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Abstract
We show that in case a pushdown system is bisimulation

equivalent to a finite system, there is already a bisimulation

equivalent finite system whose size is elementarily bounded

in the description size of the pushdown system. As a con-

sequence we obtain that it is elementarily decidable if a

given pushdown system is bisimulation equivalent to some

finite system. This improves a previously best-known ACK-
ERMANN upper bound for this problem.

CCS Concepts: • Theory of computation → Logic and
verification; Grammars and context-free languages.

Keywords: Bisimulation equivalence, pushdown automata,

bisimulation finiteness, elementary

1 Introduction
General background. The class membership problem for

a language class C and a subclass C′ ⊆ C asks, given some

device (like an automaton or a grammar) accepting a lan-

guage in C to decide if the language that is described by the

device is even a member of C′
. A prominent and particu-

lar such class membership problem is the regularity prob-
lem, i.e. the class C′

is the class of regular languages. It is

well-known that the regularity problem for (the class C of)

context-free languages is undecidable, see Hunt [11] for a

general approach. For deterministic context-free languages

Stearns [30] showed a triply exponential upper bound that

was shortly thereafter improved to a doubly exponential

upper bound by Valiant [32]. It is fair to mention that the

computational complexity of the regularity problem for de-

terministic context-free languages is not yet well understood

to date: to the best of the authors’ knowledge the problem

lies is 2-EXPTIME (deterministic double exponential time)

and is hard for P, a complexity gap that has been prevailing

for around 45 years! Similar large complexity gaps exist for

various class membership problems for visibly pushdown

languages [1].

In the context of formal verification and concurrency the-

ory the central notion of equivalence is bisimulation equiva-

lence [10], which refines trace/language equivalence. Indeed,

the bisimulation-invariant fragment of monadic second-or-

der logic and various sublogics thereof have elegant char-

acterizations in terms of prominent temporal logics [12, 8,

3, 23, 6]. In the context of verification and concurrency the

regularity problem thus becomes the bisimulation finiteness
problem, which asks whether the (finitely presented) input

infinite transition system is bisimulation equivalent (bisimi-
lar for short) to some finite-state system. Decidability and

complexity results for the bisimulation finiteness problem

are known for only a few classes of infinite-state systems, see

Srba [29] for an overview. Moreover, in case when decidabil-

ity is known oftentimes large complexity gaps remain, the

class of one-counter systems being an exception, for which

the problem is P-complete [4].

Bisimulation finiteness of pushdown systems. Only
recently Jančar [14–16] proved decidability of the bisimula-

tion finiteness problem for pushdown systems, a central class

of infinite-state systems with a decidable monadic second-

order theory [24] and for which formal verification tools

have been developed [9, 31, 20, 25, 26]. It is worthmentioning

that only a slight modification of the bisimulation finiteness

problem, namely the question if there exists a reachable con-

figuration that is bisimulation-finite, becomes undecidable

for order-two pushdown systems [5]. Jančar’s decidability

result even holds for pushdown systems with determinis-

tic ε-popping rules [15, 16], a class of graphs/systems also

known as equational graphs [7] of finite out-degree. Semi-

decidability of the problem has long been known by simply

enumerating all finite systems and checking whether some

of these finite systems is bisimilar to the input pushdown

system. As a side remark, it is worth mentioning that the

bisimulation finiteness problem should not be confused with

the question if a given pushdown is bisimilar to a given finite

system, the latter problem being PSPACE-complete as shown

by Kučera andMayr [19]. The difficult component of Jančar’s

decidability proof is to establish semi-decidability of the com-

plement, that is, to provide a semi-decision procedure that

halts in case a given pushdown system is not bisimilar to a

finite system. A central ingredient to this semi-decision pro-

cedure is an oracle call to test the equivalence of pushdown

systems, the latter itself being an intricate problem whose de-

cidability has been proven by Sénizergues [27]. Only recently

an Ackermannian upper bound for bisimilarity of pushdown

system has been proven by Jančar and Schmitz [17]; ACKER-
MANN-hardness is only known to hold in the presence of
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deterministic ε-popping rules [13], whereas without ε-rules
the problem is nonelementary [2]. Coming back to bisim-

ulation finiteness of pushdown systems, the oracle calls to

a bisimulation equivalence check for pushdown systems is

the inherent bottleneck of Jančar’s approach. The approach

therefore contains a nonelementary complexity bottleneck

and only guarantees an ACKERMANN upper bound. This

stands in stark contrast to the best-known lower bound

for bisimulation finiteness of pushdown systems, namely

EXPTIME-hardness [18, 28].

Our contribution. In this paper we prove that in case

a pushdown system is bisimulation-finite there is already

a finite-state system whose size only elementarily depends

on the description size of the pushdown system, or equiva-

lently, a bisimulation-finite pushdown system only contains

an elementary number of bisimulation classes. Using the

above-mentioned polynomial space procedure for checking

if a pushdown system is bisimilar to a given finite-state sys-

tem this implies an elementary decision procedure for the

bisimulation finiteness problem for pushdown systems. Our

approach avoids oracle calls for the equivalence problem for

pushdown systems. We follow a general proof strategy by

Jančar in the aspect that we compare configurations of the

form qαβeγ for large powers e against their infinite approxi-
mants qαβω . The core of our proof (Section 9) is to establish

the impossibility of a situation that certain configurations

of the form qαβeγ for a sufficiently large (elementary) e
are bisimilar to configurations of the form qαβω unless the

system is bisimulation-finite.

Future research questions. Our contribution leads to

further research questions. It seems worth investigating if

our approach can be applied to the bisimulation finiteness

problem for further classes of finitely-branching infinite-

state systems that enjoy a pumping lemma property, and for

which neither the bisimulation finiteness problem nor the

bisimulation equivalence problem are known to be decidable

(or the complexity gap is extremely large), for instance for

ground tree rewrite systems [21], PAD and PA processes [22],

higher-order pushdown systems, and of course for the afore-

mentioned extension of pushdown systems with determinis-

tic ε-popping rules. For BPA processes (which are nothing

but pushdown systems over a singleton set of control states)

it seems interesting to find out if our approach can be used to

close an exponential complexity gap for bisimulation finite-

ness, see Srba [29] for an overview. Finally, it seems worth

investigating if our technique may lead to a potential future

line of attack for the equivalence problem of (deterministic)

pushdown systems.

2 Preliminaries
For any alphabet A we denote by A∗

(resp. A+) the set of

finite words (resp. the set of non-empty finite words) over A.

By N = {0, 1, 2, . . .} we denote the set of the non-negative
integers. For any setU ⊆ Nwe denote byminU the minimal

element of the set U with the convention that min ∅ = ω.
For i, j ∈ N we define [i, j] = {k ∈ N | i ≤ k ≤ j}.

Let f : Nk → N be a function. We say that f is elementary
if f is obtained by a composition of the following functions:

constant functions, projection, addition, multiplication and

exponentiation. For instance (m,n) 7→ 2
mn2

is an elementary

function. We write f (®n) ≤ exp(®n) if there exists a polyno-
mial p : Nk → N such that f (®n) ≤ 2

p( ®n)
for all ®n ∈ Nk . All

functions f : Nk → N in this paper are elementarily up-

per bounded, that is, there exists an elementary function

д : Nk → N such that f (®n) ≤ д(®n) for all ®n ∈ Nk .
A labeled transition system (LTS) is a tuple L = (S,A,

(→a)a∈A), where S is a (possibly infinite) set of states, A is a

finite set of action symbols, (→a) ⊆ S × S is a binary relation

for all a ∈ A. We say L is finite if S is finite. We define its size
as |L| = |S |, thus |L| ∈ N ifL is finite and |L| = ω if not.We

define the binary relation (→) = ⋃
a∈A(→a ). For all s, t ∈ S

we define Dist(s, t) = min{m ∈ N | s →m t} ∈ N∪ {ω}, the
length of the shortest path from s to t in L.

For such an LTS L we say a binary relation R ⊆ S × S
is a bisimulation if the following back-and-forth property

holds for all a ∈ A and all (s, t) ∈ R: for all s →a s ′ there
exists some t →a t ′ such that (s ′, t ′) ∈ R and, conversely, for

all t →a t ′ there exists some s →a s ′ such that (s ′, t ′) ∈ R.
Observe that the union of two bisimulations is again a bisim-

ulation. We write s ∼ t if (s, t) ∈ R for some bisimulation

relation R; note that (∼) ⊆ S × S is the largest bisimulation

on S . If s ∼ t , we say that s and t are bisimilar. For every
state s ∈ S we denote by [s] = {t ∈ S | s ∼ t} the bisim-
ulation class of s . The bisimulation quotient [L] is the LTS
[L] = ({[s] | s ∈ S},A, (→′

a)a∈A), where c →′
a d if s →a t

for some s ∈ c , t ∈ d .
A pushdown system (PDS) is a tuple P = (Q, Γ,A,∆),

where Q is a finite set of control states, Γ is a finite set

of stack symbols, A is a finite set of action symbols, and
∆ ⊆ Q×Γ×A×Q×Γ∗ is a finite transition relation. In this pa-
per, elements of Γ are typically denoted in capital letters, such
as X ,Y ,Z . . ., whereas elements of Γ∗ (i.e., finite sequences
over Γ) are typically denoted by small Greek letters such

as α , β,γ , . . .. If |α | ≤ 2 for all transitions (p,X ,a,q,α) ∈ ∆,
then we say that P is in a push-pop normal form. The size
|P | of P is defined as |P | = |Q | + |Γ | + |A| + |∆|.
Elements of Γ∗ are stack contents and elements of Q × Γ∗

are configurations of P. For every δ = (p,X ,a,q, β) ∈ ∆ we

define the binary relation ( δ−→) = {(pXα ,qβα) | α ∈ Γ∗}.
The relation

ϱ
−→ is naturally extended to finite sequences

ϱ ∈ ∆∗
. A run from a source configuration pα to a target

configuration qβ is a sequence ϱ ∈ ∆∗
such that pα

ϱ
−→ qβ .

Note that a run can be a run for numerous pairs of source

and target configurations. When ϱ = δ1 · · · δn ∈ ∆n
and
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0 ≤ i ≤ j ≤ n, we write ϱ[i, j] for the subrun δi+1 . . . δ j .
Slightly abusing notation, when the starting configuration

pα of such a run is fixed from the context we sometimes

prefer to write ϱ(i) to denote the unique configuration qiβi

that satisfies pα
ϱ[0,i]
−−−−→ qiβi ; in particular ϱ(0) = pα .

A PDS P = (Q, Γ,A,∆) together with an initial configu-
ration s0 ∈ Q × Γ∗ induces an infinite LTS L(P, s0) = (S,A,
(→a)a∈A), where S = {qα ∈ Q × Γ | s0 →∗ qα } is the set of
configurations reachable from s0, and (→a) = {(pXα ,qβα) ∈
S × S | (p,X ,a,q, β) ∈ ∆} for all a ∈ A.

The set RegStr(Γ) contains all elements of Γ∗, and all

infinite strings of the form αβββ . . . , denoted αβω (and

called ω-approximants), where α ∈ Γ∗ and β ∈ Γ+. As in
Jančar [14, 16], we sometimes prefer to extend the stack

content of configurations of pushdown systems from Γ∗

to RegStr(Γ). All of the above notions are analogously de-

fined for pushdown systems whose configurations are in

RegStr(Γ).
We are now ready to state the main result of this paper.

Theorem 2.1. There is an elementary function φ : N2 → N
such that if [L(P,p0α0)] is finite for some initial configuration
p0α0, then |[L(P,p0α0)]| ≤ φ(|P|, |α0 |). □

The following corollary is an immediate consequence of

Theorem 2.1 and a result by Kučera and Mayr [19], namely

that checking whether a given pushdown system is bisimilar

to a given finite system is PSPACE-complete.

Corollary 2.2. Given a PDS P and a configuration p0α0 of
P, the question whether [L(P,p0α0)] is finite is elementarily
decidable. □

Convention. Since we can replace every transition push-

ing a sequence onto the stack by a transition that pushes a

suitable fresh symbol that represents such a sequence, it is

clear that for every PDS P one can compute in polynomial

time a bisimilar PDS P ′
that is in a push-pop normal form

(we refer to Lemma A.1 in the Appendix for more details).

