
13

Network Interface Architecture for Remote Indirect Memory
Access (RIMA) in Datacenters

JIACHEN XUE, Nvidia

T. N. VIJAYKUMAR and MITHUNA THOTTETHODI, Purdue University

Remote Direct Memory Access (RDMA) fabrics such as InfiniBand and Converged Ethernet report latency

shorter by a factor of 50 than TCP. As such, RDMA is a potential replacement for TCP in datacenters (DCs)

running low-latency applications, such as Web search and memcached. InfiniBand’s Shared Receive Queues

(SRQs), which use two-sided send/recv verbs (i.e., channel semantics), reduce the amount of pre-allocated,

pinned memory (despite optimizations such as InfiniBand’s on-demand paging (ODP)) for message buffers.

However, SRQs are limited fundamentally to a single message size per queue, which incurs either memory

wastage or significant programmer burden for typical DC traffic of an arbitrary number (level of burstiness)

of messages of arbitrary size.

We propose remote indirect memory access (RIMA), which avoids these pitfalls by providing (1) network in-

terface card (NIC) microarchitecture support for novel queue semantics and (2) a new “verb” called append. To

append a sender’s message to a shared queue, the receiver NIC atomically increments the queue’s tail pointer

by the incoming message’s size and places the message in the newly created space. As in traditional RDMA,

the NIC is responsible for pointer lookup, address translation, and enforcing virtual memory protections.

This indirection of specifying a queue (and not its tail pointer, which remains hidden from senders) handles

the typical DC traffic of an arbitrary sender sending an arbitrary number of messages of arbitrary size.

Because RIMA’s simple hardware adds only 1–2 ns to the multi-μs message latency, RIMA achieves the same

message latency and throughput as InfiniBand SRQ with unlimited buffering. Running memcached traffic on

a 30-node InfiniBand cluster, we show that at similar, low programmer effort, RIMA achieves significantly

smaller memory footprint than SRQ. However, while SRQ can be crafted to minimize memory footprint

by expending significant programming effort, RIMA provides those benefits with little programmer effort.

For memcached traffic, a high-performance key-value cache (FastKV) using RIMA achieves either 3× lower

96th-percentile latency or significantly better throughput or memory footprint than FastKV using RDMA.

CCS Concepts: • Networks → Datacenter networks; • Hardware → Networking hardware;

Additional Key Words and Phrases: Network Interface, Indirection, remote append, receive queue manage-

ment, remote direct memory access

This work was done when J. Xue was a graduate student at Purdue University.

This work was supported in part by the National Science Foundation under grant numbers 1633412-IIS and 1633318-IIS.

Authors’ addresses: J. Xue, Nvidia, 2788 San Tomas Expressway, Santa Clara, CA, 95051; email: xuejiachen@gmail.com;

T. N. Vijaykumar and M. Thottethodi, Purdue University, 465 Northwestern Ave, West Lafayette, IN, 47907; emails: vijay@

ecn.purdue.edu, mithuna@purdue.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2020/05-ART13

https://doi.org/10.1145/3374215

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3374215
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3374215&domain=pdf&date_stamp=2020-05-29


13:2 J. Xue et al.

ACM Reference format:

Jiachen Xue, T. N. Vijaykumar, and Mithuna Thottethodi. 2020. Network Interface Architecture for Remote

Indirect Memory Access (RIMA) in Datacenters. ACM Trans. Archit. Code Optim. 17, 2, Article 13 (May 2020),

22 pages.

https://doi.org/10.1145/3374215

1 INTRODUCTION

Datacenter (DC) network performance is critical for most modern web/cloud services whose back-
ends run within DCs. While the dominant TCP/IP over Ethernet model has many advantages
including scalability and stability, it suffers from significant latency (e.g., milliseconds). In con-
trast, RDMA over InfiniBand and RDMA over converged Ethernet (RoCE) are attractive for their
low latency (e.g., microseconds) [13, 26, 28] as well as improved tail latency at datacenter scales
[51]. Unfortunately, there remain several challenges in achieving high performance in an efficient
manner.

RDMA’s basic primitives, while well suited for high-performance computing (HPC), are a mis-
match for the communication typical in today’s DCs. Specifically, the request-response model of
DCs must accommodate the following traffic constraints of typical DC workloads (e.g., key-value
stores, Web search, dynamic advertisements, and news feeds): (1) arbitrary sources of traffic (arb-

src): Because of sharding of content, objects may be widely distributed across many servers any
of which may respond (e.g., data may be sharded across 5,000 servers in a modern DC) [8]; (2) ar-
bitrary message sizes (arb-size): The key/values that are exchanged vary from small text updates
(tens/hundreds of bytes) to large videos/images (MBs) [6]; and, (3) arbitrary burstiness (arb-num):
Message arrival may be bursty—the well-known incast problem [2])—with the peak rate limited
only by the line rate (e.g., 56 Gb/s for InfiniBand FDR). In contrast, HPC workloads typically have
fewer sources and not as much variation in message sizes. Even in HPC, a large number of potential
sources has been recognized to be a challenge [38].

Memory allocation to hold incoming messages is a key challenge in managing communication.
TCP uses shared buffers to temporarily hold packets of multiple messages, which are then de-
livered by the operating system (OS) to the appropriate process. Because the buffers are shared
across processes, the amount of memory allocated for the buffers can be small but OS involve-
ment is necessary, which is slow. In contrast, under the RDMA read/write model (i.e., one-sided
communication), memory for private buffers is proactively pre-allocated and pinned via memory
registration. While Infiniband’s On-Demand Paging (ODP) offers some relief from always pinning
memory from different program phases, the near-term message receive buffers that we focus on
cannot benefit from ODP, as we explain later in Section 2.2. The memory address is exchanged
out-of-band enabling fast read/write from remote servers without OS involvement. This strategy
effectively means that memory regions must be pre-allocated per sender; sharing a region among
multiple senders is not possible, as one sender’s data may be overwritten by another before be-
ing read (due to the arb-src constraint). Further, because of arb-size, and arb-num constraints, the
baseline allocated memory must be large (even though there need not be any fragmentation). Ef-
fectively, handling the above constraints via proactive pre-allocation requires provisioning for the
worst case of any possible communication, which results in large, grossly underutilized memory.

In contrast to RDMA’s read/write model, the send/receive model (i.e., two-sided communication)
requires the receiver to proactively post pre-allocated per-message memory buffers before the
messages arrive. Because messages are copied to distinct memory buffers, the receive queue may
be shared among the senders (unlike in RDMA read/write where writes to a given address do
overwrite one another), which alleviates the arb-src constraint. The InfiniBand Shared Receive

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.

https://doi.org/10.1145/3374215


Network Interface Architecture for Remote Indirect Memory Access (RIMA) in DCs 13:3

Queue (SRQ) [22] achieves this purpose. Further, as long as enough memory is pre-allocated and
posted to the receive queues to handle the line rate, incoming messages stay intact (satisfying the
arb-num constraint). The send/receive semantics is that a newly received message is copied to
the next available buffer, in the posted order, at the head of a receive queue. Because the senders

sharing a queue would not know the size of the next-available buffer at the receiver, each queue can

fundamentally support only one buffer size. Unfortunately, the arb-size requirement continues to be
a problem due to this single-size constraint. Separating and specializing for small and large messages

to handle arb-sizehurts tail latency or significantly degrades memory footprint or programmability

(Section 5.2).
We propose Remote Indirect Memory Access (RIMA) as a better-suited transport primitive for

DCs. RIMA provides NIC microarchitecture support for novel queue semantics and a new “verb”
called append, which allows programmers to append messages of arbitrary size to named, circular
queues (i.e., one-sided communication with indirection). An append message looks up the tail
pointer of the queue at the receiver and atomically increments the tail pointer by the message size
(modulo the queue size) and copies the message into the newly created space in the circular queue
(only the modulo increment is atomic; the copy is not). The tail pointer is in the receiver’s virtual
address space, and as in traditional RDMA, the NIC performs address translation and enforces
protection. The head pointer handling is straightforward (Section 3.2). RIMA’s simple and fast
hardware—a small lookup table and an adder that adds 1–2 ns to the multi-μs message latency—
can handle any number of messages of any size from any source. Further, the senders are aware
only of the indirect address (the name of the queue) and not the value of the tail pointer (as is the
case in RDMA).

The tail-pointer increment assumes a pre-allocated memory buffer. RIMA ensures that memory
allocation overhead is hidden in the background and thus does not affect message latency. RIMA
allocates, and keeps replenished, a reserve pool to accommodate enough space as per the line
rate. To ensure adequate allocated memory, we use the traditional water-mark-based approach
to manage the reserve pool. Whenever the reserve pool runs low, RIMA expands the reserve
pool allocation in the background while continuing to accommodate message arrivals in the
foreground and shrinks the allocation when message queues are drained. As such, queue sizes
grow and shrink as needed without exposing the allocation latency to the messages.

In summary, the key contributions of this article are as follows:

• We observe that RDMA primitives do not satisfy the three key constraints (arb-src, arb-size,
and arb-num) of typical request/response traffic in DCs. While subsets of these constraints
may be handled without footprint problems (e.g., References [4, 13, 28]), DCs must handle
all three.

• We propose RIMA, which simultaneously satisfies all the three constraints with little pro-
grammer effort. RIMA provides NIC microarchitecture support for novel queue semantics,
i.e., one-sided communication with indirection, by combining indirect access and reactive
tail-pointer manipulation using simple hardware.

