
We now present the central definition of this paper.

Definition 3.2 (Derivable function). An arity preserving
function between two datatypes is called derivable if it can
be generated, by using the combinators in Figure 1, from the
following prime functions:
• for every Σ, the unique arity preserving function Σ→ ⊥;
• all arity preserving functions with finite domain;
• the prime functions in Figures 2,3 and 4;

The combinators in Figure 1 are function composition, and
the obvious liftings of functions along the datatype construc-
tors. The prime functions in Figure 2 describe the monad
structure of terms and folds, and were explained in Sec-
tion 3.1. The prime functions in Figure 3 are simple syntactic
transformations, which are intended to have no computa-
tional content. Figure 4 contains less obvious operations,
whose definitions are deferred to Section 3.3.

• Co-projections.

Σ + Σ → Σ Σ𝑖
𝜄𝑖→ Σ1 + Σ2

(𝑎, 𝑖) ↦→ 𝑎 𝑎 ↦→ (𝑎, 𝑖)
• Commutativity.

Σ + Γ → Γ + Σ Σ × Γ → Γ × Σ
(𝑎, 1) ↦→ (𝑎, 2) (𝑎, 𝑏) ↦→ (𝑏, 𝑎)
(𝑎, 2) ↦→ (𝑎, 1)

• Associativity.

(Σ + Γ) + Δ → Γ + (Σ + Δ) (Σ × Γ) × Δ → Σ × (Γ × Δ)
((𝑎, 1), 1) ↦→ (𝑎, 1) ((𝑎, 𝑏), 𝑐) ↦→ (𝑎, (𝑏, 𝑐))
((𝑎, 2), 1) ↦→ ((𝑎, 1), 2)
(𝑎, 2) ↦→ ((𝑎, 2), 2)

• Distributivity.

(Σ1 + Σ2) × Γ → (Σ1 × Γ) + (Σ2 × Γ)
((𝑎, 𝑖), 𝑏) ↦→ ((𝑎, 𝑏), 𝑖)

Figure 3. Prime functions for product and coproduct.

• Factorisations.

T(Σ1 + Σ2)
fact↑ //
fact↓
// T(TΣ1 + TΣ2)

• Pre-order. (Here , are letters of arities 0, 2).

TΣ // F1T(Σ + { , })
• Monotone unfolding.

TF𝑘Σ𝑘 // F𝑘 (TΣ)𝑘 + ⊥

Figure 4. Functions explained in Section 3.3.

Example 3.3. Define a term homomorphism to be any func-
tion of type TΣ→ TΓ which is obtained by applying some
function

ℎ : Σ→ TΓ

to every node of the input term. Examples of term homo-
morphisms include the function from Example 2.3 which
removes all unary letters, or the 𝑘-copying function in item
1 of the definition of first-order tree-to-tree transductions.
We claim that every term homomorphism with a finite input
alphabet is derivable. The function ℎ is a prime function,
because it has a finite domain thanks to the assumption that
the input alphabet is finite. We can lift ℎ to terms using the
combinator of Figure 1, and then compose it with the product
operation of terms monad, thus giving the homomorphism:

TΣ Tℎ // TTΓ flat // TΓ

More examples of derivable functions are in Appendix. B.
5
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We are now ready to state the main theorem of this paper.
We say that a tree-to-tree function

𝑓 : treesΣ→ treesΓ

is derivable if it agrees on arguments that are trees with some
derivable partial function

𝑓 : TΣ→ TΓ + ⊥.

The main result of this paper is the following theorem.

Theorem 3.4. A tree-to-tree function is a first-order trans-
duction if and only if it is derivable.

The right-to-left implication in the above theorem is proved
by a relatively straightforward induction on the derivation.
The general idea is that we associate to each datatype a
relational structure; for example the relational structure as-
sociated to a pair (𝑎1, 𝑎2) is the disjoint union of the rela-
tional structures associated to 𝑎1 and 𝑎2. In the appendix, we
show that all prime functions are first-order transductions
(adapted suitably to structures other than trees); and that
this property is preserved under applying the combinators.
There is one nontrivial step in the proof, which concerns
monotone unfolding, and will be discussed below.
The left-to-right implication in the theorem, which says

that every first-order transduction is derivable, is the main
contribution of this paper, and is discussed in Sections 4–6.1.

3.3 The prime functions from Figure 4
In this section, we describe the prime functions from Figure 4.
Each of these functions will play a key role in one of the
main results of the paper.

3.3.1 Factorisations
We begin with the two factorisation functions

fact↑, fact↓ : T(Σ1 + Σ2) → T(TΣ1 + TΣ2),

which are used to cut terms into smaller parts. Define a
factorisation of a term to be any term of terms that flattens to
it. An alternative view is that a factorisation is an equivalence
relation on nodes in a term, where every equivalence class
is connected via the parent-child relation.
Consider a term 𝑡 ∈ T(Σ1 + Σ2). We say that two nodes

have the same type if both have labels in the same Σ𝑖 ; other-
wise we say that nodes have opposing type. Define two equiv-
alence relations on nodes in a term as follows: (a) nodes are
called ↑-equivalent if they have the same type and the same
proper ancestors of opposing type; (b) nodes are called ↓-
equivalent if they are ↑-equivalent and have the same proper
descendants of opposing type. Here is a picture of the equiv-
alence classes, with Σ1 being red and Σ2 being blue:

     -equivalence      -equivalence

For both equivalence relations, the equivalence classes are
connected under the parent-child relation, and therefore the
equivalences can be seen as factorisations. These are the
factorisations produced by the functions fact↑ and fact↓.

3.3.2 Pre-order traversal.
The pre-order traversal function

preorder : TΣ→ F1T(Σ + { , })
is the natural extension – from trees to terms – of the pre-
order function in Example 2.4. The fold in the output type is
used to reorder the ports in a way which matches the input
term, as illustrated in the following picture:

3

1

2
2

1

3
44

3.3.3 Unfolding of the matrix power
The final prime function is called monotone unfolding. The
general idea is that unfolding unpacks a representation of
several trees inside a single tree. Before describing this func-
tion in more detail, we introduce some notation, inspired by
the matrix power in universal algebra [29, p. 268].
Definition 3.5 (Matrix power). For 𝑘 ∈ {1, 2, . . .} define the
𝑘-th matrix power of a ranked set Σ, denoted by Σ [𝑘 ] , to be
the ranked set F𝑘Σ𝑘 .
Here is a picture of elements in the third matrix power:

arity 2 arity 2 arity 0

An element of the 𝑘-th matrix power can be seen as having
a group of 𝑘 incoming edges, and each of its ports can be
seen as a group of 𝑘 outgoing edges. The general unfolding
operation, which has type

TΣ [𝑘 ] → (TΣ) [𝑘 ],
6
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Figure 5. Unfolding the matrix power

matches the 𝑘 incoming edges in a node with the 𝑘 outgoing
edges in the parent port; it also removes the unreachable
nodes. This operation is illustrated in Figure 5, and a formal
definition is in the appendix.

Chain logic. The general unfolding operation is too power-
ful to be included in the derivable functions, as we explain
below. It does, however, admit a characterisation in terms of
a fragment of mso called chain logic, see [31, Section 2] or [8,
Section 2.5.3], whose expressive power is strictly between
first-order logic and mso. Chain logic is defined to be the
fragment of mso where set quantification is restricted to sets
where all nodes are comparable by the descendant relation.

Theorem 3.6. The following conditions are equivalent for
tree-to-tree functions:

• is derivable, as in Definition 3.2, except that general
unfold is used instead of monotone unfold;

• is a transduction, as in Definition 2.2, except that chain
logic is used instead of first-order logic.

To see why chain logic is needed to describe general un-
folding, consider the following unfolding, where two coordi-
nates are swapped in each node of the input tree:

For inputs with an odd number of swaps, the output of un-
folding has a white leaf in the first coordinate, and for inputs
with an even number of swaps, the output has a white leaf
in the first coordinate. Checking if a path has even length
can be done in chain logic, but not in first-order logic.

Monotone unfolding To avoid the problems with cyclic
swaps, the unfolding function in Figure 4 imposes a mono-
tonicity requirement on the matrix power, described below.

Let 𝑎 ∈ Σ [𝑘 ] be an element of the matrix power, let 𝑝, 𝑞 ∈
{1, . . . , 𝑘}, and let 𝑖 be a port of 𝑎. Define the twist function of
port 𝑖 , denoted by→𝑖 , as follows: 𝑞 →𝑖 𝑝 if coordinate 𝑞 in
the 𝑖-th outgoing edge is connected to coordinate 𝑝 in root,
as described in the following picture:

an element of
the matrix power

its twist functions
1 2 3

1 2 3 1 2 3

The twist function is partial. Call an element of the matrix
powermonotone if for every port, its twist functions is mono-
tone (when restricted to inputs where it is defined). In the
picture above,→1 is monotone, while→2 is not. Also, the
problems with an even number of swaps discussed earlier
arise from a non-monotone twist function:

1 2

1 2

The monotone unfolding operation in Figure 5 defined to be
the restriction of general unfolding, which is undefined if
the input contains at least one label which is non-monotone,
and otherwise returns the output of the general unfolding.

Is unfolding derivable? The prime functions in our main
theorem are meant to be simple syntactic rewritings. It is de-
batable whether the unfolding operation – even in its mono-
tone variant – is of this kind. For example, our proof that

7
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monotone unfolding is a first-order transduction requires
an invocation of the Schützenberger-McNaughton-Papert
theorem about first-order logic on words being the same as
counter-free automata.
Is it possible to break down monotone unfolding into

simpler primitives? In the appendix, we devote consider-
able resources to answering this question. We propose one
new datatype and seventeen additional prime functions,
which can be called syntactic rewriting without straining the
reader’s patience. Then, we show that monotone unfolding
can be derived using the new datatype and functions. The
proof of this result is one of the main technical contributions
of this paper.

4 Register tree transducers
We now begin the proof of the harder implication in Theo-
rem 3.4, which says that every first-order tree-to-tree trans-
duction is derivable. Our proof passes through an automaton
model, which is roughly based on existing transducer models
for mso transductions from [3, 7]. The automaton uses regis-
ters to store parts of the output tree. The semantics of the
automaton involves two phases: (a) mapping the input tree
to an expression that uses register updates; (b) evaluating
the expression. These phases are described in more detail
below.

Register valuations and updates. We begin by explaining
how the registers work. The registers store terms that are
used to construct the output tree. Each register has an arity:
registers of arity zero store trees, registers of arity one store
unary terms, etc.
Fix two finite ranked sets: the register names 𝑅 and the

output alphabet Γ. A register valuation is defined to be any
arity preserving function from the register names 𝑅 to terms
TΓ. To transform register valuations, we use register updates.
A register update is an operation which inputs several reg-
ister valuations and outputs a single register valuation. For
𝑛 ∈ {0, 1, . . .}, an 𝑛-ary register update is defined to be any
arity-preserving function

𝑢 : 𝑅→T(Γ + 𝑛𝑅),
where 𝑛𝑅 stands for the disjoint union of 𝑛 copies of 𝑅. The
𝑖-th copy of 𝑅 represents the register contents in the 𝑖-th
argument. Here is a picture of a register update which has
arity 3 and uses two registers 𝑟 and 𝑠:

r3 r2

r1

s2 s1

register s from argument 2

register r from argument 3

register r of arity 2 register s of arity 0

An 𝑛-ary register update 𝑢 induces a operation, which in-
puts 𝑛 register valuations and outputs the register valuation
obtained by taking 𝑢 and replacing the 𝑖-th copy of a register
name with the contents of that register in the 𝑖-th input reg-
ister valuation. Register updates have arities, and therefore
the ranked set of register updates is written in red, and can
be used for labels in a tree. For such a tree

𝑡 ∈ trees(register updates),

define its evaluation to be the register valuation defined by
induction in the natural way. Note that register updates of
arity zero are the same as register valuations, which gives
the induction base.

First-order relabellings. Our automatonmodel has no states.
Instead, it uses a first-order relabelling, as defined below, to
directly assign to each node of the input tree a register up-
date that will be applied in that node. A similar model is
used by Bloem and Engelfriet [7, Theorem 17], except that
in their case, the first phase uses mso relabellings, and the
second phase is an attribute grammar.

Definition 4.1 (First-order relabelling). A first-order rela-
belling is given by two finite ranked sets Σ and Γ, called the
input and output alphabets, and a family

{𝜑𝑎 (𝑥)}𝑎∈Γ
of first-order formulas over the vocabulary of trees over Σ.
These formulas need to satisfy the following restriction:

(*) for every tree over the input alphabet and node in that
tree, there is a unique output letter 𝑎 ∈ Γ such that
𝜑𝑎 (𝑥) selects the node; furthermore, the arity of 𝑎 is
the same as the arity of (the label of) the node.

The semantics of a first-order tree relabelling is a function

treesΣ→ treesΓ,

which changes the label of every node in the input tree to
the unique letter described in (*).

A first-order tree relabelling is a very special case of a first-
order tree-to-tree transduction, where only the labelling of
the input tree is changed, while the universe as well as the
child and descendant relations are not affected.

Register transducers. Having defined registers, register
updates, and first-order tree relabellings, we are now ready
to define our automaton model.

Definition 4.2 (First-order register transducer). The syntax
of a first-order register transducer consists of:
• An input alphabet Σ, which is a finite ranked set;
• An output alphabet Γ, which is a finite ranked set;
• A set 𝑅 of registers, which is a finite ranked set;
• A total order on the registers.
• A designated output register in 𝑅, of arity zero.

8
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• A transition function, which is a first-order relabelling

treesΣ→ treesΔ,

for some finite setΔ of register updates over registers𝑅
and output alphabet Γ. We require all register updates
in Δ to be single-use and monotone, as defined below:
1. Single-use3.An𝑛-ary register update𝑢 is called single-

use if every 𝑟 ∈ 𝑛𝑅 appears in at most one term from
{𝑢 (𝑠)}𝑠∈𝑅 , and it appears at most once in that term.

2. Monotone4. This condition uses the total order on
registers. An 𝑛-ary register update 𝑢 is called mono-
tone if for every 𝑖 ∈ {1, . . . , 𝑛}, the binary relation
→𝑖 on register names 𝑟, 𝑠 ∈ 𝑅 defined by

𝑟 →𝑖 𝑠 if the 𝑖-th copy of 𝑟 appears in 𝑢 (𝑠),

which is a partial function from 𝑟 to 𝑠 when 𝑢 is
single-use, is monotone:

𝑟1 ≤ 𝑟2 ∧ 𝑟1 →𝑖 𝑠1 ∧ 𝑟2 →𝑖 𝑠2 ⇒ 𝑠1 ≤ 𝑠2

The semantics of the transducer is a tree-to-tree function,
defined as follows. The input is a tree over the input alphabet.
To this tree, apply the transition function, yielding a tree of
register updates. Next, evaluate the tree of register updates,
yielding a register valuation. The output tree is defined to
be the contents of the designated output register.
The main difference of our model with respect to prior

work is that we want to capture tree transformations defined
in first-order logic, as opposed to mso used in [1, 3, 7]. This
is why we use first-order relabellings instead of mso rela-
bellings. For the same reason, we require the register updates
to be monotone, see the discussion in Section 3.3.3.
The main result of this section is that first-order register

transducers are expressively complete for first-order tree-to-
tree transductions.

Theorem 4.3. Every first-order tree-to-tree transduction is
recognised by a first-order register transducer.

The proof, which is in Appendix E, uses the composition
method for logic, like similar proofs for [3, Theorem 4.6]
and [7, Theorem 14]. The converse inclusion in the theorem
is also true. This is can be shown directly without much
difficulty, following the same lines as in [7, Section 5]. The
converse inclusion also follows from other results in this pa-
per: (a) we show in the following sections that every function
computed by the transducer is derivable; and (b) derivable
functions are first-order tree-to-tree transductions by the
easy implication in Theorem 3.4.

3The single-use restriction is a standard feature of transducer models with
linear size increase [1, 3, 7]. It prohibits iterated duplication of registers,
which would lead to exponential size outputs.
4This is notion of monotonicity corresponds to the one used in Section 3.3.3,
see the comments on page 11. A similar notion appears in [11, p. 7].

Proof strategy for Sections 5–6. By Theorem 4.3, to prove
derivability of every first-order tree-to-tree transduction,
and thus finish the proof of our main theorem, it suffices
to prove derivability for first-order register transducers. In
a first-order register transducer, the computation has two
steps: a first-order relabelling, followed by evaluation of the
register updates. The first step is handled in Section 5, and
the second step is handled in Section 6.

5 First-order relabellings
In this section we prove derivability of the first computation
step used in first-order register transducers.

Proposition 5.1. Every first-order relabelling is derivable.

To prove the proposition, we use a decomposition of first-
order relabellings into simpler functions, in the style of the
Krohn-Rhodes theorem. We use the name unary query for a
first-order formulawith one free variable over the vocabulary
of trees. This assumes some implicit alphabet Σ. For a unary
query, define its characteristic function, of type

treesΣ→ trees(Σ + Σ),
to be the function which replaces the label of each node by
its first or second copy, depending on whether the node is
selected by the query. This is a special case of a first-order
relabelling. The key to Proposition 5.1 is the following lemma,
which decomposes first-order relabellings into characteristic
functions of certain basic unary queries.

Lemma 5.2. Every first-order relabelling can be obtained by
composing the following functions:

1. Letter-to-letter homomorphisms. For every finite Γ, Σ
and 𝑓 : Σ→ Γ, its tree lifting trees𝑓 : treesΣ→ treesΓ.

2. For every finite Σ and its subsets Δ, Γ ⊆ Σ, the char-
acteristic functions of the following unary queries over
alphabet Σ:
a. Child: 𝑥 is an 𝑖-th child, for 𝑖 ∈ {1, 2, . . .}

child𝑖 (𝑥);
b. Until: 𝑥 has a descendant 𝑦 with label in Δ, such that

all nodes strictly between 𝑥 and 𝑦 have label in Γ

∃𝑦 𝑦 > 𝑥 ∧ Δ(𝑦) ∧ ∀𝑧 (𝑥 < 𝑧 < 𝑦 ⇒ Γ(𝑧));
c. Since: 𝑥 has an ancestor 𝑦 with label in Δ, such that

all nodes strictly between 𝑥 and 𝑦 have label in Γ

∃𝑦 𝑦 < 𝑥 ∧ Δ(𝑦) ∧ ∀𝑧 (𝑦 < 𝑧 < 𝑥 ⇒ Γ(𝑧)).

The lemma uses a theorem of Schlingloff [26, Theorem
2.6], which says that all first-order definable tree properties
can be defined using a temporal logic with operators simi-
lar to the ones used in items 2 of the lemma. Note that the
temporal logic is a two-way logic, because until depends
on the descendants of the node 𝑥 , while since depends on
the ancestors. In fact, there is no temporal logic which char-
acterises first-order logic, uses only descendants, and has
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finitely many operators [12, Theorem 5.5]. The exact reduc-
tion to Schlingloff’s theorem is in Appendix D.

It remains to show that all of the functions from Lemma 5.2
are derivable. The letter-to-letter homomorphisms from item 1
are a special case of homomorphisms discussed in Exam-
ple 3.3, and hence derivable. In Appendix D, we show that
the functions from item 2 are also derivable. In the proof, a
key role is played by the factorisation functions discussed in
Section 3.3.1.

6 Evaluation of register updates
In this section, we deal with the second computation phase in
a first-order register transducer, namely evaluating register
updates. As discussed in the end of Section 4, this completes
the proof of our main theorem.

Our proof uses the language of 𝜆-calculus. In Section 6.1,
we discuss derivability of normalisation of 𝜆-terms. In Sec-
tion 6.2, we reduce evaluation of register updates to unfold-
ing the matrix power and normalisation of 𝜆-terms.