Thus, towards proving Theorem 2.1 we fix, for the rest of this

paper, a PDS P = (Q, Γ,A,∆) that is in a push-pop normal

form.

3 Some basics on pushdown systems
In this section we present some definitions and known facts

about pushdown systems, useful in our proofs. Proofs of

these facts can be found in the Appendix.

For a stack content α ∈ Γ∗, let |α⟩ be a function that

maps every set of control states T to the set {r ∈ Q | ∃q ∈
T .qα →∗ r }. Observe that |β⟩(|α⟩(T )) = |αβ⟩(T ) for all
α , β ∈ Γ∗ and all T ⊆ Q . The following lemma is a direct

consequence of the definition.

Lemma 3.1. Let p,q ∈ Q and α , β ∈ Γ∗. If pα →∗ qβ , then
|α⟩(p) ⊇ |β⟩(q). □

For a transition δ = (p,X ,a,q,α) let Stack-Growth(δ ) =
|α | − 1, and for a run ϱ = δ1 . . . δn ∈ ∆n

let

Stack-Growth(ϱ) =
n∑
i=1

Stack-Growth(δi ) .

In other words, if ϱ is a run from pα to qβ (with α , β ∈ Γ∗),
then Stack-Growth(ϱ) = |β | − |α |.

A run ϱ is called augmenting if Stack-Growth(ϱ[0, i]) ≥
0 for all i ∈ [0,n]. Thus, an augmenting run from pXα does

not “dig into” the stack content α , but rather all its configu-
rations are of the form piκiYα for some κi ∈ Γ∗.

The following simple lemma states that there are at most

exponentially (in z) many configurations reachable by aug-

menting runs of stack growth at most z.

Lemma 3.2. If pα is a configuration of P, and z ∈ N, then
there are at most |P |z+2 configurations qβ such that pα

ϱ
−→ qβ

for some augmenting run ϱ satisfying Stack-Growth(ϱ) ≤
z. □

Our next lemma says that if there is a run between two

similar configurations, then there is a short run between

them. Essentially, this boils down to the standard pumping

lemma for pushdown automata.

Lemma 3.3. There exists a constant E ≤ exp(|P|) such that
whenever pα →∗ qβ for two configurations pα ,qβ of P, then
Dist(pα ,qβ) ≤ (|α | + |β |) · E. □

In our proof we depend on the notion of linked pairs. A

similar notion appeared in Jančar [14, 16].

Definition 3.4. A pair (α , β) ∈ Γ∗ × Γ+ is a linked pair if
|α⟩ = |αβ⟩ and |β⟩ = |ββ⟩.

It is often easier to apply any kind of a pumping argument

to a linked pair than to an arbitrary stack content. Simultane-

ously, a linked pair can be found on top of every sufficiently

large stack content, as described by the next lemma.

Lemma 3.5. There is a constant F ≤ exp(exp(|P|)) such
that every configuration qδ of P reachable from an initial
configuration q0α0 with |δ | ≥ F + |α0 | can be written as
qδ = qαβγ , where (α , β) is a linked pair, |α |, |β | ≤ F , and all
configurations of the form qαβ iγ (where i ∈ N) are reachable
from q0α0. □

Remark. The authors are convinced that the doubly-expo-

nential upper bound in Lemma 3.5 is optimal. On the other

hand, it seems quite possible that one can replace the notion

of linked pairs by some weaker notion, so that an analogue

of Lemma 3.5 would give an exponential upper bound on the

length of the fragments α and β , and in effect the complexity

of the whole algorithm would be decreased exponentially.

This possibility was not investigated by the authors.

Below we also state an easy lemma, which follows directly

from definitions.
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Lemma 3.6. Let r ∈ Q , and let (α , β) be a linked pair. Then
for every r ′ ∈ |α⟩(r ) we have |β⟩(r ′) ⊆ |α⟩(r ). □

Observe that if (α , β) is a linked pair, then (β, β) is a linked
pair as well. In consequence, the above lemma (as well as

Corollary 3.9 stated below) can be used when replacing α by

β .
For the rest of this section we state two straightforward

lemmata, which are useful while proving that two configura-

tions are bisimilar. Both lemmata have appeared in a related

form already in Jančar [14, 16]. The first of them talks about

a situation when we add something on top of bisimilar con-

figurations.

Lemma 3.7. Let q ∈ Q , and α ∈ Γ∗, and γ ,γ ′ ∈ RegStr(Γ).
If rγ ∼ rγ ′ for every r ∈ |α⟩(q), then qαγ ∼ qαγ ′. □

The second lemma states that if we detect a loop while

popping a stack β , then this loop can be repeated forever,

and thus the stack content is equivalent to βω .

Lemma 3.8. LetU ⊆ Q , β ∈ Γ+,γ ∈ RegStr(Γ), and i, j ∈ N.
If |β⟩(U ) ⊆ U , and rβ iγ ∼ rβ jγ for all r ∈ U , and i , j, then
actually rβ iγ ∼ rβ jγ ∼ rβω for all r ∈ U . □

We now combine the above two lemmata into a single

corollary.

Corollary 3.9. Letq ∈ Q , let (α , β) be a linked pair, letγ ,γ ′ ∈
RegStr(Γ), and let i, j ∈ N. If rβ iγ ∼ rβ jγ for all r ∈ |α⟩(q),
and i , j, then qαβ iγ ∼ qαβ jγ ∼ qαβω . □

4 The heart of the proof
In addition to all the lemmata of Section 3, we give here a

simple but decisive lemma (Lemma 4.1), which is central for

our proof. It assumes a situation in which several bisimula-

tion classes are determined by some (small) stack contents

and certain bisimulation classes one reaches when popping

these stack contents; moreover all of these latter bisimula-

tion classes in turn are themselves determined by a (small)

stack content below which we see bisimulation classes for

which we have already made this characterization! More

precisely, while popping from a configuration bisimilar to

pµ1 we reach a configuration rν1, and while popping from

a configuration bisimilar to rν1 we reach again pµ1. In such

a circular situation we can replace µ1 and ν1 by other stack

contents having the same property.

Lemma 4.1. Let U ,V ⊆ Q and assume that for all p ∈ U
there are rp ∈ Q and χp ∈ Γ+ such that |χp⟩(rp ) ⊆ V and
conversely for all r ∈ V there are pr ∈ Q and ξr ∈ Γ+ such
that |ξr ⟩(pr ) ⊆ U . If for some µ1, µ2,ν1,ν2 ∈ RegStr(Γ) we
have for all i ∈ {1, 2},

pµi ∼ rp χpνi for all p ∈ U and

rνi ∼ pr ξr µi for all r ∈ V ,

then pµ1 ∼ pµ2 for all p ∈ U and rν1 ∼ rν2 for all r ∈ V .

Proof. We define a relation R between configurations (we are

going to prove that this relation is a bisimulation):

R = {(s1, s2) | ∃q ∈ Q . ∃δ ∈ Γ∗.

s1 ∼ qδµ1 ∧ qδµ2 ∼ s2 ∧ |δ⟩(q) ⊆ U } ∪
{(s1, s2) | ∃q ∈ Q . ∃δ ∈ Γ∗.

s1 ∼ qδν1 ∧ qδν2 ∼ s2 ∧ |δ⟩(q) ⊆ V } .
Observe that in particular (pµ1,pµ2) ∈ R for all p ∈ U and

(rν1, rν2) ∈ R for all r ∈ V , which implies the thesis if R is a

bisimulation.

In order to prove that R is a bisimulation, consider a pair

(s1, s2) ∈ R. We have four possible reasons for (s1, s2) ∈ R.

1. One possibility is that s1 ∼ qXηµ1 and qXηµ2 ∼ s2 for
some control state q ∈ Q , some stack symbol X ∈ Γ,
and some stack content η ∈ Γ∗, where |Xη⟩(q) ⊆ U
(we have replaced δ from the definition of R by Xη,
assuming that |δ | > 0).

Suppose that s1 →a t1 for some configuration t1; we
should prove the existence of a configuration t2 such
that s2 →a t2 and (t1, t2) ∈ R. Because s1 ∼ qXηµ1,
there is t ′

1
such thatqXηµ1 →a t ′

1
and t1 ∼ t ′

1
. Necessar-

ily t ′
1
= q′αηµ1 for some transition (q,X ,a,q′,α) ∈ ∆.

Due to the same transition we have that qXηµ2 →a
q′αηµ2, and because qXηµ2 ∼ s2, there is a configura-
tion t2 such that s2 →a t2 and q

′αηµ2 ∼ t2. Moreover,

because qXη →∗ q′αη, by Lemma 3.1 we have that

|αη⟩(q′) ⊆ |Xη⟩(q) ⊆ U , so (t1, t2) ∈ R.
Likewise, whenever s2 →a t2 for a configuration t2,
we should prove the existence of a configuration t1
such that s1 →a t1 and (t1, t2) ∈ R. This is completely

symmetric to what we have done above.

2. Another reason for (s1, s2) ∈ R is that s1 ∼ qXην1 and
qXην2 ∼ s2 for some control state q ∈ Q , some stack

symbol X ∈ Γ, and some stack content η ∈ Γ∗, where
|Xη⟩(q) ⊆ V . This case is completely symmetric to the

previous one, thus we do not repeat here the proof.

3. It is also possible that s1 ∼ qµ1 and qµ2 ∼ s2 for some

control state q ∈ Q such that |ε⟩(q) ⊆ U (i.e., when

δ from the definition of R is empty). The condition

|ε⟩(q) ⊆ U says simply that q ∈ U . Thus, by assump-

tions of the lemma we have that s1 ∼ qµ1 ∼ rq χqν1,
and rq χqν2 ∼ qµ2 ∼ s2, and |χq⟩(rq) ⊆ V . Thus, we
have reduced this case to Case 2 (taking rq as q and

χq ∈ Γ+ as δ ).
4. The remaining case is that s1 ∼ qν1 and qν2 ∼ s2 for

some control state q ∈ Q such that |ε⟩(q) ⊆ V . Pro-
ceeding symmetrically to Case 3, this case can again

be reduced to Case 1. □

5 Main technical theorem
In this section we state our main technical theorem (Theo-

rem 5.1), and we show how our main result (Theorem 2.1)

follows from this theorem.
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Theorem 5.1. There exists an elementary function h : N3 →
N such that for all q ∈ Q , all linked pairs (α , β), and all
γ ∈ Γ∗, if there are only finitely many pairwise non-bisimilar
configurations in {qαβ iγ | i ∈ N}, then qαβeγ ∼ qαβω for
some e ≤ h(|P|, |α |, |β |).

Heading towards proving Theorem 2.1, as a first step we

observe that Theorem 5.1 implies that in case [L(P, s0)] is
finite and (α , β) is a linked pair, then there can only be an

elementary number of bisimulation classes among {qαβγ |
γ ∈ Γ∗ ∧ ∀i ∈ N. s0 →∗ qαβ iγ }. This is formalized by the

following lemma.

Lemma 5.2. There exists an elementary function λ : N3 → N
such that for all q ∈ Q and all linked pairs (α , β), if [L(P, s0)]
is finite for some initial configuration s0, then there are at
most λ(|P|, |α |, |β |) pairwise non-bisimilar configurations in
{qαβγ | γ ∈ Γ∗ ∧ ∀i ∈ N. s0 →∗ qαβ iγ }.

Proof. Let us first sketch the proof. Clearly, for every con-

figuration of the form qαβγ that is in the set specified in

Lemma 5.2 we have qαβeγ ∼ qαβω , where e is an elementar-

ily bounded number (cf. Theorem 5.1). Thus, every configura-

tion rγ with r ∈ |αβe ⟩(q) = |αβ⟩(q) is reachable from qαβeγ
in at most e ′ steps and thus bisimilar to a configuration reach-

able from qαβω in at most e ′ steps, for some elementary

constant e ′. Since moreover L(P) has out-degree at most

|P | there is only an elementary number of configurations in

distance at most e ′ from qαβω . Hence, there are at most ele-

mentarily many tuples of bisimulation classes [rγ ]r ∈ |α β ⟩(q),
where γ ranges over all permissible stack contents. But since

the bisimulation class of each such permissible γ is deter-

mined by q,α , β and [rγ ]r ∈ |α β ⟩(q) the lemma follows.