RDMA’s SRQ can also satisfy a subset of the constraints as it already handles single-size mes-
sages, large or small, from arbitrary sources at arbitrary rates in a shared hardware queue. RIMA’s
novelty is in enabling arb-size messages in a shared hardware queue to tackle the memory foot-
print problem while satisfying the arb-src and arb-num constraints. Some previous schemes have
employed shared hardware queues for word-size [40] or cache-block-size [11]—all single-size—

messages that are too small to cause footprint issues and are subsumed by SRQ. In one scheme [11],
larger “bulk” transfers are fragmented into cache-block-sized packets requiring software TCP-like
stack not present in RDMA. There is no shared hardware queue, in InfiniBand or elsewhere, that

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



13:4 J. Xue et al.

can handle arb-size messages. Further, RIMA’s contribution is in the network interface and not the
network for which there are numerous high-performance schemes (e.g., References [1, 3, 10, 12,
32, 33, 49]), all orthogonal to RIMA.

Because RIMA adds little latency, it achieves the same message latency and throughput as SRQ
with unlimited buffering. Running memcached traffic on a 30-node InfiniBand cluster, we show
that at similar, low programmer effort for a single queue, RIMA achieves significantly smaller
memory footprint than SRQ, reducing impractical, multi-GB footprints to small, few-hundred-MB
ones. Further, multiple SRQs oblivious of the message-size distribution continue to yield imprac-
tical footprints for memcached. While SRQ’s footprint can be shrunk by expending significant
programming effort on carefully customizing multiple queues for the given distribution, RIMA
provides those benefits without such effort, which must be repeated for each application in the case
of SRQ. For evaluation using memcached traffic, we develop a HERD-like key-value cache called
FastKV (described later in Section 5.2). FastKV using RIMA achieves either 3× lower 96th-percentile
latency, or significantly better throughput or memory footprint than FastKV using RDMA.

2 CONTEXT AND SCOPE

We offer a brief background on InfiniBand RDMA and its operation to highlight the overheads in
InfiniBand terms.

2.1 InfiniBand Memory Overhead

Queue Pairs (QPs) are a central primitive of InfiniBand communication, analogous to TCP/IP sock-
ets. Each QP consists of a Send Queue and a Receive Queue. Both the source and destination nodes
must create a QP to communicate.

The two most popular InfiniBand transportation modes are Reliable Connection (RC) and Unre-
liable Datagram (UD), which are roughly analogous to TCP and UDP. In the RC mode, QPs need to
be connected before any data communication, which necessitates a source QP and destination QP
for every communicating pair. UD, however, is connection-less, where each QP can communicate
with any other QP.

There are two major sources of memory consumption for applications using InfiniBand.

InfiniBand Context Memory: This memory is allocated for creating InfiniBand communication
context, such as Queue Pairs. A single QP context consumes as much as 68 KB of memory in MVA-
PICH 0.9.8 [35]. Context memory was a scalability bottleneck for traditional RC that needed per-
connection QP context. However, with InfiniBand’s Dynamic Connected Transport (DCT) [22],
context memory is minimized even for RC as a single DCT QP can be used to communicate with
many other QPs. Context memory does not pose a problem for UD, which is connection-less.

Data Buffer Memory: Data buffer memory stores data intended for communication. Such mem-
ory regions are required to be pre-allocated in physical memory before they can receive incoming
messages. While on-demand paging [36] can allocate physical memory lazily, that approach is only
meaningful for postponing physical memory allocation over program phases (and not for receive
buffers that are expected to receive messages in the near-term). Each buffer consumes at least the
size of an OS memory page. Because the problem of context memory has been addressed for both
UD and RC, RIMA focuses on the data buffer memory overhead, which exists for both RC and UD.

In InfiniBand programming, read/write (i.e., one-sided) communication is called memory seman-

tics where the receiver is not aware of the initiator’s read or write operations. The data buffer in
memory semantics is typically not shared due to potential data races among multiple senders writ-
ing to the same buffers. Avoiding races requires per-sender buffers, which can cause the memory
footprint to grow, i.e., it is not scalable when there are a large number of potential senders (arb-src).

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



Network Interface Architecture for Remote Indirect Memory Access (RIMA) in DCs 13:5

Table 1. Programmer Effort Comparison

Task No. Task (SRQ) Task (RIMA)

1 Determine number and buffer sizes of queues No effort (only one queue)

2 Determine reserve pool size of all queues Determine reserve pool size of one queue

3 Determine minimum-footprint configuration No effort (only one queue

4 Co-ordinate across all clients No effort (only one queue)

5 Coordinated performance tuning of servers and clients Servers may be independently tuned

To lower the memory overhead of per-sender buffers, InfiniBand has proposed SRQ [22], which
uses send and receive (i.e., two-sided) communication, also known as channel semantics. Instead of
requiring each QP to physically allocate its own memory, the SRQ lets multiple QPs to work on
a shared memory region. However, the receiver must pre-post “receives” with associated buffers
large enough to hold the incoming messages. If the message size exceeds the size of the pre-posted
receive buffer, then an error would be raised. Unfortunately, a single SRQ can handle only a single
message size, because the senders sharing an SRQ would not know the size of the next-available
memory buffer at the receiver, which consumes the buffers strictly in the posted order. To restate

this point in stark terms, allowing multiple sizes in a single SRQ requires the receiver to have perfect

knowledge of the sequence of future message sizes so that receives may be pre-posted accordingly. As
we show below in Section 2.2, this fundamental single-size limitation poses a challenge in satisfying
the arb-size constraint.

2.2 Alternatives to RIMA

RIMA requires hardware changes (albeit minimal). As such, it is worthwhile to consider software-
only alternatives to managing the memory footprint problem.

Single SRQ: Despite sharing of data buffers across QPs, SRQ still incurs significant overhead be-
cause of its single size limitation (first row of Table 6). Because message size can span a wide range
in DC traffic, SRQ can be used in one of two ways. A naive way is to use a single SRQ and pre-post
receives of the maximum message size. This approach requires the same, little programmer effort
as RIMA but leads to significant internal fragmentation (e.g., the average message size in Facebook
traffic is about 231 B, despite object batching, whereas the maximum is 1 MB [6]). Consequently,
the memory waste is unacceptably high (e.g., 13 GB per process as shown later in Section 5.1.1). We
note that the receiver buffer is for the whole message, not for the maximum transfer unit (MTU).
Thus, the memory waste would remain even if the MTU were 1 B.

Multi-SRQ: An alternative is to use multiple SRQs [15] of different buffer sizes and bin the message
sizes into the queues (second row of Table 6). Unfortunately, this approach degrades programma-
bility well beyond merely using a library to match messages to queues based on the message size.
Given a message size distribution, determining the optimal number and buffer sizes, that minimizes
the memory footprint, is not straightforward (e.g., memcached has as many as 42 distinct sizes
[41]). There are two memory components: (1) the active part of the queue, which holds the mes-
sages before service and is sized for the average message arrival rate and service time. (Task 1 in Ta-
ble 1) The other component is a reserve pool used when memory allocation is underway in case the
active part fills up due to slow service. This pool is sized assuming the worst-case message arrival
rate for a given message size during memory allocation (Task 2). We describe these size calculations
for both RIMA (only one queue) and SRQ (single or multiple queues) in Section 3.2.1. With one SRQ
using maximum-size buffers, the first component above is large, whereas with more queues us-
ing buffers closer in size to the actual messages, the second component increases. These opposing

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



13:6 J. Xue et al.

Table 2. Impact of RDMA Verbs’ arb-∗ Constraints on Systems

Verb Systems Arbitrary Arbitrary Arbitrary Comment

Size Source Number

RWrite HERD [28] (requests),
FaRM [13], RFP [52]

Yes No Yes RDMA Writes need per-sender
buffers, which is impractical
for DC scale systems

Send/recv FaSST [30], scale-out
ccNUMA [16]

No Yes Yes SRQ is used as our baseline for
comparisons.

trends imply a U-shaped frontier for the total memory as we add more queues (i.e., more queues
do not necessarily reduce the memory footprint), which gives the minimum footprint (Task 3). We
show this curve for memcached traffic in Section 5.1.1. Unfortunately, because each application’s
distribution is distinct, the entire optimization effort (Tasks 1–3) has to be repeated for each ap-
plication, worsening programmer burden. However, multiple queues oblivious of the distribution
(e.g., equi-spaced [15]) may yield impractical memory footprints (we show this result for mem-
cached traffic in Section 5.1.1). Further, using multiple queues (irrespective of distribution aware-
ness) also requires sender coordination in that messages must be binned according to their size and
sent to the appropriate queue (Task 4). Finally, all communicating entities must stay synchronized
on the bin sizes on an ongoing basis (Task 5). For example, changes in the distribution may require
changes in the binning that must be pushed to all the clients and servers simultaneously.

Thus, SRQ incurs either a large memory footprint or high programming effort. In contrast, RIMA
avoids both. Separating and specializing for small and large messages to handle arb-size hurts tail
latency, or significantly degrades memory footprint or programmability, as we show in Section 5.2.

As an aside, we note that InfiniBand’s on-demand paging (ODP) enables the applications to
map only as much memory as needed in any program phase, instead of pinning large amounts
of memory for the entire application duration, shrinking the application footprint. In our context,
however, the memory needed to hold the incoming messages in the mere 1-ms allocate-and-map
latency is large due to channel semantics (the single-message-size per SRQ restriction). This mem-
ory is the minimum needed to ensure that another allocation can occur before running out of
memory. There is no bloat due to pinning memory unnecessarily for long duration. Consequently,
ODP, including NIC TLB prefetch [36], cannot reduce the footprint.

