
ar
X

iv
:1

91
0.

04
13

7v
2

 [
cs

.C
R

]
 1

 M
ay

 2
02

0

Deciding Differential Privacy for Programs with

Finite Inputs and Outputs

Gilles Barthe1, Rohit Chadha2, Vishal Jagannath3, A. Prasad Sistla4,

and Mahesh Viswanathan5

1MPI Security and Privacy and IMDEA Software Institute
2University of Missouri

3,5University of Illinois at Urbana-Campaign
4University of Illinois at Chicago

May 5, 2020

Abstract

Differential privacy is a de facto standard for statistical computa-
tions over databases that contain private data. Its main and rather
surprising strength is to guarantee individual privacy and yet allow for
accurate statistical results. Thanks to its mathematical definition, dif-
ferential privacy is also a natural target for formal analysis. A broad
line of work develops and uses logical methods for proving privacy. A
more recent and complementary line of work uses statistical methods
for finding privacy violations. Although both lines of work are practi-
cally successful, they elide the fundamental question of decidability.

This paper studies the decidability of differential privacy. We first
establish that checking differential privacy is undecidable even if one re-
stricts to programs having a single Boolean input and a single Boolean
output. Then, we define a non-trivial class of programs and provide a
decision procedure for checking the differential privacy of a program in
this class. Our procedure takes as input a program P parametrized by
a privacy budget ǫ and either establishes the differential privacy for all
possible values of ǫ or generates a counter-example. In addition, our
procedure works for both to ǫ-differential privacy and (ǫ, δ)-differential
privacy. Technically, the decision procedure is based on a novel and
judicious encoding of the semantics of programs in our class into a
decidable fragment of the first-order theory of the reals with expo-
nentiation. We implement our procedure and use it for (dis)proving

1

http://arxiv.org/abs/1910.04137v2

privacy bounds for many well-known examples, including randomized
response, histogram, report noisy max and sparse vector.

1 Introduction

Differential privacy [19] is a gold standard for the privacy of statistical com-
putations. Differential privacy ensures that running the algorithm on any
two “adjacent” databases yields two “approximately” equal distributions,
where two databases are adjacent if they differ in a single element, and two
distributions are approximately equivalent if their distance is small w.r.t.
some metric specified by privacy parameter ǫ and error parameter δ. Thus,
differential privacy delivers a very strong form of individual privacy. Yet,
and somewhat surprisingly, it is possible to develop differentially private al-
gorithms for many tasks. Moreover, the algorithms are useful, in the sense
that their results have reasonable accuracy. However, designing differentially
private algorithms is difficult, and the privacy analysis can be error-prone,
as witnessed by the example of the sparse vector technique.

This difficulty has motivated the development of formal approaches for
analyzing differentially private algorithms (see [6] for a survey and the re-
lated work section of this paper). Broadly, two successful lines of work have
emerged. The first line of work develops sound proof systems to establish
differential privacy and uses these proof systems to prove the privacy of
well-known and intricate examples [32, 22, 7, 5, 4, 35, 17, 1, 34]. The second
line of work searches for counter-examples to demonstrate the violation of
differential privacy [18, 9]. Unfortunately, both lines of work elide the ques-
tion of decidability. As previous experience in formal verification suggests,
understanding decidable fragments of a problem not only help advance our
theoretical knowledge, but can form the basis of practical tools when com-
bined with ideas like abstraction and composition.

The goal of this paper is, therefore, to study the decision problem for
differential privacy, and to make a first attempt at delineating the decid-
ability/undecidability boundary. As a first contribution, we show that, as
expected, checking differential privacy is computationally undecidable. Our
undecidability result holds even if one restricts to programs having a single
Boolean input and a single Boolean output. Given the undecidability re-
sult, we then consider the task of identifying a rich class of programs, that
encompasses many known examples, for which checking differential privacy
nonetheless is decidable. We impose two desiderata:

1. the class of programs must include programs with real-valued vari-

2

ables, and more generally, with variables over infinite domains. This
requirement is critical for the method to cover a broad class of differ-
ential privacy algorithms;

2. the programs themselves are parametrized by the privacy parameter
ǫ (throughout the paper, we assume that the error parameter δ is a
function of ǫ), and the decision procedure should decide privacy for
all possible instances of the privacy parameter ǫ. This requirement is
motivated by the fact, supported by practice, that differential privacy
algorithms are typically parametrized by ǫ, and well-designed algo-
rithms are private not only for a single value of ǫ, but typically for all
positive values of ǫ.

We focus our attention on programs whose input and output spaces are
finite. Note that such programs need not be finite-state, as per our first
requirement, they could use program variables ranging over infinite (even
uncountable) domains to carry out the computation. We introduce a class
of programs, called DiPWhile, which are probabilistic while programs, for
which the problem of checking differential privacy is decidable. We succeed
in carefully balancing decidability and expressivity, by judiciously delineat-
ing the use of real-valued and integer-valued variables. Intuitively, the main
restriction we impose is that these infinite-valued variables be used only to
directly influence the program control-flow and not the data-flow that leads
to the computation of the final output. More precisely, in an execution,
the program output value depends only on the input, values sampled from
user-defined distributions and the exponential mechanism, and branch con-
ditions on the control flow path taken. The sampled values of real/integer
variables affect only the branch conditions. Thus, the output values depend
only on the branch conditions satisfied by the sampled real/integer variable
values, but not on their actual sampled values. This restriction, though se-
vere, turns out to capture many prominent differential privacy algorithms,
including Report Noisy Max and Sparse Vector Technique (see Section 8 on
experiments).

Key observations that enable us to establish decidability of DiPWhile

programs are as follows. The first result is that the semantics of DiPWhile-
programs can be defined using parametrized, finite-state Markov chains 1.
The fact that the semantics is definable using only finitely-many states is a
surprising observation because our programs have both integer and real-

1A parametrized Markov chain is a Markov chain whose transition probabilities are a
function of the privacy budget.

3

valued variables, and hence a näıve semantics yields uncountably many
possible states. Our crucial insight here is that a precise semantics for
DiPWhile-programs is possible without tracking the explicit values of the
real and integer-valued variables. Since real and integer variables are intu-
itively used only in influencing control-flow, the semantics only tracks the
symbolic relationships between the variables. Second, we show that the
transition probabilities of the Markov chain are ratios of polynomial func-
tions in ǫ and eǫ, where e is the Euler’s constant; this was a difficult result to
establish. These two observations together, allow us to reduce the problem
of checking the differential privacy of DiPWhile-programs to the decidable
fragment of the first-order theory of reals with exponentials, identified by
McCallum and Weispfenning [29].

We leverage our decision procedure to build a stand-alone tool for check-
ing ǫ- or (ǫ, δ(ǫ))-differential privacy of mechanisms specified by DiPWhile-
programs, for all values of ǫ. We have implemented our decision proce-
dure in a tool that we call DiPC (Differential Privacy Checker). Given
DiPWhile-program, our tool constructs a sentence within the McCallum-
Weispfenning fragment of the theory of reals with exponentials. It then
calls Mathematica R© to check if the constructed sentence is true over the
reals. Since our decision procedure is the first that can both prove differ-
ential privacy and detect its violation, we tried the tool on examples that
known to be differentially private and those that are known to be not differ-
entially private including variants of Sparse Vector, Report Noisy Max, and
Histograms. DiPC successfully checked differential privacy for the former
class of examples and produced counter-examples for the latter class. Our
counter-examples are exact and are more compact than those discovered by
prior tools.

As a contribution of independent interest, we also demonstrate how
our method yields a theoretical complete under-approximation method for
checking differential privacy of programs with infinite output sets. For such
programs, it is possible to discretize the output domain into a finite domain,
and to use the decision procedure to find privacy violations for the dis-
cretized algorithm (by post-processing, privacy violations for the discretized
algorithms are also privacy violations for the original algorithm). The dis-
cretization yields a method for generating counter-examples for algorithms
with infinite output sets.

We briefly contrast our results with prior work, and refer the reader
to Section 9 for further details. Overall, we see our decidability results as
complementary to prior works in checking differential privacy. In general,
existing methods for proving or disproving differential privacy, although in-

4

herently incomplete due to the undecidability of checking differential privacy,
are likely to be more efficient because they can trade-off efficiency for preci-
sion. However, the decision procedures for a sub-class of programs, like the
one presented here, maybe more predictable — if a decision procedure fails
to prove privacy, then it shall produce a counter-example that demonstrates
that the algorithm is not differentially private. Moreover, counter-example
search methods work for a fixed (ǫ) privacy parameter. As the counter-
example methods are usually statistical, they may generate both false pos-
itives and false negatives. In contrast, our decision procedures work for all
values for the privacy parameter and do not generate false positives or false
negatives.

Contributions. We summarize our key contributions.

• We prove the undecidability of the problem of checking differential
privacy of very simple programs, including those that have a single
Boolean input and output. Though unsurprising, undecidability has
not been previously established in any prior work.

• We prove the decidability of differential privacy for an interesting class
of programs. Our method is fully automatic that can check both differ-
ential privacy and detect its violation by generating counter-examples.
To the best of our knowledge, this is the first such result that encom-
passes sampling from integer and real-valued variables.

• We implement the decision procedure and evaluate our approach on
private and non-private examples from the literature.

Due to lack of space, some proofs and other materials have been moved
to an Appendix. The Appendix has been uploaded as an anonymous sup-
plementary submission.

2 Primer on differential privacy

Differential privacy [19] is a rigorous definition and framework for private
statistical data mining. In this model, a trusted curator with access to
the database returns answers to queries made by possibly dishonest data
analysts that do not have access to the database. The task of the curator
is to return probabilistically noised answers, so that data analysts cannot
distinguish between two databases that are adjacent, i.e. only differ in
the value of a single individual. There are two common definitions: two

5

databases are adjacent if they are exactly the same except for the presence
or absence of one record, or for the difference in one record. We abstract
away from any particular definition of adjacency.

Henceforth, we denote the set of real numbers, rational numbers, natural
numbers and integers by R,Q,N, and Z respectively. The Euler constant
shall be denoted by e. We assume given a set U of inputs, and a set V of
outputs. A randomized function P from U to V is a function that takes
an input in U and returns a distribution over V. For a measurable set
S ⊆ V, the probability that the output of P on u is in the set S shall be
denoted by Prob(P (u) ∈ S). In the case the output set is discrete, we use
Prob(P (u) = v) as shorthand for Prob(P (u) ∈ {v}).

We are now ready to define differential privacy. We assume that U is
equipped with a binary symmetric relation Φ ⊆ U × U , which we shall call
the adjacency relation. We say that u1, u2 ∈ U are adjacent if (u1, u2) ∈ Φ.

Definition 1. Let ǫ ≥ 0 and 0 ≤ δ ≤ 1. Let Φ ⊆ U × U be an adjacency
relation. Let P be a randomized function with inputs from U and outputs
in V. We say that P is (ǫ, δ)-differentially private with respect to Φ if for
all measurable subsets S ⊆ V and u, u′ ∈ U such that (u, u′) ∈ Φ,

Prob(P (u) ∈ S) ≤ eǫ Prob(P (u′) ∈ S) + δ

As usual, we say that P is ǫ-differentially private iff it is (ǫ, 0)-differentially
private. If the output domain is discrete, it is equivalent to require that for
all v ∈ V and u, u′ ∈ U such that (u, u′) ∈ Φ,

Prob(P (u) = v) ≤ eǫ Prob(P (u′) = v)

Differential privacy is preserved by post-processing. Concretely, if P is
an (ǫ, δ)-differentially private computation from U to V, and h : V → W is
a deterministic function, then h ◦P is an (ǫ, δ)-differentially private compu-
tation from U to W. In the remainder, we shall exploit post-processing to
connect differential privacy of randomized computations with infinite output
spaces to differential privacy of their discretizations.

Laplace Mechanism. The Laplace mechanism [19] achieves differential
privacy for numerical computations by adding random noise to outputs.
Given ǫ > 0 and mean µ, let Lap(ǫ, µ) be the continuous distribution whose
probability density function (p.d.f.) is given by

fǫ,µ(x) =
ǫ

2
e−ǫ|x−µ|.

6

Lap(ǫ, µ) is said to be the Laplacian distribution with mean µ and scale
parameter 1

ǫ . Consider a real-valued function q : U → R. Assume that q
is k-sensitive w.r.t. an adjacency relation Φ on U , i.e. for every pair of
adjacent values u1 and u2, |q(u1)− q(u2)| ≤ k. Then the computation that
maps u to Lap(ǫk , q(u)) is ǫ-differentially private.

It is sometimes convenient to consider the discrete version of the Laplace
distribution. Given ǫ > 0 and mean µ, let DLap(ǫ, µ) be the discrete dis-
tribution on Z, the set of integers, whose probability mass function (p.m.f.)
is

fǫ,µ(i) =
1− e−ǫ

1 + e−ǫ
e−ǫ|i−µ|.

DLap(ǫ, µ) is said to be the discrete Laplacian distribution with mean µ
and scale parameter 1

ǫ . The discrete Laplace mechanism achieves the same
privacy guarantees as the continuous Laplace mechanism.

Exponential mechanism. The Exponential mechanism [30] is used for
making non-numerical computations private. The mechanism takes as input
a value u from some input domain and a scoring function F : U × V → R

and outputs a discrete distribution over V. Formally, given ǫ > 0 and u ∈ U ,
the discrete distribution Exp(ǫ, F, u) on V is given by the probability mass
function:

hǫ,F,u(v) =
eǫF (u,v)

∑
v∈V e

ǫF (u,v)
.

Suppose that the scoring function is k-sensitive w.r.t. some adjacency
relation Φ on U , i.e., for all for each pair of adjacent values u1 and u2
and v ∈ V, |F (u1, r) − F (u2, r)| ≤ k. Then the exponential mechanism is
(2kǫ, 0)-differentially private w.r.t. Φ.

3 Motivating Example

Before presenting the mathematical details of our results, let us informally
introduce our method by showing how it would work on an illustrative ex-
ample.

Sparse Vector Technique. Several differential privacy examples require
that the randomized algorithms sampling from infinite support distribu-
tions (including continuous distributions). The Sparse Vector Technique
(SVT) [20, 28] was designed to answer multiple ∆-sensitive numerical queries
in a differentially private fashion. The relevant information we want from

7

queries is, which amongst them are above a threshold T . The Sparse Vector
Technique as given in Algorithm 1 is designed to identify the first c queries
that are above the threshold T in an ǫ-differentially private fashion.

Input: q[1 : N]
Output: out[1 : N]

rT ← Lap(ǫ
2∆ , T)

count← 0
for i← 1 to N do

r← Lap(ǫ
4c∆ , q[i])

b← r ≥ rT
if b then

out[i]← ⊤
count← count+ 1
if count ≥ c then

exit
end

else
out[i]← ⊥

end

end

Algorithm 1: SVT algorithm (SVT1)

In the program, the integer N represents the total number of queries,
and the array q of length N represents the answers to queries. The array out
represents the output array, ⊥ represents False and ⊤ represents True. We
assume that initially the constant ⊥ is stored at each position in out. In the
SVT technique, the ⊤ answers account for most of the privacy cost, and we
can only answer c of them until we run out of the privacy budget [20, 35].
On the other hand, there is no restriction on the number of ⊥ answers.
Please observe that the SVT algorithm is parametrized by the privacy bud-
get ǫ. Thus, the SVT algorithm can be considered as representing a class of
programs, one for each ǫ > 0.

Given N , the input set U in this context is the set of N length vectors
q, where the kth element q[k] represents the answer to the kth query on the
original database. The adjacency relation Φ on inputs is defined as follows:
q1 and q2 are adjacent if and only if |q1[i]− q2[i]| ≤ 1 for each 1 ≤ i ≤ N .

Let us consider an instance of the SVT algorithm when T = 0, N = 2,

8

∆ = 1 and c = 1. Let us assume that all array elements in q come from the
domain {0, 1}. In this case, we have four possible inputs [0, 0], [0, 1], [1, 1],
and [1, 0], and three possible outputs [⊥,⊥], [⊤,⊥], and [⊥,⊤].

For example, the probability of outputting [⊥,⊤] on input [0, 1] can be
computed as follows. Let XT be a random variable with Laplacian distribu-
tion Lap(ǫ2 , 0), X1 be a random variable with Laplacian distribution Lap(ǫ4 , 0)
and X2 be the random variable with Laplacian distribution Lap(ǫ4 , 1). The
probability of outputting [⊥,⊤] is the product of outputting of outputting ⊥
first, which is Prob(X1 < X0), and the conditional probability of outputting
⊤ given that ⊥ is output, which is Prob(X2 ≥ X0|X1 < X0). Note that
we really require the second quantity to be conditional probability as the
events X1 < X0 and X2 ≥ X0 are not independent. This probability can be
computed to be

r1(ǫ) =
24e

3ǫ
4 − 1 + 8e

ǫ
4 + 21e

ǫ
2

48e
3ǫ
4

.

Similarly, when the input is [1, 1] and the output is [⊥,⊤], the probability
is given by

r2(ǫ) =
−22 + 32e

ǫ
4 − 3ǫ

48e
ǫ
2

.

Observe that r1(ǫ) and r2(ǫ) are functions of ǫ, and hence the probabili-
ties of outputting [⊥,⊤] on inputs [0, 1] and [1, 1] vary with ǫ. Our immediate
challenge is to automatically compute expressions like r1(ǫ), r2(ǫ) from the
given program, the adjacent inputs, and outputs. Note that this example
involves sampling from continuous distributions and is a function of ǫ. Never-
theless, we shall establish that (see Section 6 and Theorem 8) that for several
programs, the former can be accomplished by interpreting the program as a
finite-state DTMC whose transition probabilities are functions parameter-
ized by ǫ even when the randomized choices involve infinite-support random
variables. The set of programs that we identify (Section 6) is rich enough
to model the most known differential privacy mechanisms when restricted
to finite input and output sets.

Having computed such expressions, checking ǫ-differential privacy re-
quires one to determine if

for all ǫ > 0. (r1(ǫ) ≤ e
ǫr2(ǫ))

and for all ǫ > 0. (r2(ǫ) ≤ e
ǫr1(ǫ)).