Coming to the details, we take

λ(|P|, |α |, |β |) = (|P| + 1)(λ1+1)· |P | , where

λ1 = (|α | + |β | · h(|P|, |α |, |β |)) · E ,

and where the constant E is taken from Lemma 3.3, and the

function h is taken from Theorem 5.1.

Fix an initial configuration s0, a control state q ∈ Q and

a linked pair (α , β). Let Ω be the set of those stack contents

γ ∈ Γ∗ for which all configurations of the form qαβ iγ (where

i ∈ N) are reachable from s0. To every γ ∈ Ω we assign a

tuple of bisimulation classes tγ = ([rγ ])r ∈ |α β ⟩(q). Observe
that if tγ = tγ ′ for some γ ,γ ′ ∈ Ω, then qαβγ ∼ qαβγ ′

by Lemma 3.7. Thus the maximal number of pairwise non-

bisimilar configurations in {qαβγ | γ ∈ Ω} is bounded by the
maximal number of different tuples tγ . It remains to bound

the latter.

First, we claim that, for every r ∈ |αβ⟩(q) and for ev-

ery γ ∈ Ω, some configuration bisimilar to rγ is reachable

from qαβω in at most λ1 steps. Indeed, notice that there

are only finitely many pairwise non-bisimilar configura-

tions in {qαβ iγ | i ∈ N} (since γ ∈ Ω, they all belong

to L(P, s0), which is bisimulation-finite). Thus, by Theo-

rem 5.1, qαβeγ ∼ qαβω for some e ≤ h(|P|, |α |, |β |). More-

over, qαβe →∗ r because r ∈ |αβ⟩(q) = |αβe ⟩(q) (the equal-
ity holds because (α , β) is a linked pair). By Lemma 3.3, this

implies thatDist(qαβe , r ) ≤ (|α |+ |β | ·e)·E ≤ λ1, hence also
Dist(qαβeγ , rγ ) ≤ λ1. Because qαβ

eγ ∼ αβω , from qαβω

we can reach a configuration bisimilar to rγ in the same

number of steps, namely at most λ1.
Next, notice that every configuration has atmost |∆| ≤ |P|

successors (by applying a particular transition to a partic-

ular configuration we obtain a particular successor). In ef-

fect, there are at most (|P| + 1)λ1+1 configurations reach-
able from qαβω in at most λ1 steps. Recalling that for all

r ∈ |αβ⟩(q) and γ ∈ Ω a configuration bisimilar to rγ is

reachable from qαβω in at most λ1 steps, this means that

there are at most (|P| + 1)(λ1+1)· |Q | ≤ λ(|P|, |α |, |β) different
tuples tγ = ([rγ ])r ∈ |α β ⟩(q). This finishes the proof. □

Theorem 2.1 is now easily shown. Indeed, Lemma 3.5

implies that all but elementarily many small configurations

are in the set specified in Lemma 5.2, and thus they result

in only elementarily many different bisimulation classes by

Lemma 5.2. A formal proof of this implication is given below.

Proof of Theorem 2.1. Recall the constant F from Lemma 3.5.

Let

Ssmall = {qδ ∈ Q × Γ∗ | |δ | < F + |α0 |} ,
and, for every control state q ∈ Q and every linked pair

(α , β) with |α |, |β | ≤ F , let

Sq,α,β = {qαβγ | γ ∈ Γ∗ ∧ ∀i ∈ N.p0α0 →∗ qαβ iγ } .
Observe first that every configuration qδ of P reachable

from p0α0 belongs to one of the sets defined above. Indeed,

if |δ | ≥ F + |α0 | (i.e., if qδ < Ssmall), then by Lemma 3.5 the

configuration can be written as qδ = qαβγ , where (α , β) is a
linked pair, |α |, |β | ≤ F , and all configurations of the form

qαβ iγ (where i ∈ N) are reachable from q0α0, meaning that

qδ ∈ Sq,α,β . Thus, it remains to bound the maximal number

of pairwise non-bisimilar configurations in the union of all

the above sets.

Clearly,

|Ssmall | ≤ |Q | · (|Γ | + 1)F+ |α0 |−1 ≤ |P|F+ |α0 | .

Moreover, there are at most

|Q | · (|Γ | + 1)F · (|Γ | + 1)F ≤ |P|2·F+1

triples (q,α , β) where q ∈ Q , and (α , β) is a linked pair,

and |α |, |β | ≤ F . For every such a triple, by Lemma 5.2,

there are at most λ(|P|, |α |, |β |) ≤ λ(|P|,F ,F ) pairwise
non-bisimilar configurations in Sq,α,β . Thus, altogether in
all the sets, there are at most

φ(|P|, |α0 |) = |P |F+ |α0 | + |P |2·F+1 · λ(|P|,F ,F ) (1)

pairwise non-bisimilar configurations. □
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Figure 1. A schematic illustration of runs η and ϱ (stack grows to the left)

6 Overview of the proof of Theorem 5.1
This section is devoted to sketching the proof of Theorem 5.1;

more details on this proof are provided in subsequent sec-

tions.

Fix α , β ,γ ,q as in the statement of the theorem: (α , β) is a
linked pair, and there are only finitely many pairwise non-

bisimilar configurations in {qαβ iγ | i ∈ N}. Let V = |α⟩(q);
this is the set of control states reachable after popping the

stack content α from the fixed control state q. Because (α , β)
is a linked pair, after popping a stack content of the form

αβ i , we can again only reach control states from V ; more

precisely, |αβ i ⟩ = |β⟩(V ) = V , for all i ∈ N.
For simplicity of the description, assume additionally in

this section that |β⟩(r ) = V for all r ∈ V , that is, that from ev-

ery control state r inV we can reach every other control state

of V (notice that if we can reach it after popping multiple

copies of β , then we can reach it also after popping a single

copy of β , because |ββ⟩ = |β⟩). This is not true in general,

and causes some technical difficulties in the actual proof, pre-

sented in next sections; in particular, in order to avoid this

assumption, we need to consider so-called monochromatic

intervals.

We now present particular steps of the proof. Runs and

configurations described below are depicted on Figure 1.

1. Take the smallest number e ∈ N such that qαβeγ ∼
qαβω . Assuming that e is large enough (namely, larger

than h(|P|, |α |, |β |) for a function h that is defined in

the actual proof), we are heading towards a contradic-

tion.

2. We first observe that while “going down” from qαβeγ
we can visit many bisimulation classes. More precisely,

to every number d ∈ [0, s] we can assign a tuple

of bisimulation classes ([rβe−dγ ])r ∈V , reachable after
popping α and d copies of β from qαβeγ . If the same

tuple was assigned to two distinct values of d , say
to d1 and d2, then by Corollary 3.9 we would have

qαβe−d1γ ∼ qαβe−d2γ ∼ qαβω , contrarily to the mini-

mality of e . It follows that among rαβe−dγ , for differ-
ent r and d , we have a lot of pairwise non-bisimilar

configurations.

3. Next, we construct a run ϱ from qαβeγ that “quickly”

(as specified in Lemma 3.3) popsαβe . Let∇d = rdβe−dγ
be the configuration of ϱ at “depth d”, that is, after pop-
ping αβd . Due to Point 2, we can ensure that among ∇d
there are many pairwise non-bisimilar configurations.

Moreover, we can ensure this also locally: for every

interval [a,b], among ∇d with d ∈ [a,b] there are rel-
atively many pairwise non-bisimilar configurations

(where their number depends in an appropriate way

on b − a). Points 2-3 are shown in Section 7.

4. Since qαβeγ ∼ qαβω , there must exist a run η from

qαβω that mimics ϱ, that is, such that ϱ(i) ∼ η(i) for all
positions i . Notice though, that after popping a copy
of β from βω we still have the same stack content βω .
In effect, η cannot visit many pairwise non-bisimilar

configurations by only popping something from qαβω ;
it has to push a lot. We may say that η goes up (while

ϱ goes down). In particular, we may find a pair of posi-

tions j, j• (with j < j•) such that the subrun η[j, j•] is
augmenting and climbs up sufficiently high but not too

high, and simultaneously its length j• − j is relatively
small. This is shown in Section 8.

5. While looking at ϱ, maybe ϱ(j•) is in the middle of

popping some β . For this reason, we move a bit for-

ward, and we consider the next depth d+(j•) visited by

ϱ after ϱ(j•) (formally, d+(j•) is the smallest number d
such that ϱ visits ∇d after ϱ(j•)).

6. We now want to exhibit a situation as in Lemma 4.1.

To this end, let us write η(j) as pjX µ (where X ∈ Γ is

a single stack symbol), and letU = |X ⟩(pj ).
a. On the one side, recall that from ϱ(j•) there is a

(short) run to ∇d+(j•) (namely, a subrun of ϱ), and

from ∇d+(j•) = rd+(j•)β
e−d+(j•)γ there is an (again,

short) run to rβe−(d
+(j•)+1)γ for every r ∈ V (be-

cause, by assumption, |β⟩(rd+(j•)) = V ). Because
ϱ(j•) ∼ η(j•), for every r ∈ V there is a correspond-

ing (short) run fromη(j•) to a configuration bisimilar

to rβe−(d
+(j•)+1)γ . Recall that η(j•) is assumed to be

appropriately higher than η(j), so because the run

is short, it cannot go down below η(j) (and simul-

taneously it cannot also go up too much). In effect,

for every r ∈ V we have that rβe−(d
+(j•)+1)γ ∼ pr ξr µ

for some control state pr and some (relatively small)

stack content ξr .
b. On the other side, by Lemma 3.3 for every p ∈

U there is a very short run from η(j) = pjX µ to

pµ. Because ϱ(j) ∼ η(j), there is a corresponding

(hence likewise short) run from ϱ(j) to a configura-

tion bisimilar to pµ. Recall that the stack content of

ϱ(j) is higher than βe−(d+(j•)+1)γ . It can be shown that
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the extremely short run from ϱ(j) to the configura-

tion bisimilar to pµ cannot nivellate this difference,

and thus we have pµ ∼ rp χpβ
e−(d+(j•)+1)γ for some

control state rp and some stack content χp (where

the height of χp can be bounded appropriately).

Thus, the assumptions of Lemma 4.1 are satisfied (with

the exception that we only have one µ and one ν =
βe−(d

+(j•)+1)
, while the lemma talks about µ1, µ2,ν1,ν2.

7. Recall that in Point 4 we have selected a short sub-

run of η (described by j and j•) that climbs up. In

fact, the run η is very long, and we can find not only

one such subrun, but a lot of disjoint subruns hav-

ing the above properties. Each of those subruns is

described by some position j (and by a correspond-

ing position j• coming soon after j). To every j let us
assign the tuple (U , ((rp , χp ))p∈U , ((pr , ξr ))r ∈V ), as de-
fined in Point 6. As already mentioned, the height of

all the stack contents χp and ξr can be bounded, so

the tuple comes from a finite domain. If the length of

η, hence the number of positions j, is large enough,
by the pigeonhole principle we have two distinct po-

sitions j1, j2 (together with the corresponding posi-

tions j1•, j2•) to which the same tuple was assigned. It

causes that Lemma 4.1 can be applied; it implies that

rβe−(d
+(j1•)+1)γ ∼ rβe−(d

+(j2•)+1)γ ∼ rβω for all r ∈ V .
This contradicts the minimality of e , and thus finishes

the proof.

7 Runs from qαβh visit many classes
In this section (namely, in Lemma 7.4) we prove that while

“going down” from qαβeγ it is possible to visit many bisimu-

lation classes.

For analyzing control states along runs that pop a stack

content of the form αβh we introduce a notion of a digging

sequence.

Definition 7.1. A digging sequence for (q,α , β) ∈ Q×Γ∗×Γ∗
is a sequence (r0, r1, . . . , rh) ∈ Qh+1

(for some h ∈ N) that
satisfies r0 ∈ |α⟩(q), and rd ∈ |β⟩(rd−1) for all d ∈ [1,h].