2.3 Managing with a Fixed Memory Footprint Using Existing Verbs

While many recent papers argue for RDMA in DCs, the fact that they are constrained to use
existing verbs implies that they run into one or more of the arb-∗ constraints (see Table 2). This
section examines the specific challenges imposed by existing verbs on recently proposed systems.
For example, when using memory semantics (i.e., remote read/write), systems are forced to employ
per-sender private receive buffers to avoid races. This approach, which is used for requests in
HERD [28] and for both requests and responses in References [13, 52], is not scalable in typical
datacenters with thousands of senders and receivers for the key-value size distribution seen at
Facebook [46]. Similarly, with respect to the arb-size constraint (when using channel semantics
with SRQ as in References [16, 29, 30]), the choice of limiting the memory footprint of the receive
buffer in turn imposes message size limits (as we quantify later in Section 5). Such size limits will
require external fragmentation/reassembly to handle larger messages or use rendezvous with two
network round trips [26] (with corresponding latency/throughput penalties). There also exist non-
RDMA networks that similarly limit message size (e.g., the StarT-Voyager [4] network interface
uses messages no longer than 88 bytes), which violates the arb-size constraint. Attempting to limit

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



Network Interface Architecture for Remote Indirect Memory Access (RIMA) in DCs 13:7

Table 3. RIMA API

ibv_create_aq(. . .); Creating an append queue with initial attributes
ibv_destroy_aq(. . .); Destroy an append queue
ibv_query_aq(. . .); Query attributes of queue
ibv_modify_aq(. . .); Modify attributes of queue

footprint by limiting the number of outstanding requests (i.e., arb-num violation; not shown in
Table 2) will hurt throughput by introducing unnecessary inter-request gaps. We emphasize that
these limitations flow from the verbs and are not attributable to the systems that are forced to
work with deficiencies of existing RDMA verbs.

2.4 Scope

We focus on replacing TCP/IP with RDMA as a transport mechanism for two-sided re-
quests/responses between servers (as also done in many previous systems [16, 29, 30]. Some pro-
posals [13, 28, 52] use one-sided RDMA verbs to read/write directly from/to data structures on
remote servers (e.g., FaRM [13]). As argued in HERD [28], we do not consider such approaches
that require (a) the data structures to be pinned in memory, (b) multiple remote accesses for typi-
cal requests instead of more-efficient local accesses, and (c) cross-node synchronization for writes
to shared state. Further, we do not intend for RIMA to replace RDMA universally. RIMA is better
for request/response traffic. For large, non-request/response messages, RDMA memory semantics
may remain the better option (e.g., using rendezvous protocols [55]).

3 REMOTE INDIRECT MEMORY ACCESS

Conceptually, RIMA achieves queue semantics, i.e., one-sided communication with indirection, by
(1) using a layer of indirection to specify the destination memory address for messages and (2) reac-
tively increasing the queue tail pointer to accommodate incoming messages. We describe RIMA’s
design in terms of the programmer interface (Section 3.1) and the NIC operation (Section 3.2).

3.1 RIMA Interface

The programmer may create and destroy RIMA queues at the receiver. The queue identifier (ID)
must be communicated out-of-band (possibly over TCP/IP) to potential senders, like SRQ’s Queue
Pair information at setup. Each queue offers a single remote operation: sending a message of ar-
bitrary size to a remote queue on the target host. With RIMA, senders are free to intermingle
messages of any size (unlike in SRQ). Further, applications do not need any synchronization to co-
ordinate with other senders who may be sending to the same queue (unlike in RDMA read/write).
Although RIMA’s independence from message size means that it does not need multiple queues,
programmers can use multiple queues for logically distinct communication channels or for reduc-
ing contention. For example, applications may prefer to have control messages (e.g., heart beat)
and data messages (e.g., database objects) in separate queues.

Interface Details: Table 3 lists the new API we propose to manage RIMA’s “append queue” at
the local node. RIMA’s interface is based on InfiniBand’s DCT framework. RIMA’s append queue
(AQ) is a substitute for the SRQ. A sender posts a send using the new IBV_WR_ APPEND instead
of the old IBV_WR_SEND. Pre-posting receives is no longer required at the receiver’s side.

3.2 RIMA NIC Microarchitecture

RIMA assumes that a sufficiently large, contiguous, virtual address region can be reserved for its
queue buffers. The region is large enough to rule out the possibility of buffer overflow (e.g., a

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



13:8 J. Xue et al.

Fig. 1. RIMA network interface: Hardware organization.

significant fraction of physical memory size). Note that such a capacity constraint is not unique
to RIMA. No messaging system allows for unbounded growth of received messages. Given the
large 64-bit virtual address spaces in modern processors, such virtual address reservations have
little cost. The contiguous region is managed as a circular queue to ensure continuous operation
indefinitely (with a head-pointer where the oldest messages reside and a tail-pointer where new
incoming messages are placed).

Figure 1 illustrates RIMA hardware. We assume that RIMA messages arrive with message size
and queue-id in the packet header. RIMA messages look up the tail pointer table (TPT) to translate
the queue ID to the tail pointer (a virtual address). Such lookups are not unique to RIMA; SRQ
messages similarly look up Queue Pair information based on message headers. The tail pointer is
atomically incremented by the message size (modulo the queue size), thereby re-actively creating
buffer space at the receiver. In RIMA, the tail pointer is part of the queue’s attributes and is held in
the TPT on the NIC (Figure 1). As such, RIMA’s atomic-increment of the tail pointer is fast. There is
a TPT entry per queue, and typically there are only a few queues per receive process (Section 3.1),
where each queue can be shared among multiple senders. Thus, the number of queues per node
is independent of the number of senders or nodes in the cluster. Therefore, the TPT is a small
SRAM table (say 1K entries); and the increment is a hardware add. Thus, RIMA adds only 1–2 ns
(as per CACTI 6.0 [45]) to the multi-μs message latency. In contrast, RDMA’s native atomic fetch-
and-op operates on arbitrary locations in the host memory, which requires traversing the PCIe
bus (in addition to traversing the DC network from the sender to the receiver). As we show later,
this traversal is partly why emulating append using existing verbs degrades tail latency. With its
simple hardware, RIMA avoids this penalty.

After the atomic tail-pointer modulo-increment, the message is copied to the host memory start-
ing at the old tail pointer (i.e., in place in the circular queue); the NIC TLB holds the translation for
the pointer, as shown in Figure 1 (similarly to RDMA). Thus, while SRQ’s pre-posting of buffers can
handle only one message size per SRQ (Section 2.1), RIMA’s increment of the tail pointer after mes-
sage arrival allows any message size in one queue, satisfying the key arb-size requirement. Upon
completion of message copy to the queue, a message is posted to the completion queue, similarly
to SRQ operation. The application’s threads poll the completion queue and process messages after
delivery. Upon completion, the head pointer, which is maintained in the host application software,
is incremented to remove the processed messages from the queue and to auto-reclaim the space.
For simplicity, we move the head pointer in queue order. Under typical operation, the small dif-
ferences in processing times of concurrently processed messages (tens/hundreds of nanoseconds)

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



Network Interface Architecture for Remote Indirect Memory Access (RIMA) in DCs 13:9

do not justify sophisticated out-of-order reclamation of space. Further, even in more challenging
situations wherein a page-fault that is incurred when processing the message at the head of the
queue can stall the head-pointer movement, sophisticated garbage collection is unwarranted as
our RIMA’s footprint is small (e.g., 11 MB per process). Thus, RIMA can handle such occurrences
by expanding the queue size via physical memory allocation, which we discuss next.

While the functionality of the TPT (indirect lookup of tail pointer and atomic increment) could
be implemented in firmware, implementing it in hardware, as described above, is better for per-
formance similar to the NIC TLB implementation in hardware for performance reasons. Absent a
hardware implementation, the firmware-based TPT lookup, which may incur instruction process-
ing overheads and page faults, may not be fast enough to sustain the line rate.

3.2.1 Heavy-weight Allocation in Background. Though the virtual address region reserved for
each queue is large, physical memory is pre-allocated minimally (in the background) to ensure that
both buffered and future messages can be accommodated. RIMA relies on light-weight tail-pointer
increment to create room re-actively for messages. Such simple tail-pointer increment works in
RIMA, because we efficiently guarantee that adequate memory is allocated in the background to
handle arbitrary message arrival rates. On one hand, RIMA requires a pre-allocated pool of physical
memory to ensure that simple tail-pointer manipulation suffices. However, under this approach,
the pre-allocated memory beyond the tail pointer must also be counted toward RIMA’s physical
memory footprint. On the other hand, the footprint minimization goal pushes the design in the
opposite direction—it is better to grow and shrink the memory dynamically to minimize wasted
memory.

RIMA resolves this dilemma by decoupling the heavy-weight memory allocation (and possibly
OS-visible page mapping), which occurs in the background from light-weight tail-pointer manip-
ulation in hardware (which is incurred for each message). RIMA uses a reserve pool of physical
memory beyond the tail pointer to ensure that incoming messages can be accommodated without
seeing the heavy-weight allocation delay. While this reserve pool does add to the physical mem-
ory footprint, the size of the reserve pool is manageable in absolute terms, especially in today’s
servers.

To hide the heavy-weight allocation latency in the background, we employ a well-known strat-
egy of triggering an allocation at an appropriately set low watermark to ensure that the reserve
pool is replenished before exhaustion. Specifically, when the tail pointer crosses the watermark
upon an append, the NIC interrupts the host to allocate memory in the background (the head
pointer not involved). Note that messages continue to be received in the reserve pool below the
watermark while the reserve pool is being replenished with a fresh allocation. In the unlikely case
that a fresh allocation exceeds the large virtual circular queue region due to inordinate receiver
delay, the allocation software throws an error (similarly to exceeding the swap space). In practice,
however, senders will not continue to send requests to unresponsive receivers, irrespective of TCP,
RDMA, or RIMA. Instead, senders will switch to another receiver (e.g., another memcache server)
and resend their requests.