Note that the particular condition for the SVT example under consider-
ation above is encodable as a first-order sentence with exponentials, and
thus checking the formula for the example reduces to determining if such

9

a first-order sentence is valid for reals, with the standard interpretation of
multiplication, addition, and exponentiation. Whether there is a decision
procedure that can determine the truth of first-order sentences involving real
arithmetic with exponentials, is a long-standing open problem. However, a
decidable fragment of such an extended first-order theory has been identi-
fied by McCallum and Weispfenning [29]. The formula for the considered
example lies in this fragment. Indeed, we can show that all the formulas for
the SVT example lie in this fragment. This observation presents a challenge,
namely, what guarantees do we have that checking differential privacy is re-
ducible to this decidable fragment. Indeed, we shall establish that the set of
formulas that arise from the class of programs with finite-state DTMC se-
mantics in Theorem 8 also lead to formulas in the same decidable fragment.

Remark. Notice that if one can compute expressions for the probability
producing individual outputs on a given input, we could also check (ǫ, δ)-
differential privacy, instead of just ǫ-differential privacy. The only change
would be to account for δ in our constraints, and to consider all possible sub-
sets of outputs, instead of just individual output values. Thus, the methods
proposed here go beyond the scope of most automated approaches, which
are restricted to vanilla ǫ-differential privacy.

4 Preliminaries

In this section, we formally define the problem of differential privacy ver-
ification that we consider in this paper and also introduce the decidable
fragment of real arithmetic with exponentiation that plays a crucial role
in our decision procedure. The set of reals/positive reals/rationals/positive
rationals shall be denoted by R/R>0/Q/Q>0 respectively.

4.1 The Computational Problem

As illustrated by the example in Section 3, a differential privacy mecha-
nism is typically a randomized program Pǫ parametrized by a variable ǫ.
Having a parameterized program Pǫ captures the fact that the program’s
behavior depends on the privacy budget ǫ, intending to guarantee that Pǫ is
(f(ǫ), g(ǫ))-differentially private, where f and g are some functions of ǫ. The
parameter ǫ is assumed to belong to some interval I ⊆ R>0 with rational
end-points; usually, we take ǫ to just belong to the interval (0,∞). The
program Pǫ shall be assumed to terminate with probability 1 for every value
of ǫ (in the appropriate interval).

10

The randomized program Pǫ takes inputs from a set U and produces
output in a set V. In this paper, we shall assume that both U and V are fi-
nite sets that can be effectively enumerated. Despite our restriction to finite
input and output sets, the computational problem of checking differential
privacy is challenging (see Section 5.3). At the same time, the decidable
subclass we identify (Section 6) is rich enough to model most differential
privacy mechanisms when restricted to finite input and output sets. Ex-
tending our decidability results to subclasses of programs that have infinite
input and output sets, is a non-trivial open problem at this time.

The computational problems we consider in this paper are as follows.
Since our programs take inputs from a finite set U , we assume that the
adjacency relation Φ ⊆ U × U is given as an explicit list of pairs. In gen-
eral, when discussing (ǫ, δ)-differential privacy of some mechanism, the error
parameter δ needs to be a function of ǫ. To define the computational prob-
lem of checking differential privacy, the function δ : R>0 → [0, 1] must be
given as input. We, therefore, assume that this function δ has some finite
representation; if δ is the constant δ0 (which is often the case), then we rep-
resent δ simply by the number δ0. There are two computational problems
we consider in this paper.

Fixed Parameter Differential Privacy Given a program Pǫ over inputs
U and outputs V, adjacency relation Φ ⊆ U × U , and positive ratio-
nal numbers ǫ0, δ0, t ∈ Q>0, determine if Pǫ0 is (tǫ0, δ0)-differentially
private with respect to Φ.

Differential Privacy Given a program Pǫ over inputs U and outputs V,
interval I ⊆ R>0 with rational end-points, δ : R>0 → [0, 1], an adja-
cency relation Φ ⊆ U×U , and a rational number t ∈ Q>0, determine if
Pǫ is (tǫ, δ(ǫ))-differentially private with respect to Φ for every ǫ ∈ I.

Observe that the Fixed Parameter Differential Privacy problem can be
trivially reduced to the Differential Privacy problem by considering the sin-
gleton interval I = [ǫ0, ǫ0] and δ(ǫ) = δ0, where the goal is to check fixed
parameter differential privacy for constant privacy budget ǫ0 and error pa-
rameter δ0. Thus, an algorithm for checking Differential Privacy can be
used to solve Fixed Parameter Differential Privacy. Unfortunately, the Fixed
Parameter Differential Privacy problem is extremely challenging even when
restricted to finite input and output sets— we show that it is undecidable
(Section 5.3), and therefore, so is the Differential Privacy problem. We shall
identify a class of programs (Section 6) for which the Differential Privacy

11

problem (and therefore the Fixed Parameter Differential Privacy problem)
is decidable.

When the differential privacy does not hold, we would like to output a
counter-example.

Definition 2. A counter-example of (ǫ, δ) differential privacy for Pǫ, with
respect to an adjacency relation Φ, a function δ : R>0 → [0, 1] and a value
t ∈ Q>0, is a quadruple (in, in′, O, ǫ0) such that (in, in′) ∈ Φ, O ⊆ V and
ǫ0 > 0 and

Prob(Pǫ0(in) ∈ O) > etǫ0 Prob(P (in′) ∈ O) + δ(ǫ0)

When δ is the constant function 0, then O is {out} for some out ∈ V.

Remark. For the rest of the paper, unless otherwise stated, we shall assume
that the interval I ⊆ R>0 that contains the set of admissible ǫs is the interval
(0,∞). In our paper, ǫ refers to the parameter in program Pǫ, and not the
privacy budget. In our case, the privacy budget is (tǫ). For example, some
differential privacy algorithms Pǫ are designed to satisfy (ǫ2 , 0)-differential
privacy, and so in this case t would be 1

2 . In the standard differential privacy
definition “ǫ” refers to the privacy budget and so t does not appear. However,
many theorems for differential privacy algorithms use “ǫ” as the program
parameter, and then the privacy theorem is stated as the program being
(tǫ, δ)-differentially private. In most such cases, such a theorem is equivalent
to saying that the program P ǫ

t
(obtained by replacing ǫ by ǫ

t) is (ǫ, δ(ǫt))-
differentially private.

4.2 Reals with exponentials

As outlined in Section 3, our approach towards deciding differential privacy
shall rely on reducing the question to the problem of checking the truth of
a first-order sentence for the reals. Because of the definition of differential
privacy, the constructed first-order sentence shall involve exponentials. It
is a long-standing open problem whether there is a decision procedure for
the first-order theory of reals with exponentials. However, some fragments
of this theory are known to be decidable. In particular, there is a fragment
identified by McCallum and Weispfenning [29], that we shall exploit in our
results.

We will consider first-order formulas over a restricted signature and vo-
cabulary. We will denote this collection of formulas as the language Lexp.
Formulas in Lexp are built using variables {ǫ} ∪ {xi | i ∈ N}, constant sym-
bols 0, 1, unary function symbol e(·) applied only to the variable ǫ, binary

12

function symbols +,−,×, and binary relation symbols =, <. The terms
in the language are integral polynomials with rational coefficients over the
variables {ǫ}∪{xi | i ∈ N}∪{eǫ}. Atomic formulas in the language are of the
form t = 0 or t < 0 or 0 < t, where t is a term. Quantifier free formulas are
Boolean combinations of atomic formulas. Sentences in Lexp are formulas of
the form

QǫQ1x1 · · ·Qnxnψ(ǫ, x1, . . . , xn)

where ψ is a quantifier free formula, and Q, Qis are quantifiers. In other
words, sentences are formulas in prenex form, where all variables are quan-
tified, and the outermost quantifier is for the special variable ǫ.

The theory Thexp is the collection of all sentences in Lexp that are valid
in the structure 〈R, 0, 1, e(·), +,−,×,=, <〉, where the interpretation for
0, 1,+,−,× is the standard one on reals, and e is Euler’s constant; no-
tice that this is an extension of the first-order theory of reals. The crucial
property about this theory is that it is decidable.

Theorem 3 (McCallum-Weispfenning [29]). Thexp is decidable.

Finally, our tractable restrictions (and our proofs of decidability) shall
often utilize the notion of functions definable in Thexp; we, therefore, con-
clude this section with its formal definition.

Definition 4. A function f : (0,∞) → R is said to be definable in Thexp,
if there is a formula ϕf (ǫ, x) in Lexp with two free variables (ǫ and x) such
that

for all a ∈ (0,∞). f(a) = b iff

〈R, 0, 1, e(·),+,−,×,=, <〉 |= ϕf (ǫ, x)[ǫ 7→ a, x 7→ b]

5 Program syntax and semantics

We consider randomized algorithms written as simple probabilistic while
programs. We introduce the syntax of these programs, along with their
“natural” semantics given using Markov kernels [15, 31]. We show that the
problem of checking differential privacy is undecidable for these programs.

5.1 Syntax of Simple programs

We introduce a class of programs we call Simple. Programs in Simple are
probabilistic while programs in which variables can be assigned values by
drawing from distributions typically used in differential privacy algorithms.

13

Expressions (b ∈ B, x ∈ X , z ∈ Z, r ∈ R, d ∈ DOM, i ∈ Z, q ∈ Q, g ∈
FBool, f ∈ FDOM):

B ::= true | false | b | not(B) | B and B | B or B | g(Ẽ)

E ::= d | x | f(Ẽ)
Z ::= z | iZ |EZ | Z + Z | Z + i | Z + E
R ::= r | qR | ER | R+R | R+ q |R+ E

Basic Program Statements (a ∈ Q>0, ∼∈ {<,>,=,≤,≥}, F is a
scoring function and choose is a user-defined distribution):

s ::= x← E | z← Z | r← R | b← B | b← Z1 ∼ Z2|
b← Z ∼ E | b← R1 ∼ R2 | b← R ∼ E|
r← Lap(aǫ,E) | z← DLap(aǫ,E)|

x← Exp(aǫ, F (x̃), E) | x← choose(aǫ, Ẽ)|
ifB thenP elseP end |WhileB doP end | exit

Program Statements (ℓ ∈ Labels)

P ::= ℓ : s | ℓ : s ; P

Figure 1: BNF grammar for Simple. DOM is a finite discrete domain. FBool, (FDOM

resp) are set of functions that output Boolean values (DOM respectively). B,X ,Z,R are
the sets of Boolean variables, DOM variables, integer random variables and real random
variables. Labels is a set of program labels. For a syntactic class S, S̃ denotes a sequence
of elements from S. DiPWhile (see Section 6) is the subclass of programs in which the
assignments to real and integer variables do not occur with the scope of a while statement.

14

Programs in Simple obey some syntactic restrictions; these syntactic restric-
tions are introduced to make it easier to describe the decidable fragment
in Section 6. Despite these restrictions, the problem of checking differential
privacy is undecidable for the language introduced here.

The formal syntax of Simple programs is shown in Figure 1. Programs
have four types of variables: Bool = {true, false}; finite domain DOM 2 that
we assume (without loss of generality) to be {−Nmax, . . . 0, 1, . . . Nmax}, a
finite subset of integers 3; reals R; and integers Z. The set of Boolean/DOM/
integer/real program variables are respectively denoted by B/X/Z/R. The
set of Boolean/DOM/integer/real expressions is given by the non-terminal
B/E/Z/R in Figure 1. We now explain the rules for such expressions.
Boolean expressions (B) can be built using Boolean variables and constants,
standard Boolean operations, and by applying functions from FBool. FBool

is assumed to be a collection of computable functions returning a Bool. We
assume that FBool always contains a function EQ(x1, x2) that returns true

iff x1 and x2 are equal. DOM expressions (E) are similarly built from DOM

variables, values in DOM, and applying functions from set of computable
functions FDOM. Next, integer expressions (Z) are built using multiplication
and addition with integer constants and DOM expressions, and additions
with other integer expressions. Finally, real expressions (R) are built using
multiplication and addition with rational constants and DOM expressions,
and additions with other real-valued expressions. Notice that integer-valued
expressions cannot be added or multiplied, in real-valued expressions; this
syntactic restriction shall be useful later.

A program in Simple is a triple consisting of a set of (private) input
variables, a set of (public) output variables, and a finite sequence of la-
beled statements (non-terminal P in Figure 1). The private input vari-
ables and public output variables take values from the domain DOM. Thus,
the set of possibles inputs/outputs (U/V), is identified with the set of
valuations for input/output variables; a valuation over a set of variables
X ′ = {x1, x2, . . . , xm} ⊆ X is a function from X ′ to DOM. Note that if we
represent the set X ′ as a sequence x1, x2, . . . , xm then a valuation val over X ′

can be viewed as a sequence val(x1), val(x2), . . . , val(xm) of DOM elements.
We assume every statement in our program is uniquely labeled from a set

of labels called Labels. Basic program statements (non-terminal s) can either
be assignments, conditionals, while loops, or exit. Statements other than as-

2Though not necessary to distinguish between Booleans and finite domains, having
such a distinction makes our future technical development easier.

3Our decidability results also hold if DOM is taken to be a finite subset of the rationals.

15

signments are self-explanatory. The syntax of assignments is designed to
follow a strict discipline. Real and integer variables can either be assigned
the value of real/integer expression or samples drawn using the Laplace or
discrete Laplace mechanism. DOM variables are either assigned values of
DOM expressions or values drawn either using an exponential mechanism
(Exp(aǫ, F (x̃), E)) or a user-defined distribution (choose(aǫ, Ẽ)). For the ex-
ponential mechanism, we require that the scoring function F be computable
and return a rational value. Both of these restrictions are unlikely to be
severe in practice. In the case of the user defined distribution, we demand
that the probability with which a value d in DOM is chosen (as a function of
the privacy budget ǫ), be definable in Thexp, and that there is an algorithm
that on input a, d̃, v returns the formula defining the probability of sampling
d ∈ DOM from the distribution choose(aǫ, d̃) where d̃ is a sequence of values
from DOM. This restriction is exploited in Section 6 to get decidability for
a sub-fragment.

Finally, we consider assignments to Boolean variables. The interesting
cases are those where the Boolean variable stores the result of the compar-
ison of two expressions. The syntax does not allow for comparing real and
integer expressions. This restriction is exploited later in Section 6 when
the decidable fragment is identified. Finally, we will assume that in any
execution, if a variable appears on the right side of an assignment state-
ment, then it should have been assigned a value before. This assumption is
not restrictive but is technically convenient when defining the semantics for
programs.

5.2 Markov Kernel Semantics

We briefly sketch a “natural” semantics for Simple using Markov kernels.
A key step in proving our decidability result is to define a semantics using
finite-state (parametrized) DTMCs for the sub-fragment DiPWhile defined
in Section 6. The DTMC semantics may not seem natural on first reading.
The point of the semantics in this section is, therefore, to argue the cor-
rectness of our decision procedure on the basis of the equivalence of these
two semantics for DiPWhile (Sections 6 and 7). Details for this section are
given in Appendix A due of space constraints and because understanding
this semantics is not critical to our decidability proof.

Given a fixed ǫ > 0, the states in the Markov kernel-based semantics
for a program Pǫ will be of the form (ℓ, hBool, hDOM, hZ, hR), where ℓ is
the label of the statement of Pǫ to be executed next, the functions hBool,
hDOM, hZ and hR assign values to the Boolean, DOM, real and integer vari-

16

ables of the program Pǫ respectively. Given an input state in, the initial
state will correspond to one where DOM-valued input variables get the val-
ues given in in, and all other variables either get false or 0, depending on
their type. Observe that for a program Pǫ with k program statements, i
Boolean variables, j DOM variables, s integer variables, t real variables a
state (ℓ, hBool, hDOM, hZ, hR) can be uniquely identified with an element of
the set DPǫ = {1, . . . , k} × F i

Bool × DOMj × Zs × Rt. The “natural” Borel
σ-algebra on DPǫ induces a σ-algebra on the states of Pǫ.

The semantics of Simple programs can be defined as a Markov kernel over
this σ-algebra on states. Intuitively, the Markov kernel Kǫ corresponding
to a program Pǫ is such that for a state s and a measurable set of states
C, Kǫ(s, C) is the probability of transitioning to a state in C from s. The
precise definition of this Markov kernel is in Appendix A.

Executions are just sequences of states, and the σ-field on executions is
the product of the σ-field on states. The Markov kernel defines a probability
measure on this σ-field. Given all these observations, we take Probnatural(Pǫ(in) =
out) to denote the probability (as defined by the Markov kernel of Pǫ) of
the set of all executions that start in the initial state corresponding to in
and end in an exit state with out as the valuation of output variables; the
precise definition is in Appendix A. For the rest of the paper, we will assume
that our programs terminate with probability 1.

5.3 Undecidability

The problem of checking differential privacy for Simple programs is unde-
cidable.

Theorem 5. The Fixed Parameter Differential Privacy problem and the
Differential Privacy problem for programs Pǫ in Simple is undecidable.

The proof of Theorem 5 reduces the non-halting problem for determinis-
tic 2-counter Minsky machines to the Fixed Parameter Differential Privacy
problem. More precisely, we show that given a 2-counter Minsky machine
M (with no input), there is a program PM

ǫ ∈ Simple such that

• PM
ǫ has only one input xin and one output xout taking values in

DOM = {0, 1};

• PM
ǫ terminates with probability 1 for all ǫ ∈ R>0;

• PM
ǫ is (ǫ, 0)-differentially private with respect to the adjacency relation

Φ = {(0, 1), (1, 0)} if and only ifM does not halt.

17

This construction shows that Differential Privacy is undecidable. Undecid-
ability of Fixed Parameter Differential Privacy is obtained by taking ǫ to
be any constant rational number, say 1

2 . The formal details of the reduction
are in Appendix B.

6 DiPWhile: A decidable class of programs

We now discuss a restricted class of programs, for which we can establish
decidability of checking differential privacy. The class of programs that
we consider are exactly those programs in Simple that satisfy the following
restriction:

Bounded Assignments We do not allow assignments to real and integer
variables within the scope of a while loop. This restriction ensures
that assignments to such variables happen only a bounded number of
times during execution. Thus, without loss of generality, we assume
that real and integer variables are assigned at most once as a program
with multiple assignments to a single real and variables can always be
rewritten to an equivalent program with each assignment to a variable
being an assignment to a fresh variable.