Note that any such a digging sequence witnesses that

there is a run ϱ from qαβh that visits r0β
h
, then r1β

h−1
, in

fact every configuration rdβ
h−d

for d ∈ [0,h], thus ending
in rh . The following definition captures the situation when

the intermediate configurations of a digging sequence are all

non-bisimilar to certain ω-approximants with stack content

βω .

Definition 7.2. Letqαβeγ (with e ≥ 1) be a configuration of

P. We say that a digging sequence (r0, r1, . . . , rh) for (q,α , β)
is βω -avoiding, if

1. there exists r ′ ∈ |β⟩(r0) such that r ′βe−1γ / r ′βω , and
2. rdβ

e−dγ / rdβ
ω
for all d ∈ [1,h].

Notice that we do not require rdβ
e−dγ / rdβ

ω
for d = 0. If

h ≥ 1, Point 1 follows from Point 2 while taking r ′ = r1 (but
we need Point 1, if we want Lemma 7.3 to work for h = 0).

The following lemma states that if qαβe−dγ / qαβω for

all d ∈ [1, e], then there always exists a βω -avoiding digging
sequence from qαβeγ , and any such a sequence of length

h that is not maximal (i.e., h < e) can be prolonged to an

βω -avoiding digging sequence of length h + 1.

Lemma 7.3. Let (α , β) be a linked pair, and let qαβeγ (with
e ≥ 1) be a configuration of P. If qαβe−dγ / qαβω for all
d ∈ [1, e], then

1. there exists a βω -avoiding digging sequence (r0) for
(q,α , β), and

2. every βω -avoiding digging sequence (r0, r1, . . . , rh) for
(q,α , β) with h < e can be extended by a control state
rh+1 to yield a longer βω -avoiding digging sequence for
(q,α , β).

Proof. We start by proving Point 1. To this end, we should

find a control state r0 ∈ |α⟩(q) such that there exists r ′ ∈
|β⟩(r0) satisfying r ′βe−1γ / r ′βω . Suppose that there is no
such a control state r0. This means that for all r0 ∈ |α⟩(q)
and for all r ′ ∈ |β⟩(r0) we have r ′βe−1γ ∼ r ′βω . However⋃

r0∈ |α ⟩(q) |β⟩(r0) = |αβ⟩(q) = |α⟩(q), so r ′βe−1γ ∼ r ′βω for

all r ′ ∈ |α⟩(q). By Lemma 3.7 this implies that qαβe−1γ ∼
qαβω , contrarily to assumptions of the lemma. Thus, our

supposition was false; there necessarily exists a control state

r0 as needed.
We now come to Point 2. Take some h < e , and some βω -

avoiding digging sequence (r0, . . . , rh). We should find a con-

trol state rh+1 ∈ |β⟩(rh) such that rh+1β
e−(h+1)γ / rh+1β

ω
.

If h = 0, the existence of such a control state r1 follows

from Point 1 of Definition 7.1. In the case of h ≥ 1, by

Definition 7.1 we have that rhβ
e−hγ / rhβ

ω
. But observe

that if rh+1β
e−(h+1)γ ∼ rh+1β

ω
for all rh+1 ∈ |β⟩(rh), then

rhβ
e−hγ ∼ rhβ

ω
by Lemma 3.7, contradicting the above. This

implies the existence of a control state rh+1 as required. □

The following central lemma of this section states that

if qαβe−dγ / qαβω for all d ∈ [1, e], then there exists an

ω-avoiding digging sequence from qαβeγ in which every

sufficiently long subsequence contains many different bisim-

ulation classes.

Lemma 7.4. There exists an elementary function ι : N2 → N
such that for all e ∈ N, all linked pairs (α , β), and all configu-
rations qαβeγ of P (with e ≥ 1) such that qαβe−dγ / qαβω

for all d ∈ [1, e] there is a βω -avoiding digging sequence
(r0, r1, . . . , re ) for (q,α , β) such that the following holds: for
every k ∈ N and every interval [a,b] ⊆ [0, e] with |[a,b]| >
ι(|P|,k) there are more than k pairwise non-bisimilar config-
urations in {rdβe−dγ | d ∈ [a,b]}.

Proof. By Lemma 7.3 we know that there exists at least one

βω -avoiding digging sequence for qαβeγ . Among all such
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βω -avoiding digging sequences we choose a particular one
(r0, r1, . . . , re ) which we show to satisfy the statement of the

lemma. We define the control states r0, . . . , re by induction.

For the induction base, we choose an arbitrary βω -avoiding
digging sequence (r0); its existence is guaranteed by the first

part of Lemma 7.3. For the induction step, assume that we

have already chosen r0, . . . , rd−1 for some d ∈ [1, e]; we need
to define rd . Let Rd = {r ∈ |β⟩(rd−1) | rβe−dγ / rβω }. We

have Rd , ∅ by the second part of Lemma 7.3. Among all

control states in Rd choose as rd some control state in r ∈ Rd
such that among the already determined sequence of config-

urations r0β
eγ , r1β

e−1γ , . . . rd−1β
e−(d−1)γ the class [rβe−dγ ]

does not occur, and if this is not possible, then this class

appears last as early as possible; more formally, choose as rd
any control state r ∈ Rd that maximizes back(r ,d), where

back(r ,d) = min{j ∈ [1,d] | rd−jβe−(d−j)γ ∼ rβe−d }.
Recall that min ∅ = ω by definition. This completes the

construction.

Let V0 = |α⟩(q) and Vd = |β⟩(rd−1) for all d ∈ [1, e]. We

have Vd ⊆ Vd−1 for all d ∈ [1, e] by Lemma 3.6. Moreover

Ve , ∅, because re ∈ Ve .
We say that an interval [a′,b ′] ⊆ [0, e] is monochromatic

if Vd = Vd ′ for all d,d ′ ∈ [a′,b ′]. By the above, [0, e] (hence
also every sub-interval of [0, e]) can be split into at most |Q |
monochromatic sub-intervals.

To finish the proof, take some k ∈ N and some interval

[a,b] ⊆ [0, e] such that

|[a,b]| > ι(|P|,k) = |P | · k · ((|P | + k) |P | + 1) . (2)

As said above, [a,b] can be split into at most |Q | monochro-

matic sub-intervals, so (recalling that |Q | ≤ |P|) there ex-
ists a monochromatic sub-interval [a′,b ′] ⊆ [a,b] of length
|[a′,b ′]| > k · (|Q | +k) |Q | + 1. Below we prove that there are

more than k pairwise non-bisimilar configurations already

in {rdβe−dγ | d ∈ [a′,b ′]} .
Let V = Va′ = Vb′ (i.e., V = Vd for all d ∈ [a′,b ′]).

Let us first define the tuple of bisimulation classes θd =
([rβe−dγ ])r ∈V for all d ∈ [a′,b ′]. Let also C = {[rdβe−dγ ] |
d ∈ [a′,b ′]} be the set of bisimulation classes of configura-

tions in {rdβe−dγ | d ∈ [a′,b ′]}. Our goal is to prove that

|C| > k ; for the sake of contradiction assume that |C| ≤ k .
First, by the pigeonhole principle, since |[a′,b ′]| > k ·

((|Q |+k) |Q | + 1) and |C| ≤ k there exists one class x ∈ C for

which there are t + 1 = (|Q | + k) |Q | + 2 indices d0,d1, . . . ,dt
such that a′ ≤ d0 < d1 < d2 < · · · < dt ≤ b ′ and
[rdi βe−diγ ] = x for all i ∈ [0, t].
Secondly, let O = {[rβω ] | r ∈ V } be the set of bisimula-

tion classes of the ω-approximants. Observe that |O| ≤ |Q |.
We claim that every component of every of the tuples

θd1 = ([rβe−d1γ ])r ∈V , . . . ,θdt = ([rβe−dtγ ])r ∈V
is a class inside C ∪ O (we do not claim this for θd0 ). Indeed,
consider any index di with i ∈ [1, t] and consider any r ∈ V .

Recall that by the above construction, the control state rdi
was defined to be one in

Rdi = {r ∈ |β⟩(rdi−1) | rβe−diγ / rβω }
such that back(r ,di ) is maximized. That is, for our control

state r ∈ V = |β⟩(rdi−1) we either have
• r < Rdi , which implies that rβe−di ∼ rβω and thus

[rβe−diγ ] ∈ O, or

• r ∈ Rdi and back(r ,di ) ≤ back(rdi ,di ) ≤ di − di−1,
which implies that the class [rβe−di ] can be found in

{[r jβe−jγ ] | h ∈ [di−1,di − 1]} and thus in particular

[rβe−di ] ∈ C.
Thus, [rβe−di ] ∈ C ∪ O for all i ∈ [1, t] and all r ∈ V .

Finally, because t = (|Q | + k) |Q | + 1 (and because there

are at most (|Q | + k) |Q |
tuples in (C ∪ O) |V |

), by the pi-

geonhole principle there exist two distinct indices s1, s2 ∈
{d1, . . . ,dt } such that θs1 = θs2 ; say s1 < s2. This means

that rβe−s1γ ∼ rβe−s2γ for all r ∈ V = Vs2 = |β⟩(rs2−1),
which by Corollary 3.9 implies that rs2−1β

e−(s2−1) ∼ rs2−1β
ω
.

Because s2 > s1 ≥ d1 > d0 ≥ 0, that is, s2 − 1 ≥ 1, this

implies that rs2−1 < Rs2−1, contradicting our construction;

thus |C| > k . □

8 Runs from qαβω have to push
In the previous section we were analysing runs starting from

qαβeγ : we have shown that it is possible to pop the stack

content and on the way visit many bisimulation classes. In

this section we prove that the ω-approximant qαβω is dif-

ferent: while popping the stack content from qαβω , one can
visit only a small number of bisimulation classes. Stating this

conversely: every run starting from qαβω that visit many

bisimulation classes has to push a lot, and actually it con-

tains a subrun that is a concatenation of many nonempty

augmenting runs, as stated by the following lemma.

Lemma 8.1. There exists an elementary function д : N4 → N
such that for every linked pair (α , β) and every run η from αβω

visiting more than д(|P|, |α |, |β |,k) distinct configurations,
there exists a subrun η1 · · ·ηk of η such that all η1, . . . ,ηk are
augmenting and nonempty.

Proof. Take

д(|P|, |α |, |β |,k) = (|α | + |β |) · |P |k+2 (3)

and consider a run η from αβω visiting more that д(|P|, |α |,
|β |,k) distinct configurations.
Denote N = |η |. Let −n be the minimal stack growth

obtained by a prefix of η; formally

n = −min{Stack-Growth(η[0, i]) | i ∈ [0,N ]} .
Moreover, for d ∈ [0,n], let jd denote the earliest positions

in η when the stack growth becomes −d ; formally

jd = min{i ∈ [0,N ] | Stack-Growth(η[0, i]) ≤ −d} .
In particular, j0 = 0. Additionally, let jn+1 = N + 1.
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Clearly the stack growth cannot go down below −d before

becoming precisely equal to −d at some earlier moment; thus

Stack-Growth(η[0, jd ]) = −d for all d ∈ [0,n]. In effect, all

the subrunsη[jd , jd+1−1] are augmenting, ford ∈ [0,n] (addi-
tionally, for d < n we have Stack-Growth(η[jd , jd+1−1]) =
0, and Stack-Growth(η[jd+1 − 1, jd+1]) = −1). Observe ad-
ditionally that the stack content of η[jd ] (for d ∈ [0,n]) is
obtained from αβω by popping some number of symbols. In

effect, it is of the form κβω , where κ ∈ Γ+ is either a suffix

of α or a suffix of β . This means that among η[jd ] there are
at most |Q | · (|α | + |β |) distinct configurations (we have to
choose a control state in Q , and a nonempty suffix of α or

β). Denote the set of these configurations by C.
Suppose first that Stack-Growth(η[jd , i]) ≤ k − 1 for all

d ∈ [0,n] and all i ∈ [jd , jd+1 − 1]. Then every configuration

η[i] visited by η can be reached from a configuration η[jd ]
in C by such a run η[jd , i], which is augmenting. In effect,

Lemma 3.2 gives implies that there are at most |C| · |P |k−1+2
distinct configurations visited by η. But |C| · |P |k−1+2 ≤
д(|P|, |α |, |β |,k), contrarily to our assumption.