Computing the low watermark is a straightforward use of Little’s Law. Assuming that the la-
tency of allocating physical memory is L, a reserve pool that is larger than (linerate × L) can ac-
commodate any burst at line rate indefinitely if the newly allocated memory also equals (or ex-
ceeds) this size (see Table 4). To handle variability in memory allocation latency, we can use the
99th percentile latency. Because RIMA’s buffers are small (e.g., just over 200 MB), the use of higher
percentiles is an acceptable overhead to prevent far worse tree saturation due to buffers filling up.
The reserve pool exists below the watermark, above which some space is needed to buffer the mes-
sages before being processed (“Host Memory” in Figure 1). This space, called the active buffer, can

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



13:10 J. Xue et al.

Table 4. Parameters for Analytical Model

Active Buffer Reserve Pool
SRQmin ...max λ = <measured> msдrate = scaled (min)

W = memcpy cost L = 1ms
s =max msдsize =max

RIMA λ =<same as SRQ> linerate = 56Gbps
W = memcpy cost L = 1ms
s =<actual size>

also be computed using Little’s Law. Assuming messages arrive at λ (the line rate in messages/s),
the nominal processing time of each incoming message isW (s/message), and the nominal message
size is s (bytes), the size of the active buffer should be at least λ ×W × s (bytes) (see Table 4). Thus,
each watermark crossing triggers an allocation of a chunk as large as the active buffer and reserve
pool together.

As seen above, more memory is allocated when the low watermark is crossed. Conversely, an
empty chunk is freed so the OS can reclaim the physical memory as per virtual memory policy
(in the background without affecting message processing). Thus, the physical memory allocation
sweeps through the virtual circular queue, expanding and contracting on demand. Such sweeping
implies churn in the address translations and NIC TLB misses. An optimization is to reset the head
and tail pointers to the top of the virtual circular queue, whenever the queue becomes empty. The
host software resets head and tail pointers atomically to avoid intervening message arrival using
atomic-compare-and-swap (for the tail pointer) and locks (for the head pointer). Such resetting
encourages the reuse of the physical pages and translations, improving the TLB’s performance.

The watermark strategy, with the active buffer and reserve pool components, can be applied
to SRQ as well (single-queue or multi-queue option as described in Section 2.2). For SRQ’s active
buffer size, we assign λ and s corresponding to the nominal message size for each bin in λ ×W × s
(bytes) (single-SRQ has only one bin) (see Table 4). For SRQ’s reserve pools, we derive the sizes
using (msдrate × L ×msдsize). We assignmsдrate based on each bin’s minimum message size (arb-

num constraint) and msдsize based on the bin’s maximum message size (arb-size constraint) (see
Table 4). In the worst case, the queue may receive minimum-sized messages (for the bin) that must
be placed in entries that are capable of holding maximum-sized messages (for the bin). The key

difference between SRQ and RIMA is in the reserve pool size where the former is sized for maximum-

size messages at the rate of minimum-size messages while the latter is sized for the line rate. Note
that the reserve pool is an extension of the active buffer. Both hold buffers of a specific message
size to enable using the next-available buffer upon message arrival. Therefore, the reserve-pool
cannot be shared across SRQs.

3.3 Other Issues

Congestion control is key to scalability in DCs. While TCP provides end-to-end congestion control,
RDMA does not. However, congestion control is orthogonal to our memory footprint issue. RIMA
can leverage RDMA congestion control [17, 18, 44, 60]. Similarly, baseline RDMA handles failures
and MTU issues that RIMA can reuse.

4 EVALUATION METHODOLOGY

We evaluate RIMA in terms of memory footprint (active buffer + reserve pool), performance
(throughput), and programmability. For memory footprint, we measure the active buffer size on
a real cluster and calculate the reserve pool size that is anyway set analytically. For performance,

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



Network Interface Architecture for Remote Indirect Memory Access (RIMA) in DCs 13:11

Fig. 2. Cumulative distribution of Memcached [6] tuple size.

we emulate RIMA by using SRQ, but accounting for the footprint without the internal fragmenta-
tion. Such an emulation is valid, because RIMA does not affect SRQ message latency and throughput

(nanoseconds overhead over microseconds, as discussed in Section 3.2) obviating detailed microar-

chitecture simulations. To evaluate some of RIMA’s alternatives that affect programming effort
(multi-SRQ) and performance (large-message specialization), we use real-system runs.

4.1 Experimental Setup

Client/Server Setup (for Real Runs and Emulations): We evaluate RIMA on a 30-node test
bed. The test bed’s scale is not important, because RIMA’s goal is to ensure that a single server can
efficiently satisfy the arb-size, arb-num, arb-src constraints while serving traffic at the line rate,
irrespective of whether the traffic is from one or one thousand other servers (i.e., what matters is
the line rate, not how many servers generate the traffic). As such, we measure NIC message rates
and memory footprint on a single randomly chosen server in our test bed serving at the line rate.

Each node consists of eight 4-core AMD Opteron processors (with two hardware threads per
core) running at 2.8 GHz and 256 GB of memory. Each node is equipped with a Mellanox Connect
X-3 HCA (56 Gb/s) with PCI-Ex Gen2 interface. All the nodes run RHEL 6.7 with kernel version
2.6.32, and Mellanox OFED 2.4-1.0.0. Fifteen nodes serve as clients (analogous to front-end servers
in a DC) issuing requests to the remaining fifteen nodes, which act as servers. Clients send mes-
sages to randomly selected servers using send operations in the Reliable Connection (RC) trans-
port mode. Client-to-server mappings are managed as permutations to ensure server load balance.
Clients saturate the line rate at the server.

To avoid contention on a single queue (e.g., 32 receiver threads/processes on a single queue), we
use multiple queues with the associated memory footprint (irrespective of multiple processes [5]
or multiple threads [46]). We run 32 processes on each (32-core, 256-GB) node of our cluster (for
reference, Amazon AWS recommends a similar large-memory configuration named “r3.8xlarge”
with 32 cores and 244 GB memory [7] for memcaches). We report the memory footprint per process
as each receive queue is private to a process.

Workload: We use memcache, which is a key-value store employed by hundreds of datacenter
applications such as social networks, dynamic advertisements, and news feeds. Thus, our eval-
uation broadly captures many of these applications. We use Facebook’s memcache message size
distribution [6] (see Figure 2). Memcached’s irregular and wide-ranged message-size distribution
(arb-size), spanning 1 B to 1 MB, makes it challenging to determine the optimum number and buffer
sizes for the SRQs in the multi-SRQ configuration (Section 2.2). We evaluate the multi-SRQ config-
urations with (1) equi-spaced [15] buffer-size bins (low effort), and (2) bin sizes as per memcached’s
carefully tuned slab allocator [46] as detailed in Section 5.1.2 (high effort).

Comparison Using an In-memory Key Value Cache: For performance comparison using an
RDMA-based key-value cache, we implement FastKV, an in-memory key-value cache that uses

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



13:12 J. Xue et al.

send/receive verbs. Because RIMA’s focus is at the verb-level, we compare to FastKV’s verb choice
of send/receive with SRQ, which is similar to that of FaSST [30] and Scale-out ccNUMA [16]. RIMA
does not focus on higher-level system goals of transactional execution (as in Reference [30]) and/or
consistent caching (as in Reference [16]) of other systems. We generate keys and values as per the
memcached size distribution [6]. Though our runs use the 30-node cluster described above, we
can isolate one of FastKV’s key performance challenges at larger cluster sizes. We experimentally
found that the client throughput reaches 12.9 million requests/s, which translates to 23.8 Gbps
of network bandwidth per client, a reasonable fraction of the 56-Gbps linerate considering that
most messages are small. While server throughput measures cluster performance, we measure
client throughput, which indicates how fast a Web page request is serviced given that each page
typically accesses hundreds of objects [46].

Sizing of Active Buffers (Measured) and Reserve Pools (Calculated): Recall from Section 3.2
that the sizes of the active buffer and reserve pool for RIMA are, respectively, λ ×W × s (bytes)
and L × linerate (Table 4). We use real-system measurements to determine the average number
of messages in the active buffer, which is λ ×W , at full, steady-state throughput for SRQ, which
is the same for RIMA. In this measurement, (1) we use the memcached message-size distribution
and (2) the processing involves copying the message from the buffer to application memory (i.e.,
minimal computation for short active buffers in both SRQ and RIMA). See Table 4. s is the actual
size of the messages seen in the measurement. For RIMA’s reserve pool, we use 1 ms for L as the
memory allocation latency (Section 5.2.1).

As described in Section 3.2.1, the sizes of SRQ’s active buffer and reserve pool are, respectively,
λ ×W × s (bytes) and msдrate × L ×msдsize . We measure λ ×W as stated above. For RIMA, s is
the measured size of the messages sent to each bin. See Table 4. For SRQ’s reserve pools, we com-
pute msдrate corresponding to the per-bin minimum message size and use 1 ms for L and the
per-bin maximum message size formsдsize . For computingmsдrate , we use 137 million messages
per second for messages with 8-byte (or smaller) payload [23], because small-message throughput
is typically lower than the line rate. To account for the fact that larger messages incur lower band-
width loss, we scale this 8-byte throughput linearly as a function of the message size so that the
loss of bandwidth for smaller messages compared to the line rate reduces with larger messages
and vanishes for the largest message.