6.1 Normalisation of simply typed linear 𝜆-terms
We assume that the reader is familiar with the basic notions
of the simply typed 𝜆-calculus; more detailed definitions can
be found in [27]. Define simple types to be expressions gener-
ated from an atomic type 𝑜 using a binary arrow constructor,
as in the following examples:

𝑜 𝑜 → 𝑜 (𝑜 → 𝑜) → (𝑜 → 𝑜) · · ·

In this paper, the atomic type 𝑜 represents trees over the
output alphabet. Let𝑋 be a set of variables, each one with an
associated simple type. A 𝜆-term is any expression that can
be built from the variables, using 𝜆-abstraction 𝜆𝑥 .𝑀 and
term application𝑀𝑁 . We say that a 𝜆-term is well-typed if
one can associate to it a simple type according to the usual
typing rules of simply typed 𝜆-calculus, see [27, Definition
3.2.1]. Because the variables are typed, a 𝜆-term has either
a unique type, or is not well-typed. Here is an example of a
well-typed 𝜆-term, with the type annotation in blue:

(𝑜→𝑜)→𝑜→𝑜︷                   ︸︸                   ︷
𝜆𝑦𝑜→𝑜 . 𝜆𝑥𝑜 . 𝑦 (𝑦𝑥).︸ ︷︷ ︸

𝑜

We use the standard notion of 𝛽-reduction for 𝜆-terms,
see [27, Definition 1.2.1]. Because of normalisation and con-
fluence for the simply typed 𝜆-calculus, every well-typed
𝜆-term has a unique normal form, i.e a 𝜆-term to which it 𝛽-
reduces (in zero or more steps), and which cannot be further
𝛽-reduced.
A 𝜆-term can be seen as a tree over the ranked alphabet

arity 0︷        ︸︸        ︷
{𝑥 : 𝑥 ∈ 𝑋 } ∪

arity 1︷         ︸︸         ︷
{𝜆𝑥 : 𝑥 ∈ 𝑋 } ∪

arity 2︷︸︸︷
{@} (1)

where @ represents term application. Using this representa-
tion, and assuming that the set of variables is finite, it makes
sense to view normalisation as a tree-to-tree function

𝜆-term ↦→ its normal form,

and ask about its derivability. We show that this function is
derivable, under two assumptions on the input 𝜆-term.
The first assumption is that the input 𝜆-term is linear:

every bound variable is exactly once in its scope5, but free
variables are allowed to appear multiple times. The second
assumption is that the input 𝜆-term can be typed using a
fixed finite set of types T : it has type in T , and the same is
true for all of its sub-terms. In Appendix F.1, we explain why
the assumptions are needed.

Theorem 6.1. Let 𝑋 be a finite set of simply typed vari-
ables, and let T be a finite set of simple types. The following
tree-to-tree function is derivable, assuming that 𝜆-terms are
represented as trees:

• Input. A 𝜆-term over variables 𝑋 .
• Output. Its normal form, if it is linear and can be typed
using T , and undefined otherwise.

This is one of our main technical contributions, and its
proof is in Appendix F. A key role in the proof is played by
the pre-order function.

6.2 Evaluation of register updates
Equipped with Theorem 6.1, we prove derivability of evalua-
tion of register updates. Fix a first-order register transducer.
From now on, when speaking about register updates or reg-
ister valuations, we mean those of the fixed transducer. Our
goal is to prove the following lemma, which completes the
proof of our main theorem.

Lemma 6.2. Consider the tree-to-tree function, which inputs
a tree of register updates, evaluates it, and outputs the contents
of the designated output register. This function is derivable.

Output letters in 𝜆-terms. Wewill use 𝜆-terms to represent
register updates, which involve letters of the output alphabet
Γ. Therefore, for the rest of Section 6.2, we use an extended
notion of 𝜆-terms, which allows building 𝜆-terms of the form

𝑎(𝑀1, . . . , 𝑀𝑛) for every 𝑎 ∈ Γ of arity 𝑛. (2)

The typing rules are extended as follows: if the arguments
𝑀1, . . . , 𝑀𝑛 all have type 𝑜 (no other type is allowed for ar-
guments of 𝑎), then (2) has type 𝑜 . These 𝜆-terms can be
represented as trees, as in the following picture:

λx

x

@

5This restriction could easily be relaxed to “at most once”.
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Theorem 6.1 works without change for the extended no-
tion of 𝜆-terms used in this section. Note that there is no
𝛽-reduction rule for 𝜆-terms of the form (2).

𝜆-representations of register updates. To prove Lemma 6.2,
we represent register updates using a matrix power of 𝜆-
terms. The idea is that the matrix power handles the parallel
evaluation of registers.

Let 𝑋 be a set of variables {𝑥1 . . . , 𝑥𝑚}, all of them having
type 𝑜 , where𝑚 is the maximal arity among registers. Define
Γ𝜆 to be the output alphabet Γ plus the ranked alphabet
defined in (1) for tree representations of 𝜆-terms.

Recall that a register update – of arity say 𝑛 – consists of
a family of terms over alphabet Γ + 𝑛𝑅, one for each register
𝑟 ∈ 𝑅. We begin by explaining the 𝜆-representation for terms
in the family, which is a function of type

T(Γ + 𝑛𝑅)
𝜆-representation // TΓ𝜆 . (3)

This function is not arity preserving, which is why it is not
written in red. Define a placeholder to be an element of 𝑛𝑅;
we write placeholders as 𝑟𝑖 with 𝑟 ∈ 𝑅 and 𝑖 ∈ {1, . . . , 𝑛}.
The function (3) is explained in the following picture:

r1

r2s1

a term t with
placeholders

its λ-representation one  bound
variable

for each port
of t

each port of t
is replaced by

a corresponding
variable

λx1

λx2

@

@

@

x1

x2

@

each placeholder of t is replaced by 
a port applied to its children using @

Note how the arities need not be preserved: the arity of
the output is the number of placeholders in the input, which
need not be the same as the number of ports in the input. The
correspondence of ports in the output termwith placeholders
in the input term is defined with respect to some arbitrary
order on the set 𝑛𝑅 of placeholders, say lexicographic with
respect to the order on registers and {1, . . . , 𝑛}.

Having defined the 𝜆-representation of terms with place-
holders, we lift it a 𝜆-representation of register updates

register updates
𝜆-representation // (TΓ𝜆) [𝑘 ] , (4)

where 𝑘 is the number of registers. This function is arity
preserving.

For a register update (𝑡1, . . . , 𝑡𝑘 ), where 𝑡𝑖 is the term with
placeholders used in the 𝑖-th register, its 𝜆-representation is

trees(register updates)

evaluate
register
updates

(a)

��

trees(𝜆-representation)
(c)

// trees((TΓ𝜆) [𝑘 ])
unfold
matrix
power

(d)
��

arity 0 elements of

(TΓ𝜆) [𝑘 ]
normalise
𝜆-terms(e)

��
register valuations

𝜆-representation

(b) // arity 0 elements of

(TΓ𝜆) [𝑘 ]

Figure 6

defined to be

(𝜆-representation of 𝑡1, . . . , 𝜆-representation of 𝑡𝑘 )/𝑓 ,

where the grouping function 𝑓 connects a placeholder 𝑟𝑖 to
the 𝑟 -th sub-port of port 𝑖 . Here is a picture

a register valuation its λ-representation

r2r1 s2s1

x1

λx1

@ @

r1

r s

r2

r

argument 1 argument 2 s1 s2

s

The following three properties of the 𝜆-representation for
register updates will be used later in the proof:
(P1) If we restrict the domain to a finite set of register up-

dates, e.g. those used in the transducer, then it is a
prime function, by virtue of having finite domain.

(P2) A register update is monotone (as in Definition 4.2) if
and only if its 𝜆-representation is monotone (as defined
in Section 3.3.3 for the matrix power).

(P3) Every bound variable in the 𝜆-representation is used
exactly once, and the types that appear are of the form

at most (maximal arity in Γ) times︷                        ︸︸                        ︷
𝑜 → 𝑜 → · · · → 𝑜 → 𝑜 → 𝑜,

hence Theorem 6.1 can be applied.

Putting it all together. To finish the proof of Lemma 6.2,
we observe that the semantics of a register automaton are
translated – under the 𝜆-representation – to unfolding the
matrix power and normalising a 𝜆-term. This observation is
formalised by saying that the diagram in Figure 6 commutes,
and it follows directly from the definitions. Instead of giving
a proof, we illustrate it on an example in Figure 7.
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x1

λx1

@ @
r2r1 s2s1

x1

λx1

λx1

@ @

(a)

(b)

(c)

(d)

(e)

λx1 λx1

x1 x1

λx1 λx1

x1 x1

x1

Figure 7. Example for Figure 6.

We claim that all of the arrows (c), (d) and (e) on the right-
down path in Figure 6 are derivable:

(c) Since we work with a fixed register transducer, there is
a finite subset Δ of register updates used, and therefore
operation (a) in the figure is derivable by property (P1).

(d) Arrow (d) represents the unfolding of thematrix power.
By property (P2), the outputs of arrow (c) are mono-
tone, and so we can use the monotone unfolding opera-
tion, which is a prime function and therefore derivable.

(e) Finally, arrow (e) represents normalisation of 𝜆-terms.
This arrow is derivable by Theorem 6.1. The assump-
tions of this theorem are met by property (P3).

Since the arrows (c), (d), (e) are derivable, and the diagram
commutes, it follows that the composition of the arrows
(a) and (b) is derivable. In other words, there is a deriv-
able function which maps a tree of register updates to the
𝜆-representation of the resulting register valuation (when
viewing a register valuation as a special case of a register

update of arity zero). Finally, to get the contents of the out-
put register, we get rid of the fold in the matrix power by
using the last function from Figure 2, and project onto the
coordinate for the output register.

This completes the proof of Lemma 6.2, and therefore also
of the main theorem.

7 Monadic second-order transductions
We finish the paper by discussing a variant of our main
theorem for mso tree-to-tree transductions. We simply add,
as prime functions, all mso relabellings, which are defined the
same way as the first-order relabellings from Definition 4.1,
except that the unary queries can use mso logic instead of
first-order logic.

Theorem 7.1. A tree-to-tree function is an mso transduction
if and only if it can be derived using Definition 3.2 extended
by adding all mso relabellings as prime functions.

Proof. In [14, Corollary 1], Colcombet shows that every mso
formula on trees can be replaced by a first-order formula that
runs on an mso relabelling of the input tree. Applying that
result to transductions, we see that every mso tree-to-tree
transduction can be decomposed as: (a) an mso relabelling;
followed by (b) a first-order tree-to-tree transduction. The
theorem follows. □

The solution above is not particularly subtle, and contrasts
our results for first-order logic and chain logic, where we
took care to have a small number of primitives. This was
possible thanks in part to the decomposition of first-order
queries into simpler ones that was is in Section 5, and the
Krohn-Rhodes theorem that is used in the proof of Theo-
rem 3.6 about chain logic. In principle, a decomposition of
mso relabellings could be possible, but proving it would likely
require developing a new decomposition theory for regular
tree languages, in the style of the Krohn-Rhodes theorem,
which we feel is beyond the scope of this paper. One would
expect a Krohn-Rhodes theorem for trees to yield an effective
characterisation of first-order logic – as it does for words
– but finding such a characterisation remains a major open
problem [9, Section 3].
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A Unfolding the matrix power
In this part of the appendix, we define formally the unfolding
function

TΣ [𝑘 ] → (TΣ) [𝑘 ]

that was described in Section 3.3.3. We present the definition
in a slightly verbose manner, by decomposing unfolding into
simpler operations. The presentation highlights the inductive
character of unfolding, and the reasons why we are uneasy
about it being a prime operation.

A.1 Shallow terms
We begin by defining unfolding for terms of depth two, called
shallow terms. Later, we extend the definition to all other
terms by induction. We describe shallow terms as a separate
datatype, since this datatype will also be used later, in Sec-
tion G, to derive the (monotone) unfolding operation. For
now, shallow terms are just an intermediate type used to
define formally the unfolding function.

Let Σ and Γ be two ranked sets. The shallow terms datatype,
which is denoted Σ.Γ, consists of expressions of the form
𝑎(𝑏1, . . . , 𝑏𝑛) where 𝑎 is an 𝑛-ary element of Σ and 𝑏1, . . . , 𝑏𝑛
are elements of Γ. The arity of such an expression is the sum
of arities of 𝑏1, . . . , 𝑏𝑛 . We draw shallow terms as terms of
depth two, where the root is from Σ and the children are
from Γ:

the root is from Σ

all children are from Γ

An equivalent definition of shallow terms, in terms of prod-
ucts and co-products, is

Σ.Γ
def
=

∐
𝑎∈Σ

arity of 𝑎 times︷        ︸︸        ︷
Γ × · · · × Γ, (5)

A.2 Terms as an inductive datatype
Using shallow terms, we can define the set of terms as the
least solution of the equation

TΣ = { } + Σ.(TΣ).

With this inductive definition, in order to define an operation
of type TΣ→ Γ on terms, it is enough to explain the induc-
tion base for the identity term and the induction step for
shallow unfolding, as captured by two operations of types

{ } → Γ︸     ︷︷     ︸
induction base

Σ.Γ → Γ.︸     ︷︷     ︸
induction step

We use such an induction below to define general unfolding.
The crucial step is defining the induction step, which the
unfolding for shallow terms defined in Section A.3 below.

As mentioned at the beginning of Section 3, the guiding
principle behind our approach is to avoid iteration mecha-
nisms. The inductive definition of general unfolding could
be seen as such an iteration mechanism; this is the reason
for Section G, where (monotone) unfolding is derived using
simpler operations. In contrast, we believe that iteration is
indeed avoided by the operations used in the induction step
that are presented in Section A.3 below.

We do not formalise what we mean by “avoiding iteration”.
One possible direction would be to say that an operation
“avoids iteration” if it can be computed by a family of bounded
depth circuits, as in the circuit class AC0. A further require-
ment could be that the family of circuits not only exists, but
it is also easy to see.

A.3 Unfolding for shallow terms
The induction step in general unfolding is the operation

Σ [𝑘 ] .Γ [𝑘 ] // (Σ.Γ) [𝑘 ],

which we call shallow unfolding, and which is explained in
the following picture:

shallow term of matrix powers its unfolding

To define this operation formally, we further decompose it
using three functions manipulating shallow terms. These
functions, which are used here as intermediate functions
in the definition of shallow unfolding, will become prime
functions when we decompose the unfolding function in
Appendix G.

A.3.1 Distribute shallow terms over fold
Let Γ and Σ be two datatypes. Consider the function 𝑓1

Γ.F𝑘Σ
𝑓1−−−−−−→F𝑘 (Γ.Σ)

which distributes shallow terms over folding. This function
is illustrated by the following picture

and defined by

𝑎(𝑏1/𝑔1, . . . , 𝑏𝑛/𝑔𝑛) ↦→ 𝑎(𝑏1, . . . , 𝑏𝑛)/𝑔
14
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where 𝑔 is the function defined as follows. For every 𝑖 ∈
{1, . . . , 𝑛}, if 𝑗 ∈ {1, . . . , arity(𝑏𝑖 )} then

Position of the 𝑗-th port of 𝑏𝑖 is shifted︷            ︸︸            ︷
𝑗 + Σ

𝑙<𝑖
arity(𝑏𝑙 )
_

𝑔
��(

𝜋2 (𝑔𝑖 ( 𝑗)) + Σ
𝑙<𝑖

arity(𝑏𝑙/𝑔𝑙 )︸                            ︷︷                            ︸
Position of the group is shifted

, 𝜋1 (𝑔𝑖 ( 𝑗))︸     ︷︷     ︸
Position inside

the group is unchaged

)

A.3.2 Matching function
We now define a function

(F𝑘Γ).(Σ𝑘 )
𝑓2−−−−−−→ F1 (Γ.Σ)

which matches the 𝑘-th fold with the 𝑘-th power6. The func-
tion 𝑓2 is illustrated by the following picture

and defined by

(𝑎/𝑔) ((𝑏1,1, . . . , 𝑏1,𝑘 ), . . . , (𝑏𝑛,1, . . . , 𝑏𝑛,𝑘 ))_

𝑓2

��
𝑎(𝑏𝑔 (1) , . . . , 𝑏𝑔 (𝑚) )/𝑔′

where𝑚 is the arity of 𝑎 and the grouping function 𝑔′ is the
natural embedding of ports

ports of 𝑎(𝑏𝑔 (1) , . . . , 𝑏𝑔 (𝑚) ))

��( ∐
𝑖∈{1,...,𝑛}
𝑗 ∈{1,...,𝑘 }

ports of 𝑏𝑖, 𝑗 , 1
)

6In order to reduce the number of parentheses, in the rest of the paper we
assume a notational convention where the unary datatype constructors
– like folding, terms or powering – have priority over the binary shallow
term constructor. Under this convention, the operation 𝑓2 is written as

F𝑘Γ.Σ
𝑘 𝑓2−−−−−−→ F1 (Γ.Σ)

A.3.3 Distribute shallow terms over product
Finally, consider the function

Γ𝑘 .Σ
𝑓3−−−−−−→ (Γ.Σ)𝑘

which distributes shallow terms over the 𝑘-th power. This
function is illustrated by the following picture

and defined by

(𝑎1, . . . , 𝑎𝑘 ) (𝑏1, . . . , 𝑏𝑛)_

𝑓2

��
(𝑎1 (𝑏1, . . . , 𝑏ar1 ), 𝑎2 (𝑏ar1+1, . . . , 𝑏ar2 ), . . . , 𝑎𝑘 (𝑏ar𝑘−1+1, . . . , 𝑏ar𝑘 ))

where ar𝑖 is the arity of 𝑎𝑖 for 𝑖 ∈ {1, . . . , 𝑘}.

A.3.4 Unfolding shallow terms.
The following diagram defines unfolding of shallow terms
in terms of the operations 𝑓1, 𝑓2, 𝑓3 defined above:

Σ [𝑘 ] .Γ [𝑘 ] = F𝑘Σ𝑘 .F𝑘Γ𝑘

𝑓1
��

Shallow unfold // F𝑘 (Σ.Γ)𝑘 = (Σ.Γ) [𝑘 ]

F𝑘 (F𝑘Σ𝑘 .Γ𝑘 ) flat◦F𝑘 𝑓2
// F𝑘 (Σ𝑘 .Γ)

F𝑘 𝑓3

OO

A.4 Definition of unfolding
Having defined shallow unfolding, we apply the induction
principle described in Section A.2 to define unfolding for
general terms

unfold : TΣ [𝑘 ] → (TΣ) [𝑘 ] .

If the input to general unfolding is the identity term , then
the output is:

a tuple of k identity terms 
with all their ports folded 
into one

Otherwise, if the input is a nonempty term 𝑎(𝑡1, . . . , 𝑡𝑛) then
the output is obtained by first applying term unfolding to to
the smaller terms 𝑡1, . . . , 𝑡𝑛 , and then applying the shallow
unfold.

B Examples
To illustrate derivable functions, we present a series of ex-
amples, some of them will be useful later. In the rest of this
section, for every 𝑘 ∈ {1, 2, . . . } the set 𝑘 designates the
ranked set containing a single element of arity 𝑘 that we
denote by simply by 𝑘 .

15



Conference’17, July 2017, Washington, DC, USA Mikołaj Bojańczyk and Amina Doumane

Example B.1 (Parent and children). Let Γ be a finite type.
We define Γ0 to be the ranked set obtained from Γ by setting
the arity of every element to 0. Consider the function:

Parent : TΓ → T(Γ × (Γ0 + 0))
which adds to every node of a term in TΣ the label of its
parent if it has one, and 0 if it is the root.
Let us explain how Parent can be derived. To illustrate

this construction, we use the following alphabet Γ

and the following term as a running example.

We denote by Γ1 the ranked set obtained from Γ by setting the
arity of every element to 1. If 𝑎 is a element of Γ, we denote
by 𝑎1 the corresponding element of Γ1. In our example, the
alphabet Γ1 is

1. First, we apply the homomorphism

Hom𝑔 : TΓ → T(Γ + Γ1 + 1)
where 𝑔 is defined on the elements of Γ as follows

𝑔 : Γ→ T(Γ + Γ1 + 1)
𝑎 ↦→ 𝑎(1(𝑎1 ( )), . . . , 1(𝑎1 ( )))

In our example, the action of 𝑔 on the elements of Γ
looks like this

Hence, after the application of the homomorphism
Hom𝑔, our initial term becomes

2. We apply the factorization

fact↑ : T(Γ + Γ1 + 1) → T(T(Γ + Γ1) + T1)
to separate the symbol 1 form the other symbols. After
this operation, each node lies in the same factor as (the

element of Γ1 representing) its parent. In our example,
the obtained term is the following

3. Consider the function
ℎ : T1→ T((Γ + Γ1) × (Γ0 + 0))

which is the empty term constant function. It is deriv-
able by lifting the empty term constant function over
1 to terms. And let 𝑘 be the function

𝑘 : T(Γ + Γ1) → T((Γ + Γ1) × (Γ0 + 0))
which is the identity function, except for the following
terms in which it is defined as follows

𝑎( , . . . , ) ↦→ (𝑎, 0) ( , . . . , )
𝑏1 (𝑎( , . . . , )) ↦→ (𝑎, 𝑏0) ( , . . . , )

𝑏1 ( ) ↦→
We apply the function ℎ to the factors T1 and the function
𝑘 to the factors T(Γ + Γ1). Doing so, we obtain a term in
TT((Γ + Γ1) × (Γ0 + 0)), which we flatten, then we erase the
symbols Γ1 using the function Filter of Example 3.3 to obtain
the desired term.