We refer to this restricted class as DiPWhile. The DiPWhile language is sur-
prisingly expressive — many known randomized algorithms for differential
privacy can be encoded. We give an example of such encodings in DiPWhile.
We omit labels of program statements unless they are needed.

Example 6. Algorithm 2 shows how SVT can be encoded in our language
with T = 0,∆ = 1, N = 2, c = 1. In the example we are modeling ⊥ by 0
and ⊤ by 1. Though for-loops are not part of our program syntax, they can
modeled as while loops, or if bounded (like here), they can be unrolled.

Appendix C shows how sampling from the standard exponential distri-
bution can be encoded in DiPWhile. Other examples that can be encoded in
our language (and for which the decision procedure applies) include random-
ized response, the private smart sum algorithm [10] with finite discretization
of the output space (See 7.1), and private vertex cover [24].

The decidability of checking differential privacy for DiPWhile shall rely
on two observations. First, the semantics of DiPWhile programs can also
be defined as finite-state discrete-time Markov chains (DTMC), albeit with
transition probabilities parameterized by ǫ. This observation is surprising
because DiPWhile programs have real and integer values variables, and so

18

Input: q1, q2
Output: out1, out2

1 T ← 0;
2 out1 ← 0;
3 out2 ← 0;
4 rT ← Lap(ǫ2 , T);
5 r1 ← Lap(ǫ4 , q1);
6 b← r1 ≥ rT ;
7 if b then
8 out1 ← 1

else
9 r2 ← Lap(ǫ4 , q2);

10 b← r2 ≥ rT ;
11 if b then
12 out2 ← 1

end

end
13 exit

Algorithm 2: SVT

for 1-sensitive queries

with N = 2,c = 1 and

T = 0. The numbers at the

beginning of a line indicate

the label of the statement.

...

9: q1 : u, q2 : v, T : 0,
out1 : 0, out2 : 0, b : ⊥
rT : (1

2
, 0) r1 : (1

4
, u)

r1 < rT

10: q1 : u, q2 : v, T : 0,
out1 : 0, out2 : 0, b : ⊥
rT : (1

2
, 0) r1 : (1

4
, u) r2 : (1

4
, v)

r1 < rT

11: q1 : u, q2 : v, T : 0,
out1 : 0, out2 : 0, b : ⊤
rT : (1

2
, 0) r1 : (1

4
, u) r2 : (1

4
, v)

r1 < rT , r2 ≥ rT

11: q1 : u, q2 : v, T : 0,
out1 : 0, out2 : 0, b : ⊥
rT : (1

2
, 0) r1 : (1

4
, u) r2 : (1

4
, v)

r1 < rT , r2 < rT
...

...

1

p q

Figure 2: Partial DTMC semantics of Algorithm 2
showing the steps when lines 9 and 10 are executed.
q1 and q2 are assumed to have values u and v, respec-
tively. Only values of assigned program variables is
shown. Third line in state shows parameters for the
real values that were sampled. Last line shows the ac-
cumulated set of Boolean conditions that hold on the
path.

19

the natural semantics has uncountably many states (See Section 5.2). The
key insight in establishing this observation is that an equivalent semantics
of DiPWhile programs can be defined without explicitly tracking the values
of real and integer-valued variables. Second, all the transition probabili-
ties arising in our semantics are definable in Thexp. These two observations
allow us to to establish decidability of checking differential privacy of DiP-
While programs. The rest of the section is devoted to establishing these
observations. We start by formally defining parametrized DTMCs.

6.1 Parameterized DTMCs

Definition 7. A parametrized DTMC is a pair D = (Z,∆), where Z is a
(countable) set of states, and ∆ : Z×Z → (R>0 → [0, 1]) is the probabilistic
transition function. For any pair of states z, z′, ∆ returns a function from
R>0 to [0, 1], such that for every ǫ > 0,

∑
z′∈Z ∆(z, z′)(ǫ) = 1. We shall call

∆(z, z′) as the probability of transitioning from z to z′.

A definable parametrized DTMC is a parametrized DTMC D = (Z,∆)
such that for every pair of states z, z′ ∈ Z, the function ∆(z, z′) is definable
in Thexp.

A parametrized DTMC associates with each (finite) sequence of states
ρ = z0, z1, . . . zm, a function Prob(ρ) : R>0 → [0, 1] that given an ǫ > 0,
returns the probability of the sequence ρ when the parameter’s value is
fixed to ǫ, i.e., Prob(ρ)(ǫ) =

∏m−1
i=0 ∆(zi, zi+1)(ǫ). For a state z0 and a set

of states Z ′ ⊆ Z, once again we have a function that given a value ǫ for
the parameter, returns the probability of reaching Z ′ from z0. This can
be formally defined as Prob(z0, Z

′)(ǫ) =
∑

ρ∈z0(Z\Z′)∗Z′ Prob(ρ)(ǫ). In other

words, Prob(z0, Z
′)(ǫ) is the sum of the probability of all sequences starting

in z0, ending in Z ′, such that no state except the last is in Z ′.

6.2 Parametrized DTMC semantics of DiPWhile

The parametrized DTMC semantics of a DiPWhile program Pǫ shall be de-
noted as [[Pǫ]]. We describe [[Pǫ]] informally here and defer the formal defi-
nition to Appendix D. As mentioned above, the key insight in defining the
semantics of a DiPWhile program as a finite-state, parametrized DTMC, is
that the actual values of real and integer variables need not be tracked. A
state of [[Pǫ]] is going to be a tuple of the form (ℓ, fBool, fDOM, fint, freal, C)
where ℓ is the label of the statement of Pǫ to be executed next. [[Pǫ]] is
an abstraction of the set of all concrete states that are compatible with it.

20

The partial functions fBool and fDOM assign values to the Bool and DOM

variables, respectively; this is just like in the natural semantics.
Let us now look at the partial function freal. Intuitively, freal is supposed

to be the “valuation” for the real variables. But instead of mapping each
variable to a concrete value in R, we shall instead map it into a finite set.
To understand this mapping, let us recall that in DiPWhile, a real variable is
assigned only once in a program. Further, such an assignment either assigns
the value of a linear expression over program variables, or a value sampled
using a Laplace mechanism. In the former case, freal maps a variable to
the linear expression it is assigned; and in the latter case, the value of the
parameters of the Laplace mechanism used in sampling. In the latter case,
since the first parameter is always of the form aǫ, we need to note only
a in the mapping. Notice that the range of freal is now a finite set as Pǫ

contains only a finite number of linear expressions, and the parameters of
sampled Laplacian take values from the finite set DOM. Similarly, the partial
function fint maps each integer variable to either the linear expression it is
assigned or the parameters of the sampled discrete Laplace mechanism. The
last state component C is the set of Boolean conditions on real and integer
variables that hold along the path thus far; this shall become clearer when
we describe the transitions. Since the Boolean conditions must be Boolean
expressions in the program or their negation, C is also a finite set. These
observations show that [[Pǫ]] has finitely many states. Intuitively, a state
of [[Pǫ]] is an abstraction of the set of all concrete states that respect the
Boolean conditions in C and the constraints imposed by assignments of real
and integer expressions to real and integer variables, respectively.

We now sketch how the state is updated in [[Pǫ]]. Updates to DOM

variables shall be as expected — it shall be a probabilistic transition if
the assignment samples using an exponential mechanism or a user-defined
distribution, and it shall be a deterministic step updating fDOM otherwise.
Assignments to real variables are always deterministic steps that change the
function freal. Thus, even if the step samples using the Laplace mechanism,
in the semantics, it shall be modeled as a deterministic step where freal is
updated by storing the parameters of the distribution. Similarly, all integer
assignments are deterministic steps as well.

The assignment of a Boolean expression to a Boolean variable is as ex-
pected — we update the valuation fBool to reflect the assignment. The
unexpected case is b← R1 ∼ R2 when a boolean variable gets assigned the
result of the comparison of two real expressions; the case of comparing two
integer expressions is similar. In this case, if the probability of C holding
is 0, then our construction will ensure that this state is not reachable with

21

non-zero probability. Otherwise, we transition to a state where R1 ∼ R2 is
added to C with probability equal to the probability that (R1 ∼ R2) holds
conditioned on the fact that C holds, and with the remaining probability,
we shall transition to the state where ¬(R1 ∼ R2) is added to C. Thus,
Boolean assignments which compare integer and real variables are modeled
by probabilistic transitions. Finally, branches and while loop conditions are
deterministic steps, with the value of the Boolean variable (of the condition)
in fBool determining the choice of the next statement.

Let ProbDTMC(Pǫ(in) = out) denote the probability that Pǫ outputs
value out on the input in under the DTMC semantics. This is just the
probability of reaching an exit state with out as valuation of output variables
from the initial state with in as the valuation of input variables. We can show
that this probability is the same as the probability Probnatural(Pǫ(in) = out)
obtained by the natural semantics discussed above. The informal ideas
outlined above are fleshed out to give a precise mathematical definition and
presented in Appendix D.

It is worth noting how key syntactic restrictions in DiPWhile programs
play a role in defining its semantics. The first restriction is that integer
and real variables are not assigned in the scope of a while loop. This re-
striction is critical to ensure that the DTMC [[Pǫ]] is finite-state. Since we
track distribution parameters and linear expressions for such variables, this
restriction ensures that we only remember a bounded number of these. Sec-
ond, DiPWhile disallows a comparison between real and integer expressions
in its syntax. Recall that such comparison steps result in a probabilistic
transition, where we compute the probability of the comparison holding
conditioned on the properties in C holding. It is unclear if a closed-form
expression for such probabilities can be computed when integer and real
random variables are compared. Hence such comparisons are disallowed.

Probabilistic transitions in our semantics arise due to two reasons. First
are assignments to DOM variables that sample according to either the expo-
nential or a user-defined distribution. The resulting probabilities are easily
seen to be definable in Thexp. The second is due to comparisons between real
and integer expressions. We can prove that in this case also, the resulting
probabilities are definable in Thexp; this proof is non-trivial and deferred to
Appendix E. All these observations together give us the following theorem.

Theorem 8. For any DiPWhile program Pǫ, [[Pǫ]] is a finite, definable,
parametrized DTMC that is computable.

Example 9. The parametrized DTMC semantics of Algorithm 2 is partially
shown in Figure 2. We show only the transitions corresponding to executing

22

lines 9 and 10 of the algorithm, when q1 = u and q2 = v initially; here u, v ∈
{⊥,⊤}. The multiple lines in a given state give the different components
of the state. The first two lines give the assignment to Bool and DOM

variables, the third line gives values to the integer/real variables, and the
last line is the Boolean conditions that hold along a path. Since 9 and 10
are in the else-branch, the condition r1 < rT holds. Notice that values to
real variables are not explicit values, but rather the parameters used when
they were sampled. Finally, observe that probabilistic branching takes place
when line 10 is executed, where the value of b is taken to be the result of
comparing r2 and rT . The numbers p and q correspond to the probability
that the conditions in a branch hold, given the parameters used to sample
the real variables and conditioned on the event that r1 < rT .

7 Checking differential privacy for DiPWhile pro-
grams

We shall now establish that the problem of checking differential privacy for
DiPWhile programs is decidable. The proof relies on the characterization of
the semantics of a DiPWhile program as a finite, definable, parameterized
DTMC (See Theorem 8). An important observation about a finite, definable,
parametrized DTMC is that the probability of reaching a given set of states
Z ′ from a given state z0 is both definable and computable.

Lemma 10. For any finite-state, definable, parametrized DTMC D =
(Z,∆), any state z0 ∈ Z and set of states Z ′ ⊆ Z, the function Prob(z0, Z

′)
is definable in Thexp. Moreover, there is an algorithm that computes the
formula defining Prob(z0, Z

′).

The proof of Lemma 10 exploits the connection between reachability
probabilities in DTMCs and linear programming [33, 2]; details are in Ap-
pendix F. The main result of the paper now follows from Theorem 8 and
Lemma 10.

Theorem 11. The Fixed Parameter Differential Privacy and Differential
Privacy problems are decidable for DiPWhile programs Pǫ, rational numbers
t ∈ Q>0 and definable functions δ(ǫ). Furthermore, if Pǫ is not (tǫ, δ) differ-
entially private for some rational number t and admissible value of ǫ then
we can compute a counter-example.

Proof. Let in and out be arbitrary valuations to input and output variables,
respectively. Observe that the function ǫ 7→ Prob(Pǫ(in) = out) is nothing

23

but Prob(z0, Z
′) in [[Pǫ]], where z0 is the initial state corresponding to valu-

ation in, and Z ′ is the set of all terminating states that have valuation out
for output variables. Since [[Pǫ]] (Theorem 8) and Prob(z0, Z

′) (Lemma 10)
are computable, we can construct a formula ϕin,out(ǫ, xin,out) of Lexp that
defines the function ǫ 7→ Prob(Pǫ(in) = out).

Let ϕδ(ǫ, xδ) be the formula defining the function δ. Let t = p
q where

p, q are natural numbers. Consider the sentence

ψ = ∀ǫ.∀z.[∀xin,out]in∈U ,out∈V .∀xδ.
((ǫ > 0) ∧ (epǫ = zq) ∧ (z > 0) ∧ ϕδ(ǫ, xδ)∧

in∈U ,out∈V ϕin,out(ǫ, xin,out))

→ (
∧

(in1,in2)∈Φ,O⊆V∑
out∈O xin1,out < z

∑
out∈O xin2,out + xδ))

It is easy to see Pǫ is (tǫ, δ(ǫ)) differentially private for all ǫ iff ψ is true over
the reals. In the syntax of Lexp, we cannot take qth roots of e; therefore,
we introduce the variable z, which enables us to write the constraints using
only eaǫ, where a ∈ N. Notice that ψ belongs to Lexp if we convert it to
prenex form. Decidability, therefore, follows from the decidability of Thexp.

If Pǫ is not differentially private, then the sentence ψ does not hold. The
decision procedure for Thexp will, in this case, return an ǫ0 that witnesses
the privacy violation of Pǫ. Using ǫ0, the counter-example (in, in′, O, ǫ0) can
be easily constructed by enumerating in, in′ and O.

An easy consequence of Theorem 11 is that differential privacy is de-
cidable for the subclass of program in Simple that do not have integer and
real-valued variables. Let Finite DiPWhile denote this set of programs (See
Appendix G for the formal syntax of Finite DiPWhile). Observe that due to
the presence of While, Finite DiPWhile programs may still have unbounded
length executions (including infinite executions).

Corollary 12. The Fixed Parameter Differential Privacy and Differential
Privacy problems are decidable for Finite DiPWhile programs Pǫ, rational
numbers t ∈ Q>0 and definable functions δ(ǫ).

We observe that our methods can be employed to analyze larger classes of
programs (than just those in DiPWhile). For example, a sufficient condition
to ensure the decidability is to consider programs with the property that,
for each input, the probability distribution on the outputs is definable in
Thexp (See Appendix G.1). We conclude the section by showing how our
procedure is useful when reasoning about integer and real-valued outputs.

24

Remark. We sketch here how the proofs of Theorem 11 changes when the
set of admissible ǫ is taken to be an interval I with rational end-points. Let
Pǫ, t and δ(ǫ) be as in the proof of Theorem 11. When ǫ is restricted to
an interval I, we will require the user-definable distributions to be definable
in Thexp only on the interval I. As in the proof of Theorem 11, we can
construct a formula ϕin,out(ǫ, xin,out) of Lexp that defines the function ǫ 7→
Prob(Pǫ(in) = out). For simplicity, consider the case when I be the interval
[r, s]. Consider the sentence ψI that is obtained from ψ in the proof of
Theorem 11 by replacing the subformula (ǫ > 0) by (a ≤ ǫ) ∧ (ǫ ≤ b). Then
Pǫ is (tǫ, δ(ǫ)) will be differentially private for all ǫ ∈ I iff ψI is true over the
reals.

7.1 Finite discretization of infinite output spaces

Our decision procedure assumes that the output space is finite. In several
examples, the program outputs are reals or unbounded integers (and com-
binations thereof). Nevertheless, we argue that our decision procedure is
useful for the verification of differential privacy in this case also. In partic-
ular, our method provides an under-approximation technique for checking
the differential privacy of programs with infinite outputs. Our approach in
such cases is to discretize the output space into finitely many intervals.

We illustrate this for the special case when a program P outputs the
value of one real random variable, say r. Now, suppose that we modify P to
output a finite discretized version of r as follows. Let seq = a0 < a1 < . . . an
be a sequence of rationals and let Discseq(x) be equal to a0 if x ≤ a0, equal
to ai (0 < i < n) if ai−1 < x ≤ ai, and equal to an if x > an−1.

Consider the program PDisc,seq that instead of outputting r, outputs
Discseq(r). It is easy to see that if P is differentially private then so must
be PDisc,seq. Therefore, if PDisc,seq is not differentially private then we can
conclude that P is not differentially private. Thus, if our procedure finds a
counter-example for PDisc,seq, then it also has proved that the program P is
not differentially private. Our method is, therefore, an under-approximation
technique for checking the differential privacy of P . In fact, it is a complete
under-approximation method in the sense that P is differentially private iff
for each possible seq, PDisc,seq is differentially private.

8 Experimental evaluation

We implemented a simplified version of the algorithm, presented earlier,
for proving/disproving differential privacy of DiPWhile programs. Our tool

25

Algorithm
Runtime
(T1/T2)

ǫ-Diff.
Pri-
vate

SVT 0s/825s ✓

SVT2 0s/768s ✓

SVT5 0s/2s ✗

NMax4 1s/58s ✗

Rand2 0s/0s ✗

Table 1: Runtime for 3 queries for each algorithm searching over adjacency pairs and all

ǫ¿0, with parameters being [c=1, ∆=1, DOM={-1,0,1}, seq = (−1 < 0 < 1)]. For SVT,

we also have T=0.

DiPC [3] handles loop-free programs, i.e., acyclic programs. Programs with
bounded loops (with constant bounds) can be handled by unrolling loops.
The tool takes in an input program Pǫ parametrized by ǫ and an adjacency
relation, and either proves Pǫ to be differentially private for all ǫ or returns
a counter-example. The tool can also be used to check differential privacy
for a given, fixed ǫ, or to check for kǫ-differential privacy for some constant
k. DiPC is implemented in C++ and uses Wolfram Mathematica R©. It
works in two phases — in the first phase, a Mathematica R©script is pro-
duced with commands for all the output probability computations and the
subsequent inequality checks and in the second phase, the generated script
is run on Mathematica. Details about the tool and its design can be found
in Appendix H.