5 RESULTS

The key results of our evaluation show that (1) under similar performance and effort, RIMA avoids
SRQ’s high memory inefficiency (Section 5.1.1), (2) SRQ requires significantly higher effort to
achieve similar performance and memory efficiency as RIMA (Section 5.1.2), and (3) FastKV using
RDMA incurs either worse tail latency or larger footprint than FastKV using RIMA (Section 5.2.1).

5.1 Memory Footprint

5.1.1 RIMA Versus SRQ under Comparable (Low) Effort.

Single SRQ: Using a single SRQ results in extremely large memory footprint for Facebook’s mem-
cached message size distribution, because a single queue must accommodate the largest possible
message (1 MB) even though the average message size is only 231 B. Such internal fragmentation
results in the single SRQ message buffering bloating to 161 GB in contrast to RIMA’s minimal
11 MB of message buffers. Because the single-SRQ configuration represents a naive basecase, we
limit discussion of the configuration within the early part of this section. Later, we focus on an
alternative, simple low-programmer-effort multi-SRQ configuration.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



Network Interface Architecture for Remote Indirect Memory Access (RIMA) in DCs 13:13

Fig. 3. Single SRQ versus RIMA.

For Facebook’s memcached message size distribution (Figure 2), a single SRQ allocates 1 MB (the
maximum message size) for all messages to satisfy the arb-size constraint. We do not claim that
using 1 MB to hold 231 B, on average, is viable. This comparison is to highlight RIMA’s programma-
bility advantage that RIMA requires little effort to avoid the wastage. Later, we also consider a
simple, distribution-oblivious way to use multiple SRQs.

We measure the footprint after every 2,048 messages, called epochs. Figure 3 shows the active
buffer size (dashed lines) and the total footprint (solid lines, Y-axis, log-scale) in epochs (X-axis) for
SRQ (black lines) and RIMA (pink lines). Beyond the transient behavior during the first 40 epochs,
the active buffer size reaches steady state for both RIMA and SRQ at different levels. The reserve
pool size does not change with time. As expected, both systems achieve equal, high throughput
(4.3 million messages/s for memcache message size distribution with an average of 231 B).

In each configuration, the queues grow to (approximately) 16,800 messages per process at steady
state. Though the number of messages is the same for both RIMA and SRQ, SRQ requires 17 GB
in active buffers due to severe internal fragmentation. In contrast, RIMA’s active buffer grows as
per the actual message sizes to an average of 4 MB. Because RIMA’s reserve pool size is dictated
only by the true line rate (Section 3.2.1) whereas SRQ must provision for the worst case, RIMA’s
reserve pool is much smaller (143 GB versus 7 MB). To prevent the SRQ reserve pool from exhaust-
ing our system memory, we keep the 8-byte-message rate well under the maximum (137 million
messages/s in Section 4). Thus, under similar, little effort of using a single queue, SRQ remains
unviable—more than 161 GB footprint—whereas RIMA remains efficient (11 MB footprint).

Distribution-oblivious Multi-SRQ Approach: We use a message-size-distribution-oblivious
approach that uses multiple SRQs, each covering an equi-sized sub-range of message sizes. This
simple approach avoids the effort of customizing the sub-ranges to the distribution (Table 1) and
can be pre-implemented in a library. Still, the approach requires the significant tuning effort of
finding the optimal number of queues, which must be repeated for each application. As such,
single SRQ may be the only SRQ configuration requiring as little effort as RIMA. Figure 4 plots
the total footprint (including both active buffers and reserve pools) (Y-axis, in GB) with varying
number of SRQs using this approach (X-axis). As expected from Section 2.2, the U-shaped curve
indicates the initial steep fall off in overheads as we add more queues, with an eventual (slower) in-
crease in total capacity, because each SRQ incurs reserve pool overhead. First, because the optimal
number of queues depends on the message size distribution, the distribution-oblivious approach
is insufficient despite using multiple SRQs. Second, even at the lowest point (200 queues), the foot-
print of 1.62 GB per-process is more than two orders of magnitude higher than that of RIMA. For

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



13:14 J. Xue et al.

Fig. 4. Distribution-oblivious approach.

Fig. 5. Distribution-aware approach (upto 16-KB messages).

a 32-process server, the absolute overhead would be unacceptably large at over 50 GB. In contrast,
RIMA’s footprint is only 11 MB per process (= 7 MB (reserve pool) + 4 MB (active buffer). Even
when considering a 32-process server configuration, the aggregate footprint is a modest 228 MB
(= 7 ∗ 32 + 1 ∗ 4, because only the reserve pool scales with number of processes). The single-SRQ
and multi-SRQ results above highlight our first key claim that under similar, little effort, RIMA is
much more memory-efficient than SRQ.

5.1.2 RIMA versus SRQ under Comparable Memory. To address the high overhead of single
SRQ and distribution-oblivious multi-SRQs, we explore message-size-distribution-aware multi-
SRQ configurations. Instead of directly solving this non-linear optimization problem (Table 1),
we leverage memcached’s internal memory slab allocator, which is already tuned to reduce frag-
mentation in memory allocation [46]. We use the allocator’s 42 slab granularity as message-size
bins corresponding to queues in our multi-SRQ configurations. For configurations with fewer than
42 queues, we manually merge an appropriate number of adjacent bins to balance the queue sizes.
We perform two experiments.

The first experiment uses real-hardware runs that limit message sizes to 16 KB to avoid exhaust-
ing our cluster’s memory (Section 4). Figure 5 plots the number of SRQs and RIMA on the X-axis
and the total (steady-state) footprint for our 32-process server on the Y-axis. The footprint for
memcached traffic is large for a single SRQ (leftmost bar) but the optimal configuration (4 SRQs)
is close to RIMA. This optimal configuration is the result of careful tuning to find the appropriate
message buffer sizes guided by memcached’s slab allocator and the number of SRQs. However,
RIMA does not require any tuning at all to achieve high memory efficiency.

Our second experiment extends the above analysis to memcached’s full message-size distribu-
tion. Because the first experiment confirms that the reserve pool overwhelmingly dominates the
overall footprint, we restrict the second experiment to only the reserve pool, which fortunately

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



Network Interface Architecture for Remote Indirect Memory Access (RIMA) in DCs 13:15

Fig. 6. Distribution-aware approach (all sizes).

Fig. 7. Sensitivity to message-size distribution.

can be studied analytically as our cluster cannot accommodate messages larger than 16 KB. Fig-
ure 6 compares SRQ and RIMA on the reserve pool size for our 32-process server on the Y-axis as
we vary the number of SRQs from 1 to 42 queues (X-axis). A single SRQ incurs extremely large
footprint for the full 32-process configuration(>4,500 GB, beyond range). With more SRQs, we see
the expected U-shaped curve. As with Figure 5, at fewer SRQs, the benefit of avoiding internal
fragmentation overpowers the cost of additional reserve pools. However, beyond 8 SRQs, the re-
serve pool begins to grow. So, blindly using as many SRQs as the allocator slabs (42) is sub-optimal.
The optimum is 8 SRQs, with a reasonable 1.5-GB reserve pool. The reserve pool sizes in Figure 6
and Figure 5 are different due to message size differences. We note that this tuning would be even
harder without the slab allocator’s message buffer sizes. RIMA achieves even smaller footprints
without such tuning, which is our second key claim.

5.1.3 Sensitivity to Message-size Distribution. Our results so far have relied on memcached’s
message size distribution [6] (with or without truncation at 16KB). To verify that RIMA’s memory
savings hold for other message-size distributions, we artificially scale up and scale down the mes-
sage sizes of the truncated memcached distribution by a factor of 2 without changing the fraction
of messages at a given size. This scaling corresponds to trends toward half as small and twice as
large messages.

Figure 7 plots the total footprint (including reserve pools) for our 32-process server at steady
state (Y-axis) for the various multi-SRQ configurations (X-axis) and RIMA (rightmost set of bars)
for three distributions truncated at 16 KB: scaled-down (0.5×), original (1×), and scaled-up (1×).
The key point here is that RIMA’s footprint does not change with the distribution, because
the footprint is dominated by the reserve pool whose size depends largely on the line rate and
not message sizes. In contrast, SRQ’s footprint increases for larger messages as both the active
buffers and the reserve pools grow. Further, RIMA’s advantage over SRQ remains for all the
distributions.

We do not study RIMA’s sensitivity to the memory allocation-and-pinning latency of 1 ms (Sec-
tion 5.2.1). This latency linearly affects the reserve pool size (Section 4), which is so much larger for

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



13:16 J. Xue et al.

Table 5. FastKV-RDMA versus FastKV-RIMA

Num. Servers 64 128 256 512 1024 2048
Equal footprint comparison (256 MB)

FastKV-RDMA
Norm. Throughput 21% 11% 5.2% infeasible
FastKV-RIMA
Norm. Throughput 100%
FastKV-RIMA
Throughput relative. to
FastKV-RDMA 4.8× 9× 19× - - -

Table 6. Design Space and Challenges

Design choice Impact

SRQ (1) Single SRQ Large footprint

(2) Multi-SRQ Programming/tuning effort

Large-message (3) On-demand allocate High tail latency

specialization (4) Rendezvous using RDMA’s fetch-and-op High tail latency

Per-sender queue (5) Pre-allocate Large footprint

RIMA (6) Hardware support Small footprint and high performance

SRQ than for RIMA that even a 100% change in the latency will not qualitatively change RIMA’s
advantage, because both schemes either gain or lose.