If Γ is a finite ranked set, we define Γ∗ as∐
𝑖≤ maximal arity in Γ

Γ × · · · × Γ︸       ︷︷       ︸
𝑖 times

Now consider the function
Children : TΓ → T(Γ × (Γ0 + 0)∗)

which tags every node of a term in TΓ by the list of its
children symbols. When a child is a port, it is marked by 0 in
the list. The function Children can be derived using a similar
construction as above.

Example B.2 (Root and leaves). Let Σ be a finite type and
𝑓 : Σ→ Γ, 𝑔 : Σ→ Γ be derivable functions. The function

Root𝑓 ,𝑔 : TΣ→ TΓ

which applies 𝑓 to the root and 𝑔 to the rest of the tree is a
derivable function. To show this, we first start by applying
the function Parent. Doing so, the root can be distinguished
from the other nodes since it will be tagged by 0.

The function ℎ defined below is derivable since its domain
is finite.

ℎ : Σ × (Σ0 + 0)→ Γ

(𝑎, 0) ↦→ 𝑓 (𝑎)
(𝑎, 𝑏) ↦→ 𝑔(𝑎) if 𝑏 ≠ 0.
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We lift ℎ to terms to conclude.
Similarly, the function

Leaves𝑓 ,𝑔 : TΣ→ TΓ

which applies 𝑓 to the leaves and 𝑔 to the rest of the tree
is derivable. This is done using the same ideas as before,
but invoking the function Children instead of the function
Parent: leaves can be distinguished from the other nodes
since they are tagged either by a list of 0 or the empty list.

Example B.3 (Descendants and ancestors). If Σ is a finite
type and Γ ⊆ Σ, then the functions
• DescendantΓ : TΣ→ T(Σ + Σ) which replaces the la-
bel of each node by its first or second copy, depending
on whether it has a descendant in Γ,
• AncestorΓ : TΣ→ T(Σ + Σ) which replaces the label
of each node by its first or second copy, depending on
whether it has a descendant in Γ,

are derivable.
To derive DescendantΓ , we start by applying the factor-

ization
fact↓ : TΣ→ T(TΓ + T(Σ \ Γ))

which regroups the elements of Σ and the elements of Σ \ Γ
into factors depending on whether they have the same an-
cestors of the same type.

Obviously, all the nodes of the Γ factors have a descendant
in Γ. In the Σ \ Γ factors which are not leaves in the factor-
ized term, all the nodes have a Γ descendant in the original
term. To show this, take 𝑓 to be one of these factors, and
suppose by contradiction that one of its nodes does not have
a descendant in Γ. By definition of fact↑, all the elements
of 𝑓 do not have a descendant in Γ as well. Since 𝑓 is not a
leaf, it has a child 𝑔. The factor 𝑔 cannot be a Γ factor as the
nodes of 𝑓 would have a descendant in Γ. The factor 𝑔 is then
necessarily a Σ \ Γ factor. If a node of 𝑔 has a descendant
in Γ, this would give a Γ descendant to one of the node of
𝑓 . Thus all the nodes of 𝑔 are in Σ \ Γ and do not have a
descendant in Γ, meaning that 𝑓 and 𝑔 are actually the same
factor, which gives a contradiction. Finally, the Σ \ Γ factors
which are leaves do not have a descendant in Γ. With these
observations, we can now implement DescendantΓ .
Let us consider the functions

YesΓ : Γ → Σ + Σ
YesΣ\Γ: Σ \ Γ → Σ + Σ
NoΣ\Γ: Σ \ Γ → Σ + Σ

which replaces the label of each node by its first copy for
YesΓ and YesΣ\Γ , and by its second copy for NoΣ\Γ . The three
functions are derivable as their domains are finite. Consider
the functions

𝑓 :=TYesΓ + TNoΣ\Γ : TΓ + T(Σ \ Γ) → T(Σ + Σ)
𝑔 :=TYesΓ + TYesΣ\Γ : TΓ + T(Σ \ Γ) → T(Σ + Σ)

The descendant function is obtained by applying leaves𝑓 ,𝑔
followed by a flattening.
To derive the function AncestorΓ , we apply first a the

factorization

fact↑ : TΣ→ T(TΓ + T(Σ \ Γ))

which regroups the elements of Σ and the elements of Σ \ Γ
into factors depending on whether they have the same de-
scendants of the same type. Using similar arguments as be-
fore, we can conclude that:
• The nodes inside Γ factors have Γ ancestors.
• If a Σ \ Γ factor is the root of the factorized term, then
its nodes do not have a Γ ancestor.
• If a Σ \ Γ factor is not the root of the factorized term,
then its nodes do have a Γ [𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠𝑎𝑛𝑑𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠]
ancestor.

The ancestor function is obtained by applying root𝑓 ,𝑔 fol-
lowed by a flattening.

Example B.4 (Error raising.). We can think of the type ⊥ as
an error type. Indeed, the following raising error functions
are derivable.

Lemma B.5. Let Σ and Γ be two datatypes. The functions

T(Σ + ⊥) → TΣ + ⊥
(Σ + ⊥) × (Γ + ⊥) → Σ × Γ + ⊥
(Σ + ⊥) .(Γ + ⊥) → Σ.Γ + ⊥

F𝑘 (Σ + ⊥) → F𝑘Σ + ⊥

which are defined as follows

𝑡 of arity 𝑛 ↦→
{
𝑡 if 𝑡 does not contain any element of ⊥,
𝑛 otherwise.

are derivable.

These functions can be easily derived using Proposition 5.1
and distributivity prime functions. The details of the proof
are left as an exercise to the reader.

Example B.6 (Partial functions.). Thinking of ⊥ as an error
datatype, a function of type Σ→ Γ + ⊥ can be seen as a
partial function from Σ to Γ. We write

Σ ⇀ Γ

as a notation for the function type Σ→ Γ + ⊥. Using the
error raising mechanisms discussed earlier, we can manipu-
late transparently partial function. Indeed, all datatype con-
structors can be lifted to partial functions, by composing
the liftings (1)–(4) with the error raising functions from
Lemma B.5. For example, if 𝑓 : Σ ⇀ Γ is a partial function,
then T𝑓 : TΣ ⇀ TΓ is defined as the composition

TΣ
T𝑓
−−→ T(Γ + ⊥)

Error raising
−−−−−−−−−→ TΓ + ⊥.
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C Derivable functions can be described in
first-order logic

The goal of this section is to show the right-to-left implica-
tion of Theorem 3.4, which says that derivable functions can
be implemented by first-order transductions.

As discussed in the body of the paper, we proceed by induc-
tion on the derivation. During this induction, we will need to
show that every prime function is a first-order transduction.
Prime functions are not tree-to-tree functions, instead they
transform dataypes into datatypes. This is the reason why
we need

• to generalize tree-to-tree transductions into transduc-
tions that can transform models over arbitrary vocab-
ularies (and not only the vocabulary of trees).
• show how datatypes (terms, pairs, copairs and folds)
can be encoded as models over a well chosen vocabu-
lary.More precisely, wewill associate to every datatype
Σ a relational vocabulary that we call vocabulary of Σ.
Structures over this vocabulary will be called models
over Σ. Then we will define a function

Σ
𝑥 ↦→𝑥 // models over Σ

which assigns to each element 𝑥 ∈ Σ a corresponding
model over Σ, which is denoted by 𝑥 .

Right-to-left implication of Theorem 3.4 can be then gen-
eralized to the following statement, more suited to a proof
by induction:

Proposition C.1. Let Γ and Σ be two datatype. For every
derivable function 𝑓 , there is a first-order transduction 𝑔 such
that the following diagram commutes

Σ

𝑥 ↦→𝑥

��

𝑓 // Γ

𝑥 ↦→𝑥

��
models over Σ

𝑔
// models over Γ

The rest of this section is organized as follows. We define
first-order transductions transforming arbitrary models in
Section C.1. In Section C.2 we define the vocabularies for
the datatypes and the model representation 𝑥 ↦→ 𝑥 . Finally,
we prove Proposition C.1 which gives as a corollary the
right-to-left implication of Theorem 3.4.

C.1 First-order transductions
The following definition introduces first-order transductions,
which generalizes tree-to-tree transductions given in Defini-
tion 2.2 to arbitrary models.

Definition C.2 (First-order transduction). A first-order
transduction is defined to be any composition of the following
two kinds of transformations on structures:

1. Copying. Fix some relational vocabulary 𝜎 and let 𝑘 ∈
{1, 2, . . .}. Define 𝑘-copying to be the operation of type

models over 𝜎

��
models over 𝜎 extended
with a 𝑘-ary relation copy

which inputs a model A, and outputs 𝑘 disjoint copies
ofA, where the copy relation is interpreted as the set of
tuples (𝑎1, . . . , 𝑎𝑘 ) such that, for some 𝑎 ∈ A, the first
copy of 𝑎 is 𝑎1, the second copy of 𝑎 is 𝑎2, etc. The copy
relation is not commutative, because we distinguish
the copies.

2. Non-copying first-order transduction. The syntax of a
non-copying first-order transduction is given by:
a. Input relational vocabulary 𝜎 and output relational

vocalbulary 𝛾 .
b. A first-order universe formula 𝜑 (𝑥) over 𝜎 .
c. For every relation 𝑅 in vacubulary 𝛾 , a first-order

formula 𝜑𝑅 (𝑥1, . . . , 𝑥arity(𝑅) ) over 𝜎 .
The semantics of a non-copying first-order transduc-
tion is a function

models over 𝜎

��
models over 𝛾

defined as follows. If the input model is A, then the
output model is defined as follows: the universe is el-
ements of A which satisfy the universe formula, and
each relation 𝑅 is interpreted as those tuples that sat-
isfy 𝜑𝑅 .

The notion of copying used in the above definition is
slightly different from the notion of copying used for tree-to-
tree transductions in Definition 2.2, which was specifically
tailored to stay within the realm of trees. Nevertheless, the
two definitions are easily seen to define the same class of
tree-to-tree functions.

C.2 Datatypes as models.
Let us show how to encode datatypes as relational vocabu-
laries and data as models over these vocabularies.

Definition C.3 (Associated models for terms, pairs, co-pairs,
folds.). To each type Σ we associate a vocabulary, called the
vocabulary of Σ, and a map
𝑎 ∈ Σ ↦→ 𝑎 ∈ models over the vocabulary of Σ︸                                           ︷︷                                           ︸

associated model of 𝑎

.

Furthermore, for each 𝑎 ∈ Σ we distinguish a sequence
(whose length is the arity of 𝑎) of elements in 𝑎, which are
called the ports of 𝑎. The definitions are by induction on the
structure of Σ, as given below.

18



First-order tree-to-tree functions Conference’17, July 2017, Washington, DC, USA

• Finite ranked sets. Elements of a ranked set

Σ = {𝑎1, . . . , 𝑎𝑘 }

are modelled using a vocabulary which has unary rela-
tions 𝑎1, . . . , 𝑎𝑘 and 𝑃1, . . . , 𝑃𝑚 where𝑚 is the maximal
arity of elements in Σ. For 𝑎 ∈ Σ of arity𝑛, the universe
of 𝑎 is {0, 1, . . . , 𝑛}, with the ports being 1, . . . , 𝑛. The
relation 𝑃𝑖 is interpreted as {𝑖} when 𝑖 ∈ {1, . . . , 𝑛}
and as the empty set otherwise. The relation 𝑎𝑖 is in-
terpreted as {0} when 𝑎 = 𝑎𝑖 and as the empty set
otherwise.
• Coproduct. Elements of the coproduct Σ1 + Σ2 are mod-
elled using the disjoint union of the vocabularies of Σ1
and Σ2. If an element of the coproduct comes from Σ1,
then its associated model is defined as for the type Σ1,
with the remaining relations from the vocabulary of Σ2
interpreted as empty sets. The definition is analogous
for elements from Σ2.
• Product. Pairs in Σ1 × Σ2 are modelled using the dis-
joint union of the vocabularies of Σ1 and Σ2. For (𝑎1, 𝑎2),
the associated model is the disjoint union of models
𝑎1+𝑎2, with the relations of 𝑎1 using the vocabulary of
Σ1, and the relations of 𝑎2 using the vocabulary Σ1. If
𝑛1 is the arity of 𝑎1, then the first 𝑛1 ports are inherited
from 𝑎1 and the remaining ports are inherited from 𝑎2.
• Folding. For 𝑘 ∈ {1, 2, . . .}, elements of F𝑘Σ are mod-
elled using the vocabulary of Σ plus two extra binary
relations ⊏ and 𝑅. If 𝑎 ∈ Σ has arity 𝑛𝑘 , then the model
associated to 𝑎/𝑓 – which has arity 𝑛 – is obtained
from 𝑎 by adding a copy of the model below, where ⊏
is the natural ordering on integers

({1, . . . , 𝑛}, ⊏),

whose elements are used as the ports, and interpreting
the binary relation 𝑅 as

{(𝑖-th port of 𝑎, 𝑓 (𝑖)) : 𝑖 ∈ {1, . . . , 𝑛𝑘}}

• Terms. Terms in TΣ are modelled using vocabulary of
Σ extended with two fresh binary relations < and ⊏.
Let 𝑡 ∈ TΣ. Consider the disjoint union of models∐

𝑥 ∈non-port nodes in 𝑡

𝑎(𝑥), (6)

where 𝑎(𝑥) is the model over vocabulary of Σ that is
defined by induction assumption. In the above disjoint
union, the same vocabulary, namely the vocabulary
of Σ, is used for all parts of the disjoint union. Next,
consider the model

({1, . . . , 𝑛}, ⊏) (7)

where ⊏ is the natural ordering on {1, . . . , 𝑛}. The
model of 𝑡 is defined by taking the disjoint union of
the models in (6) and (7), and defining the descendent
relation < as the set of pairs (𝑢, 𝑣) such that:

– either 𝑢 is the 𝑖-th port of 𝑎(𝑥) for some node 𝑥 of
𝑎, 𝑣 is a port of 𝑎(𝑦) for some node 𝑦 which is a
descendent of the 𝑖-th child of 𝑥 .

– or 𝑢 is the 𝑖-th port of 𝑎(𝑥) for some node 𝑥 of 𝑎, 𝑣 =

𝑗 ∈ {1, . . . , 𝑛} and the 𝑗-th port of 𝑎 is a descendent
of the 𝑖-th child of 𝑥 .

The above definition creates a certain ambiguity for trees,
because if 𝑡 is a tree over a finite ranked set Σ, then 𝑡 can be
understood in two ways: as per Definition 2.1 for trees, or
as per Definition C.3 when 𝑡 is viewed as a special case of a
term 𝑡 ∈ TΣ. Since we only use first-order transductions to
transform relational structures, this ambiguity is not a prob-
lem, because one can easily define first-order transductions
which map one definition of 𝑡 to the other.

C.3 Proof of Proposition C.1
The proof proceeds by induction, following the definition
of derivable functions. In the induction step, we have to
deal with function composition and the lifting of function
along the datatype constructors. First-order transductions
are closed under composition by definition, while the liftings
are immediate.

In the induction base, we need to show that all of the prime
functions are first-order transductions. All the cases are easy,
and consist mainly on unfolding the definitions; this is the
point of calling these functions prime. There is one exception,
which requires some more explanation, namely monotone
unfolding. We explain below just one of the easy functions,
the unit function Σ→ TΣ, and the monotone unfolding. The
other prime functions are left as an exercise.

C.3.1 A first-order transduction for the term unit
In the following, it will be convenient to use, as part of the
vocabulary of Σ, a unary relation PortΣ which selects the
ports of the structures over the vocabulary of Σ; and a binary
relation ⊏Σ which orders these ports. By induction on Σ,
we can show that both relations are definable by first-order
formulas over the vocabulary of Σ.

Given an element 𝑥 of Σ, let us show how unit(𝑥) can be
implemented using a first-order transduction. The copying
constant is 2, the first copy will contain the whole structure
𝑥 and the second copy will select only the ports of 𝑥 which
will serve as the ports of the structure unit(𝑥), as illustrated
by the following picture
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The universe formulas are then:

𝜑1 (𝑥) = True 𝜑2 (𝑥) = PortΣ (𝑥)
In the first copy, the vocabulary of Σ will be interpreted as
in the original structure, and as the empty set in the second
copy. That is, for every unary relation 𝑅 and for every binary
relation 𝑆 in the vocabulary of Σ, we set:

𝜑1
𝑅 (𝑥) = 𝑅(𝑥) 𝜑

1,1
𝑆
(𝑥,𝑦) = 𝑆 (𝑥,𝑦)

𝜑2
𝑅 (𝑥) = False 𝜑

2,2
𝑆
(𝑥,𝑦) = False

Let us interpret the relations < and ⊏ of the vocabulary of
TΣ. The ports of unit(𝑥) inherit the order of the ports of 𝑥 ,
this is why we set:

𝜑
2,2
⊏ (𝑥,𝑦) = 𝑥 ⊏Σ 𝑦

The descendant relation < connects the 𝑖𝑡ℎ port of 𝑥 to the
𝑖𝑡ℎ port of unit(𝑥). Since these nodes come from the same
node in the original structure, we set:

𝜑
1,2
< (𝑥,𝑦) = 𝑥 = 𝑦

C.3.2 A first-order transduction for monotone
unfolding

Having illustrated the syntax of first-order transductions on
the example of the unit function, we describe a first-order
transduction for the monotone unfolding operation

TΣ [𝑘 ] → (TΣ) [𝑘 ] + ⊥.
This is the only prime function whose corresponding first-
order transduction is not obvious. Unlike in Section C.3.1,
we focus more on the underlying conceptual difficulties than
on the syntax of first-order transductions.
Recall that when defining the monotone unfolding oper-

ation, for each element 𝑎 ∈ TΣ [𝑘 ] of the matrix power, we
used a family of (partial) twist functions

→𝑖 : {1, . . . , 𝑘} → {1, . . . , 𝑘},
one for each port 𝑖 of 𝑎. For the reader’s convenience, we
repeat a picture from Section 3.3.3, which explains the twist
functions:

an element of
the matrix power

its twist functions
1 2 3

1 2 3 1 2 3

In this example, the twist function→1 is monotone, but→2
is not. The monotone unfolding operation works in the same
way as general unfolding, except that it uses the undefined
value ⊥ if the input term has at least one letter which uses
at least one non-monotone twist.
The following lemma, whose simple proof is left to the

reader, shows that the twist functions can be defined using
first-order logic.

Lemma C.4. Let Σ be a datatype and let 𝑘 ∈ {1, 2, . . .}. For
every partial function

𝜏 : {1, . . . , 𝑘} → {1, . . . , 𝑘}

there is a first-order formula𝜑𝜏 (𝑥) such that for every 𝑎 ∈ Σ [𝑘 ] ,
𝑎 |= 𝜑𝜏 (𝑥)

if and only if 𝑥 represents a port with twist function 𝜏 .

By using the formulas from the above lemma, one can
construct a first-order formula which checks if a term in
TΣ [𝑘 ] uses only monotone twists, i.e. whether or not the
output of monotone unfolding should be ⊥.

We now proceed to the more interesting part of monotone
unfolding, i.e. actually doing the unfolding for monotone
inputs. Consider an input 𝑡 ∈ TΣ [𝑘 ] to monotone unfolding.
Define a sub-node of 𝑡 to be a pair (node of 𝑡 , number in
{1, . . . , 𝑘}), as explained in the following picture:

sub-nodes

In the output of the monotone unfolding, which is of the
form

(𝑡1, . . . , 𝑡𝑘 )/𝑓 ∈ TΣ [𝑘 ],
the nodes of the output terms 𝑡1, . . . , 𝑡𝑘 will correspond to
the sub-nodes in the input 𝑡 . The sub-nodes can be produced
by copying the input term 𝑘-times.

The most interesting part of the structure in the output is
the descendant relation in the terms 𝑡1, . . . , 𝑡𝑘 . This relation
can be viewed as a descendant relation on the sub-nodes.
We only describe how the descendant relation on the sub-
nodes can be defined in first-order logic, and the rest of the
transduction is left to the reader.