Thus, there exist d ∈ [0,n] and ℓ ∈ [jd , jd+1 − 1] such
that Stack-Growth(η[jd , ℓ]) ≥ k . Recall that η[jd , ℓ] is aug-
menting.

It is easy to split an augmenting run with stack growth at

least k into k nonempty and augmenting subruns. Namely,

for e ∈ [0,k] we define

ℓe = max{i ∈ η[jd , ℓ] | Stack-Growth(η[jd , i]) ≤ e} ,

and for e ∈ [1,k] we take ηe = η[ℓe−1, ℓe ]. By definition

η1 . . .ηk is a subrun of η, and all ηe are augmenting. More-

over, because P is in a push-pop normal form, all ηe are

nonempty: the stack growth cannot go above e before be-
coming precisely equal to e at some earlier moment. □

9 The core of the proof of Theorem 5.1
The goal of this section is finish proving our main technical

theorem, Theorem 5.1.

Recall that Theorem 5.1 claims the existence of a function

h. For reasons of readability we postpone the definition of

this function.

Towards a proof of Theorem 5.1 let us fix a control state

q ∈ Q , a linked pair (α , β), and a stack content γ ∈ Γ∗.
In order to simplify some formulae, assume moreover that

|β | ≥ max{|α |, E}, where the constant E ≤ exp(|P|) is taken
from Lemma 3.3, and is fixed for the rest of this section. The

case of |β | < max{|α |, E} can be easily reduced to the former

one by considering β ′ = βmax{ |α |,E}
, as shown below.

Lemma 9.1. If Theorem 5.1 holds when |β | ≥ max{|α |, E},
then it holds in general.

Proof. Suppose thatwe have already defined a functionh(|P|,
|α |, |β |) for arguments such that |β | ≥ max{|α |, E}, so that

Theorem 5.1 holds in this case. For the remaining argu-

ments we take h(|P|, |α |, |β |) = h(|P|, |α |, |β | ·max{|α |, E}) ·
max{|α |, E}.
Take now a control state q ∈ Q , a linked pair (α , β), and

a stack content γ ∈ Γ∗ such that |β | < max{|α |, E}. Let
β⋄ = βmax{ |α |,E}

. Observe that (α , β⋄) is a linked pair as well.
Clearly

{qαβ i⋄γ | i ∈ N} = {qαβ i ·max{ |α |,E}γ | i ∈ N}
⊆ {qαβ iγ | i ∈ N} ,

so if the letter set contains only finitely many pairwise

non-bisimilar configurations, so does the former. Moreover,

|β⋄ | ≥ max{|α |, E}), so we can use Theorem 5.1 for (α , β⋄),
obtaining that

qαβe ·max{ |α |,E}γ = qαβe⋄γ ∼ qβω⋄ = qβ
ω

for some e ≤ h(|P|, |α |, |β ′ |). This gives the thesis, since

from our definition of h it immediately follows that

e ·max{|α |, E} ≤ h(|P|, |α |, |β |) . □

Let e be the smallest natural number satisfying qαβeγ ∼
qβω . The goal is to prove that e ≤ h(|P|, |α |, |β |). For the
sake of contradiction, assume e is sufficiently large, namely

e > h(|P|, |α |, |β |), where, as mentioned above, the function

h is defined later. By Lemma 7.4 there exists a βω -avoiding
digging sequence σ = (r0, r1, . . . , re ) for (q,α , β), visiting
many pairwise non-bisimilar configurations (as specified in

Lemma 7.4). By Definition 7.1, r0 ∈ |α⟩(q) and rd ∈ |β⟩(rd−1)
for all d ∈ [1, e].

The run ϱ. Let us fix a run ϱ from qαβeγ to reγ that

realizes σ as quickly as possible in the following sense: there

exists a factorization ϱ = ϱ0ϱ1 · · · ϱe such that

• qα
ϱ0−→ r0 is a shortest run from qα to r0 and

• rd−1β
ϱd−−→ rd is a shortest run from rd−1β to rd for all

d ∈ [1, e].
Note that |ϱ0 | ≤ |α | · E and 1 ≤ |β | ≤ |ϱd | ≤ |β | · E for all

d ∈ [1, e], by Lemma 3.3. Because by assumption |α | ≤ |β |,
we actually have |ϱd | ≤ |β | · E for all d ∈ [0, e].

Let N denote the length of the run ϱ, N = |ϱ |. Since e was
chosen sufficiently large for the arguments in this section

to work, so is N . Let us also fix the following intermediate

configurations

∇d = rdβe−dγ for all d ∈ [0, e]

that the run ϱ visits. We call these configurations ∇-configu-
rations. For every position i ∈ [0,N − 1] let

d+(i) = min{d ∈ [0, e] | ∃j ∈ [i + 1,N ]. ϱ(j) = ∇d }

denote the “depth index d” of the next ∇-configuration ∇d
the run ϱ sees strictly after position i .

Next we have two observations.
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Observation 9.2. For 0 ≤ i ≤ i ′ ≤ N − 1, we have that⌊
i′−i
|β | ·E

⌋
≤ d+(i ′) − d+(i) ≤ i ′ − i .

Proof. Immediate consequence of the definition of d+(·) and
the inequalities 1 ≤ |ϱd | for d ∈ [1, e] and |ϱd | ≤ |β | · E for

d ∈ [0, e]. □

Observation 9.3. For all i ∈ [0,N − 1], we have
1. ϱ(i) = qiκiβ

e−d+(i)γ for some control state qi ∈ Q and
some stack content κi ∈ Γ∗ such that 1 ≤ |κi | ≤ |β | · E,
and

2. ifd+(i)+1 ≤ e , thenDist(ϱ(i), rβe−(d+(i)+1)γ ) ≤ 2· |β | ·E
for all r ∈ Vd+(i)+1.

Proof. For Point 1 observe that, by construction, ∇d+(i) =
rd+(i)β

e−d+(i)γ is the earliest configuration of the run ϱ whose

stack content is of the form βe−d
+(i)γ ; the upper bound on

|κi | follows from the inequality |ϱd+(i) | ≤ |β | · E, and from

the fact that ϱd+(i) can pop at most one symbol in every step.

Point 2 is a consequence of Point 1 and Lemma 3.3, if we

recall that ∇d+(i) →∗ rβe−(d
+(i)+1)γ for all r ∈ Vd+(i)+1. □

The run η and its analysis. Since qαβeγ ∼ qαβω there

must exist a run η from qαβω that mimics the run ϱ, that is,
such that ϱ(i) ∼ η(i) for all i ∈ [0,N ].

Similarly as in the proof of Lemma 7.4, define V0 = |α⟩(q)
and Vd = |β⟩(rd−1) for all d ∈ [1, e]. Recall that an interval

[a,b] ⊆ [0, e] is called monochromatic if Vd = Vd ′ for all

d,d ′ ∈ [a,b].
Let us define the constant

ℓ = ℓ(|P|, |β |, E) =
(
2 + ι

(
|P |, |P |2· |β | ·E+1

) )
· |β | · E , (4)

where ι is the function from Lemma 7.4. Anticipating that

the difference N − ℓ is sufficiently large, let J be the set of

positions j ∈ [0,N − ℓ− 1] such that η[j, j + ℓ] is augmenting,

and [d+(j),d+(j + ℓ)] is monochromatic.

For all positions j ∈ J let j• denote the earliest position
inside ϱ after j when the augmenting runη[j, j+ℓ] has pushed
2 · |β | · E stack symbols; formally

j• = min{i ∈ [j, j + ℓ] |
Stack-Growth(η[j, i]) = 2 · |β | · E}.

That is, we can write the configurations η(j) and η(j•) as

η(j) = pjX jµ j , where pj ∈ Q , and X j ∈ Γ, (5)

and µ j ∈ RegStr(Γ), and
η(j•) = pj•ζj•µ j , where pj• ∈ Q , and ζj• ∈ Γ∗ (6)

is such that |ζj• | = 2 · |β | · E + 1.

The conclusion of Lemma 7.4 together with Lemma 3.2

imply that j• is well-defined (i.e., j• ∈ N), and that actually

j• ≤ j + ℓ − |β | · E, as shown in the following lemma.

Lemma 9.4. If j ∈ J , then j• ≤ j + ℓ − |β | · E.

Proof. Denote

ℓ′ = ℓ − |β | · E . (7)

The set of configurations {ϱ(i) | i ∈ [j, j + ℓ′]} contains a set
of configurations {∇d | d ∈ [d+(j),d+(j + ℓ′) − 1]}. Moreover,

|[d+(j),d+(j + ℓ′) − 1]|
= d+(j + ℓ′) − d+(j)

Observation 9.2

≥
⌊
j + ℓ′ − j

|β | · E

⌋
(7), (4)

=

⌊ (
2 + ι

(
|P |, |P |2· |β | ·E+1

) )
· |β | · E − |β | · E

|β | · E

⌋
= 1 + ι

(
|P |, |P |2· |β | ·E+1

)
.

In consequence, by the conclusion of Lemma 7.4 there are

more than |P |2· |β | ·E+1 pairwise non-bisimilar configurations

in {∇d | d ∈ [d+(j),d+(j + ℓ′) − 1]}, thus in particular in

{ϱ(i) | i ∈ [j, j + ℓ′]}.
Recall now that ϱ(i) ∼ η(i), hence also in {η(i) | i ∈

[j, j + ℓ′]} there are more than |P |2· |β | ·E+1 pairwise non-

bisimilar configurations; in particular,

|{η(i) | i ∈ [j, j + ℓ′]}| > |P |2· |β | ·E+1 . (8)

By assumption η[j, j + ℓ] is augmenting, hence for every

i ∈ [j, j + ℓ′] its subrun η[j, i] is an augmenting run from

η(j) to η(i). By Lemma 3.2 (used with z = 2 · |β | · E − 1), the

number of configurations η(i) with i ∈ [j, j + ℓ′] such that

Stack-Growth(η[j, i]) ≤ 2 · |β | · E −1 is at most |P |2· |β | ·E+1.
Thus, due to Inequality (8), there is a position i ∈ [j, j + ℓ′]
such that Stack-Growth(η[j, i]) ≥ 2 · |β | · E. Because P is

in a push-pop normal form, the stack height changes only

by one in each step, thus necessarily there is also a position

i ∈ [j, j+ℓ′] such that Stack-Growth(η[j, i]) equals 2· |β | ·E;
the smallest such i is taken as j•, hence j• ≤ ℓ′. □

As a consequence, we obtain that

d+(j•) + 1 ≤ d+(j + ℓ) ≤ d+(j) + ℓ . (9)

for all j ∈ J . Indeed,

d+(j + ℓ) − d+(j•)
Observation 9.2

≥
⌊
(j + ℓ) − j•
|β | · E

⌋
Lemma 9.4

≥
⌊
(j + ℓ) − (j + l − |β | · E)

|β | · E

⌋
= 1 ,

establishing the first inequality. The second inequality is a

direct consequence of Observation 9.2:

d+(j + ℓ) − d+(j) ≤ (j + ℓ) − j = ℓ .