We used various examples to measure the effectiveness of our tool. These
include SVT [28, 21], Noisy Maximum [18], Noisy Histogram [18] and Ran-
domized Response [20] and their variants. Detailed descriptions of these
algorithms and their variants can be found in Appendix H.1.

We ran all the experiments on an octa-core Intel R©Core i7-8550U @
1.8gHz CPU with 8GB memory. The running times reported are the average
of 3 runs of the tool. In the tables, T1 refers to the time needed by the C++
phase to generate the Mathematica scripts, and T2 refers to the time used
by Mathematica to check the scripts. Due to space constraints, we report
only a small fraction of our experiments; full details of all our experiments
can be found in Appendix H.

Salient observations about our experiments are follows.

1. DiPC successfully proves algorithms to be differentially private and
finds counter-examples to demonstrate a violation of privacy in rea-
sonable time. Table 1 shows the running time of DiPC on some exam-
ples for 3 queries. We chose to use 3 queries because for algorithms

26

Algo —Q— Output Input 1 Input 2 ǫ
Runtime
(T1/T2)

SVT5 2 [⊥ ⊤] [-1 0] [-1 -1] 27 0s/2s
NMax3 3 -1, seq = (−1 < 0 < 1) [-1 -1 -1] [0 0 0] 27 0s/310s
NMax4 1 0, seq = (−1 < 0 < 1) [-1] [0] 27 0s/2s
Rand2 1 [⊥] [⊥] [⊤] 9/34 0s/0s

Table 2: Smallest Counter-example found for each non-differentially private algorithm,

searching over all adj. pairs and ǫ > 0, with parameters being [c=1, ∆=1, DOM={-1,0,1}]

that are not private, counter-examples can be found with 3 queries.

2. The time to generate Mathematica scripts is significantly smaller than
the time taken by Mathematica to check the scripts (i.e., T1 ≪ T2).
Further, most of the time spent by Mathematica is for computing out-
put probabilities; the time to perform comparison checks for adjacent
inputs was relatively small. Thus, programs that do not use real vari-
ables (Rand2 in Table 1, for example) can be analyzed more quickly.

3. For algorithms that are not differentially private, DiPC can automat-
ically identify the pair of inputs, output, and ǫ for which privacy is
violated. Table 2, shows the results for the smallest counter-example
found by DiPC for some examples. Further, counter-examples found
by DiPC are much smaller, in terms of queries, than those found
in [18]; the number of queries needed in the counter-examples in [18]
for NMax3, NMax4, and SVT5 were 5, 5, and 10, respectively, as
opposed to 3, 1, and 2 found by DiPC.

4. DiPC is the first automated tool that can check (ǫ, δ)-differential pri-
vacy. To evaluate this feature, we tested DiPC on a version of SVT,
Sparse [21], which is manually proven to be (ǫ2 , δsvt)-differentially pri-
vate for any number of queries in [21] by using advanced composition
theorems. Here δsvt is a second parameter in the algorithm. In our ex-
periments, we tested (ǫ2 , δsvt)-differential privacy of Sparse with fixed
values of δsvt for c = 1, 2 and 3 queries, validating the result in [21].
As we were dealing with only 3 queries, we also managed to obtain
better bounds on the error parameter.

9 Related work

The main thread of related work has focused on formal systems for proving
that an algorithm is differentially private. Such systems are helpful be-

27

cause they rule out the possibility of mistakes in privacy analyses. Starting
from Reed and Pierce [32], several authors [22, 17] have proposed linear (de-
pendent) type systems for proving differential privacy. However, it is not
possible to verify some of the most advanced examples, such as a sparse vec-
tor or vertex cover, using these type systems. Moreover, type-checking and
type-inference for linear (dependent) types are challenging. For example,
the type checking problem for DFuzz, a language for differential privacy, is
undecidable [16]. Barthe et al [7, 5, 4] develop several program logics based
on probabilistic couplings for reasoning about differential privacy. These
logics have been used successfully to analyze many classic examples from
the literature, including the sparse vector technique. However, these logics
are limited: they cannot disprove privacy; extensions may be required for
specific examples; building proofs is challenging. The last issue has been
addressed by a series of works that provide automated methods for proving
differential privacy automatically. Zhang and Kifer [35] introduce random-
ness alignments as an alternative to couplings and build a dependent type
system that tracks randomness alignments. Automation is then achieved
by type inference. Albarghouthi and Hsu [1] propose coupling strategies,
which rely on a fine-grained notion of variable approximate coupling, which
draws inspiration both from approximate couplings and randomness align-
ment. They synthesize coupling strategies by considering an extension of
Horn clauses with probabilistic coupling constraints and developing algo-
rithms to solve such constraints. Recently Wang et al [34] develop an im-
proved method based on the idea of shadow executions. Their approach is
able to verify Sparse Vector and many other challenging examples efficiently.
However, these methods are limited to vanilla ǫ-differential privacy and do
not accommodate bounds that are obtained by advanced composition (since
δ 6= 0).

In an independent line of work, Chatzikokolakis, Gebler and Palamidessi [11]
consider the problem of differential privacy for Markov chains. Later, Liu,
Wang, and Zhang [27] develop a probabilistic model checking approach for
verifying differential privacy properties. Their approach is based on model-
ing differential private programs as Markov chains. Their encoding is more
direct than ours (i.e. it assumes that a finite-state Markov chain is given),
and they do not provide a decision procedure with real and integer vari-
ables. Furthermore, the DTMCs are not parameterized by ǫ. Chistikov
and Murawski and Purser [13, 14] propose an elegant method based on
skewed Kantorovich distance for checking approximate differential privacy
of Markov chains.

The dual problem is to find violations of differential privacy automati-

28

cally. This is useful to help privacy practitioners discover potential problems
early in the development cycle. Two recent and concurrent works by Ding et
al [18] and Bischel et al [9] develop automated methods for finding privacy
violations. Ding et al. propose an approach that combines purely statistical
methods based on hypothesis testing and symbolic execution. Bischel et al.
develop an approach based on a combination of optimization methods and
language-specific techniques for computing differentiable approximations of
privacy estimations. Both methods are fully automated. However, both
methods can only be used for concrete numerical values of the privacy bud-
get ǫ.

Gaboardi et. al [23] study the complexity of deciding differential privacy
for randomized Boolean circuits. Their results are proved by reduction to
majority problems and are incomparable with ours: the only probabilistic
choices in [23] are fair coin tosses and eǫ is taken to be a fixed rational
number.

10 Conclusions

We showed that the problem checking differential privacy is in general unde-
cidable, identified an expressive sub-class of programs (DiPWhile) for which
the problem is decidable, and presented the results of analyzing many known
differential privacy algorithms using our tool DiPC which implements a de-
cision procedure for DiPWhile programs. Advantages of DiPC include the
ability to automatically, both prove algorithms to be private for all ǫ > 0,
and find counter-examples to demonstrate privacy violations. In addition
DiPC can check bounds that are based on concentration inequalities, in par-
ticular bounds that use advanced composition theorems. Such bounds are
out of reach of most other tools that prove privacy or search for counter-
examples.

In the future, it would be interesting to extend this work to handle
programs with input/output variables that take values in infinite domains,
and parametrized privacy algorithms that work for an unbounded number
of input and output variables. Another important problem is developing
decision procedures that can prove tight accuracy bounds, and detect viola-
tions of accuracy bounds. We also plan to investigate extending the decision
procedure to cover algorithms that are currently out of the scope of our de-
cision procedure such as the multiplicative weights and iterative database
construction [26, 25], and those involving Gaussian distributions.

29

11 Acknowledgements

We thank the anonymous reviewers for their useful comments. Their inputs
have improved the paper, especially the presentation of the semantics. Ro-
hit Chadha was partially supported by NSF CNS 1553548 and NSF CCF
1900924. A. Prasad Sistla was partially supported by NSF CCF 1901069
and NSF CCF 1564296. Mahesh Viswanathan was partially supported by
NSF CCF 1901069.

References

[1] Aws Albarghouthi and Justin Hsu. Synthesizing coupling proofs of
differential privacy. PACMPL, 2(POPL):58:1–58:30, 2018.

[2] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[3] Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla,
and Mahesh Viswanathan. Differential privacy checker (DiPC).
https://anonymous.4open.science/repository/febcbe47-1c53-41db-be91-ea98b4cf18c1/,
2019.

[4] Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire,
Justin Hsu, and Pierre-Yves Strub. Advanced probabilistic couplings
for differential privacy. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 55–67. ACM, 2016.

[5] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and
Pierre-Yves Strub. Proving differential privacy via probabilistic cou-
plings. In IEEE Symposium on Logic in Computer Science (LICS),
New York, New York, 2016.

[6] Gilles Barthe, Marco Gaboardi, Justin Hsu, and Benjamin C. Pierce.
Programming language techniques for differential privacy. SIGLOG
News, 3(1):34–53, 2016.

[7] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella-
Béguelin. Probabilistic relational reasoning for differential privacy.
ACM Transactions on Programming Languages and Systems, 35(3):9,
2013.

30

https://anonymous.4open.science/repository/febcbe47-1c53-41db-be91-ea98b4cf18c1/

[8] Daniel Berend and Luba Bromberg. Uniform decompositions of poly-
topes. Applicationes Mathematicae, 33:243–252, 01 2006.

[9] Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov,
and Martin T. Vechev. Dp-finder: Finding differential privacy violations
by sampling and optimization. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, pages 508–524. ACM, 2018.

[10] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual
release of statistics. ACM Transactions on Information and System
Security, 14(3):26, 2011.

[11] Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi,
and Lili Xu. Generalized bisimulation metrics. In 35th International
Conference on Concurrency Theory, CONCUR 2014, pages 32–46.
Springer Berlin Heidelberg, 2014.

[12] Dmitry Chistikov and Christoph Haase. The Taming of the Semi-Linear
Set. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani,
and Davide Sangiorgi, editors, 43rd International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2016), volume 55 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 128:1–
128:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[13] Dmitry Chistikov, Andrzej S. Murawski, and David Purser. Bisimilarity
distances for approximate differential privacy. In Shuvendu K. Lahiri
and Chao Wang, editors, Automated Technology for Verification and
Analysis - 16th International Symposium, ATVA 2018, volume 11138
of Lecture Notes in Computer Science, pages 194–210. Springer, 2018.

[14] Dmitry Chistikov, Andrzej S. Murawski, and David Purser. Asymmet-
ric distances for approximate differential privacy. In Wan Fokkink and
Rob van Glabbeek, editors, 30th International Conference on Concur-
rency Theory, CONCUR 2019, volume 140 of LIPIcs, pages 10:1–10:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[15] Erhan Cinlar. Probability and Stochastics. Springer, 2011.

[16] Arthur Azevedo de Amorim, Emilio Jesús Gallego Arias, Marco
Gaboardi, and Justin Hsu. Really natural linear indexed type checking.
CoRR, abs/1503.04522, 2015.

31

[17] Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, and Shin-
ya Katsumata. Probabilistic relational reasoning via metrics. In 34th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2019, pages 1–19, 2019.

[18] Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel
Kifer. Detecting violations of differential privacy. In David Lie, Moham-
mad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018, pages 475–489. ACM, 2018.

[19] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cal-
ibrating noise to sensitivity in private data analysis. In IACR Theory of
Cryptography Conference (TCC), New York, New York, pages 265–284,
2006.

[20] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and
Salil P. Vadhan. On the complexity of differentially private data release:
efficient algorithms and hardness results. In ACM SIGACT Symposium
on Theory of Computing (STOC), Bethesda, Maryland, pages 381–390,
2009.

[21] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differ-
ential privacy. Foundations and Trends in Theoretical Computer Sci-
ence, 9(3–4):211–407, 2014.

[22] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and
Benjamin C Pierce. Linear dependent types for differential privacy. In
ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages (POPL), Rome, Italy, pages 357–370, 2013.

[23] Marco Gaboardi, Kobbi Nissim, and David Purser. The complexity of
verifying circuits as differentially private. CoRR, abs/1911.03272, 2019.
To Appear in 47th International Colloquium on Automata, Languages
and Programming (ICALP’ 20), 2020.

[24] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Ku-
nal Talwar. Differentially private combinatorial optimization. In ACM–
SIAM Symposium on Discrete Algorithms (SODA), Austin, Texas,
pages 1106–1125, 2010.

32

[25] Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative con-
structions and private data release. In Ronald Cramer, editor, Theory
of Cryptography - 9th Theory of Cryptography Conference, TCC 2012,
Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, volume 7194
of Lecture Notes in Computer Science, pages 339–356. Springer, 2012.

[26] Moritz Hardt and Guy N. Rothblum. A multiplicative weights mecha-
nism for privacy-preserving data analysis. In 51th Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2010, October 23-26,
2010, Las Vegas, Nevada, USA, pages 61–70. IEEE Computer Society,
2010.

[27] Depeng Liu, Bow-Yaw Wang, and Lijun Zhang. Model checking dif-
ferentially private properties. In Sukyoung Ryu, editor, Programming
Languages and Systems - 16th Asian Symposium, APLAS 2018, volume
11275 of Lecture Notes in Computer Science, pages 394–414. Springer,
2018.

[28] Min Lyu, Dong Su, and Ninghui Li. Understanding the sparse vector
technique for differential privacy. Proceedings of VLDB, 10(6):637–648,
2017.

[29] Scott McCallum and Volker Weispfenning. Deciding polynomial-
transcendental problems. Journal of Symbolic Computation, 47(1):16–
31, 2012.

[30] Frank McSherry and Kunal Talwar. Mechanism design via differential
privacy. In 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Pro-
ceedings, pages 94–103. IEEE Computer Society, 2007.

[31] Prakash Panangaden. The category of markov kernels. Electronic Notes
in Theoretical Computer Science, 22:171–187, 12 1999.

[32] Jason Reed and Benjamin C Pierce. Distance makes the types grow
stronger: A calculus for differential privacy. In ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP), Baltimore,
Maryland, 2010.

[33] J. M. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathemat-
ical Techniques for Analyzing Concurrent and Probabilistic Systems.
AMS, 2004.

33

[34] Yuxin Wang, Zeyu Ding, Guanhong Wang, Daniel Kifer, and Danfeng
Zhang. Proving differential privacy with shadow execution. In Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, (PLD)I, pages 655–669, 2019.

[35] Danfeng Zhang and Daniel Kifer. Lightdp: towards automating differ-
ential privacy proofs. In Giuseppe Castagna and Andrew D. Gordon,
editors, Proceedings of the 44th ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages, POPL 2017 2017, pages 888–901.
ACM, 2017.

34

A Semantics of Simple

In this section, we give the semantics of our Simple language. This semantics
will be given as a set of computations and a probability space on the set
of computations. Recall that we have assumed that in each computation, a
reference to a variable is preceded (sometime earlier) by an assignment to
the variable.

For the rest of this section, let us fix a Simple program Pǫ and an ǫ > 0.
We let LPǫ

denote the set of labels appearing in Pǫ. The set of Boolean vari-
ables, DOM variables (including input/output variables), integer variables
and reals variables occurring in Pǫ shall be denoted by BPǫ , XPǫ , ZPǫ and
RPǫ respectively.

In order to define the semantics of Pǫ, we will use an auxiliary function
next that given a label, identifies the label of the statement to be executed
next. Observe that for most program statements, the next statement to be
executed is unique. However, for if andWhile statements, the next statement
depends on the value of a Boolean expression. We will define next(ℓ) to be a
set of pairs of the form (ℓ′, c), where c is a Boolean condition on the variables
of Pǫ, with the understanding that ℓ′ is the label of the next statement to
be executed if c currently holds. Thus, for a label ℓ, next(ℓ) will either be
{(ℓ′, true)} or {(ℓ1, c), (ℓ2,¬c)}. We do not give a precise definition of next(·),
but we will use it when defining the semantics.

States. States of Pǫ will be of the form

(ℓ, hBool, hDOM, hZ, hR).

Informally, ℓ ∈ LPǫ
is the label of the statement to be executed, hBool,

hDOM, hZ, and hR are functions assigning “values” to program variables (of
appropriate type). More specifically, we have hBool : BPǫ → {true, false},
hDOM : XPǫ → DOM, hZ : ZPǫ → Z and hR : RPǫ → R . We let S
denote the set of all states. We define a discrete state ds to be a tuple
(ℓ, hBool, hDOM, hZ) where ℓ, hBool, hDOM, hZ are as defined above. Note that
a discrete state does not specify values to variables in RPǫ . For a state s
and an expression e which is a Boolean, real or an integer expression, we let
V al(s, e) denote the value obtained by evaluating e in the state s. Note that if
e is a boolean expression, V al(s, e) is either True or False. We also define the
value of a comparison between two expressions as follows. For a comparison
expression e1 ∼ e2, V al(s, e1 ∼ e2) = True if V al(s, e1) ∼ V al(s, e2) holds,
otherwise V al(s, e1 ∼ e2) = False. The value of a DOM expression e, its

35

value in state s = (ℓ, hBool, hDOM, hZ, hR) will be denoted by hDOM(e). For a
sequence of DOM expressions DOM ẽ = e1, . . . , em, hDOM(ẽ) will denote the
sequence hDOM(e1), . . . , hDOM(em).

Measurable sets of states. Let RPǫ = {r1, ..., rt}. With each vector
u = (u1, ..., ut) ∈ Rt, we associate a unique function huR : RPǫ → R such that
huR(ri) = ui for 1 ≤ i ≤ t. Given a discrete state ds = (ℓ, hBool, hDOM, hZ)
and a Borel set D ⊆ Rt, we let [[(ds,D)]] = {(ℓ, hBool, hDOM, hZ, h

u
R) |u ∈ D}.

Now, we define E , the set of measurable sets of states, to be the σ-algebra
generated by the sets of states of the form [[(ds,D)]] where ds is a discrete
state and D ⊆ Rt is a Borel set.