When defining the descendant relation on sub-nodes, the
crucial part is composing the twist functions. Suppose that
we want to check the descendant relationship between two
sub-nodes

(𝑥, 𝑖)
?
≤ (𝑦, 𝑗), (8)

where 𝑥,𝑦 are nodes on the input term and 𝑖, 𝑗 ∈ {1, . . . , 𝑘}.
We will show that the descendant relationship (8) holds if
and only if 𝑥 is an ancestor of 𝑦 in the input term, and the
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twist functions on the path connecting 𝑥 and 𝑦 maps 𝑗 to 𝑖 ,
as explained below.

Consider a path in the input term, which connects node 𝑥
with 𝑦, as illustrated in the following picture

x

connecting 
edges

y

Each edge in the input term corresponds to a chosen port in
some node, which in turn corresponds to some twist function,
and therefore it makes sense to talk about the twist function
associated to an edge in the input term. Define

𝜏𝑥𝑦 : {1, . . . , 𝑘} → {1, . . . , 𝑘}
to be the partial function, which is obtained by composing
all of the twist functions corresponding to edges on the path
connecting 𝑦 to 𝑥 , starting with 𝑦 and ending with 𝑥 . In
the example from the above picture, we compose two twist
functions, which correspond to edges marked in yellow.

Equipped with the above definitions, we can now charac-
terise the descendant ordering on sub-nodes by

(𝑥, 𝑖) ≤ (𝑦, 𝑗) iff 𝑥 ≤ 𝑦 ∧ 𝜏𝑥𝑦 ( 𝑗) = 𝑖 .

Therefore, to complete the proof, it remains to show the
following lemma. This is where we use the monotonicity
assumption.

Lemma C.5. For every 𝑖, 𝑗 ∈ {1, . . . , 𝑘} there is a first-order
formula𝜓 𝑖

𝑗 (𝑥,𝑦) such that for every 𝑡 ∈ TΣ [𝑘 ]

𝑡 |= 𝜓 𝑖
𝑗 (𝑥,𝑦) iff 𝜏𝑥𝑦 ( 𝑗) = 𝑖 .

Proof. Let 𝐹 be the set of monotone partial functions from
{1, . . . , 𝑘} to itself. Define 𝐿 ⊆ 𝐹 ∗ to be the set of those words
𝑓1 · · · 𝑓𝑛 such that the composition of functions 𝑓𝑛 ◦ · · · ◦ 𝑓1
maps 𝑖 to 𝑗 . We will show that – thanks to the monotonicity
assumption – the language 𝐿 is definable in first-order logic.
To get the conclusion of the lemma, we check if the sequence

of twist functions on the path from 𝑥 to 𝑦 satisfies the first-
order formula defining the language 𝐿.

The language 𝐿 is recognised by a finite automaton, which
has states {1, . . . , 𝑘,⊥}, and which simply applies the func-
tion in its input letter to the present state. We show be-
low that this automaton is counter-free, in the sense of Mc-
Naughton and Papert [25, p. 6], and therefore it can be de-
fined in first-order logic.

Recall that a counter in an automaton is a sequence of at
least two pairwise distinct states 𝑞1, . . . , 𝑞𝑛 such that

𝑞1
𝑤→ 𝑞2

𝑤→ · · · 𝑤→ 𝑞𝑛
𝑤→ 𝑞1

holds for some common input string 𝑤 . In the automaton
for the language 𝐿 that we have discussed above, there is no
counter. Indeed, if we would have 𝑞1 ≤ 𝑞2, then by mono-
tonicity of the function𝑤 ∈ 𝐹 we would have

𝑞1 ≤ 𝑞2 ≤ · · · ≤ 𝑞𝑛 ≤ 𝑞1

and therefore all of 𝑞1, . . . , 𝑞𝑛 would be equal, contradicting
the assumption that they are pairwise distinct. The same
argument would work when 𝑞1 ≥ 𝑞2. By [25, Theorem 10.5],
if an automaton has no counter, then its language is definable
in first-order logic.

□

D Appendix on first-order relabelling

The goal of this section is to show Proposition 5.1, which
says that first-order relabeling are derivable. As discussed in
the body of the paper, the proof of this proposition is based
on an equivalence result between first-order queries on trees
and a temporal logic, as stated in Lemma 5.2.While this result
is deaply inspired from a similar result of Schlingloff [26], our
frameworks are not exactly the same (he uses for ainstance
unranked trees). In the rest of this section, we provide more
details about the reduction from Schilgloff’s result to our
lemma (Section D.1). Then we show in Section D.2 how to
use it in order to prove Proposition 5.1.

D.1 Reduction to Schilgloff’s theorem
Let us proceed to the proof of Lemma 5.2. Clearly the func-
tions in the lemma are first-order tree relabeling, and first-
order tree relabeling are easily seen to be closed under com-
position, which gives the right-to-left inclusion in the lemma.
The hard part is the left-to-right inclusion, which says that
every first-order tree relabeling can be decomposed into
functions as in items 1,2a–2c. The first step in the proof
of the right-to-left inclusion is the observation that every
first-order tree relabeling can be decomposed as

𝑔 ◦ 𝑓1 ◦ · · · ◦ 𝑓𝑛
where 𝑔 is a relabeling as in item 1 of the lemma and each
𝑓𝑖 is a characteristic function of some unary query (not nec-
essarily of the simple form indicated in items 2a – 2c in the
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lemma). This is a simple observation: the functions 𝑓1, . . . , 𝑓𝑛
annotate the tree with the truth values of the unary queries
used in the definition of the first-order relabeling, and 𝑔 uses
these truth values to select the appropriate output label. The
hard part of the lemma is showing that each 𝑓𝑖 can be further
decomposed into functions as indicated in the lemma. This
is where we us the result of Schlingloff [26, Theorem 2.6],
which says that all first-order definable tree properties can
be defined using a temporal logic that has operators similar
to the ones used in items 2a – 2c of the lemma.

The following table summarizes our framework (first col-
umn) and Schlingloff’s one (second column). The first row
describes the models under consideration, the second row
the corresponding version of first-order logic, and the third
row the corresponding temporal logic.

Models

Trees over a finite
ranked alphabet Γ:
finitely branching,
ranked trees, labeled

from Γ.

Models over a set
of propositions 𝑃 :
finitely branching,
unranked trees,
labeled from 2𝑃 .

First-order
logic

Usual first-order connectives (∃,∨,¬)
with the descendant predicate 𝑥 ≤ 𝑦

and the following predicates:
𝑎(𝑥): 𝑥 is labeled 𝑎

(𝑎 ∈ Γ).
𝑝 (𝑥): label of 𝑥

contains 𝑝 (𝑝 ∈ 𝑃 ).
child𝑖 (𝑥): 𝑥 is an 𝑖-th

child.
We call it Γ-fo. We call it 𝑃-fo.

Temporal
logic

Usual CTL connectives (𝑆 (Since),𝑈
(Until), ∨, ¬) together with:

𝑎 ∈ Γ, 𝑝 ∈ 𝑃 ,
⊙𝑖𝜙 : the 𝑖-th child

satisfies 𝜙 .
𝑋𝑖𝜙 : at least 𝑖

children satisfy 𝜙 .
We call it 2-CTL. We call it 4-CTL.

What is named Γ-fo in the table is what we simply called
first-order logic along the paper. The operators of 2-CTL
are those of Lemma 5.2. Using the notation of the table,
Schlingloff’s theorem says that 𝑃-fo formulas are equivalent
to 4-CTL formulas, and Lemma 5.2 states that Γ-fo formulas
are equivalent to 2-CTL ones. To deduce the later from the
former, we will show how to translate every ranked tree 𝑡
over Γ into a model [𝑡] over a well chosen set of propositions
𝑃 , then we will apply the following scheme

𝜑 ∈ Γ-fo oo
∀𝑡, 𝑡 |=𝜑 ↔ [𝑡 ] |=𝜓

Lemma 𝐷.1
// 𝜓 ∈ 𝑃-foOO

Schlingloff’s
theorem��

𝜃 ∈ 2-CTL oo ∀𝑡, 𝑡 |=𝜃 ↔ [𝑡 ] |=𝛿
Lemma 𝐷.2

// 𝛿 ∈ 4-CTL

The translation [_] and Lemmas D.1 and D.2 are explained
below.

From ranked trees to Schlingloff’s models. Let us fix a
ranked alphabet Γ. Let 𝑃 be the following set of propositions

𝑃
def
= Γ ∪ {𝑖-th-child | 𝑖 ∈ [1,max arity of Γ]}

Let 𝑡 be a ranked tree over Γ. The translation [𝑡] of 𝑡 is the
model defined as follows. It has the same set of nodes and the
same descendant relation as 𝑡 . The label of a node contains
𝑎 if its label in 𝑡 is 𝑎. It contains the proposition 𝑖-th-child if
it is an 𝑖-th child in 𝑡 .

First-order logic for ranked and unranked trees. Let Γ
and 𝑃 be as above. Let us show that Γ-fo and 𝑃-fo are equiv-
alent.

Lemma D.1. For every Γ-fo formula 𝜙 , there is a 𝑃-fo for-
mula𝜓 such that

∀𝑡 ∈ treesΓ, 𝑡 |= 𝜙 ↔ [𝑡] |= 𝜓

and conversely.

Proof. To show this lemma its is enough to show how to
translate the specific predicates of each formalism into the
other. The predicate 𝑎(𝑥) of Γ-fo can be translated by the
same predicate in 𝑃-fo and conversely. The predicate child𝑖 (𝑥)
can be translated by 𝑖-th-child(𝑥) and conversely. It is clear
that these translations preserve the semantics. □

Temporal logic for ranked and unranked trees. Let Γ and
𝑃 be as above. We show that 2-CTL and 4-CTL are equivalent.

Lemma D.2. For every Γ-fo formula 𝜙 , there is a 𝑃-fo for-
mula𝜓 such that

∀𝑡 ∈ treesΓ, 𝑡 |= 𝜙 ↔ [𝑡] |= 𝜓

and conversely.

Proof. Here again, it is enough to translate the specific con-
nectives of each formalism into the other. The connective 𝑋𝑖

can be encoded in 2-CTL as follows, where 𝑏 is the maximal
arity of Γ ∨

𝐼 ⊆[1,𝑏 ]
#𝐼=𝑖

∧
𝑗 ∈𝐼
⊙𝑗 𝜙

Conversely, the connective ⊙𝑖 can be encoded in 4-CTL as
follows:

𝑋1 (𝑖-th-child ∧ 𝜙)
□

D.2 First-order relabelling are derivable
To show Proposition 5.1, saying that first-order relabelling
are derivable, we will show that each function appearing
in Lemma 5.2 and corresponding to each operator of 2-CTL
is derivable. This is the role of LemmasD.3–D.5 presented
below.
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Lemma D.3. For every finite Σ, Γ ⊆ Σ and 𝑖 ∈ {1, 2, . . .}, the
characteristic function 𝑓 : TΣ→ T(Σ + Σ) of the unary query

“The 𝑖-th child of 𝑥 is in Γ”

is derivable.

Proof. To show that 𝑓 is derivable, we start applying the
children function

Children : TΣ→ T(Σ × (Σ0 + 0)∗)

from Example B.1 which tags every nodes by the list of its
children. Consider the function 𝑔

𝑔 :Σ × (Σ0 + 0)∗ → Σ + Σ
(𝑎, 𝑙) ↦→ (𝑎, 1) if 𝑙 [𝑖] ∈ Γ0,

↦→ (𝑎, 2) otherwise.

which maps an element of Σ tagged by a list to the first copy
of Σ if the 𝑖-th element of the list is in Γ and to the second
copy otherwise. The function 𝑔 is derivable since its domain
is finite. We finally get 𝑓 by lifting 𝑔 to terms. □

Lemma D.4. For every finite Γ,Δ ⊆ Σ, the characteristic
function 𝑓 : TΣ→ T(Σ + Σ) of the unary query

∃𝑦 𝑦 ≥ 𝑥 ∧ Δ(𝑦) ∧ ∀𝑧 (𝑥 < 𝑧 < 𝑦 ⇒ Γ(𝑧)) .︸                                                    ︷︷                                                    ︸
𝑥 has a descendant 𝑦 with label in Δ, such that

all nodes between 𝑥 and 𝑦 have label in Γ

is derivable.

Proof. We start by applying the factorization

fact↑ : TΣ→ T(T(Σ \ (Γ ∪ Δ)) + T(Γ ∪ Δ))

which decomposes our terms into factors, depending on
whether their node labels are in Γ ∪ Δ or not. Note that the
value of a node w.r.t. the until query depends only on the
node labels of its factor.

The nodes of the T(Σ \ (Γ ∪ Δ)) factors do not satisfy the
query, thus we will apply to them the function T𝑔 obtained
by lifting the function

𝑔 : Σ \ (Γ ∪ Δ) → Σ + Σ
𝑎 ↦→ (𝑎, 2).

Nodes of the T(Γ ∪ Δ) factors satisfy the query if and only
if they have a descendant in Δ. Consider the function ℎ ob-
tained by composing the descendant function DescendantΔ
from Example B.3 with an injection T(𝜄 + 𝜄)

T(Γ ∪ Δ) DescendantΔ−−−−−−−−−→ T(Γ ∪ Δ + Γ ∪ Δ)
T(𝜄+𝜄)
−−−−→ T(Σ + Σ)︸                                                                     ︷︷                                                                     ︸

ℎ

Finally, to get the characteristic function 𝑓 , we apply T𝑔 to
the T(Σ \ (Γ ∪ Δ)) factors andℎ to the other factors using the
co-pairing combinator, then we flat the obtained term. □

Lemma D.5. For every finite Γ,Δ ⊆ Σ, the characteristic
function of the unary query

∃𝑦 𝑦 ≤ 𝑥 ∧ Δ(𝑦) ∧ ∀𝑧 (𝑦 < 𝑧 < 𝑥 ⇒ Γ(𝑧)) .︸                                                    ︷︷                                                    ︸
𝑥 has a descendant 𝑦 with label in Δ, such that
all nodes strictly between 𝑥 and 𝑦 have label in Γ

is derivable.

Proof. The same proof as above, one only needs to replace
the use of the function DescendantΔ by that of AncestorΔ,
introduced in Example B.3. □

E Proof of Theorem 4.3
In this part of the appendix, we prove Theorem 4.3, which
says that every first-order tree-to-tree transduction is recog-
nised by a register transducer.

According to Definition 2.2, a first-order transductions is
a composition of any number of functions each of which is
either copying (item 1) or a non-copying first-order trans-
duction (item 2). In other words:

first-order transductions
def
= (copying ∪ (non-copying first-order transductions))∗

where the star denotes closure under composition. Although
register transducers are closed under composition, this is
not very easy to show directly, and therefore we begin by
simplifying the function composition in the definition of
first-order transductions. It is not hard to see that copying
commutes with non-copying first-order transductions in the
following sense:

copying ◦ (non-copying first-order transductions)
⊆ (non-copying first-order transductions) ◦ copying.

Furthermore, since the class of copying functions is closed
under composition, and the same is true for non-copying
first-order transductions, we get the following normal form
of first-order transductions:

first-order transductions
= (non-copying first-order transductions) ◦ copying.

Therefore, in order to prove Theorem 4.3, it suffices to show
that a register transducer can compute any function which
first copies the nodes of the input tree a fixed number of
times, and then applies a non-copying first-order transduc-
tion.

For the rest of this section, fix a tree-to-tree function

𝑓 : treesΣ→ treesΓ

which is a composition of first copying (some fixed number
of times), followed by a non-copying first-order transduction.
We will show that 𝑓 is computed by some register transducer.

In the proof, we use the origin information associated to
𝑓 , i.e. how nodes of the output tree can be traced back to
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nodes in the input tree. For an input tree 𝑡 ∈ treesΣ, define
its origin map to be the function of type

nodes in 𝑓 (𝑡) → nodes in 𝑡

which maps a node 𝑥 of the output tree to the node of the
input tree that was used to define it. (The origin in a copying
function is the node that is being copied, while the node in a
non-copying transduction is the node of the input structure
that represents the node of the output structure.) For a node
𝑥 in an input tree 𝑡 , define the origin colouring of 𝑥 to be the
function

𝑦 ∈ nodes in 𝑓 (𝑡) ↦→


below

if the origin of 𝑦 is 𝑥
or a descendant of 𝑥

not below otherwise.

Define the name origin factorisation of 𝑥 in 𝑡 , which is an
element of treesTΓ, to be the factorisation of the output tree
where the factors are connected parts of same type (“below
” or “not below”). The origin factorisation is obtained by
applying the ancestor factorisation fact↑ to the output tree
extended with its origin colouring.
The general idea behind the register transducer is that,

after processing the subtree of a node 𝑥 in the input tree,
its registers will store the “below” factors in the origin fac-
torisation of 𝑥 . We only store the “below” factors, and not
the “not below” factors, because only the “below” factors
can be computed using register updates based on the subtree
of the node 𝑥 in the input tree. The key observation is the
following lemma, which shows that the a constant number
of registers will be enough.

Lemma E.1. For every input tree 𝑡 and node 𝑥 in 𝑡 , the origin
factorisation of 𝑥 in 𝑡 has at most a constant (i.e. depending
only on the fixed transduction) number of factors.

Proof. For an input tree 𝑡 and a node 𝑥 in it, we say that
an edge in the output tree 𝑓 (𝑡) is 𝑥-sensitive if its the two
endpoints are in different factors of the origin colouring of 𝑥
in 𝑡 . The number of factors in the origin factorisation is one
plus the number of sensitive edges, and therefore to prove
the lemma, it is enough to show that:

(*) for every input tree 𝑡 and node 𝑥 in 𝑡 , there is at most
a constant number of 𝑥-sensitive edges.

Let us write→ for the image – along the origin mapping –
of the child relation in the output tree. In other words, nodes
𝑦, 𝑧 in the input tree satisfy𝑦 → 𝑧 if some node in the output
tree with origin 𝑧 is a child of some node in the output tree
with origin 𝑦. It is not hard to see that→ can be defined in
first-order logic, using the formulas from the transduction.
Let 𝑟 be the quantifier rank of the first-order formula used
to define→. Using Ehrenfeucht-Fraisse argument, one can
show that if 𝑥,𝑦, 𝑧 are nodes in the input tree such that 𝑦 and
𝑧 are on different sides of 𝑥 (i.e. any path connecting 𝑦 and
𝑧 must necessarily pass through 𝑥), then the truth value of

any rank 𝑟 first-order formula 𝜑 (𝑦, 𝑧) depends only on the
following information:
• the 𝑟 -type of (𝑦, 𝑥) in the input tree, i.e. the rank 𝑟

first-order formulas satisfied by (𝑦, 𝑥); and
• the 𝑟 -type of (𝑧, 𝑥) in the input tree, i.e. the rank 𝑟

first-order formulas satisfied by (𝑦, 𝑥).
Since the relation→ has constant outdegree and indegree,
and it can be defined using quantifier rank 𝑟 , follows that
if 𝑦 → 𝑧 are on different sides of 𝑥 then there can only be
a constant number of nodes 𝑦 ′ such that (𝑦, 𝑥) and (𝑦 ′, 𝑥)
have the same 𝑟 -type in the input tree. Since the number of
𝑟 -types is constant, it follows that number of pairs 𝑦 → 𝑧

which are on different sides of 𝑥 is constant; these pairs are
the sensitive edges. □

Apply the above lemma, yielding an upper bound 𝑘 ∈
{1, 2, . . .} on the number of factors in the origin factorisations.
Note that each of the factors in the origin factorisation has
arity < 𝑘 , since the ports of the factors must lead to the other
factors. It follows that, in order to store the “below” factors in
registers, it is enough to have 𝑘 groups of registers, with each
group having one registers for every arity in {0, . . . , 𝑘 − 1}:

𝑅
def
= {𝑟 𝑗

𝑖
of arity 𝑗 : 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {0, . . . , 𝑘 − 1}}

We now define the invariant that will be satisfied by the
register transducer. (We use a slightly extended model of
register transducers, where some register contents can be
undefined; this model is easily seen to reduce to the origi-
nal one, by filling the undefined registers with some fixed
nonces.
• Invariant. Let 𝑡 be an input tree, let 𝑥 be a node in 𝑡 ,
and let 𝑠1, . . . , 𝑠𝑛 be the “below” factors of 𝑥 , viewed as
subsets of nodes in the output tree, ordered so that

root(𝑠1) ⪯ · · · ⪯ root(𝑠𝑛)
where ⪯ is the pre-order on nodes in the output tree
and root(𝑠𝑖 ) denotes the unique node in 𝑠𝑖 which is an
ancestor of all other nodes in 𝑠𝑖 . After processing the
subtree of 𝑥 in the input tree, the register valuation of
the register transducer is

𝑟
𝑗

𝑖
↦→


𝑠𝑖 viewed as a term
over the output alphabet if 𝑠𝑖 has arity 𝑗

undefined otherwise.