5.2 Performance

5.2.1 Performance Comparison Using FastKV. Broadly, FastKV can be configured to work in a
footprint-priority mode wherein it ensures that it operates within a fixed memory footprint, even
if it means throttling requests (and thus performance) to ensure staying within the footprint. In
our first experiment, we consider a FastKV that is configured to use SRQ, but one that ensures
that it never exceeds the 256-MB memory footprint. To ensure that the footprint is not exceeded,
this variant imposes limits on concurrent requests. Not surprisingly, there is a steep performance
penalty for such request throttling as shown in Table 5. The combination of fixed footprint
(256 MB) and maximum message size (1-MB) forces at most 256 outstanding requests in the
whole system. As shown in Table 5, this limits scaling as it is impossible to have more than
256 servers/clients as that could potentially exceed the maximum footprint. Further, there is
significant throughput throttling even at smaller scales as the number of outstanding requests
can at most be 4, 2, and 1 when the number of servers/clients are 64, 128, and 256, respectively.

Given the serious throughput penalty of using a fixed memory footprint, we now examine more
flexible variants of FastKV that separate and specialize the handling of small and large messages
(e.g., similar to file system i-nodes for small and large files). For instance, messages under 1 KB
use a single SRQ with 1-KB buffers and larger messages are handled separately (1-KB messages
are at the 95.6th-percentile in Figure 2). The 1-KB SRQ imposes a much lower overhead than all
messages using 1-MB buffers. However, such specialization raises two issues.

First, the 1-KB cutoff uses message-size distribution knowledge, which is a programmability
issue that RIMA avoids. Without the knowledge, the cutoff may not work (e.g., if an application’s
average is 10 KB then using 1-KB cutoff would incur high overheads). Second, allocating memory
for the large (>1 KB) messages has three options all of which are problematic. Table 6 summarizes

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



Network Interface Architecture for Remote Indirect Memory Access (RIMA) in DCs 13:17

these alternatives to RIMA. Row 1 in the table shows the naive single-SRQ approach, which results
in a large footprint due to internal fragmentation.

The first option is to pre-allocate 1-MB buffer for each large message. This option is the same as
using two SRQs with message size distribution knowledge (row 2 in Table 6). Even so, this option
incurs memory footprints of around 37.8 GB for our 32-process server the vast majority (33.6 GB)
of which is for the reserve pool for messages larger than 1 KB. Recall from Section 3.2.1 that the
reserve pool must be sized for the message arrival rate of the smallest possible message (1 KB +
1 B) but the largest possible message buffer (1 MB). The remaining overhead is from the reserve
pool for messages smaller than 1 KB and the active buffer. RIMA’s 228 MB (Section 5.1.1) is much
smaller than this 37.8 GB. Though this bloat can be eliminated by using multiple SRQs optimized to
match the message size distribution, doing so would come at the cost of significant programming
effort (Section 2.2).

The second option is to allocate memory on demand for each large message by using the recently
introduced InfiniBand feature of on-demand paging [36] (row 3 in Table 6). By allocating memory
of the exact size of the message, this option avoids the first option’s memory bloat. To explore this
option, we measured the time taken to allocate and map (kalloc() and mlock()) some memory
on our system. While the latency varies with allocation size, we found the sweet spot to be 16 MB
with median and the 90th percentile latencies of 0.97 ms and 1 ms over 4000 runs, respectively.
Even though the allocation latency is worse for smaller and larger allocations, we conservatively
assume a 1-ms latency for all sizes. However, the 95.6th-percentile 1-KB messages incur 0.15-μs
bandwidth-limit delay at 56 Gbps plus around 50 μs of one-way RDMA-based network latency
[60] = 50.15 μs total one-way latency, amounting to 20× allocation overhead to the correspond-
ing tail latency. This tail latency issue relevant to datacenter applications is not applicable to file
system i-nodes where such specialization may be effective. If the on-demand paging feature is not
available, then remote allocation would require three network traversals instead of one (e.g., two
extra traversals using rendezvous protocol [55]—one to make an allocation request and another to
return the buffer pointer after allocation). On-demand paging avoids the extra traversals but not
the allocation latency.

The third option is to allocate on-demand some large buffer (e.g., 100 MB) to be shared among
several messages larger than 1 KB (row 4 in Table 6). This option amortizes the 1-ms allocation
overhead of the second option over several messages. However, this option requires creating space
in this buffer for every large message before placing the message there. The space creation requires
a remote RDMA fetch-and-add, which involves rendezvous-like two-step messaging between the
sender and receiver, and a local RDMA atomic fetch-and-add at the receiver. Unfortunately, local
RDMA atomic operations access the host memory over the I/O bus, which is slow (e.g., PCIe).
Thus, the 1-KB messages incur around 100 μs extra RDMA-based network latency plus 2 μs for
an unloaded, local RDMA fetch-and-add. Other work [42] reports PCIe RTT of 2.1 μs without
any fetch-and-add and explains in great detail that PCIe’s narrow links exacerbate latency well
beyond serialization alone. Consequently, the 1-KB messages incur a total of 102 μs extra latency,
which, compared to 50.15-μs true latency, is around 3× slower. In contrast, RIMA locally creates
the required space after the message is received at the receiver’s NIC. RIMA’s atomic operation
is on the tail pointer in the queue’s context memory held in the NIC. Thus, RIMA entirely avoids
the I/O bus as well as the extra network traversals, and therefore incurs little overhead. Though
the third option’s 3× tail latency overhead is better than the second option’s 20× overhead, both
options degrade programmability by requiring message size distribution-dependent 1-KB cutoff.

The tail latency overheads of the second and third options can be decreased from the 95.6th-
percentile 1-KB messages to the less frequent 99.9th-percentile 5.4-KB messages (Figure 2).

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



13:18 J. Xue et al.

However, doing so would increase the small-message buffers from 1 KB to 5.4 KB causing the
reserve pool to expand to 22.4 GB for our 32-process server.

Another way to avoid the tail latency overheads of the second and third options is by having
each sender pre-allocate buffers at the receiver (row 5 in Table 6). Such pre-allocation ensures
that each sender has space available before sending any messages. In a 5,000-server DC with 2,000
front-end servers (say), each receiver must allocate a reserve buffer for each of the 2,000 senders,
negating the benefit of large-message specialization. Such allocation is replicated for each process
running on the receiving server; with a modest 1-MB reservation per sender and 32-processes per
receiver, the receiver memory footprint is around 64 GB (2000 × 1 MB × 32). TCP does not face
this 2,000× bloat, because the receivers share the buffers under OS control.

6 RELATED WORK

RDMA has its roots in earlier low-latency, user-space messaging such as Fast Messages [48], U-Net
[56], Shrimp [9], and VIA [14].

Scalability in InfiniBand-based MPI Implementations: MPI implementations first discussed
InfiniBand’s memory scalability issue (e.g., Reference [38]). Several improvements followed: adap-
tive connection setup [59], unreliable datagram (UD) [35], eXtended Reliable Connection (XRC)
for all-to-all communication [34], and DCT for reliable connection (RC) where each process can
use just one QP to communicate with any other process. MPI implementations use DCT [53] and
SRQ [54] for QP and memory efficiency.

InfiniBand for Datacenter Applications: As DCs move to leverage RDMA’s low latency, high
scalability and high performance must both be achieved. Scaleout NUMA [47] performs RDMA-
like remote direct memory accesses using on-chip network interface. Many studies examine
replacing TCP/IP with RDMA. Examples include RDMA-based Hadoop [39], HBase [21], and
memcached-like key-value stores [25, 27, 28, 43]. FaRM [13] provides an InfiniBand-based pro-
gramming framework for DCs, whereas other papers use InfiniBand to accelerate file and storage
systems [24, 50, 58]. Though these studies confirm the need for fast communication in DCs and
provide a strong motivation for RIMA, they incur RDMA’s programmability, memory, and perfor-
mance inefficiencies that RIMA eliminates.

Append in Other Systems: Portals [19] and MPI use legacy verbs to implement append func-
tionality in upper software layers. Because of using legacy verbs, they incur the memory footprint
problem that RIMA addresses.

Other NICs: Others have proposed (1) programmable NICs to offload protocol processing [31, 37,
57], and (2) to leverage coherence to improve communication performance [20].

7 CONCLUSION

RDMA’s low latency makes it a strong contender to replace TCP/IP in DCs. However, InfiniBand’s
SRQs are limited fundamentally to a single message size per queue and incur memory wastage or
programmer burden for typical DC traffic of an arbitrary number (level of burstiness) of messages
of arbitrary size from an arbitrary source.

To avoid this limitation, we proposed RIMA, which provides NIC hardware support for novel
queue semantics and a new “verb” called append. To append a sender’s message to a shared queue,
the receiver network interface card (NIC) atomically increments the queue’s tail pointer by the in-
coming message’s size and places the message in the newly created space. This indirection of spec-
ifying a queue, while its tail pointer remains hidden from senders, handles all the three constraints
of typical DC traffic. To ensure that there is always space for an arriving message, RIMA employs

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.



Network Interface Architecture for Remote Indirect Memory Access (RIMA) in DCs 13:19

the traditional watermark scheme to add memory to the queue in the background while messages
continue to be received in the reserve space below the watermark. RIMA uses simple hardware
to achieve the same message latency and throughput as SRQ with unlimited buffering. Running
memcached traffic on a 30-node InfiniBand cluster, we showed that at similar, low programmer
effort, RIMA achieves small, practical memory footprints in contrast to SRQ’s impractically large
footprints. Though SRQ’s memory footprint can be shrunk by expending significant programming
effort, which must be repeated for each application, RIMA provides those benefits with little effort.
We developed a high-performance in-memory key-value cache (FastKV) for evaluation of RIMA
using memcached traffic. FastKV using RIMA achieves either 3× lower 96th-percentile latency, or
significantly better throughput or memory footprint than FastKV using RDMA. RIMA’s high mem-
ory efficiency, low programmer effort, and simple hardware bode well for widespread adoption in
DCs.