Markov Kernel Kǫ. We give the single step semantics of the program Pǫ

as a Markov kernel from the measure space (S, E) to itself. Formally, Kǫ : S×
E → R, where Kǫ(s, C) gives the probability that the next state of Pǫ is in C
given that its current state is s. We fix the state s = (ℓ, hBool, hDOM, hZ, hR)
and the set C ∈ E of states, and define the value of Kǫ(s, C) based on the
following cases.

DOM assignments. Let next(ℓ) = {(ℓ′, true)} and let x be the variable
being assigned in ℓ. There are two cases to consider. First, consider the case
where x is assigned a value of a DOM expression e. In this case, Kǫ(s, C) = 1
if (ℓ′, hBool, hDOM[x 7→ hDOM(e)], hZ, hR) ∈ C; otherwise Kǫ(s, C) = 0. The
second case is when x is assigned a random value according to Exp(aǫ, F (x̃), e)
or choose(aǫ, ẽ). For d ∈ DOM, let prob(d) be the probability of d based on
the distribution; note, that these probabilities will depend on the value
of hDOM(e) and hDOM(ẽ). Then, Kǫ(s, C) =

∑
d∈D prob(d) where D =

{d | (ℓ′, hBool, hDOM[x 7→ d], hZ, hR) ∈ C}. Note that the right hand sum is
zero if D = ∅.

Integer assignments. Let next(ℓ) = {(ℓ′, true)} and let z be the variable
being assigned in ℓ. Again there are two cases to consider. First, con-
sider the case where z is assigned a value of an integer expression e. In
this case, Kǫ(s, C) = 1 if (ℓ′, hBool, hDOM, hZ[z 7→ V al(s, e)], hR) ∈ C; oth-
erwise Kǫ(s, C) = 0. Next, consider the case when z is assigned a random
value according to DLap(aǫ, e). For j ∈ Z, let prob(j) be the probability
assigned to the integer j by the distribution given by DLap(aǫ, hDOM(e)).
Then, Kǫ(s, C) =

∑
j∈D prob(j) where D = {j | (ℓ′, hBool, hDOM, hZ[z 7→

j], hR) ∈ C}. Note that the right hand sum is zero if D = ∅.

36

Real assignments. Let next(ℓ) = {(ℓ′, true)} and let r be the variable
being assigned in ℓ. Again there are two cases to consider. First, consider the
case where r is assigned a value of a real expression e. In this case, Kǫ(s, C) =
1 if (ℓ′, hBool, hDOM, hZ, hR[r 7→ V al(s, e)]) ∈ C; otherwise Kǫ(s, C) = 0. In
the second case, r is assigned a random value according to Lap(aǫ, e). In this
case, Kǫ(s, C) = Prob(D) where D = {r ∈ R | (ℓ′, hBool, hDOM, hZ, hR[r 7→
r]) ∈ C} and Prob(D) is the probability given to set D by the distribution
Lap(aǫ, hDOM(e)). Observe that D ⊆ R is a Borel set.

Boolean assignments. Again let next(ℓ) = {(ℓ′, true)} and let b be the
variable being assigned in ℓ and e the expression being assigned. Now,
Kǫ(s, C) = 1 if (ℓ′, hBool[b 7→ V al(s, e)], hDOM, hZ, hR) ∈ C; otherwiseKǫ(s, C) =
0.

if statement. In this case, next(ℓ) = {(ℓ1, c), (ℓ2,¬c)} for some Boolean
condition c. If either V al(s, c) = true and (ℓ1, hBool, hDOM, hZ, hR) ∈ C
or V al(s, c) = false and (ℓ2, hBool, hDOM, hZ, hR) ∈ C then Kǫ(s, C) = 1,
otherwise Kǫ(s, C) = 0.

While statement. Again let next(ℓ) = {(ℓ1, c), (ℓ2,¬c)}. This case is iden-
tical to the case of if statement, and so is skipped.

exit statement. In this case, Kǫ(s, C) = 1 if s ∈ C; otherwise Kǫ(s, C) =
0.

Probability Spaces on finite executions. For each i > 0, we define a
probability space Φi = (Si,Σi, φi) capturing the set of finite executions of
length i Si, the class Σi of measurable sets of executions of length i and
a probability measure φi, as follows. Let ~C = (C1, ..., Ci) be a sequence
of measurable sets where, for 1 ≤ j ≤ i, Cj ∈ E . For each such ~C, let

Exec(~C) = {(s1, s2, ..., si) | sj ∈ Cj, 1 ≤ j ≤ i}. The set Σi of measurable
sets of finite executions of length i, is the σ-algebra generated by the sets
of executions Exec(~C) where ~C is a vector of measurable sets as specified
above. Essentially, (Si,Σi) is the measurable space obtained by taking the
product of (S, E), i times. The probability measure φi is defined by first
fixing an initial state and using the Markov kernel Kǫ as follows.

Initial State and initial distribution. For an integrable function g with
respect to a measure space (X,Σ, µ), let

∫
X1
gµ(dx) denote the integral of

37

function g with respect to measure µ over a measurable set X1 ∈ Σ. Let
ℓin be the label of the first statement of Pǫ. Let hinBool, h

in

Z , and hinR be
functions such that hinBool assigns false to every variable in BPǫ , and h

in

Z ,hinR
assign value zero to every variable in ZPǫ ,RPǫ respectively . An initial state
of Pǫ will be of the form (ℓin, h

in

Bool, h
in

DOM, h
in

Z , h
in

R), where hinDOM assigns
the given values to input variables and assigns zero to all other variables
in XPǫ (recall that all input variables are in XPǫ); the values given to the
input variables by hinDOM will be the “initial input value”. We fix a unique
initial state sinit. Let φinit be a distribution on the measure space (S, E) such
that for any C ′ ∈ E , φinit(C

′) = 1 if sinit ∈ C ′; otherwise, φinit(C
′) = 0.

Now, φi is the unique probability measure defined by the Markov kernel Kǫ

with initial distribution φinit such that for each sequence of measurable sets
~C = (C1, ..., Ci), φi(Exec(~C)) is

∫

C1

∫

C2

· · ·

∫

Ci

1 Kǫ(xi−1,dxi) · · ·Kǫ(x1,dx2)φinit(dx1)

where 1 is the constant function that takes 1 everywhere. Please see [15] for
additional details.

We let Probnatural(Pǫ(in) = out) denote the probability that Pǫ outputs
value out on the input in. We define this probability as follows. Let α =
(s1, ..., si) ∈ Si be an execution. We say that α is a required execution if
α is a terminating execution with output out, i.e., it satisfies the following
two conditions: (i) si = (ℓ, hBool, hDOM, hZ, hR) where ℓ is the label of ext
statement and valuation of output variables is out; (ii) if j < i and sj =
(ℓ′, f ′Bool, f

′
DOM, f

′
int, f

′
R) then ℓ′ is not the label of ext statement. For each

i > 0, let Reqi be the set of all required executions in Si. It is easy to see
that, for each i > 0, Reqi ∈ Σi and no execution in Reqi is a prefix of an
execution in Reqi+1.We define Probnatural(Pǫ(in) = out) =

∑
i>0 φi(Reqi).

B Undecidability of checking differential privacy
of Simple programs

In this section, we will prove Theorem 5. That is, we will show that both
Fixed Parameter Differential Privacy and Differential Privacy are undecid-
able.

Proof. Recall that a 2-counter Minsky Machine is tupleM = (Q, qs, qf ,∆
1
inc,∆

2
inc,∆

1
jzdec,∆

2
jzdec)

where

• Q is a finite set of control states.

38

• qs ∈ Q is the initial state.

• qf ∈ Q is the final state.

• ∆i
inc ⊆ Q×Q is the increment of counter i for i = 1, 2.

• ∆i
jzdec ⊆ Q×Q×Q is the conditional jump of counter i for i = 1, 2.

M is said to be deterministic if from each state q, there is at most one
transition out of q. The semantics ofM is defined in terms of a transition
system (Conf, (qs, 0, 0),→) where Conf = Q× N× N is the set of configu-
rations, (qs, 0, 0) is the initial configuration and → is defined as follows:

(q, i, j) → (q′, i+ 1, j) if (q, q′) ∈ ∆1
inc,

(q, i, j) → (q′, i, j + 1) if (q, q′) ∈ ∆2
inc,

(q, i, j) → (q′, i, j) if i = 0 and (q, q′, q′′) ∈ ∆1
jzdec,

(q, i, j) → (q′′, i− 1, j) if i 6= 0 and (q, q′, q′′) ∈ ∆1
jzdec,

(q, i, j) → (q′, i, j) if j = 0 and (q, q′, q′′) ∈ ∆2
jzdec,

(q, i, j) → (q′′, i, j − 1) if j 6= 0 and (q, q′, q′′) ∈ ∆2
jzdec.

A sequence of configurations s0, s1, . . . sk is said to be a computation of
M is s0 = (qs, 0, 0) and si → si+1 for i = 0, 1, . . . k − 1. A computation
s0, s1, . . . sk is said to be a terminating computation of M if sk = (qf , i, j)
for some i, j ∈ N.

We show that given a 2-counter Minsky MachineM, there is a program
PM
ǫ ∈ Simple such that for each ǫ > 0,

(a) PM
ǫ has only one input xin and only one output xout taking values in

DOM = {0, 1}.

(b) PM
ǫ terminates with probability 1.

(c) PM
ǫ is (ǫ, 0)-differentially private with respect to the adjacency relation

Φ = {(0, 1), (1, 0)} if and only ifM does not halt.

Given a 2-counter MachineM, PM
ǫ is constructed as follows. Without

loss of generality, let Q = {q1, . . . , qm} and let q1 be the initial state and
qm be the final state. We will model a state in Q using m Boolean vari-
ables b1, . . . , bm. If the current state is qi then bi will be set to true and
all other variables will be set to false. The counters will be modeled using
real variables as follows. Initially a real variable r0 will be sampled from
Laplacian distribution. If r0 ≤ 0, we will exit the program. Otherwise, we
will initialize two real variables r1, r2 to be r0. r1, r2 will model the counters
as follows. If the first (second respectively) counter is going to hold natural
number i then r1 = (i + 1)r0 (r2 = (i + 1)r0 respectively). Incrementing

39

Input: xin
Output: xout

xout ← 0
r0 ← Lap(ǫ, 0)
btest ← r0 > 0
if btest then

rnumber steps ← Lap(ǫ, 0)
rcurr step ← r0
bcontinue ← rnumber steps > rcurr step

b1 ← true

b2 ← false

· · ·
bm ← false

r1 ← r0
r2 ← r0
while bcontinue do

s1
...
sn
b1 ← bnext1

. . .
bm ← bnextm

r1 ← rnext1

r2 ← rnext2

rcurr step ← r0 + rcurr step

bcontinue ← rnumber steps > rcurr step

end
if (bm and EQ(xin, 1)) then

xout ← 1
end

end
exit

Algorithm 3: Program PM
ǫ simulating 2-counter machineM

40

the first counter (second respectively) counter is achieved by adding r0 to
r1 (r2 respectively). Decrementing the first counter (second respectively)
counter is achieved by sibtracting r0 from r1 (r2 respectively). For encod-
ing the transition relations ∆1

inc,∆
2
inc,∆

1
jzdec and ∆2

jzdec, we use variables
bnext1 , . . . , bnextm , rnext1 , rnext2 to compute the next configuration as expected. For
example, the transition (qi, qj , qk) ∈ ∆1

jzdec can be encoded using conditional
statements as follows:

bi,j,k ← r1 = r0
if (bi,j,k and bi)
then bnextj ← true; bnext1 ← false; . . . bnextj−1 ← false;

bnextj+1 ← false; . . . ; bnextm ← false

else rnext1 ← r1 − r0; b
next
k ← true; bnext1 ← false; . . .

bnextk−1 ← false; bnextk+1 ← false; . . . ; bnextm ← false

end

Let s1, s2, . . . , sn be the statements encoding the transition relation. Con-
sider the program PM

ǫ given in Algorithm 3. The program PM
ǫ initially

samples r0 from a continuous Laplacian distribution. If the sampled value
is ≤ 0 then it outputs 0. Otherwise, it starts simulating M. In order to
make sure that the program terminates, we sample another real variable
rnumber steps and simulate k steps of the program where k is the smallest
number such that kr0 > rnumber steps.

At the end of the simulation, if the halting state is reached and the input
is 1 then it outputs 1. Otherwise, it outputs 0.

Clearly, PM
ǫ satisfies properties (a) and (b) above. That the program

PM
ǫ has property (c) above follows from the following observations:

1. IfM does not halt then PM
ǫ outputs 0 with probability 1.

2. If M halts then PM
ǫ outputs 1 with non-zero probability on input 1

and outputs 1 with zero probability on input 0.

This shows that Fixed Parameter Differential Privacy is undecidable. Un-
decidability of Fixed Parameter Differential Privacy is obtained by taking
ǫ0 to be any constant rational number, say 1

2 .

41

C DiPWhile encoding of exponential distribution

Example 13. Given ǫ > 0 and offset, let Lap+(ǫ, offset) be the continuous
distribution whose probability density function (p.d.f.) is given by

fǫ,µ(x) =

{
ǫ e−ǫ(x−offset) if x ≥ offset

0 otherwise
.

Observe that the one-sided Laplacian distribution Lap+(ǫ, 0) is the standard
exponential distribution. Our language is expressive enough to encode one-
sided Laplacians as follows. Consider the sequence of statements:

X ← Lap(ǫ, 0);
b← X ≤ 0;
if b then Y ← X elseY ← (−1)X end;
Z ← Y + offset

The effect of the sequence of statements is that Z has the one-sided Laplacian
distribution Lap+(ǫ, offset).

D Formal DTMC Semantics of DiPWhile programs

We define formally [[Pǫ]], the DTMC semantics of an DiPWhile program
Pǫ. Let us recall some key restrictions in DiPWhile programs. The first
restriction is that real and integer-valued variables are never assigned within
the scope of a while statement. Hence, they are assigned only a bounded
number of times, and therefore, without loss of generality, we can assume
that they are assigned a value exactly once. Second, real valued expressions
are never compared against integer valued expressions.

Let us fix some basic notation. Partial functions from A to B will be
denoted as A →֒ B. The value of f : A →֒ B on a ∈ A, will be denoted
as f(a). Two partial functions f and g will be equal (denoted f ≃ g) if
for every element a, either f and g are both undefined, or f(a) = f(b). If
f : A →֒ B, a ∈ A and b ∈ B, then f [a 7→ b] denotes the partial function
that agrees with f on all elements of A except a; on a, f [a 7→ b](a) = b.

In the rest of this section let us fix a DiPWhile program Pǫ. L will denote
the set of labels appearing in Pǫ. A valuation val for DOM variables is a
function that assigns a value in DOM to variables in X ; we will denote set
of all such valuations by VDOM. Given a valuation val ∈ VDOM and a real
expression e, val(e) denotes the real expression that results from substituting

42

all the DOM variables appearing in e by their value in val. Similarly, for an
integer expression, val(e) is the partial evaluation of e with respect to val.
Finally, for a comparison e1 ∼ e2 between two expressions e1 and e2, again
we will define val(e1 ∼ e2) to be val(e1) ∼ val(e2). Let us denote the set of
integer expressions, real expressions, and Boolean comparisons, appearing
on the right hand side of assignments in Pǫ by PZ , PR, and PB , respectively.
Three sets of expressions will be used in defining the semantics, and they
are as follows.

zExp = {val(e) | val ∈ VDOM, e ∈ PZ}
rExp = {val(e) | val ∈ VDOM, e ∈ PR}
bExp = {val(e) | val ∈ VDOM, e ∈ PB}

Thus, zExp, rExp, and bExp are partially evaluated expression appearing on
the right hand side of assignments in Pǫ. Notice that the sets L, zExp, rExp,
and bExp are all finite. Finally, let Const be the set of rational constants
appearing as coefficient of ǫ of Laplace and discrete Laplace assignments in
Pǫ; again Const is finite.

In order to define the semantics of Pǫ, we will use an auxiliary function
next that given a label, identifies the label of the statement to be executed
next. Observe that for most program statements, the next statement to be
executed is unique. However, for if andWhile statements, the next statement
depends on the value of a Boolean expression. We will define next(ℓ) to be
a set of pairs of the form (ℓ′, c) with the understanding that ℓ′ is the next
label if c holds. Thus, for a label ℓ, next(ℓ) will either be {(ℓ′, true)} or
{(ℓ1, c), (ℓ2,¬c)}. We do not give a precise definition of next(·), but we will
use it when defining the semantics.

The semantics of Pǫ will given as a finite-state, parametrized DTMC
[[Pǫ]]. To define the parametrized DTMC [[Pǫ]], we need to define the states
and the transitions.

States. States of [[Pǫ]] will be of the form

(ℓ, fBool, fDOM, fint, freal, C).

Informally, ℓ ∈ L is the label of the statement to be executed, fBool, fDOM,
fint, and freal are partial functions assigning “values” to program variables
(of appropriate type), and C is a collection of inequalities among program
variables that hold on the current computational path. Both fBool and
fDOM are valuations for the appropriate set of variables, and so we have
fBool : B →֒ {true, false} and fDOM : X →֒ DOM. For real and integer

43

variables, instead of tracking exact values, we will track the expressions
used in assignments and parameters of (discrete) Laplace mechanisms used
in random assignments. Therefore, we have fint : Z →֒ zExp∪(Const×DOM)
and freal : R →֒ rExp∪ (Const×DOM). Finally, C ⊆ bExp∪{¬e | e ∈ bExp}.
It follows immediately that the set of states of [[Pǫ]] is finite.

Well-Formed States. The functions f∗ (for ∗ ∈ {Bool,DOM, int, real})
assign values to program variables that have been assigned during the com-
putation thus far. Since we assume variables in DiPWhile program are de-
fined before they are used, if a variable z′ appears in fint(z) ∈ zExp, then
fint(z

′) must be defined. A similar condition holds for real variables. The
comparisons in C are also relationships that must hold on the current path,
and so all variables participating in it must be defined. If a state satisfies
these consistency properties between fint, freal, and C, we will say it is well-
formed. All reachable states in [[Pǫ]] will be well-formed. So when we define
transitions we will assume that the states are well-formed.

Initial States. Let ℓin be the label of the first statement Pǫ. Let C
in = ∅,

and let f inBool, f
in

int, and f inreal be partial functions with an empty domain.
An initial state of [[Pǫ]] will be of the form (ℓin, f

in

Bool, f
in

DOM, f
in

int, f
in

real, C
in),

where f inDOM is defined only on the input variables; the values given to these
variables by f inDOM will be the “initial input value”.