The output register of the transducer is 𝑟 01 . When 𝑥 is
the root of the input tree, then there is only one “below”
factor, namely the entire output tree (which has arity 0) and
therefore – thanks to the invariant – the output tree will be
found in the output register.
The following lemma gives the register updates of the

transducer.

Lemma E.2. There is a finite set Δ of register updates with
the following property. For every input tree 𝑡 and every node 𝑥
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in 𝑡 , there is some 𝑢 ∈ Δ such that the register valuation of 𝑥
(as defined in the invariant) is obtained by applying 𝑢 to the
register valuations of the children 𝑥1, . . . , 𝑥𝑛 of 𝑥 , in listed in
left-to-right order. Furthermore, there is a family {𝜑𝑢 (𝑥)}𝑢∈Δ
of unary queries over the input alphabet such that the update
associated to a node 𝑥 is𝑢 if and only if the node satisfies𝜑𝑢 (𝑥)
in the input tree.

Proof. The crucial observation is that each of the “below”
factors in the origin factorisation for 𝑥 – seen as subsets of
nodes in the output tree – is a (disjoint) set union of the the
“below” factors in the origin factorisations for the children
of 𝑥 , plus the nodes in the output tree which have origin in
𝑥 . Since there is at most a constant number of children and
nodes with origin 𝑥 , there is a finite number – depending
only on the transduction – of ways in which these factors can
be combined; this finite set of possible combinations is the
set Δ. The “furthermore” part of the lemma, about computing
the update using first-order queries, follows from a simple
inspection of the first-order formulas used in defining the
transduction. □

The above lemma completes the definition of the register
transducer. Its register updates are Δ as in the lemma, and
its transition function assigns label 𝑢 ∈ Δ to each node that
satisfies 𝜑𝑢 (𝑥). The final part of the proof is showing that the
register updates are monotone. We use the following order
on the registers:

𝑟 01 < 𝑟 11 < · · · < 𝑟𝑘−11 < 𝑟 02 < 𝑟 12 < · · · < 𝑟𝑘−2
𝑘

< 𝑟𝑘−1
𝑘︸                                                               ︷︷                                                               ︸

lexicographic, with the lower index having priority

.

Let 𝑥 be a node in an input tree 𝑡 , and let 𝑠1, 𝑠2 be a “below”
factor in the origin factorisation of 𝑥 , which are register con-
tents in register valuation of 𝑥 . The registers storing 𝑠1 and
𝑠2 will be ordered – according to the invariant – with respect
to the pre-order on the root nodes of 𝑠1 and 𝑠2. Let 𝑥 ′ be the
parent of 𝑥 . By the reasoning in the proof of Lemma E.2,
there are “below” factors in the origin factorisation of 𝑥 ′
which contain the factors 𝑠1 and 𝑠2; call these factors 𝑠 ′1 and
𝑠 ′2 (possibly 𝑠

′
1 = 𝑠 ′2). Since 𝑠

′
1 contains 𝑠1 (as a set of nodes in

the output tree), and the same is true for 𝑠 ′2 and 𝑠2, we have

root(𝑠1) ⪯ root(𝑠2) implies root(𝑠 ′1) ⪯ root(𝑠 ′2)

which establishes monotonicity of the register updates.
This completes the proof of Theorem 4.3.

F Normalisation of 𝜆-terms is a first-order
transduction

In this part of the appendix, we show Theorem 6.1, which
says that under some restrictions, normalisation of 𝜆-terms
is a first-order transduction. Before proving this result in F.3,
we will first explain in F.1 why these restrictions are unavoid-
able. Then we show in F.2 that the set of 𝜆-terms satisfying

these restrictions form a first-order tree language. This result
will be useful for the proof of Theorem 6.1.

F.1 Explaining the restrictions
Recall that Theorem 6.1 says that normalisation of 𝜆-terms
is derivable under two assumptions: the input term should
be linear, and could be typed using a fixed finite set of types.
If the linearity condition is removed, and because of iter-

ated duplication, the normal form of a well-typed 𝜆-term can
be exponential (or worse, see [27, Section 3.6]), as shown by
the following example.

Example F.1. Assume that we have two variables 𝑥𝑜 and
𝑦𝑜→𝑜→𝑜 and consider the 𝜆-terms defined by:

𝑀0
def
= 𝑥𝑜 𝑀𝑛+1 = (𝜆𝑥𝑜 .𝑦𝑜→𝑜→𝑜𝑥𝑜𝑥𝑜 )𝑀𝑛 .

The 𝜆-term𝑀𝑛 is well-typed and of type 𝑜 . It has size linear
in 𝑛, but its normal form has size at least 2𝑛 .

If there was a first-order transduction normalising these
terms, it would be exponential-size increase, which is not
possible since all first-order transductions are linear-size
increase.

Being linear alone is not enough to normalise terms with
first-order transductions. Another obstacle is terms that use
types of unbounded complexity, as illustrated in the follow-
ing example.

Example F.2. Consider the following 𝜆-terms, which have
types of unbounded size:

𝑀𝑛 =

𝑛 times︷               ︸︸               ︷
𝜆𝑥𝑜 .𝜆𝑥𝑜 . · · · 𝜆𝑥𝑜 . 𝑥𝑜

This is a well-typed affine term, whose type is

𝑜𝑛 → 𝑜
def
=

𝑛 + 1 arrows︷                 ︸︸                 ︷
𝑜 → 𝑜 → · · · → 𝑜

To𝑀𝑛 , apply𝑚 arguments of type 𝑜 :

𝑀𝑛

𝑚 times︷       ︸︸       ︷
𝑦𝑜 𝑦𝑜 · · ·𝑦𝑜 . (9)

We claim that the above 𝜆-term cannot be normalised using
a first-order transduction, or even a monadic second-order
transduction. In order to normalise, a transduction would
need to be able to compare the numbers 𝑛 and𝑚 as follows:
if𝑚 < 𝑛 the normal form contains 𝜆, if𝑚 = 𝑛 the normal
form does not contain 𝜆, and if𝑚 > 𝑛 then the normal form
is undefined because the 𝜆-term is not well-typed. Whether
or not a 𝜆-term (seen as a tree over a finite alphabet) contains
𝜆 is a first-order definable property, and first-order definable
properties are preserved under inverse images of first-order
transductions. Therefore, if normalisation would be a first-
order transduction, then there would be a first-order formula
which would be true for terms of the form (9) with𝑚 > 𝑛 and
which would be false for terms of the form (9) with𝑚 = 𝑛.
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Such a formula cannot exist, which can be shown using a
pumping argument or Ehrenfeucht-Fraïssé games.

F.2 Restrictions of Theorem 6.1 are first-order
definable

In this section, we show that the restrictions of Theorem 6.1
discussed above, are first-order definable, as stated in the
following theorem.
Proposition F.3. Let 𝑋 be a finite set of simply typed vari-
ables and let T be a finite set of simple types. The tree language
of linear 𝜆-terms which can be typed using T is first-order de-
finable.

In the rest of this appendix, we denote by ΛT𝑋 this tree
language. To prove Proposition F.3, we first show that for
𝜆-terms in ΛT𝑋 , checking if their type is 𝜏 , where 𝜏 is a type
in T , is a fo property:
Lemma F.4. For every type 𝜏 in T , there is a first-order query
𝜑𝜏 such that:

∀𝑀 ∈ ΛT𝑋 𝑀,𝑢 |= 𝜑𝜏 ←→ 𝑀 |𝑢 : 𝜏
where𝑀 |𝑢 is the sub-tree of𝑀 rooted in 𝑢.

Before establishing this lemma, let us see how Proposi-
tion F.3 can be derived from it. Linearity can be easily seen as
a first-order property. The hard part is to show that the set of
𝜆-terms which can be typed using T is first-order. Suppose
for convenience that T is downward closed. For every type
𝜏 in T , let 𝜑𝜏 be the formula given by Lemma F.4. In the fol-
lowing, we use the binary formula Succ𝑖 (𝑢, 𝑣) which is valid
when 𝑣 is the 𝑖-th child of 𝑢, and which is easily expressible
in first-order logic.

Consider the unary formula Lambda(𝑢), which expresses
that 𝑢 is a binder node, that its type and the type of its child
match well and both belong to T :

Lambda(𝑢) := 𝜆𝑥 (𝑢)︸︷︷︸
𝑢 has label 𝜆𝑥

∧∨𝜎→𝜏 ∈T
𝑥 :𝜎

𝜑𝜎→𝜏 (𝑢)︸    ︷︷    ︸
𝑢 has type 𝜎 → 𝜏

∧∃𝑣 Succ1 (𝑢, 𝑣) ∧ 𝜑𝜏 (𝑣)︸                        ︷︷                        ︸
the child of 𝑢 has type 𝜏

Similarly, consider the unary formula Application(𝑢) which
checks that a node is an application node, that the type of
its children match well and that both belong to T :
Application(𝑢) := @(𝑢)︸︷︷︸

𝑢 has label @

∧

∃𝑣,𝑤 ∨
𝜎→𝜏 ∈T

Succ1 (𝑢, 𝑣) ∧ 𝜑𝜎→𝜏 (𝑣)︸                       ︷︷                       ︸
the left child of 𝑢 has type 𝜎 → 𝜏

∧ Succ2 (𝑢,𝑤) ∧ 𝜑𝜎 (𝑤)︸                     ︷︷                     ︸
the right child of 𝑢 has type 𝜎

Finally, consider the formula Variable(𝑢), which expresses
that 𝑢 is a variable node, whose type is in T :

Variable(𝑢) :=
∨

𝑥 :𝜎 ∈T
𝑥 (𝑢)︸︷︷︸

𝑢 has label 𝑥

We claim that the following (nullary) formula 𝜙 recognizes
the tree language ΛT𝑋

𝜙 = ∀𝑢. Variable(𝑢) ∨ Lambda(𝑢) ∨ Application(𝑢)
If a 𝜆-term is in ΛT𝑋 , then it clearly satisfies 𝜙 . Suppose by
contradiction that there is a 𝜆-term𝑀 which is not in ΛT𝑋
and yet satisfies 𝜙 . Let 𝑢 be the deepest node of 𝑀 which
is not in ΛT𝑋 (we identify in this proof a node 𝑢 and the
sub-term𝑀 |𝑢 ). In particular, the descendants of 𝑢 are all in
ΛT𝑋 . The node 𝑢 cannot be a variable, since variable nodes
are well-typed and their type is in T by the first disjunct of
𝜙 . If 𝑢 was labeled by 𝜆𝑥 , where 𝑥 is of type 𝜎 , then by the
second disjunct of 𝜙 there is a type 𝜏 such that 𝜎 → 𝜏 ∈ T
and the child 𝑣 of 𝑢 satisfies 𝜑𝜏 . Since 𝑣 is in ΛT𝑋 , its type
is 𝜏 by Lemma F.4. Hence 𝑢 is well-typed and its type is
𝜎 → 𝜏 ∈ T . As a consequence 𝑢 is in ΛT𝑋 which is a
contradiction. Finally, if 𝑢 was labeled by @, then by the
third disjunct of 𝜙 , its two children 𝑢1 and 𝑢2 would satisfy
respectively 𝜑𝜎→𝜏 and 𝜑𝜎 and by Lemma F.4 they are of type
𝜎 → 𝜏 and 𝜎 respectively. The node 𝑢 is then well-typed
and its type is 𝜏 (which is a type of T thanks to downward
closeness). As a consequence, 𝑢 is in ΛT𝑋 , which gives a
contradiction and concludes the proof.

We can go back now to the proof of Lemma F.4.

Proof of Lemma F.4. Let us show that the following unary
query is expressible in first-order logic

”if 𝑡 is a 𝜆-term of Λ𝑠𝑋 , then its type is 𝜏 “:

For that, notice that the type of a well-typed term depends
only on its left-most branch. In fact, the type of a term is
exactly the type of its left-most branch in the following sens.
Consider the (unranked) alphabet 𝑋𝜆 := 𝑋 ∪ {@, 𝜆𝑥 |𝑥 ∈

𝑋 }. We can equip the words over 𝑋𝜆 with the following
typing rules:

𝑥 : 𝜎
𝑢 : 𝜏

𝑢𝜆𝑥 : 𝜎 → 𝜏

𝑢 : 𝜎 → 𝜏

𝑢@ : 𝜏
where 𝑥 is of type 𝜎 and 𝜎, 𝜏 ∈ T .

We say that 𝑤 is of type 𝜏 and write 𝑤 : 𝜏 if there is a
typing derivation for𝑤 : 𝜏 .

We can associate to every branch of a 𝜆-term a word over
𝑋𝜆 corresponding to the sequence of its labels read bottom-
up. By induction on 𝜆-terms, we can easily show that the
type of a 𝜆-term is the type of the word corresponding to its
leftmost branch.
By this last observation, we can reduce the query asking

if the type of a term is 𝜏 , to the same query but on 𝑋𝜆 words.
To show that the former is a first-order query, it is then
sufficient to show that the following word language

𝑊𝜏 = {𝑤 ∈ 𝑋 .{@, 𝜆𝑥 |𝑥 ∈ 𝑋 }∗ | 𝑤 : 𝜏}
is first-order definable, or equivalently that𝑊𝜏 is recognized
by a counter-free finite automaton. For that we proceed as
follows: first, we show that𝑊𝜏 is recognized by a pushdown
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automaton 𝑃𝜏 . Then we will show that the stack height of 𝑃𝜏
is bounded, thus it can be turned into a deterministic finite
automaton𝐷𝜏 . Finally, we show that the obtained automaton
𝐷𝜏 is actually counter-free.

Consider the pushdown automaton 𝑃𝜏 whose
• set of states is {𝑖, 𝑝, 𝑓 }, where 𝑖 is the initial state and
𝑓 the accepting state;
• input alphabet is the alphabet 𝑋𝜆 ;
• stack alphabet is the set of types T ;
• and whose transition function is described as follows:
– If the automaton is in the initial state 𝑖 with an empty
stack, and if the symbol it reads is a variable 𝑥 of
type 𝜎1 → · · · → 𝜎𝑛 , then we go to the state 𝑝 and
push the symbols 𝜎𝑛, . . . , 𝜎1 in the stack in this order.
The top-level symbol of the stack is then 𝜎1.

– If the automaton is in the state 𝑝 and it reads the sym-
bol 𝜆𝑦, where 𝑦 is of type 𝜎 , then push the symbol
𝜎 in the stack, and stay in the state 𝑝 .

– If the automaton is in the state 𝑝 , if it reads the
symbol @ and if the stack is non empty, then pop
the top-level symbol and stay in the state 𝑝 .

– If the automaton reaches the end of the word being
in state 𝑝 , and if the stack contains the symbols
𝜏1, . . . 𝜏𝑚 in this order, 𝜏1 being the top-level symbol,
where 𝜏1 → · · · → 𝜏𝑚 is the type 𝜏 , then pop them
all and go to the final state 𝑓 .

A word 𝑤 is accepted by 𝑃𝜏 if there is a run that reaches
the end of 𝑤 in the accepting state 𝑓 with an empty stack.
We write (𝑟, 𝑠) 𝑤−→ (𝑟 ′, 𝑠 ′) if there is a run over the word 𝑤
which starts in the state 𝑟 ∈ {𝑖, 𝑝, 𝑓 } and with a stack 𝑠 and
ends up in the state 𝑟 ′ ∈ {𝑖, 𝑝, 𝑓 } and with a stack 𝑠 ′.
By induction on the length of the word𝑤 , we can easily

show that:

Lemma F.5. For every word𝑤 ∈ 𝑋 .{@, 𝜆𝑥 |𝑥 ∈ 𝑋 }∗, we have
that:

(𝑖, 𝜖) 𝑤−→ (𝑝, 𝜎𝑛 . . . 𝜎1) iff 𝑤 : 𝜎1 → · · · → 𝜎𝑛

A direct consequence of this lemma is that 𝑃𝜏 recognizes
𝑊𝜏 . Another direct consequence is that the stack height of
𝑃𝜏 is bounded by𝑚, the size of the longest type in T . Thus
𝑃𝜏 can be turned into a DFA 𝐷𝜏 , by encoding the stack in-
formation in the states. More precisely, the states of 𝐷𝜏 are
pairs (𝑟, 𝑠) where 𝑟 ∈ {𝑖, 𝑝, 𝑓 } and 𝑠 is a stack of height at
most 𝑚, the initial state is (𝑖, 𝜖) and there is a transition
(𝑟, 𝑠) 𝑎−→ (𝑟 ′, 𝑠 ′) where 𝑎 ∈ 𝑋𝜆 ∪ {𝜖} if there is a corre-
sponding run in 𝑃𝜏 . We show in the following that 𝐷𝜏 is
counter-free.
Let us start with some observations. In the pushdown

automaton 𝑃𝜏 , the effect of a word 𝑤 on a stack 𝑠 , starting
from the state 𝑝 is the following: it erases the first 𝑛 top level
elements of 𝑠 , and replaces them by a word 𝑢. The number 𝑛
and the word 𝑢 do not depend on the stack 𝑠 but only on the
word𝑤 . This is exactly what the following lemma claims.

Lemma F.6. For every word 𝑤 over 𝑋𝜆∗, there is a natural
number 𝑛 and a word 𝑢 ∈ T ∗ such that if (𝑝, 𝑠) 𝑤−→ (𝑝, 𝑠 ′)
then 𝑠 and 𝑠 ′ can be decomposed as follows:

𝑠 = 𝑡 .𝑣, 𝑠 ′ = 𝑡 .𝑢 and |𝑣 | = 𝑛.

The proof is an easy induction on the length of 𝑤 . As a
consequence we have that:

• If (𝑝, 𝑠1)
𝑤−→ (𝑝, 𝑠2)

𝑤−→ (𝑝, 𝑠3) and |𝑠2 | > |𝑠1 | then
|𝑠3 | > |𝑠2 |.
• If (𝑝, 𝑠1)

𝑤−→ (𝑝, 𝑠2)
𝑤−→ (𝑝, 𝑠3) and |𝑠2 | < |𝑠1 | then

|𝑠3 | < |𝑠2 |.
• If (𝑝, 𝑠1)

𝑤−→ (𝑝, 𝑠2)
𝑤−→ (𝑝, 𝑠3) and |𝑠2 | = |𝑠1 | then

𝑠3 = 𝑠2.
Let us show that 𝐷𝜏 is counter-free. Suppose by contra-

diction that there is a word 𝑤 and pairwise distinct stacks
𝑠1, . . . , 𝑠𝑛 such that

(𝑝, 𝑠1)
𝑤−→ (𝑝, 𝑠2)

𝑤−→ . . . (𝑝, 𝑠𝑛)
𝑤−→ (𝑝, 𝑠1).

By the first two properties above, we have necessarily that

|𝑠1 | = · · · = |𝑠𝑛 |

Thus by the third property, we have that

𝑠1 = · · · = 𝑠𝑛

which concludes the proof. □

F.3 Normalisation of 𝜆-terms
This section is dedicated to the proof of Theorem 6.1. Let us
first introduce some terminology. In a 𝜆-term, we call redex
a pattern of the following form

that is, an application node whose left child is an abstraction
node. In a well-typed 𝜆-term, we define the type of a redex
to be the type of the left sub-term of its application node.
In the figure above, the type of the redex is 𝜏 → 𝜎 . If the
abstraction node of a redex is labeled by 𝜆𝑥 , we say that 𝑥 is
the variable of the redex and that this redex is an 𝑥-redex.

Let us go back to the proof of Theorem 6.1. Before normal-
ising 𝜆-terms, the first thing to do is to discriminate those
𝜆-terms satisfying the restrictions of Theorem 6.1 from the
others. This amounts to pre-processing the normalisation
process by the function

trees𝑋𝜆 → trees𝑋𝜆 + ⊥

which is the identity for inputs satisfying the restrictions
and is undefined otherwise. Let us see how this function
can be derived. Thanks to Proposition F.3, the restrictions
of Theorem 6.1 are first-order definable, say by a first-order
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query 𝜙 . By virtue of Proposition 5.1, the characteristic func-
tion of 𝜙 is derivable. Now following the label’s root of the
input, we either output the input tree if the label says that it
satisfies the query 𝜙 , or outputs the undefined symbol oth-
erwise. This last function can be easily derived. From now
on, we suppose that our 𝜆-terms satify the restrictions of
Theorem 6.1.