Inequalities (9) imply that d+(j•) + 1 belongs to the mono-

chromatic segment [d+(j),d+(j + ℓ)], that is,Vd+(j•)+1 = Vd+(j).
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Inter-dependencies of bisimulation classes near η(j)
and ϱ(j). Fix any j ∈ J . Our goal is to establish mutual

dependencies between configurations near η(j) and ϱ(j), al-
lowing us to use Lemma 4.1. Firstly, by Observation 9.3,

Dist(ϱ(j•), rβe−(d
+(j•)+1)γ ) ≤ 2 · |β | · E for all r ∈ Vd+(j•)+1 =

Vd+(j). Because ϱ(j•) ∼ η(j•), there is a configuration bisim-

ilar to rβe−(d
+(j•)+1)γ in distance at most 2 · |β | · E from

η(j•). Recall from Equation (6) that η(j•) = pj•ζj•µ j , where
|ζj• | = 2 · |β | · E + 1. Hence, denotingUj = |X j ⟩(pj ) ⊆ Q , for

all r ∈ Vd+(j) we have that

rβe−(d
+(j•)+1)γ ∼ pr, jξr, jµ j (10)

for some pr, j ∈ Q, ξr, j ∈ Γ+ with

1 ≤ |ξr, j | ≤ 4 · |β | · E + 1 (11)

and

|ξr, j ⟩(pr, j ) ⊆ |X j ⟩(pj ) = Uj . (12)

Inclusion (12) follows from Lemma 3.1: the subrun η[j, j•]
composed with a run witnessing Dist(η(j•),pr, jξr, jµ j ) ≤
2 · |β | · E can be seen as a run from pjX j to pr, jξr, j .
Secondly, recall from Equation (5) that η(j) = pjX jµ j . By

Lemma 3.3 we have Dist(η(j),pµ j ) ≤ E for all p ∈ Uj . Be-

cause ϱ(j) ∼ η(j), there is a configuration bisimilar to pµ j in
distance at most E from ϱ(j), for all p ∈ Uj . Observation 9.3

states that the stack content of ϱ(j) is of the form κjβ
e−d+(j)γ

with 1 ≤ |κj | ≤ |β |·E, that is, of the formκ ′
jβ

e−(d+(j•)+1)γ with

1+ |β | · (d+(j•)+1−d+(j)) ≤ |κ ′
j | ≤ |β | · (d+(j•)+1−d+(j)+E).

Recall that, by assumption |β | ≥ E (and that, by defini-

tion, d+(j•) ≥ d+(j)), thus in particular |κ ′
j | ≥ 1 + E. On

the other hand d+(j•) + 1 − d+(j) ≤ ℓ by Inequality (9), so

1 + E ≤ |κ ′
j | ≤ |β | · (ℓ + E). Thus, for all p ∈ Uj ,

pµ j ∼ rp, j χp, jβ
e−(d+(j•)+1)γ (13)

for some rp, j ∈ Q, χp, j ∈ Γ∗ with

1 ≤ |χp, j | ≤ |β | · (ℓ + E) + E (14)

and

|χp, j ⟩(rp, j ) ⊆ Vd+(j) . (15)

Inclusion (15) follows from Lemma 3.1, where we use the

subrun ϱd+(j) composed with a run witnessing Dist(ϱ(j),
rp, j χp, jβ

e−(d+(j•)+1)γ ) ≤ E. If d+(j) ≥ 1, this composition can

be seen as a run from rd+(j)−1β
(d+(j•)+1)−(d+(j)−1)

to rp, j χp, j , and

|β (d+(j•)+1)−(d+(j)−1)⟩(rd+(j)−1) = |β⟩(rd+(j)−1) = Vd+(j); other-

wise (i.e., if d+(j) = 0), it can be seen as a run from qαβd
+(j•)+1

to rp, j χp, j , and |αβd+(j•)+1⟩(q) = |α⟩(q) = V0 = Vd+(j).

Inter-dependencies cannot happen too often. For ev-
ery j ∈ J let us define

Color(j) = (Uj , ((rp, j , χp, j ))p∈Uj ,Vd+(j), ((pr, j , ξr, j ))r ∈Vd+(j ) ) .
Inequalities (11) and (14) allow us to bound the number of

all possible “colors”.

Lemma 9.5. There are at most

h1 = h1(|P|, |β |, E, ℓ) = |P |(1+ |β | ·(ℓ+E)+E+1+4· |β | ·E+1)· |P |

many different values for Color(j), for j ∈ J .

Proof. By Inequalities (11) and (14) the stack contents χp, j
and ξr, j appearing in the definition of Color(j) satisfy

1 ≤ |χp, j | ≤ |β | · (ℓ + E) + E
and

1 ≤ |ξr, j | ≤ 4 · |β | · E + 1 .
Thus, for every control state p ∈ Q we either choose that

p < Uj , or we choose a control state rp, j ∈ Q and a stack

content χp, j ∈ Γ+ of length at most |β | · (ℓ + E) + E; this
gives us

1 + |Q | ·
(
(|Γ | + 1) |β | ·(ℓ+E)+E − 1

)
≤ |P|1+ |β | ·(ℓ+E)+E

possibilities (tacitly assuming that |P | ≥ 1).

Likewise, for every control state r ∈ Q we either choose

that r < Vd+(j), or we choose a control state pr, j ∈ Q and a

stack content ξr, j ∈ Γ+ of length at most 4 · |β | · E + 1; this
gives us

1 + |Q | ·
(
(|Γ | + 1)4· |β | ·E+1 − 1

)
≤ |P|1+4· |β | ·E+1

possibilities.

Because we are going to do both choices for every control

state in Q , we multiply the two numbers (i.e., we add their

exponents), and we take their |Q |-th power (i.e., we multiply

the exponent by |Q |). Taking into account that |Q | ≤ |P|,
this gives us the formula from the lemma statement. □

By Lemmata 7.4 and 8.1, and by a direct calculation we

obtain the following lemma.

Lemma 9.6. If e > h(|P|, |α |, |β |), where
h(|P|, |α |, |β |) = ι(|P|,д(|P|, |α |, |β |, (h1 + |P |) · ℓ + 1)) ,

then there exist two positions j1, j2 ∈ J with j2 ≥ j1 + ℓ such
that Color(j1) = Color(j2).

Proof. Firstly, by the conclusion of Lemma 7.4 (used for the

interval [0, e]), there are more than д(|P|, |α |, |β |, (h1 + |P |) ·
ℓ + 1) pairwise non-bisimilar configurations in

{rdβe−dγ | d ∈ [0, e]} ⊆ {ϱ(i) | i ∈ [0,N ]} .
Because ϱ(i) ∼ η(i) for all i ∈ [0,N ], the same number of pair-

wise non-bisimilar configurations can be found in {η(i) | i ∈
[0,N ]}; in particular, η visits more than д(|P|, |α |, |β |, (h1 +
|P |) · ℓ + 1) distinct configurations.
Secondly, take k = (h1+ |P |)·ℓ+1. By Lemma 8.1, a subrun

of η can be represented as η1 . . .ηk , where all η1, . . . ,ηk are

augmenting and nonempty. Let J1 be the set of positions

of η at which the augmenting subruns ηi start; formally,

let J1 = {j0 + |η1 . . .ηi−1 | : i ∈ [1,k]}, where j0 is such that

η[j0, j0+ |η1 . . .ηk |] = η1 . . .ηk . Observe that η[j,maxJ1] (as
a composition of augmenting runs) is augmenting for every
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j ∈ J1, hence also every its prefix is augmenting. Moreover,

|J1 | = k and maxJ1 ≤ N − 1.

Thirdly, let J2 contain the 1-st, the (ℓ + 1)-th, the (2ℓ + 1)-
th, ..., the ((h1 + |P | − 1) · ℓ + 1)-th element of J1. Notice that

|J2 | = h1 + |P |, and that j + ℓ ≤ maxJ1 for all j ∈ J2, which

implies that η[j, j + ℓ] is augmenting. Moreover, j ′ ≥ j + ℓ
whenever j, j ′ ∈ J2 and j < j ′.

By monotonicity of d+(·), the last property implies that

d+(j ′) ≥ d+(j + ℓ) whenever j, j ′ ∈ J2 and j < j ′. In other

words, the intervals [d+(j),d+(j + ℓ)] are almost disjoint for

different positions j ∈ J2: only the last element of one inter-

val can be the first element of another interval. In effect, for

at most |Q | − 1 positions j ∈ J2, the interval [d+(j),d+(j + ℓ)]
can be non-monochromatic (recall that the whole [0, e] can
be split into at most |Q | monochromatic intervals). For the

remaining h1 + |P | − (|Q | − 1) ≥ h1 + 1 positions j ∈ J2,

the interval [d+(j),d+(j + ℓ)] is monochromatic, and thus

j ∈ J (recall that, by definition, J contains those positions

j ∈ [0,N − ℓ − 1] for which η[j, j + ℓ] is augmenting and

[d+(j),d+(j + ℓ)] is monochromatic).

We thus have more than h1 positions in J ∩ J2. Because

by Lemma 9.5 there at most h1 many different values for

Color(·), by the pigeonhole principle there are necessarily

two distinct positions j1, j2 ∈ J ∩ J2 such that Color(j1) =
Color(j2). This finishes the proof, since j1 < j2 for elements

of J2 implies j2 ≥ j1 + ℓ. □

Let us thus fix two positions j1, j2 ∈ J with j2 ≥ j1 + ℓ
such that

Color(j1) = Color(j2) = (U , ((rp , χp ))p∈U ,V , ((pr , ξr ))r ∈V ).
By Condition (13) we obtain

pµ ji ∼ rp χpβ
e−(d+(ji•)+1)γ for all p ∈ U and all i ∈ {1, 2},

and by Condition (10) we obtain

rβe−(d
+(ji•)+1) ∼ pr ξr µ ji for all r ∈ V and all i ∈ {1, 2}.

Sincemoreover |ξr ⟩(pr ) ⊆ U by Inclusion (12) and |χp⟩(rp ) ⊆
V by Inclusion (15), we can apply Lemma 4.1 and obtain (by

setting µi = µ ji and νi = βe−(d
+(ji•)+1)γ ) that

rβe−(d
+(j1•)+1)γ ∼ rβe−(d

+(j2•)+1)γ for all r ∈ V .

Recall that V = Vd+(j2•)+1 = |β⟩(rd+(j2•)). Since d+(j1•) + 1 ≤
d+(j1 + l) ≤ d+(j2•) (i.e., d+(j1•) , d+(j2•)) by Inequality (9),

by Corollary 3.9 we obtain that rd+(j2•)β
e−d+(j2•)γ ∼ rd+(j2•)β

ω
,

contrarily to the assumption that our digging sequence σ is

βω -avoiding. It follows that necessarily e ≤ h(|P|, |α |, |β |),
finishing the proof.

10 Conclusion
We have shown that any bisimulation-finite PDS is already

bisimilar to a finite system of size elementary in the size of

the PDS. A careful analysis reveals that the function φ in

Theorem 2.1 is in fact six-fold exponential in the size of the

PDS.

Indeed, recall that the constant F from Lemma 3.5 is dou-

bly exponential in |P |; in consequence |α | and |β | for all
considered linked pairs are at most doubly exponential in

|P |. The constant E from Lemma 3.3 is singly exponential

in |P |. The function ι(|P|,k) from Lemma 7.4 is polynomial

in the second argument, and singly exponential in |P | (con-
sult Equality (2)). In consequence, the constant ℓ defined in

Equality (4) is at most triply exponential in |P |, and thus

the constant h1 defined in Lemma 9.5 is at most four-fold

exponential in |P |. The function д defined in Equality (3)

is singly exponential in its arguments, and thus the value

h(|P|, |α |, |β |) defined in Lemma 9.6 is at most five-fold ex-

ponential in |P |. This implies that the value λ(|P|, |α |, |β |)
from Lemma 5.2 is at most six-fold exponential in |P |. Fi-
nally, taking into account Equality (1), where φ is defined,

we obtain a six-fold exponential bound for φ.
By Kučera and Mayr [19], this yields a 6-EXPSPACE up-

per bound for bisimulation finiteness of pushdown systems.

whereas only an exponential lower bound is known to the

authors. Determining the precise succinctness of pushdown

systems with respect to finite systems modulo bisimulation

equivalence and determining the precise computational com-

plexity of the bisimulation finiteness problem for pushdown

systems are natural candidates for a future work.

As mentioned in the introduction, it seems worth investi-

gating to which further classes of finitely-branching infinite-

state systems our approach can be applied, in particular

among those for which the bisimulation equivalence prob-

lem is not known to be decidable [29].
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Appendix
In the appendix we provide proofs omitted in the paper. All

these proofs are either easy or standard, but we include them

for completeness.

Push-pop normal form
In Lemma A.1 we prove that without loss of generality one

can concentrate on pushdown systems in a push-pop normal

form.

Lemma A.1. For every PDS P one can compute in polyno-
mial time a PDS P ′ in a push-pop normal form, such that for
every initial configuration s0 of P, the quotients [L(P, s0)]
and [L(P ′, s0)] are isomorphic.