We will now define the semantics of transitions in [[Pǫ]]. Let us fix a state
z = (ℓ, fBool, fDOM, fint, freal, C). Transitions out of z will be defined based
on the effect of executing the statement labeled ℓ, and so its definition will
depend on this statement. We handle each case below.

DOM assignments. Let next(ℓ) = {(ℓ′, true)} and let x be the variable
being assigned in ℓ. There are two cases to consider. First, consider the
case where x is assigned a value for a DOM expression e. In this case, [[Pǫ]]
will transition to

(ℓ′, fBool, fDOM[x 7→ fDOM(e)], fint, freal, C)

with probability 1. The second case is when x is assigned a random value
according to Exp(aǫ, F (x̃), e) or choose(aǫ, ẽ). For d ∈ DOM, let prob(d) be
the probability of d (as a function of ǫ) based on the distribution; note, that
these probabilities will depend on the value of fDOM(e) and fDOM(ẽ). Then,
[[Pǫ]] will transition to

(ℓ′, fBool, fDOM[x 7→ d], fint, freal, C)

44

with probability prob(d).

Integer assignments. Let next(ℓ) = {(ℓ′, true)} and let z be the variable
being assigned in ℓ. Again there are two cases to consider. First, consider
the case where z is assigned a value for an integer expression e. In this case,
[[Pǫ]] will transition to

(ℓ′, fBool, fDOM, fint[z 7→ fDOM(e)], freal, C)

with probability 1. Next, if z is assigned a random value according to
DLap(aǫ, e), then [[Pǫ]] transitions to

(ℓ′, fBool, fDOM, fint[z 7→ (a, fDOM(e))], freal, C)

with probability 1. Notice that we have a deterministic transition even if
the assignment samples from a discrete Laplace. The effect of choosing
randomly a value will get accounted for during Boolean assignments.

Real assignments. Let next(ℓ) = {(ℓ′, true)} and let r be the variable
being assigned in ℓ. First, if z is assigned a value for a real expression e,
[[Pǫ]] will transition to

(ℓ′, fBool, fDOM, fint, freal[r 7→ fDOM(e)], C)

with probability 1. If z is assigned a random value according to Lap(aǫ, e),
then [[Pǫ]] transitions to

(ℓ′, fBool, fDOM, fint, freal[r 7→ (a, fDOM(e))], C)

with probability 1. Again sampling according to Laplace is modeled deter-
ministically.

Boolean assignments. Again let next(ℓ) = {(ℓ′, true)} and let b be the
variable being assigned in ℓ. When b is assigned the value of Boolean ex-
pression e, [[Pǫ]] transitions to

(ℓ′, fBool[b 7→ fBool(e)], fDOM, fint, freal, C)

with probability 1. The interesting case is when b is assigned the result
of comparing expressions e1 ∼ e2. If the probability of all conditions in C
holding is 0, then let p1 be 0. Otherwise, let p1 denote the probability of
fDOM(e1) ∼ fDOM(e2) holding given all conditions in C hold; notice that this

45

probability depends on the functions fint and freal that store the parameters
to various random sampling steps. Now [[Pǫ]] will transition to

(ℓ′, fBool[b 7→ true], fDOM, fint, freal, C ∪ {fDOM(e1) ∼ fDOM(e2)})

with probability p1, and it will transition to

(ℓ′, fBool[b 7→ false], fDOM, fint, freal,
C ∪ {¬(fDOM(e1) ∼ fDOM(e2))})

with probability 1− p1. Thus, the effect of the probabilistic sampling steps
for integer and real variables gets accounted for when the result of a com-
parison is assigned to a Boolean variable.

if statement. In this case, next(ℓ) = {(ℓ1, c), (ℓ2,¬c)}. If fBool(c) = true

then we transition to

(ℓ1, fBool, fDOM, fint, freal, C)

with probability 1. On the other hand, if fBool(c) = false then transition to

(ℓ2, fBool, fDOM, fint, freal, C)

with probability 1.

While statement. Again let next(ℓ) = {(ℓ1, c), (ℓ2,¬c)}. This case is iden-
tical to the case of if statement, and so is skipped.

exit statement. In this case we stay in state z with probability 1.

Equivalence of the two semantics. Let in be a valuation over input
variables and out be a valuation over output variables. We let ProbDTMC(Pǫ(in) =
out) denote the probability that Pǫ outputs value out, on the input in, un-
der the DTMC semantics. This probability is defined to be the probability
of reaching a state of the form (ℓ, fBool, fDOM, fint, freal, C) where ℓ is the la-
bel of an exit statement and fDOM assigns the values given by out to output
variables, from an initial state in which the values of the input variables is
given by in, in the DTMC [[Pǫ]]. The following theorem states the equiva-
lence of the natural semantics given in Appendix A to that of the DTMC
semantics for DiPWhile programs.

46

Theorem 14. For every ǫ > 0 and DiPWhile program Pǫ, and for every
pair of evaluations in,out to the input and output variables respectively,
ProbDTMC(Pǫ(in) = out) = Probnatural(Pǫ(in) = out).

Proof Sketch. Let us fix an ǫ > 0 and a program Pǫ. Then [[Pǫ]] can be
considered as a (non-paramaterized) DTMC. For any path ρ = z1, . . . , zi
in the DTMC [[Pǫ]], let prob(ρ) denote the product of the probabilities of
all the transitions in ρ. We call ρ an initialized path if it starts with an
initial state, and a proper path if prob(ρ) > 0. For any initialized path ρ of
[[Pǫ]], let probDOM(ρ) be the product of all the transitions in ρ that result
from random assignments to DOM variables, probZ(ρ) be the product of the
probabilities that result from a comparison between integer variables and
probR(ρ) be the product of the probabilities that result from a comparison
between real variables. It is easy to see that

prob(ρ) = probDOM(ρ) probR(ρ) probZ(ρ).

We recall some of the notation as defined in Appendix A. Let S be
the set of states of Pǫ in the natural semantics. A state s ∈ S is a tuple
(ℓ, hBool, hDOM, hZ, hR) denoting the label of a statement to be executed,
and the values of Boolean, DOM, integer and real variables of Pǫ. A discrete
state of Pǫ, ds, is a tuple (ℓ, hBool, hDOM, hZ) specifying the label of the
statement and the values of Boolean, DOM and integer variables of Pǫ.
For a state s = (ℓ, hBool, hDOM, hZ, hR), let disc(s) be the discrete state
(ℓ, hBool, hDOM, hZ). A discrete state ds is said to be initial if ds = disc(sinit)
where sinit is the initial state of S.

A discrete execution β = ds1, . . . , dsi of Pǫ is a sequence of discrete
states. The discrete execution β = ds1, . . . , dsi is an initialized if ds1 is
the initial discrete state. For a discrete execution β as given above, let
ext(β) = {(s1, . . . , si) | dsj = disc(sj), 1 ≤ j ≤ i}. It is easy to see that,
for any discrete execution β of length i, ext(β) is in Σi (see Appendix A)
, i.e., is measurable. For a discrete computation β, of length i > 0, let
pr(β) = φi(ext(β)) where φi is the probability function defined on the mea-
sure space (Si,Σi) in Appendix A. If pr(β) > 0 then we call β a proper
discrete execution of Pǫ.

Consider an initialized proper discrete execution β of length i, as given
above, where dsj = (ℓj , h

j
DOM, h

j
Bool, h

j
Z) for 1 ≤ j ≤ i. It can be shown

that there exists a unique initialized path ρβ = z0, . . . , zi in the DTMC [[Pǫ]]
corresponding to β such that for each j,

1. the state zj = (ℓj , f
j
DOM, f

j
Bool, f

j
int, f

j
real, Cj) for some appropriate

f jDOM, f
j
Bool, f

j
int, f

j
real and Cj, and

47

2. f jBool(b) = hjBool(b) (f
j
DOM(x) = hjDOM(x) respectively) whenever f jBool(b)

(f jDOM(x) respectively) is defined.

Let H be the function mapping initialized proper discrete executions of Pǫ

to corresponding initialized paths in [[Pǫ]], as specified above.
For an initialized proper discrete execution β of length i as above, we de-

fine a number pj for each j ≤ i as follows. For dsj = (ℓj , h
j
DOM, h

j
Bool, h

j
Z), let

d̂sj = (ℓj , h
j
DOM, h

j
Bool, h

j
Z, h

in

R) where hinR is the function that maps each real
variable of Pǫ to 0. Let Kǫ be the Markov kernel as defined in Appendix A.
If j > 1 and ℓj−1 is the label of an assignment to an integer variable that

samples from a discrete Laplacian variable then pj = Kǫ(d̂sj−1, {d̂sj}), oth-
erwise pj = 1. Let prZ(β) = p1 . . . pi. It can be shown using the definition of
measure φi on Σi (See Section A) that

pr(β) = probDOM(H(β)) probR(H(β))prZ(β).

Furthermore, prob(H(β)) > 0 if pr(β) > 0.
Now consider any initialized proper path ρ = z1, . . . , zi in [[Pǫ]]. From the

above observations, it can be shown that prob(ρ) =
∑

u∈H−1(ρ) φi(ext(β)).
Now, the theorem follows from this observation and the definitions of ProbDTMC(Pǫ(in)
= out) and Probnatural(Pǫ(in) = out).

Complexity. Now, we bound the size of the state space of DTMC [[Pǫ]]
as follows. Let m = |DOM| = 2Nmax + 1 and m′ be the length of Pǫ. Let
n1, n2, n3, n4, respectively, be the number DOM variables, boolean variables,
integer variables, and real variables occurring in Pǫ. In a state s of MP , the
number of possible values for fdom is ≤ mn1 , the number of possible values
for fbool is ≤ 2n2 . The number of possible values for fint can be bounded
as follows. An integer variable can be assigned a Laplacian distribution
whose parameters are pairs of the form (aǫ, e) where e is an expression over
variables in U ∩ X ; the number of such pairs is ≤ m1m

n1 where m1 is the
number of values of a in P and mn1 is the bound on the number of values of
e. An integer variable can also be assigned a linear expression over integer
variables with coefficients that are integer constants or expressions over DOM
variables; the number of such linear combinations is ≤ m2m

n1 where m2 is
the number of such expressions appearing in P . Since, m1 + m2 ≤ m′,
we see that number of values that an integer variable can be mapped to is
≤ m′mn1 . Hence the number of possible values for fint is ≤ (m′mn1)n3 . By
a similar reasoning we observe that the number of possible values for freal is
≤ (m′mn1)n4 . Now we bound the number of values for C as follows. The only

48

places where comparisons appear are on the right hand sides of assignments
to boolean variables. In each such assignment we have comparisons over
linear expressions of integer and real variables ; such comparisons also have
integer constants and DOM variables appearing in them. Since the number
of integer constants is ≤ m′ and the number of valuations to DOM variables
≤ mn1 , we get that the number of possible comparions is ≤ m′mn1 . Since
C is a subset of such comparisons, the number of possible values for C is
≤ 2(m

′mn1). Now, the number of states is bounded by the product of possible
values to each component of a state, which is seen to be O(2n.nn1+n2+n3+n4)
where n = m′mn1 .

E DiPWhile programs are finite, definable, parametrized

DTMCs

We show the proof of Theorem 8, namely that for any DiPWhile program
Pǫ, [[Pǫ]] is a finite, definable, parametrized DTMC.

Proof. From our definition of the DTMC semantics (Appendix D), it follows
that [[Pǫ]] is a finite parameterized DTMC. We now show that it is definable
also. In order to show this, we have to show that the transition probabilities
of [[Pǫ]] are definable. Observe that, by definition, the transition probabilities
of choose(aǫ, Ẽ) construct are definable. The other probabilistic transitions
arise as a result of comparison between random variables of the same sort or
from using the exponential mechanism. These transition probabilities turn
out to be from a special class of definable functions. We define this form
next.

Definition 15. Let p(ǫ) =
∑m

i=1 aiǫ
nieǫqi where each ai is a rational number,

ni is a natural number and qi is a non-negative rational number. We shall call
all such expressions pseudo-polynomials in ǫ. Given a real number b > 0 and
a pseudo-polynomial p(ǫ), p(b) is the real number obtained by substituting

b for ǫ. The ratio of two pseudo-polynomials in ǫ, p1(ǫ)
p2(ǫ)

, shall be called a

pseudo-rational function in ǫ if p2(b) 6= 0 for all real b > 0. Given a real

number b > 0 and a pseudo-rational function rt(ǫ) = p1(ǫ)
p2(ǫ)

, rt(b) is defined

to be p1(b)
p2(b)

.

Observe that a pseudo-rational function rt defines a function frt from the
set of strictly positive reals to the set of reals. We will henceforth confuse frt
with rt. Pseudo-rational functions are easily seen to be closed under addition
and multiplication.

49

Corollary 16. Each pseudo-rational function rt is definable in the theory
Thexp.

Proof. Let rt(ǫ) =
∑m

i=1
aiǫ

nieǫqi
∑m′

i=1
a′iǫ

n′

ieǫq
′

i
. Let N be the least common multiple of

all denominators of qi, q
′
i. Let pi = qiN and p′i = q′iN. Let a be the least

common multiple of all denominators of ai, a
′
i. Let bi = aai and b

′
i = aa′i. It

is easy to see that rt is definable by the formula φ(x) :

φ(x) ≡ ∀z.((x
m′∑

i=1

b′iǫ
n′

izp
′

i =
m∑

i=1

biǫ
nizpi) ∧ (zN = eǫ) ∧ (z > 0)).

Note that in the above formula, z is the Nth root of ǫ.

Now, it follows from our restriction on our scoring functions, namely that
they take values in rationals, that the transition probabilities in exponential
mechanism are pseudo-rational functions that can be computed.

Let us now consider the case of comparison between random variables.
Let state = (ℓ, fBool, fDOM, fint, freal, C) of [[Pǫ]] be a state of [[Pǫ]]. Recall that
when we compare random variables in state, we add a new linear comparison
e to C. Further, in order to compute transition probabilities, we compute
the conditional probability that the set of linear comparison C ∪ e is true
given that C is true. For this, it suffices to show that we can compute the
probability that the set of linear comparisons C is true and the probability
C ∪ e is true. We make the following observations:

• Since every random variable must be defined before it is used, we can
simplify C and C ∪e to only refer to program variables that were used
in random assignments.

• All our random assignments sample from independent random vari-
ables. Since we never compare integer and real random variables, it
suffices to compute the probability that a system of linear comparisons
over integers with integer coefficients hold and the probability that a
system of linear comparisons over reals with rational coefficients hold.
We will now show that these probabilities can be computed and are
pseudo-rational functions.

• In order to compute the probability that a system of linear comparisons
over reals with rational coefficients hold, we only need to consider
systems of linear inequalities. Clearly any equality u1 = u2 can be
written as two inequalities, u1 ≤ u2 and u2 ≤ u1. If a comparison

50

in C is u1 6= u2 then we can consider the systems C1 = (C \ {u1 6=
u2}) ∪ {u1 < u2} and C2 = (C \ {u1 6= u2}) ∪ {u2 < u1}, compute
probabilities of C1 and C2 separately and add them up to compute
the probability that C holds. Thus, without loss of generality we can
assume that C consists of only linear inequalities.

Probability of system of linear inequalities over integers. Let Z =
(Z1, . . . , Zn) be a discrete random variable taking values in Zn. Consider
a finite system of linear inequalities C with integer coefficients and with
n unknowns Z1, . . . , Zn. A solution of C is a tuple b = (b1, . . . , bn) ∈ Zn

such that all inequalities in C are satisfied when each Zj ∈ C is replaced
by bj. Let sol(C) ⊆ Zn denote the set of all solutions of C. The probability
that Z satisfies C is said to be the probability of the event E = {Z =
b | b is a solution of C}. We denote this probability by Prob(Z |= C). We
have the following:

Lemma 17. Let C be a finite system of linear inequalities with integer
coefficients and with n unknowns Z1, . . . , Zn. Let Zj = DLap(ajǫ, µ1), . . .,
Zn = DLap(anǫ, µn) be mutually independent discrete Laplacians such that
for each 1 ≤ j ≤ n, aj is a strictly positive rational number and µj is an
integer. Let Z = (Z1, . . . , Zn). There is a pseudo-rational function rtZ,C

in ǫ such that Prob(Z |= C) = rtZ,C . The function rtZ,C can be computed
from C, (a1, µ1), . . . , (an, µn).

Proof. For, each 1 ≤ j ≤ n, consider Yj = DLap(ajǫ, 0). It is easy to see
that Zj has the same distribution as Yj + µj. Now consider the system of
inequalities C ′ in which each Zj is replaced by Yj+µj. Let Y = (Y1, . . . , Yn).
It is easy to see that Prob(Z |= C) = Prob(Y |= C ′). This observation implies
that it suffices to prove the Lemma in the special case that each µj = 0.
Thus, for the rest of the proof we assume that each µj = 0.

Now, consider a set pos ⊆ {1, . . . , n}. Let Cpos be the system of inequali-
ties C∪{Zj ≥ 0 |j ∈ pos}∪{Zj < 0 |j 6∈ pos}. It is easy to see that the set of
solutions of C is the disjoint union ∪{pos⊆1,...,n}Cpos. Thus, it suffices to the

prove that for each pos ⊆ {1, . . . , n}, Prob(Z |= Cpos) is a pseudo-rational
function that can be computed.

Consider the system of inequalities C ′
pos obtained from Cpos by replacing

each Zj by Yj for j ∈ pos and by −Yj for j 6∈ pos. Let Y = (Y1, . . . , Yn).
From the fact that Laplacians are symmetric distributions, it follows each Yj
has the same distribution as Zj . Thus, Prob(Z |= Cpos) = Prob(Y |= C ′

pos).
Observe that the set of solutions of C ′

pos are a subset of Nn. Without loss

51

of generality, we can also assume that the terms in each inequality of C ′
pos

are rearranged so that the constant terms in C ′
pos and the coefficients of the

variables Yj are natural numbers, ie, non-negative integers.
Therefore, C ′

pos is a system of linear inequalities with natural number
coefficients. We are interested in solutions of C ′

pos over natural numbers.
For such system of inequalities, the set of solutions can be written as a
disjoint union of simple linear sets [12]; a set S ⊆ Nn is said to be linear
if there are tuples b0, p1, . . . , pm ∈ Nn such that S = {b0 +

∑m
i=1 kipi |

for each i, ki ∈ N} and simple if each b ∈ S has a unique representation
as a sum b0 +

∑m
i=1 kipi. b0 is said to be the offset of S and p1, . . . , pm the

periods of S. From the fact that the set of solutions of C ′
pos can be written

as a disjoint union of simple linear sets, it follows that it suffices to show
that Prob(Y ∈ S | S is simple linear) is a pseudo-rational function in ǫ. In
order to show this we need a couple of additional notations.