To normalise 𝜆-terms, we proceed by induction on the set
of types T . The main observation is that, if the evaluation of
a redex of type 𝜎 → 𝜏 creates new redexes, then their types
are either 𝜎 or 𝜏 . They belong, in particular, to T \ {𝜎 → 𝜏}.
As a consequence, we only need to show that the function
that evaluates all the redexes of a fixed type is derivable. As
we only create strictly smaller redexes, we need to iterate
this process only finitely many times, the bound being the
size of T .
Since we have only finitely many typed variables, it is

enough to show that the function that evaluates all the re-
dexes of a fixed type 𝜎 and a fixed variable 𝑥 is derivable.
This will be our goal in the rest of this section.

Proposition F.7. Let 𝑋 be a finite set of simply typed vari-
ables, T be a finite set of simple types, 𝑥 be a variable in 𝑋

and 𝜎 a simple type in T . The following tree-to-tree function
is derivable:

• Input. A 𝜆-term 𝑡 over variables 𝑋 .
• Output. The 𝜆-term obtained by evaluating in 𝑡 all
the 𝑥-redexes of type 𝜎 , if 𝑡 is in ΛT𝑋 , and undefined
otherwise.

To show this proposition, we will factorise (via a derivable
function) our 𝜆-terms into factors satisfying the following
properties:
(P1) All the 𝑥-redexes of type 𝜎 fall entirely into one of the

factors.
(P2) Each factor have a a very specific shape called thin.

These factors are those 𝜆-terms with ports whose nor-
mal form have the shape of a word (by opposition to
trees, which is the general case).

By properties (P1) and (P2), it is enough to show that nor-
malisation of thin 𝜆-terms (with ports) is derivable. For this
purpose, our strategy will be to prove that the word obtained
by normalising a thin 𝜆-term results from a pre-order traver-
sal. Since pre-order traversal is a prime function, this implies
that normalisation of thin 𝜆-terms is derivable.

The last ingredient to conclude the proof is to notice that
𝛽-reducing the factors of (a factorisation of) a 𝜆-term, then
applying a flattening, is the same thing as 𝛽-reducing the
original 𝜆-term, which follows directly from the fact that
𝛽-reduction is a congruence on terms. This concludes the
proof.
In the rest of this section, we develop on each of the two

main steps of the proof, namely proving Properties (P1) and
(P2). In Section F.3.1 we present thin 𝜆-terms with ports and

show how to normalise them. Then we show in Section F.3.2
how to factorise a 𝜆-term into thin factors.

F.3.1 Normalisation of thin 𝜆-terms
As discussed earlier, we will need to normalise 𝜆-terms with
ports (the factors of our factorisation). In the following, we
will denote by 𝑋𝜆 the ranked set

arity 0︷        ︸︸        ︷
{𝑥 : 𝑥 ∈ 𝑋 } ∪

arity 1︷         ︸︸         ︷
{𝜆𝑥 : 𝑥 ∈ 𝑋 } ∪

arity 2︷︸︸︷
{@}

With this notation, 𝜆-terms with ports are the inhabitants of
T𝑋𝜆 . Normalisation of these terms generalizes that of usual
𝜆-terms in a straightforward way: the 𝑖-th port is replaced
by a fresh variable 𝑥𝑖 , the obtained 𝜆-term (without ports) is
evaluated as usual, then the variable 𝑥𝑖 is replaced back by
the port 𝑖 , as one can see in the following example.

Note that when a 𝜆-term is linear, its normal form has the
same number of ports. Note also that respecting the original
order of ports in the normal form (which is important for
compositionality) may twist ports, as in the example above.
As a consequence, normalisation of linear 𝜆-terms with ports
is an arity preserving function of type:

T𝑋𝜆 → F1T𝑋𝜆 + ⊥

Let us present now the class of thin 𝜆-terms with ports.

Definition F.8. We say that the node of a 𝜆-term is branch-
ing if its has at two distinct children which are not ports.

A thin 𝜆-term with ports is a term from T𝑋𝜆 in which every
branching node is the application node of a redex.

In the remaining of this section we will omit the mention
“with ports” if clear from the context.

Since thin 𝜆-terms branch only on redexes, the result of
their normalisation is a “word”, in the sens that every node
has at most one non-port child. We will show that this word
can actually be obtained by a pre-order traversal of the origi-
nal 𝜆-term. We will then use the prime preorder function to
show that normalisation of thin 𝜆-terms is derivable.

The left 𝜆-term below is linear and thin. The rednodes are
the ones which are not redexes nor the variables of these
redexes. The right 𝜆-term is its normal form: we can see
that nodes appear top-down in the pre-order of the original
𝜆-term.
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Proposition F.9. Let 𝑋 be a finite set of simply typed vari-
ables,T be a finite set of simple types. The following tree-to-tree
function is derivable:
• Input. A 𝜆-term 𝑡 over variables 𝑋 .
• Output. The normal form of 𝑡 , if it is linear and thin,
and undefined otherwise.

Let 𝑡 be a thin 𝜆-term and let 𝑢 be its normal form. As
noticed before, 𝑢 has the shape of a word. Moreover, since 𝑡
is linear, the nodes of 𝑢 are exactly the nodes of 𝑡 which are
not redexes, nor their variables.

Proposition F.10. Let 𝑡 be a linear thin 𝜆-term and let 𝑢 be
its normal form. The order in which the inner nodes (ie. non
ports) of 𝑢 appear top-down is the pre-order of 𝑡 .

Proof. To establish this proposition, we need the following
lemma.

Lemma F.11. Let 𝑡 be a linear thin 𝜆-term and let 𝑟 be one of
its redexes. Consider𝑚 to be the binder node of 𝑟 and 𝑛 to be
its variable node.

The node 𝑛 is the greatest (that is the left-most) node in the
sub-term 𝑡 |𝑚 w.r.t. the pre-order.

Proof. We proceed by induction on the length of the path
between𝑚 and 𝑛. When it is 0 the result is clear. Suppose
by contradiction that it is strictly greater than 0 and that
there is a node 𝑜 which is strictly greater than 𝑛. We take
𝑜 to be the smallest node which is greater than 𝑛. Since 𝑡
is thin, the least common ancestor 𝑙 between 𝑛 and 𝑜 is an
application node of a redex. Since 𝑛 is smaller than 𝑜 , 𝑛 is
the left descendant of 𝑙 , in other words it is the descendant
of the left child 𝑝 of 𝑙 , which is a binder. The node𝑚,𝑛, 𝑜 and
𝑝 are illustrated below:

By induction hypothesis, the variable bound by 𝑝 is strictly
greater than 𝑛. Is is also strictly smaller than 𝑜 , which gives
a contradiction and concludes the proof. □

Let us go back to the proof of our proposition. Consider
two inner nodes 𝑛,𝑚 of 𝑡 which are also nodes of𝑢, and such
that𝑚 is smaller than 𝑛 is the pre-order of 𝑡 (we well call it
simply pre-order in the rest of the proof). We show that 𝑛 is
a descendant of𝑚 in 𝑢. There is two cases to consider:
• Either 𝑛 is a descendant of 𝑚 in 𝑡 , in this case we
can conclude easily since 𝛽-reduction preserves the
descendant relation. Indeed, by a small analysis of 𝛽-
reduction, one can notice that a reduction step may
extend the descendant relation, but can never change
(or break) the order of two comparable nodes in the
original 𝜆-term.
• Otherwise, let us consider the lowest common ancestor
𝑝 of𝑚 and 𝑛. We proceed by induction on the length
of the path between 𝑚 and 𝑝 . By definition of thin
𝜆-terms, since 𝑝 is branching it is necessarily an appli-
cation node, whose left child 𝑞 is a binder node, let us
say 𝜆𝑥 . By Lemma F.11,𝑚 is smaller w.r.t. the pre-order
than the node 𝑟 of the variable bound by 𝑞 . We are
then left with the following two situations. The first
case, illustrated by the left figure below, is when 𝑟 is a
descendant of𝑚 in 𝑡 . In this case, after one reduction
step 𝑛 will be a descendant of of𝑚. The other case is
when𝑚 is in the left of 𝑟 in 𝑡 , as illustrated by the right
figure below. In this case, after one reduction step, the
lowest common ancestor between𝑚 and 𝑛 will be a
descendant of 𝑝 , and we can conclude by induction
hypothesis.

This concludes the proof of the first claim. □

Let us construct now a derivable function which computes
the normal form of linear thin 𝜆-terms. We illustrate this
construction on the term 𝑡 below which will be our running
example in this proof.

Proof of Proposition F.9. Let 𝑡 be a linear thin 𝜆-term in T𝑋𝜆 .
1. We start by distinguishing the redexes of 𝑡 and their

variables from the other nodes. For that, we apply
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the characteristic function of the following first-order
query 𝜑 :

“The node 𝑢 is a redex or a variable of a redex”
This query is first-order expressible. Indeed it is the
disjunction of the following queries

@Redex(𝑢) = @(𝑢) ∧ ∃𝑣 Child1 (𝑢, 𝑣) ∧
∨

𝑥 ∈𝑋 𝜆𝑥 (𝑣)

𝜆Redex(𝑢) = 𝜆𝑥 (𝑢) ∧ ∃𝑣 Child1 (𝑣,𝑢) ∧@(𝑣)

𝑋Redex(𝑢) = ∨
𝑥 ∈𝑋 𝑥 (𝑢) ∧ ∃𝑣 𝜆Redex(𝑣) ∧ 𝑣 binds 𝑢

where@Redex(𝑢) says that𝑢 is the application node of
a redex, 𝜆Redex(𝑢) says that it is the abstraction node
of a redex and 𝑋Redex(𝑢) says that it is the variable
of a redex. The formula 𝑢 binds 𝑣 , defined below, is a
binary first-order query expressing that the node 𝑢 is
an abstraction node that binds 𝑣 .∨
𝑥 ∈𝑋

𝜆𝑥 (𝑢) ∧ 𝑥 (𝑣) ∧ 𝑢 < 𝑣 ∧ ∀𝑢 < 𝑤 < 𝑣 ¬𝜆𝑥 (𝑤)

The query 𝜑 being first-order, its characteristic func-
tion is derivable thanks to Proposition 5.1.
When we apply this function to 𝑡 , we get a term in
T(𝑋𝜆 + 𝑋𝜆) term below. Below is the effect of this first
step on our running example. We colored in red the
nodes belonging to the first copy of 𝑋𝜆 , that is the
nodes satisfying the query 𝜑 . These nodes are the ones
that will disappear in the normal form of 𝑡 .

2. After that, we apply the preorder function

preorder : T(𝑋𝜆 + 𝑋𝜆) → F1T(𝑋𝜆 + 𝑋𝜆 + 0 + 2)
After this step, our initial term becomes

In this term, the nodes of the normal form appear in
the right order thanks to Prop. F.10. Now, we only need
to get rid of the redexes and the variable nodes that

participated in the computation of the normal form
(that is the ones colored in red) together with the nodes
and introduced by the preorder function.

3. For this purpose, we apply the function

T(𝑋𝜆 + 𝑋𝜆 + 0 + 2) → T(𝑋𝜆 + 𝑋𝜆 + 0 + 2 + 1)

which adds the unary symbol 1 as the parent of every
node 2. This function can be easily implemented using
the derivable homomorphism function of Example ??.
Then we apply the factorisation fact↑ to separate the
symbol 1 from the others:

fact↑ : T(𝑋𝜆 + 𝑋𝜆 + 0 + 2 + 1) → T(T(𝑋𝜆 + 𝑋𝜆 + 0 + 2) + T1))

After this step, our example term becomes like this

4. Now consider the function

𝑔 : T(𝑋𝜆 + 𝑋𝜆 + 0 + 2) → F1T(𝑋𝜆 + 𝑋𝜆 + 0 + 2)

which is the identity function, except for the following
finite set of terms for which it is defined in figure 8.
The red elements are those belonging to the first copy
of 𝑋𝜆 .
Now back to our term, we replace the T1 factors by
the empty term, and to the other factors we apply the
function 𝑔. After that, we apply the function

F1F1Σ→ F1Σ

which untwists two consecutive applications of F1.
Doing so, we get a term of type

F1T(𝑋𝜆 + 𝑋𝜆 + 0 + 2)

which is the normal form of 𝑡 . Our running example
becomes then
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Figure 8. Definition of the function 𝑔.

5. Note that we obtained the desired term, but not with
the desired type. To obtain a term in F1T𝑋𝜆 , we get rid
of the labels 0 + 2 by transforming them respectively
into variables and application nodes. The choice of
which variables to choose is not important, since the
only terms that will actually have 0 + 2 in their results
are 𝜆-terms which are not linear or not thin.

□

F.3.2 Factorising 𝜆-terms into blocks of thin 𝜆-terms
In a linear 𝜆-term, we call full redex a set of nodes containing
a redex, the node of its variable, together with the set of
nodes between them, as illustrated below

Proposition F.12. For every finite set of typed variables 𝑋 ,
for every finite set of types T and for every 𝑥 ∈ 𝑋 and 𝜎 ∈ T ,
there is a factorisation

𝑓 : T𝑋𝜆 → TT𝑋𝜆 + ⊥
which satisfies, for every linear 𝜆-term 𝑡 , that
(1) every full 𝑥-redex of type 𝜎 in 𝑡 is entirely contained in

one of the factors of 𝑓 (𝑡);
(2) the factors of 𝑓 (𝑡) are thin.

and is undefined otherwise.

Proof. We define the function 𝑓 as the composition of the
following three functions

T𝑋𝜆
𝑔
−−→ T(𝑋𝜆 + 1) block↑−−−−−−→ T(T𝑋𝜆 + T1) erase−−−−−→ TT𝑋𝜆

The function 𝑔 will indicate, using the unary symbol 1, the
places wheres two distinct blocks of 𝑓 will be separated. We
will describe it more precisely a bit later. The function block↑
will create these blocks and finally, we erase all the factors
T1.

The function block↑ is a prime function and erase can be
easily derivable. Let us show how to derive the function 𝑔, so
that the 1-nodes it introduces creates blocks satisfying the
conditions (1) and (2) of Proposition F.12 (when the input is
a linear 𝜆-term).

We define 𝑔 as the composition of the characteristic func-
tion of three first-order unary queries: @redex,Right and
Left, followed by a homomorphims ℎ. We define them in the
following:
• The property @Redex checks whether a node is the
application node of an 𝑥-redex of type 𝜎 . It can be
expressed by the following first-order formula, where
𝜑𝜎 is a first-order formula which decides if the type of
a node is 𝜎 (for instance the one given by Lemma F.4):

App(𝑢) :=@(𝑢) ∧ ∃𝑣 Succ1 (𝑢, 𝑣) ∧ 𝜆𝑥 (𝑣) ∧ 𝜑𝜎 (𝑣)
• The query Right (resp. Left) checks if the node is an
application node, which lies, together with his right
(resp. left) child, between the application node of an 𝑥-
redex of type 𝜎 and the node it binds. Those properties
can be easily expressed by a first-order formula.

Whenwe apply the characteristic functions of these queries
to a term in T𝑋𝜆 , each node will be decorated by three infor-
mations: whether is satisfies or not App, whether is satisfies
or not Right and whether is satisfies or not Left. Note that
for linear 𝜆-terms, some combinations of these properties
cannot hold in the same node. For instance, a node cannot sat-
isfy Right and Left simultaneously, as this would contradict
linearity.
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Now we define the homomorphism ℎ, which maps the
𝜆-terms with these three informations to terms of T(𝑋𝜆 + 1).
We define the action of ℎ on each node, depending on its
label and the three informations it contains:
• If the label of the node is 𝑦 or 𝜆𝑦 for some variable
𝑦 ∈ 𝑋 , or if the label is @ and satisfies App, then ℎ

returns the same node (seen as a term), forgetting the
extra three informations.
• If the node is an application node satisfying

¬App ∧ ¬Right ∧ ¬Left
then ℎ adds 1 to the two children of the node.
• If the node is an application node satisfying

¬App ∧ ¬Right (resp. ¬App ∧ ¬Left)
then ℎ adds 1 to the left (resp. right) child of the node.

Let 𝑡 be a linear 𝜆-term. We show that the factors induced by
𝑔 satisfy the two conditions of Proposition F.12. First of all,
by analyzing the action of ℎ on each node, note that every
application node will receive 1 as one of its children, except
when it is satisfies App. Thus the only branching nodes in a
factor are redexes, hence the factors are thin. Now suppose
by contradiction that there is some full 𝑥-redex of type 𝜎
of 𝑡 which is not entirely contained in a factor. This means
that in 𝑔(𝑡) there is a 1 between the application node of
some 𝑥-redex of type 𝜎 and its variable. By construction of
ℎ, 1 is the child of an application node (call it 𝑛). Suppose
w.l.o.g. that it is the right child of𝑛. The node𝑛 cannot satisfy
App because it got 1 as a child by ℎ. Is satisfies Right by the
contradiction hypothesis. Thus its satisfies ¬App ∧ ¬Right,
therefore it receives also 1 as its left child by ℎ. This means
that 𝑛 received 1 for its both children, and the only way to
get that is to satisfy ¬App ∧ ¬Right ∧ ¬Left, which gives a
contradiction. □

G Decomposing the unfolding function
As discussed in the main body of the paper, the unfolding
function may be regarded as unsatisfactory. In this section,
we will decompose it into a collection of small functions
containing no form of iteration.

We present these new prime functions in Section G.1, and
state the main result of this section which is that term unfold-
ing can be derived from these new prime functions (and the
other prime functions of Section 3). To prove this result, our
strategy is to show that term unfolding can be derived for a
restricted class of terms that we call homogeneous, and then
to show that every term can be factorised into homogeneous
terms.
The notion of homogeneous terms, and the result about

decomposing arbitrary terms into homogeneous ones, are
presented in Section G.2. Next, in Section G.3, we show how
term unfolding can be done for homogeneous inputs. Finally,
in Section G.4 we prove the main result of the section by
combining the results of Sections G.2 and G.3.

• Unit.
Σ ↔ Σ · 1

• Associativity.

(Σ · Γ) · Δ → Σ · (Γ · Δ)

• Terms as shallow terms.
1 + Σ.TΣ ↔ TΣ

Every term is either just a port,
or has a root and child subterms.

• Tensors as shallow terms.
Σ𝑛 ↔ 𝑛.Σ

Figure 9. Prime functions for shallow terms.

G.1 New prime functions replacing the unfolding
In order to decompose the unfolding function, we enrich
datatypes with the constructor of shallow terms introduced
in Section A.1.
We present the prime functions which will replace the

unfolding in Figures 9–12. Prime functions of Figure 9 de-
scribe the behaviour of the shallow term datatype. Figure 10
contains some additional laws for the fold datatype and Fig-
ure 11 contains some new ditributivity laws. Prime functions
of Figure 12 are weak versions of the unfolding function,
containing no form of iteration.

Note that some of these functions were already presented
in Appendix A.3 to define formally the unfolding function:
distributivity of shallow terms over fold, distributivity of
shallow terms over product (Figure 11), and the matching
function (Figure 12). In appendix A.3, those functions were
introduced in a very formal (hence verbose) way. In this ap-
pendix, we made the opposite choice of giving only informal
definitions trough some hopefully clear and unambiguous
pictures.
The main result of this section is that the unfolding can

be replaced by the more atomic functions of Figures 9–12, in
presence of the prime functions presented in Section 3, as
stated in the following theorem
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• Unit.
Σ → F𝑘Σ𝑘

• Increase fold.
F𝑘Σ → F𝑘+1Σ

• Decrease fold.
F𝑘+1Σ → F𝑘Σ + ⊥

• Projection of products.

Σ × Σ → F1Σ

Figure 10. Additional prime functions for folds.

Theorem G.1. The unfolding function can be derived us-
ing the functions of Figures 9–12 and the prime functions of
Section 3.

In the rest of Appendix G, derivable means derivable from
the prime functions of Figures 9–12 and the prime functions
of Section 3 except from unfolding.

G.2 Factorisation forests
This section is devoted to stating and proving a tree version
of the Factorisation Forest Theorem of Imre Simon. Our re-
sult differs from the original Factorisation Forest Theorem in
the following ways: (a) we consider trees instead of strings;
(b) we use aperiodic finite monoids instead of arbitrary finite
monoids; and (c) the factorisation in the conclusion of the
theorem can be computed by a derivable function. A tree
generalisation of the Factorisation Forest Theorem was al-
ready proved by Colcombet [14, Theorem 1 and Section 3.3],
but Colcombet’s result is proved for monadic second-order
logic, and therefore it does not satisfy condition (c).