Proof. Let P = (Q, Γ,A,∆). We define a PDS P ′ = (Q, Γ′,A,
∆′) in a push-pop normal form.

Let Suf (∆) = {α ∈ Γ+ | (p,X ,a,q, βα) ∈ ∆} contain

nonempty suffixes of stack contents pushed by transitions of

P. The new stack alphabet Γ′ = Γ ∪ Suf (∆) beside of these
suffixes (treated now as single stack symbols) contains all

stack symbols from Γ, so that an initial configuration of P is

a valid configuration of P ′
. We do not distinguish between

elements of Γ and suffixes of length one.

For every transition δ = (p,X ,a,q,α) ∈ ∆, and for every

string Xβ ∈ Γ′ we add to ∆′
a transition

• (p,Xβ ,a,q, (α)(β)) if α , ε and β , ε ,
• (p,Xβ ,a,q, (α)) if α , ε and β = ε ,
• (p,Xβ ,a,q, (β)) if α = ε and β , ε , and
• (p,Xβ ,a,q, ε) if α = ε and β = ε .

For every stack content α over Γ′ there is a corresponding
stack content α over Γ, obtained by concatenating strings

from consecutive letters of α . It is easy to see that

• if pα →a qβ in P ′
, then pα →a qβ in P, and

• if pα →a qβ ′
in P, then pα →a qβ in P ′

for some

stack content β such that β = β ′
.

It follows that the quotients [L(P, s0)] and [L(P ′, s0)] are
isomorphic for every initial configuration s0 of P. □

Proof of Lemma 3.1
Lemma 3.1. Let p,q ∈ Q and α , β ∈ Γ∗. If pα →∗ qβ , then
|α⟩(p) ⊇ |β⟩(q).

Proof. Recall that |β⟩(q) contains control states r such that

qβ →∗ r . For every such a control state r , due to pα →∗ qβ ,
we also have thatpα →∗ r , which implies that r ∈ |α⟩(p). □

Proof of Lemma 3.2
Lemma 3.2. If pα is a configuration of P, and z ∈ N, then
there are at most |P |z+2 configurations qβ such that pα

ϱ
−→ qβ

for some augmenting run ϱ satisfying Stack-Growth(ϱ) ≤
z.

Proof. Fix the starting configuration pα and the number z ∈
N. If α = ε , then pα has no successors, and the lemma holds

trivially. Assume thus that α = Xα ′
.

Observe that if pα
ϱ
−→ qβ for some augmenting run ϱ, then

β is of the formγα ′
(the run never pops into α ′

, it only builds

some stack content on top of α ′
). Moreover, the inequality

Stack-Growth(ϱ) ≤ z implies that |γ | ≤ z + 1.
Thus, while choosing a configuration qβ = qγα ′

as in the

statement of the lemma, we only need to choose a control

state q ∈ Q , and a stack content γ ∈ Γ of length at most

z+1. There are |Q | choices for the control state, and no more

than (|Γ | + 1)z+1 choices for a stack content (every among

z + 1 positions either may be filled by a symbol from Γ, or
may remain empty). Thus, the number of aforementioned

configurations is at most |Q | · (|Γ | + 1)z+1 ≤ |P|z+2. The
inequality holds because |Q | ≤ |P|, and because |Γ | + 1 ≤
|Γ | + |Q | ≤ |P| if |Q | > 0. □

Proof of Lemma 3.3
We start with an auxiliary lemma, which is analogous to

Lemma 3.3, but with the additional assumption that the stack

content in the two considered configurations consists of a

single symbol.

Lemma A.2. Let p,q ∈ Q and X ,Y ∈ Γ. If pX →∗ qY , then
Dist(pX ,qY ) ≤ |P| |P |4+1 − 1.

Proof. Let ϱ be a shortest run from pX to qY , and let N = |ϱ |.
Notice that ϱ never pops the bottommost stack symbol X
(after reaching an empty stack, the PDS gets stuck), that is,

ϱ is augmenting. Denote ϒ = |Q |2 · |Γ |2.
Suppose first that Stack-Growth(ϱ[0, i]) ≤ ϒ − 1 ≤

|P|4 − 1 for all i ∈ [0,N ]. Then, by Lemma 3.2, ϱ visits

at most |P | |P |4+1
distinct configurations. Observe also that

if ϱ(i) = ϱ(j) for some i, j ∈ [0,N ] with i < j, then we can

cut off the subrun ϱ[i, j], obtaining a shorter run from pX
to qY contrarily to our assumption. Thus Dist(pX ,qY ) =
|[0,N ]| − 1 ≤ |P| |P |4+1 − 1.

Next, suppose that Stack-Growth(ϱ[0,m]) ≥ ϒ for some

indexm ∈ [0,N ]. For every j ∈ [0, ϒ] we define
ℓj = max{i ∈ [0,m] | Stack-Growth(ϱ[0, i]) ≤ j}

and

r j = min{i ∈ [m,N ] | Stack-Growth(ϱ[0, i]) ≤ j} .
Notice that the positions ℓj , r j are well-defined, that is, the
sets are nonempty, because

Stack-Growth(ϱ[0, 0]) = Stack-Growth(ϱ[0,N ]) = 0 .

https://doi.org/10.1016/0304-3975(90)90047-L
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The stack growth changes by at most one in every step (since

P is in a push-pop normal form), so

Stack-Growth(ϱ[0, ℓj ]) = Stack-Growth(ϱ[0, r j ]) = j

for every j ∈ [0, ϒ]. Moreover, Stack-Growth(ϱ[0, i]) ≥ j
for all i ∈ [ℓj , r j ], which means that ϱ[ℓj , r j ] is augmenting.

For every j ∈ [0, ϒ] let ϱ(ℓj ) = pjX jα j and ϱ(r j ) = qjYjα j
(because ϱ[ℓj , r j ] is augmenting and because we have that

Stack-Growth(ϱ[ℓj , r j ]) = 0, the stack content in the two

configurations is the same, except for the topmost symbol).

Recall that |[0, ϒ]| = ϒ + 1 > |Q |2 · |Γ |2. By the pigeonhole

principle, there are two indices j1, j2 ∈ [0, ϒ] such that j1 < j2
and (pj1 ,X j1 ,qj1 ,Yj1 ) = (pj2 ,X j2 ,qj2 ,Yj2 ). The run ϱ[ℓj2 , r j2 ]
can be seen as a run from pj2X j2 to qj2Yj2 , thus also as a run

from pj1X j1α j1 to qj1Yj1α j1 . However j1 < j2 implies ℓj1 < ℓj2
and r j2 < r j1 . This contradicts the minimality of ϱ, and thus

finishes the proof: the subrun ϱ[ℓj1 , r j1 ] could be replaced by

a shorter run ϱ[ℓj2 , r j2 ]. □

Lemma 3.3. There exists a constant E ≤ exp(|P|) such that
whenever pα →∗ qβ for two configurations pα ,qβ of P, then
Dist(pα ,qβ) ≤ (|α | + |β |) · E.

Proof. We take E = |P | |P |4+1
. Let ϱ be a shortest run from

pα to qβ , and let N = |ϱ |. Moreover, let

c = |α | +min{Stack-Growth(ϱ[0, i]) | i ∈ [0,N ]} .

We see that c − 1 bottommost symbols of α are not touched

by the run ϱ, the c-th symbol is possibly modified but not

popped, and the other symbols are popped, and then appro-

priate symbols of β are pushed. Furthermore, let

ℓj = min{i ∈ [0,N ] | |α | + Stack-Growth(ϱ[0, i]) ≤ j}

for all j ∈ [c, |α |], and

r j = max{i ∈ [0,N ] | |α | + Stack-Growth(ϱ[0, i]) ≤ j}

for all j ∈ [c, |β |], where ℓ |α | = 0 and r |β | = N . Because the

stack growth changes by one (P is in a push-pop normal

form), it is easy to see that

• ϱ[ℓj , ℓj−1 − 1] for j ∈ [c + 1, |α |] is an augmenting run

with Stack-Growth(ϱ[ℓj , ℓj−1 − 1]) = 0, so ℓj−1 − 1−
ℓj ≤ E − 1 by Lemma A.2;

• ϱ[r j−1 + 1, r j ] for j ∈ [c + 1, |β |] is an augmenting run

with Stack-Growth(ϱ[r j−1+1, r j ]) = 0, so r j −(r j−1+
1) ≤ E − 1 by Lemma A.2;

• if c ≥ 1, then ϱ[ℓc , rc ] is an augmenting run with

Stack-Growth(ϱ[ℓc , rc ]) = 0, so rc − ℓc ≤ E − 1 by

Lemma A.2;

• if c = 0, then ℓc = N (and |β | = 0).

Summing this up, for c ≥ 1 we obtain that N ≤ (|α | − c) ·
E + (|β | − c) · E + E − 1 ≤ (|α | + |β |) · E, and for c = 0 we

obtain that N ≤ |α | · E ≤ (|α | + |β |) · E. This finishes the
proof. □

Proof of Lemma 3.5
In this proof we use a notion of semigroups. A semigroup
(S, ◦) is a set S equipped with a binary operation (◦) : S×S →
S that is associative (i.e., s◦(t ◦u) = (s◦t)◦u for all s, t ,u ∈ S).
An idempotent is an element of S such that s ◦ s = s .

Lemma A.3. Let (S, ◦) be a semigroup, and let s1 . . . sn ∈ S∗

be a word such that n ≥ 2
9· |S | . Then there exist indices j,k such

that 1 ≤ j < k ≤ 2
9· |S | , and sj+1 ◦ · · · ◦ sk is an idempotent,

and s1 ◦ · · · ◦ sj = s1 ◦ · · · ◦ sk .

Proof. We prove the lemma assuming that n = 2
9· |S | + 1. A

general situation can be reduced to this situation by truncat-

ing the word, or by adding an arbitrary symbol at the end of

the word; such changes do not influence the thesis, which

talks only about positions up to 2
9· |S |

.

A factorization tree over a word s1 . . . sn ∈ S+ is an S-
labeled tree with n leaves, where the i-th leaf is labeled by

si , for all i ∈ [1,n], and where every internal node is labeled

by the product of labels of its children. Notice that a node v
having leaves number i + 1, i + 2, . . . , j as its descendant is
labeled by a product si+1 ◦ · · · ◦ sj .
A factorization tree is ramseyan if every its node either

• is a leaf,

• has two children, or

• its children are labeled by the same idempotent, that
is, an element s ∈ S such that s ◦ s = s .

A theorem by Simon [35] says that for every nonempty

word s1 . . . sn ∈ S+ there exists a ramseyan factorization tree

T over s1 . . . sn of height at most 9 · |S | (where height of a
tree is defined as the maximal number of edges on a path

from the root to a leaf).

Because n > 2
9· |S |

, necessarily T has a node with more

than two children; let v be such a node, and let v1,v2 be
its first two children. Because T is ramseyan, v1 and v2 are
labeled by the same idempotent s . Note that s , as the label
of v1, equals si+1 ◦ · · · ◦ sj and, as the label of v2, equals
sj+1 ◦ · · · ◦ sk , for appropriate indices such that 0 ≤ i < j <
k < n (we have k < n, not k ≤ n, because v2 is not the last
child of its parent). Observe also that

s1 ◦ · · · ◦ sj = (s1 ◦ · · · ◦ si ) ◦ s
= (s1 ◦ · · · ◦ si ) ◦ s ◦ s
= s1 ◦ · · · ◦ sk .

Thus, j and k satisfy the statement of the lemma. □

Next, in Lemma A.4, we show that a linked pair can be

found on top of every large enough stack content, without

caring about reachability from the initial configuration.

Lemma A.4. There is a constant G ≤ exp(exp(|P|)) such
that for every sequence of nonempty stack contents α1, . . . ,αn
with n ≥ G there exist indices j,k such that 1 ≤ j < k ≤ G
and (α1 . . . α j ,α j+1 . . . αk ) is a linked pair.
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Proof. Let S be the set of binary relations overQ , and let ◦ be
the operation of relation composition. Clearly ◦ is associative,
and thus (S, ◦) is a semigroup. Moreover, for a stack content

α let

f (α) = {(p,q) ∈ Q ×Q | q ∈ |α⟩(p)} .