For two n-tuples x = (x1, . . . , xn) and y = (y1, . . . , yn), x · y will denote
the sum

∑n
j=1 xjyj. Secondly, we will denote the tuple (a1, . . . , an) by a.

Fix a simple semilinear set S. Let b0 be its offset and p1, . . . , pm its
periods. Let κ =

∏n
i=1

1−e−aiǫ

1+e−aiǫ
. From the fact that each b ∈ S has a unique

representation as a sum b0 +
∑m

i=1 kipi, it follows that

Prob(Y ∈ S) =
∑

k1∈N
· · ·

∑
km∈N Prob(Y = b0 +

∑m
i=1 kipi)

=
∑

k1∈N
· · ·

∑
km∈N κ e

−ǫ(b0·a+k1p1·a+···+kmpm·a)

= κ (e−ǫb0·a)
(
∑

k1∈N
e−ǫk1p1·a) · · · (

∑
km∈N e

−ǫkmp1·a)

= κ (e−ǫb0·a)(1
1−e−ǫp1·a

) · · · (1
1−e−ǫpm·a)

The latter is clearly a pseudo-rational function in ǫ.

Probability of system of linear inequalities over reals. Let R =
(R1, . . . , Rn) be a continuous random variable taking values in Rn. Consider
a finite system of linear inequalities C with rational coefficients and with n
unknowns R1, . . . , Rn. As in the case of discrete random variables , we can
define sol(C) ⊆ Rn, the set of solutions, and Prob(R |= C), the probability
that R satisfies C. We have the following result.

Lemma 18. Let C be a finite system of linear inequalities with rational
coefficients and with n unknowns R1, . . . , Rn. Let R1 = Lap(a1ǫ, µ1), . . .,
Rn = Lap(anǫ, µn) be mutually independent Laplacian doistributions such
that for each 1 ≤ j ≤ n, aj is a strictly positive rational number and µj
is a rational number. Let R = (R1, . . . , Rn). There is a pseudo-rational

52

function rtR,C in ǫ such that Prob(R |= C) = rtR,C . The function rtR,C can
be computed from C, (a1, µ1), . . . , (an, µn).

Proof. As in the proof of Lemma 17, it suffices to consider the case when
each µi = 0 and to show that the probability measure of the set Sol =
sol(C) ∩ {(b1, . . . , bn) | bi ∈ R>0} is a computable pseudo-rational function.

Since R is continuous, we can also assume that each inequality is of the
form ≤ . This is because the measure of any set in Rn that satisfies a linear
equation over n unknowns R1, . . . , Rn is 0. There are computable finite sets
S1, . . . , Sm such that (See [8])

1. Sol = S1 ∪ . . . Sm,

2. The measure of the Si ∩ Sj is 0 for i 6= j, and

3. Each Si is a positive repetitive polyhedra. S ⊆ (R>0)n is said to be
a positive repetitive polyhedra if there are constants h−0 , h

+
0 and func-

tions h−1 (x1), h
+
1 (x1), h

−
2 (x1, x2), h

+
2 (x1, x2), . . . , h

−
n−1(x1, x2, . . . xn−1),

h+n−1(x1, x2, . . . xn−1) such that

• Si =
{(x1, . . . , xn) | h

−
0 ≤ x1 ≤ h

+
0 , . . . ,

h−n−1(x1, . . . xn−1) ≤ xn ≤ h
+
n−1(x1, . . . xn−1)}.

• h−0 is a rational number ≥ 0.

• h+0 is either ∞ or a rational number.

• For each 1 ≤ j ≤ n, h−j is a linear function in its arguments. In

the latter case, h−j has rational coefficients.

• For each 1 ≤ j ≤ n, h+j is either ∞ or a linear function in its

arguments. h+j has rational coefficients in the latter case.

• For each 1 ≤ j ≤ n, h−j 6= h+j .

Thanks to conditions (1) and (2) above, it suffices to show that for any
positive repetitive polyhedra S, the probability measure of the event {R =
b | b ∈ S} is a pseudo-rational function.

Fix S and let h−0 , h
+
0 , h

−
1 , h

+
1 , . . . , h

−
n−1, h

+
n−1 be as above, The measure

of the event {R = b | b ∈ S} can be computed using the nested integral

F =

∫ h+

0

h−

0

fa1(x1)

∫ h+

1

h−

1

fa2(x2) · · ·

∫ h+

n−1

h−

n−1

fan(xn) dxn · · · dx1

where fai(xi) =
aiǫ
2 e

−aiǫxi is the pdf of Ri (we always have that xi ≥ 0) and
the arguments of h+i , h

−
i are omitted for readability.

53

For 1 ≤ j ≤ n, let Ij be the nested integral

Ij =

∫ h+

j−1

h−

j−1

faj (xj) · · ·

∫ h+

n−1

h−

n−1

fan(xn) dxn · · · dxj .

We claim by induction on k = n − j that Ij is a finite sum of terms of the
form

aǫmebǫ(xm1

1 eǫb1x1) . . . (x
mj−1

j−1 eǫbj−1xj−1)

where a, b, b1, . . . , bj−i are rational numbers (including negative numbers),
m is an integer, andm1, . . . ,mj−1 are natural numbers. We will assume that
the sum is always presented in simplest form, namely, that all cancellations
have already taken place in the sum.

Clearly the claim is true when k = 0. Suppose that the claim is true for
k = k0. Let j0 = n− k0. Suppose

w = aǫmebǫ(xm1

1 eǫb1x1) . . . (x
mj0−1

j0−1 eǫbj0−1xj0−1)

is a summand in Ij0 . Let k = k0 + 1 and j = n− k = n− k0 − 1 = j0 − 1.
Consider the indefinite integral

J =
∫
faj0−1

w dxj0−1

=
∫ aj0−1ǫ

2 e−aj0−1ǫxj0−1 w dxj0−1

=
aj0−1

2 ǫm+1ebǫ(xm1

1 eǫb1x1) . . . (x
mj0−2

j0−2 eǫbj0−2xj0−2)∫
x
mj0−1

j0−1 eǫ(bj0−1−aj0−1)xj0−1dxj0−1

Let

J ′ =

∫
x
mj0−1

j0−1 eǫ(bj0−1−aj0−1)xj0−1dxj0−1.

Now, if bj0−1 − aj0−1 = 0 then

J ′ =
x
mj0−1+1
j0−1

mj0−1+1
.

If bj0−1 − aj0−1 6= 0 then by doing a change of variables t = (bj0−1 −
aj0−1)ǫxj0−1, it is not too hard to show that

J ′ =

mj0−1∑

k=0

ckǫ
tkxkj0−1e

ǫ(bj0−1−aj0−1)xj0−1

where ck is a rational number and tk an integer for each k.

54

Thus, the indefinite integeral J is a sum, each of whose terms is of the
form

a′ǫm
′

eb
′ǫ(x

m′

1

1 eǫb
′

1
x1) . . . (x

m′

j0−1

j0−1 e
ǫb′j0−1

xj0−1).

If h−j0−2 and h+j0−2 are linear functions, we get immediately that Ij =
∫ h+

j0−2

h−

j0−2

faj0−1
w dxj0−1 is of the right form. The induction step follows in

this case.
If h+j0−2 = ∞, and each b′j in a summand of J is strictly negative, then

it is also easy to see that the induction step follows. Apriori, it seems that
there might be a problem when b′j ≥ 0 as in this case, Ij will evaluate to
either ∞ or −∞. This, however, will contradict the fact that the nested
integral F defines probability of an event (and hence is bounded above by
1). Thus, if h+j0−2 =∞ then bj must be strictly negative.

The claim immediately implies that the measure of the set Sol = sol(C)∩
{(b1, . . . , bn) | bi ∈ R>0} is a pseudo-rational function.

F Reachability in Parametrized DTMCs

In this section we will prove Lemma 10. Let us first recall how reachabil-
ity probabilities are computed in (non-parametrized) finite-state DTMCs.
Recall that a (non-parametrized) DTMC is a pair (Q, δ) where Q is a fi-
nite set of states, and δ : Q × Q → [0, 1] is such that for every q ∈ Q,∑

q′∈Q δ(q, q
′) = 1. So in a DTMC the transition probabilities are fixed, and

are not functions of a parameter. The probability of reaching a set of states
Q′ ⊆ Q from a state q0 is computed by solving a more general problem,
namely, the problem of computing the probability of reaching Q′ from each
state q ∈ Q. Let the variable xq denote the probability of reaching Q′ from
state q. One simple observation is that if q ∈ Q′ then xq = 1. Second, if Q0

denotes the set of all states from which Q′ is not reachable in the underlying
graph (i.e., one where we ignore the probabilities and just have edges for all
transitions that are non-zero), then xq = 0 if q ∈ Q0. Now the set Q0 can
be computed by performing a simple graph search on the underlying graph.
For states q 6∈ (Q′ ∪Q0), we could write xq as xq =

∑
q′∈Q δ(q, q

′)xq′ . This
gives us the following system of linear equations.

xq = 1 if q ∈ Q′

xq = 0 if q ∈ Q0

xq =
∑

q′∈Q δ(q, q
′)xq′ otherwise

55

The above system of linear equations can be shown to have a unique solution,
with the solution giving the probability of reaching Q′ from each state q.

Now let us consider a parametrized DTMC D = (Z,∆). Let ϕzz′ be a
Lexp formula that defines the function ∆(z, z′). Recall that in the algorithm
outlined in the previous paragraph, one crucial step is to compute the set
of states that have probability 0 of reaching the target set. This requires
knowing the underlying graph of the DTMC, i.e., knowing which transitions
have probability 0 and which ones have probability > 0. In a parametrized
DTMC this is challenging because the probability of transitions depends on
the value of ǫ, and our goal is to compute the reachability probability as a
function of ǫ. We will overcome this challenge by “guessing” the underlying
graph.

Let C ⊆ Z × Z. We will construct a formula ϕC that will capture the
constraints that reachablity probabilities need to satisfy under the assump-
tion that the probability of edges in C is 0, and those outside C is > 0.
Based on the assumption that C is exactly the set of 0 probability edges, we
can compute the set ZC

0 of states that cannot reach Z ′. The formula ϕC will
have variables that will have the following intuitive interpretations — pzz′

the probability of transitioning from z to z′; xz the probability of reaching
Z ′ from state z.

ϕC =
∧

(z,z′)∈C(pzz′ = 0) ∧
∧

(z,z′)6∈C(pzz′ > 0) ∧
∧

z∈Z′(xz = 1)

∧
∧

z∈ZC
0
(xz = 0) ∧

∧
z 6∈(Z′∪ZC

0
)(xz =

∑
z′ pzz′xz′).

Notice that ϕC is a formula in Lexp. ϕC can be used to construct the formula
we want. To construct the formula ϕz0Z′ that characterizes the probability
of reaching Z ′ from z0, we need to account for two things. First, we need
to ensure that pzz′ is indeed the probability of transitioning from z to z′.
Second, we need to account for the fact that we don’t know the exact set of
edges with probability 0. Based on these observations, we can define ϕz0,Z′

as follows.

ϕz0Z′ = [∃xz]z 6=z0 [∃pzz′]z,z′∈Z
∧

z,z′∈Z

ϕzz′(ǫ, pzz′) ∧

 ∨

C⊆Z×Z

ϕC

In the above definition of ϕz0Z′ all variables except xz0 (and ǫ) are exis-
tentially quantified. Notice, that ϕz0Z′ is in Lexp provided we pull all the
quantifiers to get it in prenex form. Given that ZC

0 can be effectively con-
structed for any set C, the above formula can also be computed for any
parametrized DTMC D.

56

Expressions (b ∈ B, x ∈ X , d ∈ DOM, g ∈ FBool, f ∈ FDOM):

B ::= true | false | b | not(B) | B and B | B or B | g(Ẽ)

E ::= d | x | f(Ẽ)

Basic Program Statements (a ∈ Q>0, ∼∈ {<,>,=,≤,≥}, F is a
scoring function and choose is a user-defined distribution):

s ::= x← E | b← B | x← Exp(aǫ, F (x̃), E)|

x← choose(aǫ, Ẽ) | ifB thenP elseP end|
WhileB doP end | exit

Program Statements (ℓ ∈ Labels)

P ::= ℓ : s | ℓ : s ; P

Figure 3: BNF grammar for Finite DiPWhile. DOM is a finite discrete do-
main. FBool, (FDOM resp) are set of functions that output Boolean values
(DOM respectively). B,X are the sets of Boolean variables, and DOM vari-
ables, respectively. Labels is a set of program labels. For a syntactic class
S, S̃ denotes a sequence of elements from S.

G Syntax of Finite DiPWhile programs

The syntax of Finite DiPWhile programs is presented in Figure 3.

G.1 A general semantic class of programs

Our methods imply decidability of checking differential privacy for a large
semantic class of programs (which include DiPWhile.) A sufficient condition
to ensure the decidability of checking differential privacy is to consider pro-
grams with the property that for each input, the probability distribution on
the outputs is definable in Thexp:

Definition 19. A parametrized program Pǫ with inputs U and outputs V is
said to identify a definable distribution on V if for each in ∈ U and out ∈ V
the function ǫ 7→ Prob(Pǫ(in) = out) is definable in Thexp.

A parametrized program Pǫ with inputs U and outputs V is said to
effectively identify a definable distribution on V if there is an algorithm A

57

such that for each in ∈ U and out ∈ V, A outputs a formula ϕin,out(ǫ, x) in
Lexp that defines the function ǫ 7→ Prob(Pǫ(in) = out).

We can conclude by a proof similar to the proof Theorem 11.

Theorem 20. The Fixed Parameter Differential Privacy and Differential
Privacy problems are decidable for programs Pǫ that effectively identify a
definable distribution, rationals t ∈ Q>0 and definable functions δ (in the
case of the Differential Privacy problem). Furthermore, if Pǫ is not (tǫ, δ)
differentially private for some admissible value of ǫ then we can compute a
counter-example.

H Detailed Experimental Results

We implemented a simplified version of the algorithm, presented earlier,
for proving/disproving differential privacy of DiPWhile programs. Our tool
DiPC [3] handles loop-free programs, i.e., acyclic programs. Programs with
bounded loops (with constant bounds) can be handled by unrolling loops.
The tool takes in an input program Pǫ parametrized by ǫ, and either proves
Pǫ to be differentially private for all ǫ or returns a counter-example. The
tool can also be used to check differential privacy for a given, fixed ǫ, or to
check for kǫ-differential privacy for some constant k. The design of the tool
will be discussed in detail in Section H.2.

H.1 Examples

We used various examples to measure the effectiveness of our tool. These
include SVT [28, 21], Noisy Maximum [18], Noisy Histogram [18] and Ran-
domized Response [20]. Pseudocodes for all variants of these examples that
we tried are given in this section for completeness. Though the pseudo-codes
don’t strictly adhere to the syntax of DiPWhile programs, they can easily be
rewritten to fit the syntax.

Sparse Vector Technique (SVT) We looked at six different variants
of the Sparse Vector Technique (SVT). Algorithms addressed as SVT1-6,
are Algorithms 1-6 in [28], respectively. In these programs, the array q
represents the input queries. The array out represents the output array,
⊥ represents False and ⊤ represents True. In all our experiments, we set
the threshold T = 0. SVT1 was previously introduced in this paper as
Algorithm 1 on page 8. The adjacency relation Φ we used is given by

58

(q1, q2) ∈ Φ if and only if |q1[i] − q2[i]| ≤ 1 for all i. While SVT1 and
SVT2 are differentially private, the other four variants are not. We will
present counter-examples for all four of these variants in Section H.3. The
pseudocode for the six variants of SVT are given in Figures 4 and 5.

(SVT1) First Instantiation of SVT

Input: q[1 : N]
Output: out[1 : N]
rT ← Lap(ǫ

2∆ , T)
count← 0
for i← 1 to N do

r← Lap(ǫ
4c∆ , q[i])

b← r ≥ rT
if b then

out[i]← ⊤
count← count+ 1
if count ≥ c then

exit

end

else
out[i]← ⊥

end

end

(SVT2) Second Instantiation of SVT

Input: q[1 : N]
Output: out[1 : N]
rT ← Lap(ǫ

2c∆ , T)
count← 0
for i← 1 to N do

r← Lap(ǫ
4c∆ , q[i])

b← r ≥ rT
if b then

out[i]← ⊤,
rT ← Lap(ǫ

2c∆ , T)
count← count+ 1
if count ≥ c then

exit

end

else
out[i]← ⊥

end

end

Figure 4: Sparse Vector Technique Algorithms

Noisy Maximum Noisy maximum algorithms are a differentially private
way to compute different statistical measures for a given set of queries.
Algorithms addressed as NMax1-4 are Algorithms 5-8, respectively, in [18].
Algorithms NMax1 and NMax2 are mechanisms to compute the index of the
query with maximum value after adding a Laplacian (or exponential) noise.
Inputs Q1 and Q2 are considered adjacent iff |Q1[i] − Q2[i]| ≤ 1 for all i.
Under this relation, Algorithms NMax1 and NMax2 are both ǫ-differentially
private. Algorithms NMax3 and NMax4 are variants to print the maximum
value instead of the index. These variants are shown to be not differentially
private in Section H.3. The pseudocode for these algorithms can be found
in Figure 6.