Factorisation forests The idea behind factorisation forests
is to split a term into a nested factorisation, which is a term
of terms of terms, and so on up to a certain depth. Define a
nested factorisation of depth 𝑘 ∈ {1, 2, . . .} over alphabet Σ
to be an element of T𝑘Σ which is defined by

T0Σ = Σ and T𝑘+1Σ = TT𝑘Σ.

• Fold over coproduct.

F𝑘 (Σ1 + Σ2) → F𝑘Σ1 + F𝑘Σ2
(𝑎, 𝑖)/𝑓 ↦→ ((𝑎/𝑓 ), 𝑖)

• Shallow terms over coproduct.

(Σ1 + Σ2).Γ → (Σ1 .Γ) + (Σ2.Γ)
(𝑎, 𝑖) (𝑡1, . . . , 𝑡𝑛) ↦→ (𝑎(𝑡1, . . . , 𝑡𝑛), 𝑖)

• Shallow terms over product.

(Σ1 × Σ2).Γ → (Σ1.Γ) × (Σ2.Γ)

• Fold over product.

F𝑘 (Σ1 × Σ2) → F𝑘 ((F𝑘Σ1) × (F𝑘Σ2))

• Fold over product (bis).

(F𝑘Σ1) × (F𝑘Σ2) → F𝑘 (Σ1 × Σ2)

• Shallow terms over fold.
Σ.F𝑘Γ → F𝑘 (Σ.Γ)

• Fold over shallow terms.
F𝑘 (Σ · Γ) → (F𝑘Σ) · Γ [𝑘 ]

Γ is a set of unary elements.

Figure 11. Additional distributivity prime functions.

Nested factorisations can be flattened to terms by using an
operation flat𝑘 : T𝑘Σ→TΣ defined by

flat1 = identity and flat𝑘+1 def
= flat ◦ T(flat𝑘 ).
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• Untwist.
TF1Σ → F1TΣ

• External fold.
TF𝑘Σ → F𝑘TF𝑘Σ

• Matching.

F𝑘Σ.Γ𝑘 → F1 (Σ.Γ)

Figure 12. Weak forms of unfolding.

An equivalent definition of flat𝑘+1 would be flat𝑘 ◦ T𝑘−1flat,
the equivalence of these definitions corresponds to the fact
that T is a monad.

Branches and subbranches Define a branch in a ranked
set to be an element of the ranked set together with a distin-
guished port. We draw branches like this:

We write BΣ for the (unranked) set of branches over a ranked
set Σ. For a term, we classify its edges as internal (linking a
non-port node with a non-port child) and external (linking a
non-port node with a child port). Each edge in a term 𝑡 ∈ TΣ
corresponds to a branch over Σ, namely the branch which
leads to the edge. Any branch obtained this way is called a
subbranch of 𝑡 . Here is a picture of subbranches in the case
of a term of terms:

the subbranch 
corresponding to

an internal edge

the subbranch 
corresponding to
an external edge

Branches in terms form a monoid. Using the monoid struc-
ture of branches in terms, we can extend any function ℎ :
BΣ→ 𝑀 , with𝑀 a monoid, to a monoid homomorphism

ℎ (𝑛) : BT𝑛Σ→ 𝑀

whichmaps a branch of a term to the product – in themonoid
𝑀 – of all of its subbranches (after flattening). A more formal
definition is that ℎ (0) is the same as ℎ, while ℎ (𝑛+1) is the
unique monoid homomorphism which makes the following
diagram commute

BT𝑛Σ
ℎ (𝑛)

##
Bunit
��

BT𝑛+1Σ
ℎ (𝑛+1)

// 𝑀

The idea behind factorisation forests, as expressed in Def-
inition G.2 below, is to factorise a term into a term of terms
of terms (etc.) so that the depth of nesting is bounded, and
at each level all branches behave regularly with respect to
some monoid homomorphism.

DefinitionG.2 (Homogeneous factorisations). Letℎ : BΣ→
𝑀 be a function into a monoid𝑀 .
• We say that a factorisation 𝑡 ∈ TTΣ is homogeneous
with respect to ℎ if it either:
1. it is a shallow term (which means that all internal

edges originate from the root); or
2. all internal subbranches of 𝑡 have the same value

under ℎ (1) ; or
3. if 𝑎, 𝑏 ∈ 𝑀 appear as values – underℎ (1) – of internal

branches in 𝑡 , then 𝑎𝑏 = 𝑎.
• We say that a nested factorisation 𝑡 ∈ T𝑛Σ is hereditar-
ily homogeneous with respect to ℎ if either 𝑛 = 1 and 𝑡
is the unit of a letter, or 𝑛 ≥ 2 and both:
1. it is homogeneous with respect to ℎ (𝑛−1) ; and
2. every node has a label in T𝑛−1Σ that is hereditarily

homogeneous with respect to ℎ.

Recall that a finite monoid is aperiodic if it has only trivial
subgroups. An equivalent definition is that every element𝑚
of the monoid satisfies

∃𝑛 ∈ {1, 2, . . .}𝑚𝑛 =𝑚𝑛+1 .

A famous theorem of Schützenberger, McNaughton and Pa-
pert, see [28, Theorem VI.1.1] says that the languages of
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words recognised by homomorphisms into finite aperiodic
monoids are exactly those that can be defined in first-order
logic. This is the reason why we consider aperiodic monoids.

Example G.3. Let 𝑘 ∈ {1, . . .} and consider the monoid of
partial functions

{1, . . . , 𝑘} → {1, . . . , 𝑘}.
This monoid is not aperiodic, because it contains the group of
all permutations of {1, . . . , 𝑘}. Consider now the restriction
of this monoid to partial functions which are monotone
(this is a monoid, because such functions are closed under
composition). This monoid is aperiodic, because if 𝑓 is a
partial function, then for every 𝑖 ∈ {1, 2, . . . , 𝑘} the sequence

𝑓 1 (𝑘), 𝑓 2 (𝑘), 𝑓 3 (𝑘), . . .
reaches a fixpoint (or becomes undefined) in at most 𝑘 steps.

We are now ready to state our version of the Factorisation
Forest Theorem.

Theorem G.4 (Factorisation Forest Theorem). Let Σ be a
ranked set and let ℎ : BΣ→ 𝑀 be a function into a finite ape-
riodic monoid𝑀 . There is some 𝑛 ∈ {1, 2, . . .} and a function

𝑓 : TΣ→ T𝑛Σ

such that flat𝑛 ◦ 𝑓 is the identity on TΣ, and all outputs of 𝑓
are hereditarily homogeneous with respect to ℎ. Furthermore,
if Σ is finite7 then 𝑓 is derivable.

In the proof below, the constructions are designed so that
they can be formalised using derivable functions, however
we leave the details of the “Furthermore” part to the reader.

Define a good set to be any subset 𝑋 ⊆ TΣ which admits a
function

𝑓 : TΣ→ T𝑛Σ for some 𝑛 ∈ {1, 2, . . .}
such that flat𝑛 ◦ 𝑓 is the identity on TΣ, and 𝑓 restricted to 𝑋
produces only hereditarily homogeneous outputs. Our goal
is to show that the entire set TΣ is good. To prove this, we use
a more refined result, stated below, which has a parameter
that can be used for induction. We say that a term 𝑡 ∈ TΣ
uses𝐴 ⊆ 𝑀 for internal subbranches if all internal subbranch
have image under ℎ (1) that belongs to 𝐴.

Lemma G.5. Let Σ be a ranked set and let ℎ : BTΣ→ 𝑀 be
a monoid homomorphism into a finite aperiodic monoid 𝑀 .
For every 𝐴 ⊆ 𝑀 , the terms that use 𝐴 for inner subbranches
is good.

Theorem G.4 follows immediately from the lemma, by
taking 𝐴 to be the entire monoid. The rest of Section G.2
is therefore devoted to proving the lemma. The proof is by
induction on two parameters: (a) the size of 𝐴; and (b) the
size of the semigroup ⟨𝐴⟩ ⊆ 𝑀 that is generated by𝐴. These
7This finiteness assumption could be relaxed by saying that Σ is possibly
infinite but the function ℎ is derivable, in the sense that a derivable function
can decorate the ports of an element in Σ by their values under𝑀 .

parameters are ordered lexicographically, with the size of
the semigroup being more important.

The induction base is when 𝐴 contains only one element
𝑎 of the monoid. If a term uses {𝑎} for internal subbranches,
then applying Tunit leads to a factorisation that is homoge-
neous according to item 2 of Definition G.2, which is also
hereditarily homogeneous because all nodes are labelled by
units. This completes the proof of the induction base.

In the proof of the induction step, we consider two cases.
• The first case is when every 𝑎 ∈ 𝐴 satisfies

⟨{𝑏𝑎 : 𝑏 ∈ ⟨𝐴⟩}⟩ = ⟨𝐴⟩
This means that every for every 𝑎 ∈ 𝐴, the function
𝑏 ↦→ 𝑏𝑎 is a permutation of ⟨𝐴⟩. Since the monoid is
aperiodic, this permutation must necessarily be the
identity. Therefore, we have 𝑎𝑏 = 𝑎 for every 𝑎, 𝑏 ∈
⟨𝐴⟩. This means that if all a term uses 𝐴 for internal
subbranches, then applying Tunit gives a factorisation
which is hereditarily homogeneous according to item 3
of Definition G.2.
• If the previous item does not hold, then there is some
𝑎 ∈ 𝐴 such that

⟨{𝑏𝑎 : 𝑏 ∈ ⟨𝐴⟩}⟩
is a proper subsemigroup of ⟨𝐴⟩. Fix some such 𝑎. De-
fine a sensitive edge in a term 𝑡 ∈ TΣ to be any internal
edge where the corresponding subbranch has value 𝑎
under ℎ (1) . Call an internal edge post-sensitive if it is
not sensitive, but its parent edge is. Here is a picture:

external edge

sensitive 
internal edge

post-sensitive 
internal edge

internal edge
that is neither
sensitive nor

post-sensitive 

Define the split of a term to be the factorisation which
cuts along post-sensitive edges, as shown in the fol-
lowing picture:

We only consider splits for terms which use 𝐴 for in-
ternal subbranches. Roughly speaking, we will show
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that all factors in the split are good, and the split itself
is good. Combining these two observations, we will
see that all terms
We begin by looking at the factors in the split (of a
term where 𝐴 is used for internal subbranches). Here
is a picture of such a factor:

If we follow a branch in an factor of the split, from root
to port, we first have a sequence of non-sensitive edges
from the original term, followed by a sequence of sen-
sitive edges. Group the non-sensitive edges together,
and group the sensitive edges together, resulting in a
shallow term from TΣ.TΣ, which is illustrated in the
following picture:

no sensitive edges

only sensitive edges

In the resulting shallow term, the root is labelled by
a term without sensitive edges (i.e. it is a term which
uses 𝐴 − {𝑎} for internal subbranches), while the chil-
dren are labelled by terms where all edges are sensitive
(i.e. they are terms which use {𝑎} for internal sub-
branches). We can apply the induction in both cases,
and combine the resulting nested factorisations using
a shallow term, as in item 1 of Definition G.2.
Having established that the factors of the split are
good, we turn to the split itself. By construction, every
subbranch of the split is mapped by ℎ (1) to the smaller
semigroup

⟨{𝑏𝑎 : 𝑏 ∈ ⟨𝐴⟩}⟩,
We can view the split as a term over alphabet Γ = TΣ.
Since all internal subbranches of the split are in the
smaller subsemigroup, we can apply the induction
assumption of the lemma (with Γ and ℎ (1) ), showing
that the split is good. More formally, the set

{split of 𝑡 : 𝑡 ∈ TΓ uses 𝐴 for internal subbranches}
is good. To show now that original set of terms 𝑡 that
use 𝐴 for internal branches is good, we first apply the

split, then compute the nested factorisation for the
split, and finally we compute the nested factorisations
for the factors of the split (the letters from Γ.).

G.3 Term unfolding for homogeneous inputs
The goal of this section is to show that term unfolding is
derivable for homogeneous inputs. Actually, we will first
show that unfolding is derivable for another particular case
of inputs which we call constant-twists. Then we will use this
function as a macro to unfold the homogeneous inputs.

G.3.1 Unfolding constant-twist functions
In the proof of this section, it will be sometimes convenient
to manipulate partial shallow terms, that is shallow terms
where some children of the root maybe ports. We will define
them more precisely, and show that unfolding matrix power
of partial shallow terms is derivable.

Partial shallow unfold If Γ and Δ are types, we define
Γ ⊙ Δ to be Γ.(Δ + {1}). We call its inhabitants the partial
shallow terms. A partial shallow term looks like this, where
we omitted to draw the element 1

We define the partial shallow unfolding function as the ex-
tension of the shallow unfold function of Figure 12 to partial
shallow terms. It is the function of type

F𝑘Σ ⊙ Γ𝑘 → F𝑘 (Σ ⊙ Γ)

defined as in the following picture

the partial shallow unfolding function can be derived as
follows. Consider the functions 𝑓 and 𝑔 defined as follows

𝑓 : Γ𝑘
Increse-fold−−−−−−−−→ F𝑘Γ𝑘

F𝑘 (𝜄1)𝑘−−−−−→ F𝑘 (Γ + 1)𝑘

𝑔 : 1
k-Unit−−−−→ F𝑘1𝑘

F𝑘 (𝜄2)𝑘−−−−−→ F𝑘 (Γ + 1)𝑘

We start by lifting 𝑓 and 𝑔 as follows

F𝑘Σ ⊙ Γ𝑘
def
= F𝑘Σ · (Γ𝑘 + 1) → F𝑘Σ · F𝑘 (Γ + 1)𝑘

We compose the obtained function with the prime function
which distributes the shallow product over the fold:

F𝑘Σ · F𝑘 (Γ + 1)𝑘 → F𝑘 (F𝑘Σ · (Γ + 1)𝑘 )

Now we can apply the shallow unfold function, more pre-
cisely we lift it along the constructor F𝑘 . Then we compose
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the result with the product of the graded monad:

F𝑘 (F𝑘Σ · (Γ + 1)𝑘 )
F𝑘Shallow unfold−−−−−−−−−−−−→ F𝑘F1 (Σ · (Γ + 1))

Then we compose the result with the product of the graded
monad, to obtain the desired function

F𝑘F1 (Σ · (Γ + 1))
flat−−→ F𝑘Σ · (Γ + 1)

def
= F𝑘Σ ⊙ Γ

Term unfolding for constant-twist inputs We say that
a term 𝑡 ∈ TΣ [𝑘 ] is a constant-twist term if each twist of
an internal branches is a constant function. Note that the
internal twists need not to be the same constant function.
Here is an example of a constant-twist term

This section is devoted to proving the following lemma.

Lemma G.6. Let 𝑘 ∈ {1, 2, . . .}. There is a derivable function

𝑓 : TΣ [𝑘 ] ⇀ (TΣ) [𝑘 ]

which coincides with unfolding for all constant-twist inputs.

Proof. The function 𝑓 can be derived using the following
steps. We use the example of the constant-twists term above
as a running example.

1. We start by applying the external unfolding function.
We get a term in F𝑘TΣ [𝑘 ] . Our example becomes like
this

2. Next, we will transform each matrix power node into
a tensor product as follows

Σ [𝑘 ] → F𝑘 (F𝑘Σ × . . . F𝑘Σ) → F1 (F𝑘Σ)𝑘

The idea here is that, since the image of each twist is a
singleton, the ports of the matrix power are indepen-
dent. We can then transform safely each node into a
tensor product. After that, we transform each tensor
product (F𝑘Σ)𝑘 into a shallow term 𝑘.F𝑘Σ which we
see itself as a term of type T(𝑘 + F𝑘Σ). After the appli-
cation of the unfolding function unfold1 followed by
a flattening, and the simplification of F𝑘F1T(𝑘 + F𝑘Σ)
into F𝑘T(𝑘 + F𝑘Σ) we get a term in F𝑘T(𝑘 + F𝑘Σ). Our
running example becomes as follows after this step

3. Now we apply the factorization

T(𝑘 + F𝑘Σ) → TT(𝑘 + F𝑘Σ)

which regroups each element F𝑘Σ with its children of
type 𝑘 in the same factor, and leaves the other nodes
in isolated factors. At this point our term looks like
this

Note that this factorization have the following shape:
the root is labeled by 𝑘 , and all the other nodes have
labels in (F𝑘Σ) ⊙ 𝑘 . We want to reflect this structure
in the type by applying the following function

TT(𝑘 + F𝑘Σ) → 𝑘.T((F𝑘Σ) ⊙ 𝑘)

This function can be implemented easily using the
decomposition function, the functions which maps
every type to 1 and mechanisms of raising errors.

4. In each node (F𝑘Σ) ⊙ 𝑘 , we transform 𝑘 into 1𝑘 (this
function is basic since its domain is finite). After that,
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we apply the partial shallow unfold function, com-
posed with the prime functions eliminating the 1 and
decreasing the fold:
(F𝑘Σ) ⊙ 𝑘 → F𝑘 (Σ ⊙ 1) → F𝑘Σ→ F1Σ

as illustrated by the following picture

5. At this point we have a term of type F𝑘 (𝑘 · TF1Σ). We
apply the untwist function

TF1Σ→ F1TΣ

then the function which transforms shallow terms into
tensor product

𝑘 · F1TΣ→ (F1TΣ)𝑘

Now our term is of type F𝑘 (F1TΣ)𝑘 . To conclude, we
apply the prime function which permutes the tensor
product with the fold, then we apply the product of
the graded monad.

□

G.3.2 Term unfolding for 𝛼-homogeneous inputs
For a monotone function

𝛼 : {1, . . . , 𝑘} → {1, . . . , 𝑘}

we say that a term 𝑡 ∈ TΣ [𝑘 ] is 𝛼-homogeneous if all internal
branches have twist 𝛼 . This section is devoted to proving the
following lemma.

Lemma G.7. Let 𝑘 ∈ {1, 2, . . .} and let 𝛼 : {1, . . . , 𝑘} →
{1, . . . , 𝑘} be a monotone function. There is a derivable opera-
tion

𝑓 : TΣ [𝑘 ] → (TΣ) [𝑘 ]

which coincides with term unfolding for all inputs which are
𝛼-homogeneous.

Proof. We proceed by induction on 𝑘 . When 𝑘 = 1, the un-
folding coincides with the basic distributivity function

TF1Σ→ F1TΣ

Let us treat the inductive case. For that, we introduce a tool
that will be useful to analyze the function 𝛼 . For a function

𝛼 : {1, . . . , 𝑘} → {1, . . . , 𝑘}
define its graph as the directed graph whose set of vertices
is {1, . . . , 𝑘}, and which contains an edge 𝑖 → 𝑗 if 𝛼 (𝑖) = 𝑗 .
Note that the out-degree of the nodes is 1.

In the proof of the inductive case, we distinguish two cases.
The first one is when the graph of 𝛼 is not weakly connected.
In this case, by monotonicity of 𝛼 , we can find𝑚 ∈ {1, 𝑘 − 1}
such that 𝛼 ({1,𝑚}) ⊆ {1,𝑚} and 𝛼 ({𝑚 + 1, 𝑘}) ⊆ {𝑚 + 1, 𝑘}.

The idea is then to create two copies of the original term: in
the first one we keep only the first𝑚 elements of the tensor
product of each node, and in the second one we keep the last
𝑘 −𝑚 copies. Then we unfold these terms by applying the
induction hypothesis, and finally we gather them to obtain
the unfolding of the original term.
Let us now implement the ideas we discussed above. We

start by unfolding the external twists, using the basic external
unfold function. This way, the domain of every external twist
cannot be shared by the two disconnected components of
the domain of 𝛼 . Then, we duplicate the input term using
the basic function

TΣ [𝑘 ] → F2 (TΣ [𝑘 ] × TΣ [𝑘 ])
To the first copy, we apply the function

𝑓1 : TΣ [𝑘 ] → (TΣ) [𝑚]

which keeps only the first𝑚 elements of the tensor product,
then applies the induction hypothesis to the obtained term.
To the second copy, we apply the function

𝑓2 : TΣ [𝑘 ] → (TΣ) [𝑘−𝑚]

which keeps only the last 𝑘 −𝑚 elements of the tensor prod-
uct, then applies the induction hypothesis to the obtained
term.

The function 𝑓1 can be derived using the tensor projection
function, the merge of folds, then reducing the fold and
finally invoking the induction hypothesis.