Because |β⟩(|α⟩(p)) = |αβ⟩(p), we have that f (α) ◦ f (β) =
f (αβ) for all stack contents α , β . Notice also that |α⟩(T ) =
{q | ∃p ∈ T . (p,q) ∈ f (α)} for every set of control states

T ⊆ Q ; in particular f (α) determines |α⟩. We take

G = 2
9·2|P |2 ≥ 2

9·2|Q |2
= 2

9· |S | .

Consider now a sequence of stack contentsα1, . . . ,αn with
n ≥ G. For every i ∈ [1,n], let si = f (αi ). By Lemma A.3,

there are indices j,k such that 1 ≤ j < k ≤ 2
9· |S | ≤ G, and

sj+1 ◦ · · · ◦ sk is an idempotent, and s1 ◦ · · · ◦ sj = s1 ◦ · · · ◦ sk .
We have that

f (α j+1 . . . αk ) = sj+1 ◦ · · · ◦ sk
= (sj+1 ◦ · · · ◦ sk ) ◦ (sj+1 ◦ · · · ◦ sk )
= f (α j+1 . . . αkα j+1 . . . αk ) ,

meaning that |α j+1 . . . αk ⟩ = |α j+1 . . . αkα j+1 . . . αk ⟩. Like-
wise,

f (α1 . . . α j ) = s1 ◦ · · · ◦ sj = s1 ◦ · · · ◦ sk = f (α1 . . . αk ) ,

meaning that |α1 . . . α j ⟩ = |α1 . . . αk ⟩. The two equalities

imply that (α1 . . . α j ,α j+1 . . . αk ) is a linked pair. □

Lemma 3.5. There is a constant F ≤ exp(exp(|P|)) such
that every configuration qδ of P reachable from an initial
configuration q0α0 with |δ | ≥ F + |α0 | can be written as
qδ = qαβγ , where (α , β) is a linked pair, |α |, |β | ≤ F , and all
configurations of the form qαβ iγ (where i ∈ N) are reachable
from q0α0.

Proof. We take F = G · |P|2, where G is the constant from

Lemma A.4.

Let ϱ be a run from q0α0 to a configuration qδ such that

|δ | ≥ F+|α0 |. Denoten = |δ |,m = n−|α0 |, and δ = X1 . . .Xn .

Observe that ϱ can be split into subruns ϱm+1, ϱm , . . . , ϱ1,
where the runs ϱi for i ∈ [1,m] are augmenting and such

that Stack-Growth(ϱi ) = 1 (the run ϱm+1 needs not to be

augmenting, and satisfies Stack-Growth(ϱm+1) = 0). To

this end, for d = m,m − 1, . . . , 1 we split the run on the

last moment when Xd+1 is the topmost stack symbol. More

formally, for d ∈ [0,m], we take
id = max{i ∈ [0, |ϱ |] | Stack-Growth(ϱ[i, |ϱ |]) ≥ d} ,

and we define ϱm+1 = ϱ[0, im] and ϱd = ϱ[id , id−1] for d ∈
[1,m] (notice that i0 = |ϱ |). Then, for d ∈ [1,m + 1], let
qd = ϱ(id−1) be the control state in which ϱd ends.

Because F + 1 ≥ G · |P|2 + 1 ≥ G · |Q | · |Γ | + 1, by the

pigeonhole principle there exist G + 1 indices 1 ≤ ℓ0 < ℓ1 <
· · · < ℓG ≤ F + 1 such that (qℓi ,Xℓi ) = (qℓj ,Xℓj ) for all

i, j ∈ [0,G]. Recall that F + 1 ≤ m + 1, by assumption. Let

us split the stack δ at these indices: let

α0 = X1 . . .Xℓ0−1,

αi = Xℓi−1 . . .Xℓi−1 for all i ∈ [1,G], and
αG+1 = XℓG . . .Xm .

Notice that αi for i ∈ [1,G] are nonempty.

Next, we apply Lemma A.4 to the sequence α1, . . . ,αG
(thus, without α0 and αG+1). It gives us indices j,k such

that 1 ≤ j < k ≤ G and (α1 . . . α j ,α j+1 . . . αk ) is a linked

pair. We take α = α0α1 . . . α j , and β = α j+1 . . . αk , and γ =
αk+1 . . . αG+1. By definition δ = αβγ and |α |+ |β | = ℓk −1 ≤
F . Moreover (α , β) is a linked pair (notice that |α1 . . . α j ⟩ =
|α1 . . . αk ⟩ implies |α0α1 . . . α j ⟩ = |α0α1 . . . αk ⟩).
It remains to prove that all configurations of the form

qαβ iγ (with i ∈ N) are reachable from q0α0. Take some

i ∈ N. We can reach qαβ iγ as follows. First, starting from

q0α0, we use the composition of the subruns ϱm+1, ϱm , . . . ϱℓk
to reach qℓkγ . Next, we repeat i times the composition of the

subruns ϱℓk−1, ϱℓk−2, . . . , ϱℓj to reach qℓj β
iγ . Finally, we use

the composition of the subruns ϱℓj−1, ϱℓj−2, . . . ϱ1 to reach

qαβ iγ . Here it is important that (qℓj ,Xℓj ) = (qℓk ,Xℓk ); recall
that ϱℓk−1 starts in the control state qℓk while ϱℓj ends in the

control state qℓj , and that the topmost symbol of γ is Xℓk

while the topmost symbol of β isXℓj . It is also important that

the subruns ϱℓk−1, ϱℓk−2, . . . , ϱ1 are augmenting. These facts

imply that the middle fragment, creating β , can be repeated

as many times as we want, and then it can be followed by

the final fragment, creating γ . □

Remark. While proving Lemma A.3 we use Simon’s theo-

rem, which is a quite powerful tool. Nevertheless, the authors

are not aware of any “trivial” proof of Lemma A.3. It seems

that while proving this lemma directly, it is anyway nec-

essary to use algebraic arguments involving the theory of

semigroup ideals (the relations of Green), like in the proof

of the Simon’s theorem. In particular, a proof of Lemma A.4

using Ramsey’s theorem, without referring at all to the semi-

group structure, gives us a non-elementary upper bound.

Proof of Lemma 3.6
Lemma 3.6. Let r ∈ Q , and let (α , β) be a linked pair. Then
for every r ′ ∈ |α⟩(r ) we have |β⟩(r ′) ⊆ |α⟩(r ).

Proof. This follows directly from the definitions:

|β⟩(r ′) ⊆ |β⟩(|α⟩(r )) = |αβ⟩(r ) = |α⟩(r ) . □

Proof of Lemma 3.7
Lemma 3.7. Let q ∈ Q , and α ∈ Γ∗, and γ ,γ ′ ∈ RegStr(Γ).
If rγ ∼ rγ ′ for every r ∈ |α⟩(q), then qαγ ∼ qαγ ′.

Proof. Fix q,α ,γ ,γ ′
as in the statement of the lemma. We

define

R = (∼) ∪ {(pδγ ,pδγ ′) | p ∈ Q,δ ∈ Γ∗,qα →∗ pδ } .
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Observe that in particular (qαγ ,qαγ ′) ∈ R, thus it is enough
to prove that R is a bisimulation.

To this end, consider a pair (s, s ′) ∈ R, and assume that

s →a t . We should prove that there exists some t ′ such that

s ′ →a t ′ and (t , t ′) ∈ R. If (s, s ′) ∈ (∼), the existence of an
appropriate t ′ follows from the fact that ∼ is a bisimulation.

Thus, assume that s and s ′ are of the form pδγ and pδγ ′
,

respectively, where qα →∗ pδ . If δ = ε , then p ∈ |α⟩(q),
so we actually have s = pγ ∼ pγ ′ = s ′ by assumptions of

the lemma. This means that the case of δ = ε is already

covered by the case of (s, s ′) ∈ (∼). It remains to consider

the situation when δ = Xη for some X ∈ Γ and some η ∈ Γ∗.
Because pXηγ = s →a t , necessarily t = rβηγ for some

transition (p,X ,a, r , β) ∈ ∆. Take t ′ = rβηγ ′
. Due to the

same transition we have that s ′ = pXηγ ′ →a t ′. Moreover,

qα →∗ pδ →∗ rβη, and in consequence (t , t ′) ∈ R.
We should now also consider t ′ such that s ′ →a t ′, and

prove that there exists some t such that s →a t and (t , t ′) ∈ R.
This is completely symmetric to what we have just done. □

Proof of Lemma 3.8
Lemma 3.8. LetU ⊆ Q , β ∈ Γ+,γ ∈ RegStr(Γ), and i, j ∈ N.
If |β⟩(U ) ⊆ U , and rβ iγ ∼ rβ jγ for all r ∈ U , and i , j, then
actually rβ iγ ∼ rβ jγ ∼ rβω for all r ∈ U .

Proof. Fix U , β , i, j as in the statement of the lemma, and

assume (without loss of generality) that i < j. We define

R = {(s,pδβω ) | s ∈ Q × Γ∗,p ∈ Q,δ ∈ Γ∗,

s ∼ pδβ iγ ,∃r ∈ U . rβ j−i →∗ pδ } .

Observe that in particular (rβ jγ , rβω ) ∈ R for all r ∈ U (we

write rβ jγ as rδβ iγ for δ = β j−i , which implies the thesis if

R is a bisimulation.

In order to prove that R is a bisimulation, consider a pair

(s,pδβω ) ∈ R. By definition s ∼ pδβ iγ and rβ j−i →∗ pδ for

some control state r ∈ U .

Assume first that |δ | > 0, that is, δ = Xη for some X ∈
Γ,η ∈ Γ∗. Suppose that s →a t for some configuration t ; we
should prove the existence of a configuration t ′′ such that

pXηβω →a t ′′ and t ∼ t ′′. Because s ∼ pXηβ iγ , there is t ′

such that pXηβ iγ →a t ′ and t ∼ t ′. Necessarily t ′ = qαηβ iγ
for some transition (p,X ,a,q,α) ∈ ∆. Take t ′′ = qαηβω .
Due to the same transition we have that pXηβω →a t ′′.
Moreover, rβ j−i →∗ pXη → qαη, so (t , t ′′) ∈ R.

Conversely, suppose that pXηβω →a t ′′ for some config-

uration t ′′; we should prove the existence of a configuration

t such that s →a t and t ∼ t ′′. Necessarily t ′′ = qαηβω for

some transition (p,X ,a,q,α) ∈ ∆. Due to the same transition

we have that pXηβ iγ →a qαηβ
iγ , and because s ∼ pXηβ iγ ,

there is a configuration t such that s →a t and t ∼ qαηβ iγ .
Again, rβ j−i →∗ pXη → qαη, so (t , t ′′) ∈ R.

It remains to consider the case when δ = ε . Because |β⟩(·)
is monotone, |β⟩(U ) ⊆ U implies |β⟩(|β⟩(U )) ⊆ |β⟩(U ), and
in effect |βk ⟩(U ) ⊆ U for all k ≥ 1. Because rβ j−i →∗ pδ =

p, we have that p ∈ |β j−i ⟩(U ) ⊆ U . Thus, by assumption

of the lemma, we have that pβ iγ ∼ pβ jγ . Recall also that

s ∼ pβ iγ . Taking δ ′ = β j−i , we have that pδβω = pδ ′βω , and
s ∼ pδ ′β iγ , and pβ j−i →∗ pδ ′

. This means that the case of

δ = ε is already covered by the previous case (where we take
δ ′

instead of δ ). □

Proof of Corollary 3.9
Corollary 3.9. Letq ∈ Q , let (α , β) be a linked pair, letγ ,γ ′ ∈
RegStr(Γ), and let i, j ∈ N. If rβ iγ ∼ rβ jγ for all r ∈ |α⟩(q),
and i , j, then qαβ iγ ∼ qαβ jγ ∼ qαβω .

Proof. For U = |α⟩(q) we see that |β⟩(U ) = U (because

(α , β) is a linked pair). In effect, Lemma 3.8 implies that

rβ iγ ∼ rβ jγ ∼ rβω for all r ∈ |α⟩(q), and thus qαβ iγ ∼
qαβ jγ ∼ qαβω by Lemma 3.7. □
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