59

(SVT3) Third Instantiation of SVT

Input: q[1 : N]
Output: out[1 : N]
rT ← Lap(ǫ

2∆ , T)
count← 0
for i← 1 to N do

r← Lap(ǫ
2c∆ , q[i])

b← r ≥ rT
if b then

out[i]← Discseq(r)
count← count+ 1
if count ≥ c then

exit

end

else
out[i]← ⊥

end

end

(SVT4) Fourth Instantiation of SVT

Input: q[1 : N]
Output: out[1 : N]
rT ← Lap(ǫ

4∆ , T)
count← 0
for i← 1 to N do

r← Lap(3ǫ
4∆ , q[i])

b← r ≥ rT
if b then

out[i]← ⊤
count← count+ 1
if count ≥ c then

exit

end

else
out[i]← ⊥

end

end

(SVT5) Fifth Instantiation of SVT

Input: q[1 : N]
Output: out[1 : N]
rT ← Lap(ǫ

2∆ , T)
for i← 1 to N do

r← q[i]
b← r ≥ rT
if b then

out[i]← ⊤
else

out[i]← ⊥
end

end

(SVT6) Sixth Instantiation of SVT

Input: q[1 : N]
Output: out[1 : N]
rT ← Lap(ǫ

2∆ , T)
for i← 1 to N do

r← Lap(ǫ
2∆ , q[i])

b← r ≥ rT
if b then

out[i]← ⊤
else

out[i]← ⊥
end

end

Figure 5: Sparse Vector Technique Algorithms

Histogram Algorithms Histogram algorithms also target computing sta-
tistical measures on queries in a differentially private manner. Algorithms
referred to as Hist1-2 here are Algorithms 9-10 in [18]. Algorithm Hist1

60

(NMax1) Correct Noisy Max with
Laplacian Noise

Input: q[1 : N]
Output: out

NoisyVector ← []
for i← 1 to N do

NoisyVector[i] ←
Lap(ǫ2 , q[i])

end
out ← argmax(NoisyVector)

(NMax2) Correct Noisy Max with
Exponential Noise

Input: q[1 : N]
Output: out

NoisyVector ← []
for i← 1 to N do

NoisyVector[i] ←
Lap+(ǫ2 , q[i])

end
out ← argmax(NoisyVector)

(NMax3) Incorrect Noisy Max with
Laplacian Noise

Input: q[1 : N]
Output: out

NoisyVector ← []
for i← 1 to N do

NoisyVector[i] ←
Lap(ǫ2 , q[i])

end
out ←
Discseq(max(NoisyVector))

(NMax4) Incorrect Noisy Max with
Laplacian Noise

Input: q[1 : N]
Output: out

NoisyVector ← []
for i← 1 to N do

NoisyVector[i] ←
Lap+(ǫ2 , q[i])

end
out ←
Discseq(max(NoisyVector))

Figure 6: Noisy Max Algorithms

and Hist2 are variants of noisy maximum, where we return the histogram,
instead of the maximum. Under the above adjacency relation where Q1

and Q2 are adjacent if |Q1[i] − Q2[i]| ≤ 1 for all i, both these variants are
not ǫ-differentially private. However, if we consider an alternative definition

for the adjacency relation, where Q1 and Q2 are adjacent iff
∑

i

(
|Q1[i] −

Q2[i]|
)
≤ 1, then Hist1 is ǫ-differentially private but Hist2 still is not. All ex-

periments listed in Section H.3 for Algorithms NMax1 and NMax2 were run
using the second adjacency relation. The pseudocode for these algorithms
can be found in Figure 7.

61

(Hist1) Noisy Histogram

Input: q[1 : N]
Output: out[1 : N]

NoisyVector ← []
for i← 1 to N do

NoisyVector[i] ←
Lap(ǫ, q[i])

end
out ← Discseq(NoisyVector)

(Hist2) Noisy Histogram, Wrong
Scale

Input: q[1 : N]
Output: out[1 : N]

NoisyVector ← []
for i← 1 to N do

NoisyVector[i] ←
Lap(1ǫ , q[i])

end
out ← Discseq(NoisyVector)

Figure 7: Noisy Histogram Algorithms

Randomized Response All the previous algorithms use the Laplace
mechanism. Randomized Response [20], on the other hand, uses discrete
probabilities. In this algorithm (henceforth called Rand1), given a set of
Boolean input queries, we flip each input query with a probability of eǫ−1

2
and output the resulting outcome . We also consider a non-private version
(called Rand2) where the input query is flipped with probability 1−ǫ

2 . The
pseudocodes can be found in Figure 8.

(Rand1) Differentially Private Random-
ized Response

Input: q[1 : N]
Output: out[1 : N]

for i← 1 to N do
out[i] ←{

q[i] with prob = eǫ

1+eǫ

¬q[i] with prob = 1
1+eǫ

end

(Rand2) Non-Differentially Private
Randomized Response

Input: q[1 : N]
Output: out[1 : N]

for i← 1 to N do
out[i] ←{

q[i] with prob = 1+ǫ
2

¬q[i] with prob = 1−ǫ
2

end

Figure 8: Randomized Response Algorithms

62

Sparse Sparse is a variant of SVT that is discussed in [21]. Our reason
for considering this example is to demonstrate our tool’s ability to handle
(ǫ, δ)-differential privacy (see Section H.4). Pseudocode for this algorithm
is provided in Section H.4.

H.2 Tool Design

Given a program and an adjacency relation, DiPC outputs true if the program
is differentially private and outputs a counter-example if it is not. The
tool works in two phases. In the first phase, the tool parses the program,
computes symbolic expressions that capture the output distribution, and
identify inequalities that must hold for differential privacy. The symbolic
expressions for the probability computation, and the logical constraints that
must hold, are written in a Wolfram Mathematica R©script. In the second
phase, Mathematica is run to perform the symbolic computations and check
the results.

The computation of the output distribution proceeds in a manner consis-
tent with the decision procedure outlined in the proof of Theorem 11. Recall
that the parametrized DTMC semantics, the state tracks constraints that
must hold between different real variables. These constraints can be tracked
by maintaining a partial order between the variables. One of the engineer-
ing challenges we experienced was in the computation of the probability of
the partial order holding, given the parameters used during sampling. The
“Probability[]” command in Mathematica was very slow and inefficient. In-
stead we decided to convert the partial order into a set of total orders, and
compute the probability of each total order through integration.

For example, to compute the probability of x1 < x2 < x3... < xn, where
variable xi has p.d.f Di, we would first compute the probability P (xn >
x) =

∫∞
x Dn(y)dy. We then compute the probabilities P (xn > xn−1 > x) =∫∞

x P (xn > y)Dn−1(y)dy, P (xn > xn−1 > xn−2 > x) =
∫∞
x P (xn > xn−1 >

y)Dn−2(y)dy and so on. Once we have computed P (xn > xn−1 > ... > x1 >
x), we can compute P (xn > xn−1 > ... > x1) = Limx→−∞P (xn > xn−1 >
... > x1 > x). Additionally, we try to optimize the above process by splitting
the partial order into connected components and computed probability for
each component. We also deal with constant assignments to real variables
by slightly modifying the integration method.

63

H.3 Experimental Results

We ran all the experiments on an octa-core Intel R©Core i7-8550U @ 1.8gHz
CPU with 8GB memory. The tool is implemented in C++ and uses Wolfram
Mathematica R©. As mentioned in Section H.2, the tool works in two phases
— in the first phase, a Mathematica script is produced with commands
for all the output probability computations and the subsequent inequality
checks and in the second phase, the generated script is run on Mathematica.
In all the following tables, we refer the times of the Script Generation Phase
(i.e. Phase 1) as T1 and that of the Script Validation Phase (i.e. Phase 2)
as T2.

Unless stated otherwise, all the experiments were run with the parame-
ters c = 1, ∆ = 1 and discretization parameter seq = (−1 < 0 < 1) wherever
applicable. The range of input query values was DOM = {−1, 0, 1} in all
the experiments. The running times in all experiments were averaged over
3 runs of the tool.

Table 3 shows the runtime of our tool for all the listed algorithms with
3 queries. We chose to use 3 queries because counter-examples for most of
the programs which were not differentially private could be found with 3
queries; the only exception being SVT3. Majority of the time is taken for
running the Mathematica code. We also observed that most of the time
spent by Mathematica was in computing the output probability; the time
to perform the inequality checks for adjacent inputs was relatively smaller.
Consequently, programs which do not use real variables are much faster
to run. Results in the table also show that the time taken for disproving
Differential Privacy is lower than the time for proving Differential Privacy on
average. This is because the tool terminates on finding a counter-example.
On the other hand, to prove differential privacy the tool has to check all
inequalities.

Table 5 lists the smallest counter-example found for each non differen-
tially private algorithm. Given a program and an adjacency relation, the
tool automatically finds an ǫ, the pair of adjacent inputs, and the output
value that demonstrate the violation of differential privacy. All four columns
in the table were output by the tool. Further, we observe that the counter-
examples found were much smaller, in number of queries, compared to those
found in [18]. For example, algorithms NMax3 and NMax4 counter-examples
need just 3 and 1 queries respectively, compared to the 5 queries required in
[18]. Similarly, algorithm SVT5 has a counter-example with just 2 queries,
as compared to the 10 queries.

To study the performance of the tool as the number of queries increases,

64

Algorithm
Runtime
(T1/T2)

ǫ-Diff.
Pri-
vate

SVT1 0s/825s ✓

SVT2 0s/768s ✓

SVT3 0s/3816s ✓

SVT4 0s/269s ✗

SVT5 0s/2s ✗

SVT6 0s/661s ✗

NMax1 0s/197s ✓

NMax2 0s/59s ✓

NMax3 0s/310s ✗

NMax4 1s/58s ✗

Hist1 0s/1450s ✓

Hist2 0s/55s ✗

Rand1 0s/0s ✗

Rand2 0s/0s ✗

Table 3: Runtime for 3 queries for
each algorithm searching over adja-
cency pairs and all ǫ¿0, with param-
eters being [c=1, ∆=1, DOM={-
1,0,1}, seq = (−1 < 0 < 1)]. For
SVT, we also have T=0.

—Q— c ǫ
Runtime (T1/T2)

Fixed ǫ General

1 1 1.0 0s/7s 0s/16s
1 1 0.5 0s/8s 0s/16s

2 1 1.0 0s/43s 0s/113s
2 1 0.5 0s/46s 0s/113s
2 2 1.0 0s/95s 0s/155s
2 2 0.5 0s/113s 0s/155s
3 1 1.0 0s/307s 0s/825s
3 1 0.5 0s/265s 0s/825s
3 2 1.0 0s/541s 0s/1202s
3 2 0.5 0s/572s 0s/1202s
4 1 1.0 0s/1772s 0s/4727s
4 1 0.5 0s/1832s 0s/4727s
4 2 1.0 1s/2904s 0s/6715s
4 2 0.5 1s/3295s 0s/6715s

Table 4: Runtimes of SVT1 over
different query length and counts,
searching over all adjacency pairs
and fixed ǫ, with parameters being
[∆=1, T=0, DOM={-1,0,1}].

65

Algo —Q— Output Input 1 Input 2 ǫ
Runtime
(T1/T2)

SVT3 5 [⊥ ⊥ ⊥ ⊥ 0], seq = (0 < 1) [-1 -1 -1 -1 -1] [0 0 0 0 0] 27 18s/5042s
SVT4 2 [⊥ ⊤] [-1 0] [0 -1] 27/50 0s/81s
SVT5 2 [⊥ ⊤] [-1 0] [-1 -1] 27 0s/2s
SVT6 3 [⊥ ⊥ ⊤] [-1 -1 0] [0 0 -1] 67/92 0s/661s
NMax3 3 -1, seq = (−1 < 0 < 1) [-1 -1 -1] [0 0 0] 27 0s/310s
NMax4 1 0, seq = (−1 < 0 < 1) [-1] [0] 27 0s/2s
Hist2 1 [-1], seq = (−1 < 0 < 1) [-1] [0] 9/34 0s/3s
Rand2 1 [⊥] [⊥] [⊤] 9/34 0s/0s

Table 5: Smallest Counter-example found for each non-differentially private
algorithm, searching over all adj. pairs and ǫ > 0, with parameters being
[c=1, ∆=1, DOM={-1,0,1}]

—Q— c
Runtime
(T1/T2)

1 1 0s/16s
2 1 0s/113s
2 2 0s/155s
3 1 0s/825s
3 2 0s/1202s
4 1 0s/4727s
4 2 0s/6715s

Table 6: Runtimes of SVT1
over different query length
and counts, searching over
all adjacency pairs and all
ǫ¿0, with parameters being
[∆=1, T=0, DOM={-1,0,1}]

#Queries

1 Pair
Run-
time

(T1/T2)

General
Run-
time

(T1/T2)

ǫ-Diff.
Private

1 0s/15s 0s/25s ✓

2 0s/40s 0s/192s ✓

3 0s/100s 0s/1562s ✓

4 0s/199s 1s/10515s ✓

5 0s/141s 18s/5042s ✗

Table 7: Runtimes of SVT3 over dif-
ferent query lengths, searching over
a single adj. pair ([00...]∼[11...])
and all ǫ > 0, with parameters
being [c=1, T=0, ∆=1, DOM={-
1,0,1}, seq=(0¡1)]

we analyzed SVT1 for various number of queries. The running times along
with the number of queries and the value for c is shown in Table 6. The
table shows that the tool can handle a reasonable number of queries.

In all the experiments so far, the value of ǫ was not fixed. So DiPC

had to either prove privacy for all ǫ or find an ǫ where privacy is violated.
Many automated tools are designed only to disprove differential privacy for
a fixed ǫ. We tried the performance of the tool on SVT1 for a fixed ǫ. The
results are reported in Table 4. As can be seen by comparing the numbers
in Tables 6 and 4, fixing ǫ makes the problem easier to handle.

Finally, we wanted to explore the scalability of our tool when we checking

66

differential privacy for a single pair of adjacent inputs. In Table 7, we have
the results when a non differentially private algorithm, namely SVT3 was run
with a single adjacency pair ([00...]∼[11...]), while varying number of queries.
We notice that the running times is significantly lower in this case. Another
interesting observation is that the time taken for 5 queries is lower than the
time for 4 queries. This is because with 5 queries, the tool successfully finds a
counter-example and terminates before checking the remaining inequalities.

H.4 (ǫ, δ)-Differential Privacy

DiPC can also verify (ǫ, δ)-differential privacy. Algorithm 4 (taken from
[21]), referred to henceforth as Sparse, was used to evaluate DiPC’s perfor-
mance in this case. This algorithm has been manually proven to be (ǫ2 , δsvt)-
differentially private for any number of queries in [21] by using advanced
composition theorems.

When c = 1 and δsvt = e−
1

32 , this algorithm is identical to Algorithm
SVT1, where parameters c and ∆ are replaced by parameter σ. This al-
gorithm is, therefore, ǫ-differentially private. Further, our tool proves that
the algorithm is not ǫ

2 -differentially private. Thanks to the advanced com-

position theorem, we can show that the resulting algorithm is (ǫ2 , e
− 1

32)-
differentially private. The tool also shows that for all ǫ > 0, the algo-
rithm is (ǫ2 , e

−2)-differentially private for c = 1 for queries of length 3 with

DOM = {0, 1} and T = 0 (observe that e−
1

32 > e−2). Additionally, we get a
counter-example for (ǫ2 , e

−2.125)-differential privacy.

When c = 2 and δsvt = e−
1

64 , Sparse differs from SVT1 since in this case
we also need to choose rT again after outputting a ⊤. The resulting pro-
gram is (ǫ2 , e

−1/64)-differentially private thanks to the advanced composition
theorem. DiPC confirms that for queries of length 3, the resulting program
is infact (ǫ2 , e

−2)-differentially private with DOM = {0, 1} and T = 0. Fur-
ther, DiPC also demonstrates that the resulting program is not (ǫ2 , e

−2.5)
differentially private.

Here we are able to check the correctness of Sparse automatically, for
values of c = 1, 2 and for the above given values of δsvt and for all ǫ > 0. To
the best of our knowledge, our approach is the first method to automatically
check this. These results are summarized in Table 8.

67

Input: q[1 : N]
Output: out[1 : N]
σ ← ǫ

2
√

32c ln 1

δsvt

rT ← Lap(σ, T)
count← 0
for i← 1 to N do

r← Lap(σ2 , q[i])
b← r ≥ rT
if b then

out[i]← ⊤,
rT ←
Lap(σ, T)
count←
count+ 1
if count ≥ c
then

exit

end

else
out[i]← ⊥

end

end

Algorithm 4: Sparse
algorithm

c δsvt δ Runtime (T1/T2) (ǫ2 , δ)-Diff. Privacy

1 e−
1

32 0 0s/48s ✗

1 e−
1

32 e−3 0s/142s ✗

1 e−
1

32 e−2.125 0s/146s ✗

1 e−
1

32 e−2 0s/161s ✓

2 e−
1

64 0 0s/72s ✗

2 e−
1

64 e−3 0s/187s ✗

2 e−
1

64 e−2.5 0s/182s ✗

2 e−
1

64 e−2 0s/288s ✓

Table 8: DiPCresult for (ǫ2 , δ)-Diff. Pri-
vacy of SPARSE (Algorithm 4) with 3
queries, searching over all adj. pairs
and ǫ > 0, with parameters being
[T=0, DOM = {0, 1}]

68

	1 Introduction
	2 Primer on differential privacy
	3 Motivating Example
	4 Preliminaries
	4.1 The Computational Problem
	4.2 Reals with exponentials

	5 Program syntax and semantics
	5.1 Syntax of Simple programs
	5.2 Markov Kernel Semantics
	5.3 Undecidability

	6 DiPWhile: A decidable class of programs
	6.1 Parameterized DTMCs
	6.2 Parametrized DTMC semantics of DiPWhile

	7 Checking differential privacy for DiPWhile programs
	7.1 Finite discretization of infinite output spaces

	8 Experimental evaluation
	9 Related work
	10 Conclusions
	11 Acknowledgements
	A Semantics of Simple
	B Undecidability of checking differential privacy of Simple programs
	C DiPWhile encoding of exponential distribution
	D Formal DTMC Semantics of DiPWhile programs
	E DiPWhile programs are finite, definable, parametrized DTMCs
	F Reachability in Parametrized DTMCs
	G Syntax of Finite DiPWhile programs
	G.1 A general semantic class of programs

	H Detailed Experimental Results
	H.1 Examples
	H.2 Tool Design
	H.3 Experimental Results
	H.4 (,)-Differential Privacy