REFERENCES

[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable, commodity data center network

architecture. In Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication (SIGCOMM’08). ACM,

New York, NY, 63–74. DOI:https://doi.org/10.1145/1402958.1402967

[2] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta

Sengupta, and Murari Sridharan. 2010. Data center TCP (DCTCP). In Proceedings of the ACM SIGCOMM Conference

on Data Communication (SIGCOMM’10). 63–74. DOI:https://doi.org/10.1145/1851182.1851192

[3] R. Alverson, D. Roweth, and L. Kaplan. 2010. The gemini system interconnect. In Proceedings of the 2010 18th IEEE

Symposium on High Performance Interconnects. 83–87. DOI:https://doi.org/10.1109/HOTI.2010.23

[4] Boon S. Ang, Derek Chiou, D. L. Rosenband, M. Ehrlich, L. Rudolph, and Arvind. 1998. StarT-Voyager: A flexible plat-

form for exploring scalable SMP issues. In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (Supercomputing’98). 26–26. DOI:https://doi.org/10.1109/SC.1998.10042

[5] apache [n.d.]. Apache Performance Tuning. Retrieved from https://httpd.apache.org/docs/2.4/misc/perf-tuning.html.

[6] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. 2012. Workload analysis of a large-

scale key-value store. In Proceedings of the International Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS’12). 53–64. DOI:https://doi.org/10.1145/2254756.2254766

[7] aws [n.d.]. Amazon EC2 Instance Types. Retrieved rom https://aws.amazon.com/ec2/instance-types/.

[8] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. 2003. Web search for a planet: The Google cluster architecture.

IEEE Micro 23, 2 (Mar. 2003), 22–28. DOI:https://doi.org/10.1109/MM.2003.1196112

[9] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and J. Sandberg. 1994. Virtual memory mapped network

interface for the SHRIMP multicomputer. In Proceedings of the International Symposium on Computer Architecture

(ISCA’94). 142–153. DOI:https://doi.org/10.1145/191995.192024

[10] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, and J. N. Seizovic and. 1995. Myrinet: A gigabit-

per-second local area network. IEEE Micro 15, 1 (Feb. 1995), 29–36. DOI:https://doi.org/10.1109/40.342015

[11] Eric A. Brewer, Frederic T. Chong, Lok T. Liu, Shamik D. Sharma, and John D. Kubiatowicz. 1995. Remote queues:

Exposing message queues for optimization and atomicity. In Proceedings of the 7th Annual ACM Symposium on Parallel

Algorithms and Architectures (SPAA’95). ACM, New York, NY, 42–53. DOI:https://doi.org/10.1145/215399.215416

[12] H. J. Casier, E. Laes, and E. Schutz. 1992. Analog-digital technologies for mixed-signal processing: The driving force

to success for the European industry. IEEE Micro 25, 04 (Jul. 1992), 34–42. DOI:https://doi.org/10.1109/40.149734

[13] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. 2014. FaRM: Fast remote mem-

ory. In Proceedings of the USENIX Conference on Networked Systems Design and Implementation (NSDI’14). 401–414.

https://www.usenix.org/conference/nsdi14/technical-sessions/dragojević.

[14] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. M. Merritt, E. Gronke, and C. Dodd. 1998.

The virtual interface architecture. IEEE Micro 18, 2 (Mar. 1998), 66–76. DOI:https://doi.org/10.1109/40.671404

[15] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald, Boris Grot, and Vijay Nagarajan. 2018. Scale-

out ccNUMA: Exploiting skew with strongly consistent caching. In Proceedings of the Thirteenth EuroSys Conference

(EuroSys’18). ACM, New York, NY, USA, Article 21, 15 pages. https://doi.org/10.1145/3190508.3190550

[16] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald, Boris Grot, and Vijay Nagarajan. 2018. Scale-out

ccNUMA: Exploiting skew with strongly consistent caching. In Proceedings of the 30th European Conference on Com-

puter Systems (EuroSys’18). ACM, New York, NY, Article 21, 15 pages. DOI:https://doi.org/10.1145/3190508.3190550

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.

https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1109/HOTI.2010.23
https://doi.org/10.1109/SC.1998.10042
https://httpd.apache.org/docs/2.4/misc/perf-tuning.html
https://doi.org/10.1145/2254756.2254766
https://aws.amazon.com/ec2/instance-types/
https://doi.org/10.1109/MM.2003.1196112
https://doi.org/10.1145/191995.192024
https://doi.org/10.1109/40.342015
https://doi.org/10.1145/215399.215416
https://doi.org/10.1109/40.149734
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://doi.org/10.1109/40.671404
https://doi.org/10.1145/3190508.3190550
https://doi.org/10.1145/3190508.3190550


13:20 J. Xue et al.

[17] E. G. Gran, M. Eimot, S. A. Reinemo, T. Skeie, O. Lysne, L. P. Huse, and G. Shainer. 2010. First experiences with

congestion control in InfiniBand hardware. In Proceedings of the IEEE International Parallel and Distributed Processing

Symposium (IPDPS’10). 1–12. DOI:https://doi.org/10.1109/IPDPS.2010.5470419

[18] E. G. Gran, S. A. Reinemo, O. Lysne, T. Skeie, E. Zahavi, and G. Shainer. 2012. Exploring the scope of the InfiniBand

congestion control mechanism. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium

(IPDPS’12). 1131–1143. DOI:https://doi.org/10.1109/IPDPS.2012.104

[19] Amin Hassani, Anthony Skjellum, Ron Brightwell, and Brian W. Barrett. 2013. Design, implementation, and perfor-

mance evaluation of MPI 3.0 on Portals 4.0. In Proceedings of the European Conference on Message Passing Interface

(EuroMPI’13). 55–60. DOI:https://doi.org/10.1145/2488551.2488563

[20] M. D. Hill, B. Falsafi, D. A. Wood, and S. S. Mukherjee. 1996. Coherent network interfaces for fine-grain commu-

nication. In Proceedings of the International Symposium on Computer Architecture (ISCA’96). 247–247. DOI:https://

doi.org/10.1109/ISCA.1996.10009

[21] J. Huang, X. Ouyang, J. Jose, W. Rahman, H. Wang, M. Luo, H. Subramoni, C. Murthy, and D. Panda. 2012. High-

performance design of HBase with RDMA over InfiniBand. In Proceedings of the IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS’12).

[22] ibspec [n.d.]. Infiniband Specification. Technical Report.

[23] infiniband [n.d.]. Infiniband Performance. Retrieved from http://www.mellanox.com/page/performance_infiniband.

[24] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Subramoni, C. Murthy, and D. K. Panda. 2012.

High performance RDMA-based design of HDFS over InfiniBand. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage, and Analysis (SC’12). Article 35, 35 pages.

[25] Jithin Jose, Hari Subramoni, Krishna Kandalla, Md. Wasi-ur Rahman, Hao Wang, Sundeep Narravula, and

Dhabaleswar K. Panda. 2012. Scalable memcached design for InfiniBand clusters using hybrid transports. In Pro-

ceedings of the IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID’12). 236–243.

DOI:https://doi.org/10.1109/CCGrid.2012.141

[26] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi ur Rahman, N. S. Islam, X. Ouyang, H. Wang, S. Sur,

and D. K. Panda. 2011. Memcached design on high performance RDMA capable interconnects. In Proceedings of the

International Conference on Parallel Processing (ICPP’11). 743–752. DOI:https://doi.org/10.1109/ICPP.2011.37

[27] Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md. Wasi-ur Rahman, Nusrat S. Islam,

Xiangyong Ouyang, Hao Wang, Sayantan Sur, and Dhabaleswar K. Panda. 2011. Memcached design on high per-

formance RDMA capable interconnects. In Proceedings of the International Conference on Parallel Processing (ICPP’11).

743–752. DOI:https://doi.org/10.1109/ICPP.2011.37

[28] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA efficiently for key-value services. SIG-

COMM 44, 4 (Aug. 2014), 295–306. DOI:https://doi.org/10.1145/2740070.2626299

[29] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design guidelines for high performance RDMA systems.

In Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC’16). USENIX Association, 437–450.

https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia.

[30] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, scalable and simple distributed transac-

tions with two-sided (RDMA) datagram RPCs. In Proceedings of the 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’16). USENIX Association, 185–201. https://www.usenix.org/conference/osdi16/

technical-sessions/presentation/kalia.

[31] Hyong-youb Kim and Scott Rixner. 2006. Connection handoff policies for TCP offload network interfaces. In

Proceedings of the USENIX Symposium on Operating Systems Design and Implementation (OSDI’06). 293–306.

http://www.usenix.org/events/osdi06/tech/kim.html.

