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As self-tracking has evolved from a niche movement to a mass-market phenomenon, it has become possible
for people to track a broad range of activities and vital parameters over years, even decades. The associated
opportunities, as well as the challenges, have had very little research attention so far. With the phenomenon of
long term tracking becoming widespread and important, we have identified its key characteristics, by drawing
on work from Ubicomp, HCI, and health informatics. We identify important differences between long- and
short-term tracking, and discuss consequences for the tracking process. Going beyond previous models for
short-term tracking, we now present a model for long-term tracking, integrating its distinctive characteristics
in purposeful and incidental tracking. Finally, we present major topics for future research.
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1 INTRODUCTION

In recent years, self tracking of physical activity, sports, sleep, and much more has become wide-
spread. This has spurred substantial work in the CHI community, demonstrating benefits of short-
term tracking (e.g. [1]), over a couple of weeks or months, with health being the most frequent,
but not the only application domain. With the increasing pervasiveness of dedicated tracking
devices, of smartphones and smartwatches [7] with their multitude of sensors, with digital diaries
for e.g. food, mood, or sleep, but also as a by-product of our digital life, people are increasingly
accumulating long term tracking data, ranging from short bursts of tracking to multi-year records
of activity or health data. We are just starting to understand how this introduces new opportunities,
as well as challenges [3]. Building upon a workshop conducted at CHI 2018 [4], we subsequently
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identify key features of long-term tracking, present a model for long-term tracking, and suggest a
research agenda.

2 SHORT-TERM VERSUS LONG-TERM TRACKING

It has frequently been confirmed that many people drop out of self-tracking within 3 to 6 months
(e.g. [6]). We define long-term tracking as *monitoring parameters of one’s own life in timescales
of years’. This may include multiple phases of changing tracking behavior, multiple short-term
goals, or periods of habitual and even inadvertent tracking e.g. with smartphones. For people to
maintain a practice, amidst the realities of everyday life, leads to factors which are also relevant
in short-term self-tracking, but have specific characteristics and properties in the long-term and
therefore need special consideration:

Incompleteness of data: While trackers may be used every day in the short term, this may
change in the long term as people will undoubtedly stop tracking for a few hours or days, or
for weeks, months, or years, intentionally or accidentally, resulting in incomplete data [8].
Gaps in the data, which in the short term are often considered an exception, are therefore
the rule and can even carry information of their own.

Implicit tracking with secondary sources: With the increasing digitization of daily life, we
collect tremendous amounts of data about ourselves in secondary sources such as social
networks, chats, workplace productivity software, online services etc. While such data
may be unstructured, heterogeneous and fragmentary, the longitudinal coverage makes it a
particularly interesting supplementary source to understand e.g. context and connectedness
over the long-term.

Subjectivity of data: Data is not just an objective measurement. It may be amenable to multiple
interpretations [8]. It may also tell a story of a person’s context, situation, setting, and
memories at the time it was collected [5], making it a memento of e.g. happy changes in life,
stressful times, or diseases.

Applications for long-term tracking: There are numerous new potential applications for
long-term tracking beyond behavior support, such as early-warning systems identifying slow
changes, or supporting decisions in situations of change, based on past experiences [5].

Secondary user: Parents of small children, medical experts, formal or informal caregivers and
other secondary users may have a legitimate reason to access the tracked data, but are not
involved in the challenges of the tracking itself. In the long-term this raises additional issues
such as changing data ownership and responsibility from the parents to an adolescent.

Ethical, legal, and social implications: With long-term tracking, data becomes a virtual
representation of the person, capable of surfacing trends in their health and relationships.
Long-term data therefore becomes a highly personal and life-long asset that requires even
more attention to questions about data protection, access rights, security, privacy, or data
ownership.

3 THE LONG-TERM TRACKING FEEDBACK LOOPS

As existing models of short-term tracking such as [2] do not account for these aspect, we propose
the long-term tracking feedback loops in Figure 1. Here, the user is both producer of data and
consumer of services, with potentially conflicting demands. As a producer of data, the user may
decide to trade-off data quality because they want to reduce the effort they need to make for data
collection. This may result in less data or lower-quality data. As a consumer of the services delivered
by applications, there is a need for enough high-quality data. Consequently, we distinguish two
different types of tracking:
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Fig. 1. Long-term self-tracking feedback loop. The outer, clockwise loop represents purpose-driven tracking,
starting with the user’s need for a specific service. The inner, counter-clockwise loop reflects incidental
tracking with the user as a producer of data. These two loops are affected by a potential conflict between
minimizing the demands upon the user and the need for data that makes applications effective.

Purposeful tracking is driven by a user’s need for a certain form of support or service. The
application delivering this therefore requires certain data, which must come from relevant tracking
devices and sources. Ultimately, the purpose drives the tracking behavior required of the user.
Changes in the user’s tracking goals and their commitment to tracking have often compromised
adherence [8], resulting in incomplete or missing data.

By contrast, in incidental tracking the user does not have a specific need. Tracking happens as a
side-effect of routinely using devices or feeding secondary sources. Type, amount, and quality of
data are determined by the user’s tracking routine, not by potential future needs. These potential
limitations of the data may in turn limit the types of services that an application can offer.

In practice tracking happens on a continuum from purely purposeful to solely incidental. Moni-
toring key parameters of diabetes over years is highly purposeful, but still may include incidental
tracking e.g. of physical activity using a smart watch initially purchased to help stay on top of
email. A key challenge when designing applications for this continuum is to match the required
effort and anticipated benefits.

4 IMPLICATIONS AND FUTURE DIRECTIONS

Long- and short-term tracking share many properties and challenges. However, for many reasons,
research so far has primarily focused on people’s short-term goals and needs. We suggest that
the research community is missing an understanding of the specific opportunities of long-term
tracking. This requires understanding how long-term tracking is different from short-term tracking
that we identified above. It is more incidental rather than purposeful, and less likely to be for a
specific, proximal goal. It may involve repurposing data giving it value the user did not anticipate. It
can change as people’s long term goals and understanding of them evolve. The data and its quality
is defined by the user’s willingness to track, and applications must be satisfied with whatever data
is there. The main challenge is, therefore, to maximize the value of existing data. This calls for
future research, including, but not limited, to:

Systems issues for implicit tracking: This requires infrastructure, specifically designed to
ensure security, user control of privacy and data provenance and methods to manage and
analyze diverse data sources with heterogeneous data.
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Interfaces to visualize long-term data: Visualizing and exploring one’s own data is the ini-
tial step to self-understanding. However, short-term approaches do not scale well when it
comes to unstructured, heterogeneous, and large long-term data. New visualization tech-
niques are needed to make long-term data accessible and support sense-making by the
layperson.

Interfaces for long-term analyses: Beyond visualization, we also need systems that can
analyze and understand the heterogeneous, incomplete, and subjective data. We foresee
systems that use rich analyses to identify changes in life and in the user’s context, using the
same, available data to answer different questions as they evolve, with a person’s changing
context over a life-time and the impact of new medical knowledge.

Practice for long-term interventions: Long-term data offers tremendous opportunities for
life-long support. Concepts from short-term interventions cannot directly be applied in the
long term. We need generic concepts for long-term interventions that can easily be applied
in concrete use cases by designers and developers.

Long-term tracking is still in its infancy. While the boundaries to short-term tracking are blurry,
characteristics of long-term tracking require special consideration. It is even more multifaceted
and takes places in real life, with all its intricacies, making it both exciting and challenging, with
tremendous opportunities for research and practice. We believe that future research should and
will reveal exciting opportunities to deliver real benefits from long-term self-tracking to the user.
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