When we apply 𝑓1 and 𝑓2 to the two copies of the original
term, we get a term of type

F2 ((TΣ) [𝑚] × (TΣ) [𝑘−𝑚])
At this point, we are almost done, we only need to transform
the type in order to match the desired type. For that we
increase the fold by applying the following prime functions

F𝑚 (TΣ)𝑚 → F𝑘 (TΣ)𝑚 F𝑘−𝑚 (TΣ)𝑘−𝑚 → F𝑘 (TΣ)𝑘

We swap the fold with the tensor product using the corre-
sponding prime function, then we decrease the fold. This
concludes the proof of the first case.

Now consider the case where the graph of 𝛼 is weakly
connected. By monotonicity, we can show that either

𝛼−1 (1) = ∅ or 𝛼−1 (𝑘) = ∅

By symmetry, we suppose wlog that 𝛼−1 (𝑘) = ∅. We suppose
also that 𝛼 (𝑘) = 𝑘 − 1, the general case can be treated in a
similar way. We consider as example the following function
𝛼 , whose graph, drawn below, is weakly connected
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Consider the function

F𝑘Σ𝑘 → F2 (F𝑘−1Σ𝑘−1 × Σ)

which acts as in the following picture

If we inject both F𝑘−1Σ𝑘−1 and Σ into Δ
def
= F𝑘−1Σ𝑘−1 + Σ, we

get a term in the matrix power Δ [2] . Note that the twists
of such elements are the constant 1. We can then apply the
unfolding function for constant-twists inputs

TΔ [2] → TΔ [2]

We can decompose the term TΔ into (TF𝑘−1Σ𝑘−1) ⊙ Σ, by
analyzing its structure. Now we can apply the induction
hypothesis to unfold TF𝑘−1Σ𝑘−1 into F𝑘−1 (TΣ)𝑘−1. By apply-
ing the prime functions which permute the fold with the
tensor product then increase the fold, we obtain the desired
term. □

G.3.3 Term unfolding for homogeneous inputs
we say that a term 𝑡 ∈ TΣ [𝑘 ] is homogeneous if for every
two internal branches 𝑏1, 𝑏2 having twists 𝛼1, 𝛼2 respectively
and such that 𝑏2 is a child of 𝑏1, we have that

𝛼1𝛼2 = 𝛼1

The rest of this section is devoted to proving the following
lemma.

LemmaG.8. Let 𝑘 ∈ {1, 2, . . .}. There is a derivable operation

𝑓 : TΣ [𝑘 ] → (TΣ) [𝑘 ]

which coincides with term unfolding for all inputs which are
homogeneous.

Lemma G.9. Let 𝛼 : [1, 𝑘] → [1, 𝑘] and 𝛽 : [1, 𝑘] → [1, 𝑘]
be two monotone functions such that

𝛼𝛽 = 𝛼.

If the graph of 𝛼 is not weakly connected, then so is the graph
of 𝛽 . Moreover, if𝑚 ∈ {1, . . . , 𝑘} is such that

𝛼 [1,𝑚] ⊆ [1,𝑚] and 𝛼 [𝑚 + 1, 𝑘] ⊆ [𝑚 + 1, 𝑘]

then we have also

𝛽 [1,𝑚] ⊆ [1,𝑚] and 𝛽 [𝑚 + 1, 𝑘] ⊆ [𝑚 + 1, 𝑘]

If the graphs of 𝛼 and 𝛽 are both weakly connected, then 𝛼
and 𝛽 are both constant functions.

Proof of Lemma G.8. We proceed by induction on𝑘 . The base
case, ie when 𝑘 = 1 is realized by the untwist prime function.
Let us treat the inductive case. First, we factorize our term in
such a way that in each factor, either all the internal twits are
weakly connected, or all of them are not weakly connected.
To realize this factorization, it is enough to detect the first
nodes (that is the closest to the root) where the twist becomes
not weakly connected. Indeed, by LemmaG.9, we know that
the twits of the sub-tree rooted in such nodes are all not
weakly connected. To detect these node, the following prime
function is of particular interest

If we analyze this factorization, it has the form TΣ [𝑘 ] ⊙ TΣ [𝑘 ] ,
where the root contains only connected internal twists and
the leaves onlyweakly connected internal twists. By LemmaG.9,
we know that the internal twists of the root are constant,
and that in each leave, there is an integer𝑚 such that every
internal twist 𝛼 satisfies

𝛼 [1,𝑚] ⊆ [1,𝑚] and 𝛼 [𝑚 + 1, 𝑘] ⊆ [𝑚 + 1, 𝑘] .
To unfold the root, we apply PropositionG.6. To unfold each
leave, we proceed by induction, in the exact same way as the
non-connected case in the proof of Proposition G.7. Finally to
untwist the whole term, we apply the prime shallow unfold
function. □

G.4 Proof of Theorem G.1
In this section, we complete the proof of Theorem G.1. We
say that a nested factorisation in T𝑛Σ [𝑘 ] is monotone if all of
the labels from Σ [𝑘 ] that appear in it are monotone. Consider
the homomorphism which maps a branch to its correspond-
ing twist, and which gives the completely undefined function
in case the twist is not monotone. The homomorphism uses
an aperiodic monoid, as discussed in Example G.3. Apply the
Factorisation Forest Theorem with respect to this homomor-
phism, yielding a derivable function

𝑓 : TΣ [𝑘 ] → T𝑛Σ [𝑘 ]

which produces only nested factorisations that are heredi-
tarily homogeneous. (Also, because monotone functions are
closed under composition, it follows that if an input to 𝑓 is
monotone, then the same is true for the output.) Therefore,
Theorem G.1 follows by composing the function 𝑓 with the
function 𝑔𝑛 from the following lemma.

LemmaG.10. For every finite ranked set Σ and 𝑛 ∈ {1, 2, . . .}
there is a derivable function

𝑔𝑛 : T𝑛Σ [𝑘 ] → T[𝑘 ]Σ
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which makes the following diagram commute for inputs that
are monotone and hereditarily homogeneous:

T𝑛Σ [𝑘 ]

flat𝑛
��

𝑔

$$
TΣ [𝑘 ]

unfold
// T[𝑘 ]Σ

Proof. Induction on 𝑛. To make the induction pass through,
we also show that each function 𝑔𝑛 is consistent wit the twist
homomorphism in the following sense: for every input 𝑡 ∈
T𝑛Σ [𝑘 ] , and every port 𝑖 ∈ {1, . . . , arity(𝑡)}, the same value is
obtained by: (a) recursive flattening 𝑡 and then composing all
of the twists that are found on the path from the root to port 𝑖;
(b) applying 𝑔𝑛 and then computing the twist corresponding
to port 𝑖 .
For the induction base 𝑛 = 1, hereditarily homogeneous

inputs are units, and there are finitely many of them and the
function can be derived on a case by case basis.

Consider the induction step, where the lemma has already
been proved for 𝑛 and we want to prove it for 𝑛 + 1. The
function is the composition

T𝑛+1Σ [𝑘 ]
T𝑔𝑛 // T(TΣ) [𝑘 ] Lemma G.7// (TTΣ) [𝑘 ] flat[𝑘 ] // Σ [𝑘 ]

Consider a hereditarily homogeneous input 𝑡 ∈ T𝑛+1Σ [𝑘 ] .
1. Apply the function from the induction assumption to

every label of 𝑡 , i.e. apply

T𝑛+1Σ [𝑘 ]
T𝑔𝑛 // T(TΣ) [𝑘 ]

2. Let 𝑡1 be the output from the previous step. Because
𝑔𝑛 is consistent with twists, and 𝑡 is hereditarily ho-
mogeneous, it follows that 𝑡1 is either a shallow term,
or it is homogeneous with respect to the twist homo-
morphism. If 𝑡1 is a shallow term, then we apply the
shallow unfolding operation from .. . Otherwise, we
𝑡1 is homogeneous , because 𝑡 is hereditarily homo-
geneous and 𝑔𝑛 is consistent with twists. Therefore,
we can apply the function from Lemma G.7, with the
alphabet being TΣ.

3. The result of the previous step is a term 𝑡2 ∈ (TTΣ) [𝑘 ] .
To this term, we apply flat[𝑘 ] , yielding the final result.

A routine check shows that the function 𝑔𝑛+1 defined above
satisfies the property in the statement of the lemma, and that
it is furthermore consistent with the twist homomorphism.

□

H Chain logic and general unfold
In this section, we prove Theorem 3.6, which says that adding
general unfold to mso yields exactly the chain logic tree-
to-tree transductions. For the rest of this section, we use
the word “derivable” to mean derivable in the extension
of Definition 3.2 where general unfold is used instead of
monotone unfold.

To prove that every derivable function is a chain logic
transduction, we use the same proof as in Appendix C. The
only difference is that we need to deal with general unfolding
instead of monotone unfolding. For general unfolding, we
use the same proof as in Section C.3.2, with the only differ-
ence being in Lemma C.5. As opposed to the monotone case
in Lemma C.5, we need to compose not necessarily mono-
tone partial functions. In the presence of non-monotone
functions, the language corresponding to 𝐿 from Lemma C.5
is no longer first-order definable, but it is still a regular lan-
guage, and therefore it is definable in mso. Chain logic can
evaluate arbitrary mso properties on paths in a tree, and
therefore a formula of chain logic can be used to compute
the twist function between two nodes in an input tree.
There rest of this appendix is devoted to the converse

implication in Theorem 3.6, which says that every chain
logic tree-to-tree transduction is derivable, in the presence
of general unfolding.

Chain logic relabellings. Define chain logic relabellings
in the same way as the first-order relabellings from Defini-
tion 4.1, except that chain logic is used instead of first-order
logic. As in Theorem 7.1 about mso transductions, we push
all of the power of chain logic into tree relabellings.

Lemma H.1. Every chain logic tree-to-tree transduction can
be decomposed as: (a) a chain logic relabelling; followed by (b)
a first-order tree-to-tree transduction.

Proof sketch. Same proof as in [14, Corollary 1], except that
mso is replaced by chain logic. The key property is that the
compositionality method, which is used in Lemmas 1 and 2
of [14], also works for chain logic. □

Thanks to the above lemma, and derivability of first-order
tree-to-tree transductions from our main theorem, in order
to finish the proof of Theorem 3.6, it suffices to show that
every chain logic relabelling is derivable. To prove deriv-
ability of chain logic relabellings, we decompose them into
simpler pieces. Unlike for first-order relabellings, where the
decomposition was based on Schlingloff’s theorem about
temporal logic, in the case of chain logic we use an approach
based on top-down tree automata8.

Top-down tree automata. We begin by defining top-down
tree automata. These are automata which process the input
tree in a deterministic top-down (i.e. root-to-leaves) pass.
Since we do not use nondeterministic top-down tree au-
tomata, we implicitly assume that the automata are deter-
ministic.

Definition H.2. A top-down tree automaton is given by:
1. an input alphabet Σ, which is a finite ranked set;

8The results of this section could be translated into an apparently new result,
which says that chain logic has the same expressive power as an extension
of Schlingloff’s logic obtained by adding group modalities as defined by
Baziramwabo, McKenzie and Thérien in [5, Section 4].
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2. a finite unranked set of states 𝑄 ;
3. a designated initial state in 𝑄 ;
4. for each input letter 𝑎 ∈ Σ, a transition function

𝛿𝑞 : 𝑄 → 𝑄arity of 𝑎 ;

5. an accepting set, which is a subset of

𝑄 × (input letters of arity zero).

For an input tree 𝑡 ∈ treesΣ, the run of the automaton
is defined to be the labelling of the nodes by states, which
is defined as follows by induction on the distance from the
root. The state in the root is the initial state. Suppose that we
have already defined the state 𝑞 in a node 𝑥 of the input tree.
Apply the transition function, corresponding to the label of
node 𝑥 , to the state 𝑞, yielding a tuple of states 𝑞1, . . . , 𝑞𝑛 .
These are the states of the run in the children of node 𝑥 .
An input tree is accepted if for every leaf, the accepting set
contains the pair (state in the leaf, label of the leaf).

Definition H.3 (Tree relabellings associated to a top-down
tree automaton). We associate two tree-to-tree functions to
a top-down tree automaton A with input alphabet Σ. Each
of these is a special cases of a chain logic relabelling.
• The ancestor relabelling, is denoted by

A↑ : treesΣ→ trees(𝑄 × Σ),
where 𝑄×Σ is be the ranked set which consists of one
copy of the alphabet Σ for each state. The ancestor
relabelling simply extends the input tree with the run
of the automaton. Note that the accepting set of the
automaton does not play a role in the definition of the
ancestors relabelling.
• The descendant relabelling, denoted by

A↓ : treesΣ→ trees(Σ + Σ),
is the characteristic function, in the sense of Section 5,
of the query which selects nodes whose subtree is ac-
cepted by A. In other words, for each node 𝑥 in the
input tree, its label is replaced by the corresponding
label in the first copy of Σ if the subtree of 𝑥 is accepted
by A, and otherwise it is replaced by the correspond-
ing label in the second copy of Σ.

The reason for notation in the above definition is that, in
the ancestor relabelling, the label of a node depends on its
ancestors, while in the descendant relabelling, the label of
a node depends on its descendants. It is worth pointing out
that many different runs of the automaton are used in the
descendant relabelling, because for each node the automaton
is started again with the initial state in that node.
We begin with the following lemma, which states a con-

nection between chain logic and (nestings of) top-down tree
automata that was described in [8].

Lemma H.4. Every chain logic relabelling is a composition
of functions which are either:

(a) a letter-to-letter homomorphism; or
(b) the descendant relabelling of a top-down tree automaton.

Proof. Adjusting for a slightly different terminology, this
lemma is the same as [8, Theorem 2.5.9]. To help with the ter-
minology, we note that the wordsum automata (WS) from [8]
are the same as top-down tree automata here, while the cas-
cade product of wordsum automata is the same as composing
descendant relabellings. □

Since letter-to-letter homomorphisms are derivable, in or-
der to finish the proof of Theorem 3.6, it remains to prove that
every function of kind (b) in the above lemma is derivable.
We prove this by doing a further decomposition, which re-
duces the descendant relabelling to the ancestor relabelling.

Lemma H.5. For every top-down tree automaton, its descen-
dant relabelling is a composition of functions which are either:

(c) a first-order relabelling; or
(d) the ancestor relabelling of a top-down tree automaton.

Proof. In this proof, we use the forward Ramseyan splits of
Colcombet [14].
Fix a top-down tree automaton A. For the proof of this

lemma, as well as for subsequent results, it will be convenient
to use a different perspective on top-down tree automata,
which uses automata on words. Recall the set of branches
BΣ that was defined in page 34: a branch is a letter together
with a distinguished port. Define the branch automaton of
A to be the deterministic word automaton, where the input
alphabet is BΣ, the states are the same, the initial state is the
same as in A, and the transition function is defined by

(

𝑄︷︸︸︷
𝑞 ,

BΣ︷︸︸︷
(𝑎, 𝑖) ) ↦→ 𝑖-th state in the tuple 𝛿𝑎 (𝑞).

The branch automaton does not have accepting states. Roughly
speaking, the run of a top-down tree automaton corresponds
to running the branch automaton on every root-to-leaf path
in the tree. This correspondence is spelled out in more detail
below.

Consider two nodes in a tree, called the source and target,
such that the source is an ancestor of the target. The source
can be equal to the target. The path between these two nodes
is defined to be the set of edges in the tree which connects
them. We can view the path as a word over the alphabet BΣ,
as illustrated in the following picture:

tree with a path
from x to y

word corresponding 
to the path

x

y
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The correspondence between the top-down tree automaton
A and its branch automaton can now be phrased as follows:
for a node 𝑥 , the state of the top-down tree automaton in
node 𝑥 is the same as the state of the branch automaton after
reading the (word corresponding to the) path from the root
to node 𝑥 .
Equipped with the above terminology, we complete the

proof of the lemma. For a path in an input tree, define its
state transformation to be the function of type𝑄 → 𝑄 which
describes the state transformation of the branch automaton
over the (word corresponding to the) path. By Colcombet’s
results on forward Ramseyan splits [14, Lemma 3], there is
a top-down tree automaton B with input alphabet Σ and a
family of first-order formulas

{𝜑 𝑓 (𝑥,𝑦)}𝑓 :𝑄→𝑄

with the following property. For every input tree 𝑡 ∈ treesΣ
and nodes 𝑥 ≤ 𝑦 in that tree, the state transformation for
the path from 𝑥 to 𝑦 is equal to 𝑓 if and only if

B↑(𝑡) |= 𝜑 𝑓 (𝑥,𝑦).

The idea is that the top-down tree automatonB computes the
forward Ramseyan split associated to state transformations
in the branch automaton of A. It follows that there is a
formula 𝜑 (𝑥) of first-order logic such that for every 𝑡 ∈
treesΣ,

B↑(𝑡) |= 𝜑 (𝑥)

holds if and only if the subtree of node 𝑥 is accepted by the
automatonA. The formula says that for all leaves 𝑦 ≤ 𝑥 , the
corresponding state transformation of the branch automaton
leads to an accepting state. Therefore, the descendant rela-
belling of A can be computed by first applying the ancestor
relabelling of B, and then a first-order relabelling. □

We now show that the ancestor relabellings produced by
the previous lemma can be further decomposed, so that the
underlying automata are reversible. Call a top-down tree au-
tomaton reversible if the corresponding branch automaton,
as defined in the proof of Lemma H.5, is reversible, which
means that for every input letter the corresponding transi-
tion function is a permutation of the states.

Lemma H.6. For every top-down automaton, its ancestor
function is a composition of functions which are either:

(c) a first-order relabelling; or
(e) the ancestor relabelling of a reversible top-down automa-

ton.

Proof. A corollary of the original Krohn-Rhodes theorem.
Define aMealy machine to be a string-to-string transducer,

which is obtained from a deterministic word automaton by
adding an output function, which maps every transition to
a letter of an output alphabet. The original Krohn-Rhodes
theorem says that every Mealy machine is a composition of

Mealy machines where the underlying automaton is either
aperiodic or reversible.

Take a top-down tree automaton. We can view its associ-
ated branch automaton as a Mealy machine which decorates
each position in the input word by the state after reading the
input word up to and including that position. To this Mealy
machine apply the Krohn-Rhodes theorem. The relabellings
for the aperiodic Mealy machines can be computed by the
functions of kind (c), while the relabellings for the reversible
ones correspond to kind (e). □

Putting together Lemmas H.4, H.5 and H.6, we see that
every chain logic relabelling is a composition of functions
which have kinds (c) or (e) as in the statement of Lemma H.6.
Since first-order relabellings are derivable, it remains to de-
rive the functions of kind (e).

Lemma H.7. For every reversible top-down tree automaton,
its ancestor relabelling is derivable (in the presence of general
unfolding).

Proof. Let the states of the automaton be 𝑄 = {𝑞1, . . . , 𝑞𝑘 }.
We assume that 𝑞1 is the initial state. Consider an input letter
𝑎, and its associated transition function as in item 4. Here is
a picture of such a transition function, where the letter 𝑎 is
binary and the number of states is 𝑘 = 3.

q1

q2q1

q2

q2q1

q3

q3q3

In terms of the above picture, the reversibility of the automa-
ton can be described as follows:

q1

q2q1

q2

q2q1

q3

q3q3

each state appears
exactly once as

a �rst child

each state appears
exactly once as
a second child

We can represent the above transition function as an element
of the 𝑘-th matrix power of 𝑄 copies of the states, denoted
by

𝑎 ∈ (𝑄 × Σ) [𝑘 ],

which is illustrated in the following picture:
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copy 1
of a

copy 2
of a

copy 3
of a

More formally, 𝑎 is defined so that for every port 𝑖 of the
letter 𝑎, the 𝑖-th twist function (see Section 3.3.3) is equal
to the state transformation of the branch automaton when
reading the letter (𝑎, 𝑖) ∈ BΣ. The twist functions need not
be monotone, since the branch automaton need not be mono-
tone. The reversibility of the automaton is crucial here; for a
non-reversible automaton we might need to use a sub-port
of the matrix power several times.
The transformation 𝑎 ↦→ 𝑎 is defined so that unfolding

the matrix power captures exactly run computation in the
top-down tree automaton, as described in the following com-
muting diagram

treesΣ
trees(𝑎 ↦→𝑎) //

A↑ **

trees((𝑄 × Σ) [𝑘 ])
unfold and

take coordinate 1
��

trees(𝑄 × Σ)
This completes the proof of the lemma. Note how general
unfolding is used, since the twists involved need not be
monotone. □
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