[32] J. Kim, W. J. Dally, S. Scott, and D. Abts. 2008. Technology-driven, highly-scalable dragonfly topology. In Proceedings

of the 2008 International Symposium on Computer Architecture. 77–88. DOI:https://doi.org/10.1109/ISCA.2008.19

[33] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta. 2005. Microarchitecture of a high radix router. In Proceedings of the 32nd

International Symposium on Computer Architecture (ISCA’05). 420–431. DOI:https://doi.org/10.1109/ISCA.2005.35

[34] Matthew J. Koop, K. Sridhar Jaidev, and Dhabaleswar K. Panda. 2014. Scalable MPI design over infiniband using

extended reliable connection. In Proceedings of the International Conference for High Performance Computing, Net-

working, Storage, and Analysis (SC’14). 278–295. DOI:https://doi.org/10.1007/978-3-319-07518-1_18

[35] Matthew J. Koop, Sayantan Sur, Qi Gao, and Dhabaleswar K. Panda. 2007. High performance MPI design using un-

reliable datagram for ultra-scale InfiniBand clusters. In Proceedings of the 21st Annual International Conference on

Supercomputing. 180–189. DOI:https://doi.org/10.1145/1274971.1274997

[36] Mingzhe Li, Khaled Hamidouche, Xiaoyi Lu, Hari Subramoni, Jie Zhang, and Dhabaleswar K. Panda. 2016. Designing

MPI library with on-demand paging (ODP) of infiniband: Challenges and benefits. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage, and Analysis (SC’16). Article 37, 11 pages. http://

dl.acm.org/citation.cfm?id=3014904.3014954.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.

https://doi.org/10.1109/IPDPS.2010.5470419
https://doi.org/10.1109/IPDPS.2012.104
https://doi.org/10.1145/2488551.2488563
https://doi.org/10.1109/ISCA.1996.10009
https://doi.org/10.1109/ISCA.1996.10009
http://www.mellanox.com/page/performance_infiniband
https://doi.org/10.1109/CCGrid.2012.141
https://doi.org/10.1109/ICPP.2011.37
https://doi.org/10.1109/ICPP.2011.37
https://doi.org/10.1145/2740070.2626299
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
http://www.usenix.org/events/osdi06/tech/kim.html
https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1109/ISCA.2005.35
https://doi.org/10.1007/978-3-319-07518-1_18
https://doi.org/10.1145/1274971.1274997
http://dl.acm.org/citation.cfm?id=3014904.3014954
http://dl.acm.org/citation.cfm?id=3014904.3014954


Network Interface Architecture for Remote Indirect Memory Access (RIMA) in DCs 13:21

[37] Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2013. Thin servers with

smart pipes: Designing SoC accelerators for memcached. In Proceedings of the International Symposium on Computer

Architecture (ISCA’13). 36–47. DOI:https://doi.org/10.1145/2485922.2485926

[38] Jiuxing Liu, Balasubramanian Chandrasekaran, Jiesheng Wu, Weihang Jiang, Sushmitha Kini, Weikuan Yu, Darius

Buntinas, Peter Wyckoff, and D. K. Panda. 2003. Performance comparison of MPI implementations over InfiniBand,

myrinet and quadrics. In Proceedings of the International Conference for High Performance Computing, Networking,

Storage, and Analysis (SC’03). 58–. DOI:https://doi.org/10.1145/1048935.1050208

[39] X. Lu, N. Islam, W. Rahman, J. Jose, H. Subramoni, H. Wang, and D. Panda. 2013. High-performance design of Hadoop

RPC with RDMA over InfiniBand. In Proceedings of the International Conference on Parallel Processing (ICPP’13).

[40] Evangelos P. Markatos, Manolis G. H. Katevenis, and Penny Vatsolaki. 1998. The remote enqueue operation on

networks of workstations. In Network-Based Parallel Computing Communication, Architecture, and Applications,

Dhabaleswar K. Panda and Craig B. Stunkel (Eds.). Springer, Berlin, 1–14.

[41] memcached [n.d.]. Memcached. Retrieved from http://memcached.org/.

[42] David J. Miller, Philip M. Watts, and Andrew W. Moore. 2009. Motivating future interconnects: A differential mea-

surement analysis of PCI latency. In Proceedings of the ACM/IEEE Symposium on Architectures for Networking and

Communications Systems (ANCS’09). 94–103. DOI:https://doi.org/10.1145/1882486.1882513

[43] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using one-sided RDMA reads to build a fast, CPU-Efficient

key-value store. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’13). 103–114. https://www.

usenix.org/conference/atc13/technical-sessions/presentation/mitchell.

[44] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vahdat,

Yaogong Wang, David Wetherall, and David Zats. 2015. TIMELY: RTT-based congestion control for the datacenter.

In Proceedings of the SIGCOMM Conference on Data Communication (SIGCOMM’15). 537–550. DOI:https://doi.org/10.

1145/2785956.2787510

[45] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. [n.d.]. CACTI 6.0: A Tool to Model Large Caches. Technical

Report.

[46] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy, Mike

Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling

memcache at Facebook. In Proceedings of the Conference on Networked Systems Design and Implementation (NSDI’13).

385–398.

[47] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris Grot. 2014. Scale-out NUMA. In

Proceedings of the ACM International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’14). 3–18. DOI:https://doi.org/10.1145/2541940.2541965

[48] Scott Pakin, Mario Lauria, and Andrew Chien. 1995. High performance messaging on workstations: Illinois fast mes-

sages (FM) for myrinet. In Proceedings of the International Conference for High Performance Computing, Networking,

Storage and Analysis (Supercomputing’95). Article 55. DOI:https://doi.org/10.1145/224170.224360

[49] F. Petrini, A. Hoisie, S. Coll, and E. Frachtenberg. 2001. The quadrics network (QsNet): High-performance clustering

technology. In Proceedings of the Symposium on High Performance Interconnects (HOT 9 Interconnects’01). 125–130.

DOI:https://doi.org/10.1109/HIS.2001.946704

[50] D. Shankar, X. Lu, W. Rahman, N. Islam, and D. Panda. 2015. Benchmarking key-value stores on high-performance

storage and interconnects for web-scale workloads. In Proceedings of the 2015 IEEE International Conference on Big

Data.

[51] Akshitha Sriraman, Sihang Liu, Sinan Gunbay, Shan Su, and Thomas F. Wenisch. 2016. Deconstructing the tail at scale

effect across network protocols. In Proceedings of the Annual Workshop on Duplicating, Deconstructing, and Debunking

(WDDD’16). http://arxiv.org/abs/1701.03100.

[52] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yongwei Wu. 2017. RFP: When RPC is faster than

server-bypass with RDMA. In Proceedings of the 12th European Conference on Computer Systems (EuroSys’17). ACM,

New York, NY, USA, 1–15. DOI:https://doi.org/10.1145/3064176.3064189

[53] Hari Subramoni, Khaled Hamidouche, Akshey Venkatesh, Sourav Chakraborty, and Dhabaleswar K. Panda. 2008.

Designing MPI library with dynamic connected transport DCT of InfiniBand: Early experiences. In Proceedings of the

IEEE Cluster. 203–212. DOI:https://doi.org/10.1109/CLUSTR.2008.4663773

[54] Sayantan Sur, Lei Chai, Hyun-Wook Jin, and Dhabaleswar K. Panda. 2006. Shared receive queue based scalable MPI

design for infiniband clusters. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium

(IPDPS’06). 101–101. http://dl.acm.org/citation.cfm?id=1898953.1899033.

[55] Sayantan Sur, Hyun-Wook Jin, Lei Chai, and Dhabaleswar K. Panda. 2006. RDMA read based rendezvous protocol

for MPI over InfiniBand: Design alternatives and benefits. In Proceedings of the Annual Conference on Principles and

Practice of Parallel Programming (PPoPP’06). 32–39. DOI:https://doi.org/10.1145/1122971.1122978

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.

https://doi.org/10.1145/2485922.2485926
https://doi.org/10.1145/1048935.1050208
http://memcached.org/
https://doi.org/10.1145/1882486.1882513
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/2541940.2541965
https://doi.org/10.1145/224170.224360
https://doi.org/10.1109/HIS.2001.946704
http://arxiv.org/abs/1701.03100
https://doi.org/10.1145/3064176.3064189
https://doi.org/10.1109/CLUSTR.2008.4663773
http://dl.acm.org/citation.cfm?id=1898953.1899033
https://doi.org/10.1145/1122971.1122978


13:22 J. Xue et al.

[56] T. von Eicken, A. Basu, V. Buch, and W. Vogels. 1995. U-Net: A user-level network interface for parallel and distributed

computing. In Proceedings of the Symposium on Operating Systems Principles (SOSP’95). 40–53. DOI:https://doi.org/

10.1145/224056.224061

[57] Paul Willmann, Hyong-youb Kim, Scott Rixner, and Vijay S. Pai. 2005. An efficient programmable 10 gigabit ethernet

network interface card. In Proceedings of the (HPCA-11). 96–107. DOI:https://doi.org/10.1109/HPCA.2005.6

[58] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. 2003. PVFS over InfiniBand: Design and performance eval-

uation. In Proceedings of the International Conference on Parallel Processing (ICPP’03). 125–132.

[59] Weikuan Yu, Qi Gao, and Dhabaleswar K. Panda. 2006. Adaptive connection management for scalable MPI over

InfiniBand. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS’06). 102–

102. http://dl.acm.org/citation.cfm?id=1898953.1899034.

[60] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Padhye,

Shachar Raindel, Mohamad Haj Yahia, and Ming Zhang. 2015. Congestion control for large-scale RDMA deployments.

In Proceedings of the SIGCOMM Conference on Data Communication (SIGCOMM’15). 523–536. DOI:https://doi.org/10.

1145/2785956.2787484

Received April 2019; revised September 2019; accepted November 2019

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 2, Article 13. Publication date: May 2020.

https://doi.org/10.1145/224056.224061
https://doi.org/10.1145/224056.224061
https://doi.org/10.1109/HPCA.2005.6
http://dl.acm.org/citation.cfm?id=1898953.1899034
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/2785956.2787484

