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ABSTRACT 
This paper describes the design of a high-performance linear al- 
gebra library for Java. Linear algebra libraries such as ESSL and 
LAPACK are important tools of computational science and engi- 
neering, and have been available to C and Fortran programmers for 
quite a while. If Java is to become a serious language for the de- 
velopment of large scale numerical applications, it must provide 
equivalent functionality. From the many possible alternatives to 
accomplish this goal, we took the approach of designing a linear 
algebra library entirely in Java. This approach leads to good porta- 
bility and maintainability of the code. It is also a good test of how 
far we can push Java performance. We adopted an object-oriented 
design in which the linear algebra operations are implemented as 
strategy design pattems. The higher level algorithms, optimized for 
the memory hierarchies of present-clay machines, are described in a 
type independent manner. Type specific methods capture the lower 
level optimizations for operations on matrices of single-precision, 
double-precision, or complex numbers. We evaluate the perfor- 
mance of our linear algebra package on three different machines. 
Our preliminary results show that our Java library achieves up to 
85% of the performance of the highly optimized ESSL. 

1. INTRODUCTION 
Scientists and engineers developing numerical applications in es- 
tablished languages such as Fortran and C have a vast collection 
of standard libraries available in their toolbox. Of particular im- 
portance are libraries for numerical linear algebra, such as LA- 
PACK [1] and ESSL [17], libraries for discrete Fourier transform 
(FFT), and elementary functions libraries. If Java is to become a 
serious language for large scale numerical computing, it must pro- 
vide a similar set of tools. Many efforts are under way to provide 
Java with such libraries [4, 5, 6, 7]. 

This paper describes and evaluates our particular design of a linear 
algebra package for Java. The goal of this package is to provide a 
portable and high performance Java analog to BLAS [ 11 ] and LA- 
PACK. We chose to develop this package entirely in Java, with no 
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native code components. We follow an object oriented design that 
leads to easy maintainability and portability of the code. Through 
an experimental evaluation, we show that it also leads to good per- 
formance. In fact, the package displays performance portability. 
That is, the same c l a s s  files achieve a significant fraction of the 
machine peak performance on different architectures. In particu- 
lar, for this paper we demonstrate good performance on two differ- 
ent memory architectures. We also accomplish reasonable perfor- 
mance across different instruction set architectures. 

Our linear algebra package is an integral part of the Array pack- 
age for Java, which we have developed to support true multidimen- 
sional arrays in Java [2, 19]. The linear algebra operations are static 
methods of the B l a s  class in that package. We refer to this li- 
brary of linear algebra methods as our Java BLAS (even though it 
also contains LAPACK-style factorization methods). The methods 
mimic the functionality and interface of the well-known BLAS and 
LAPACK libraries for Fortran and C. Operations are only permitted 
on matrices and vectors of the same type, with a different method 
performing the operation for each type. At this point, we sup- 
port three different elemental data types: single-precision floating- 
point numbers ( f l o a t ) ,  double-precision floating-point numbers 
( d o u b l e ) ,  and double-precision complex numbers (Complex).  
Although BLAS and LAPACK also support single-precision com- 
plex numbers, we chose not to include single-precision complex 
numbers at this time since they are not part of the standardization 
effort being conducted by the Java Grande Forum [18]. Support 
for single-precision complex numbers can be easily added to our 
package if necessary. 

For the purpose of numerical linear algebra, vectors are imple- 
mented as one-dimensional arrays of one of the data types ( f l o a t ,  
double, and Complex), while matrices are implemented as two- 
dimensional arrays of those data types. A small set of basic oper- 
ations are implemented by type-specific kernels. A kernel method 
performs a basic linear algebra operation optimized for data that 
fits well into a L1 data cache. More complicated operations, and 
memory-hierarchy conscious versions of the basic linear algebra 
operations, are implemented as type-independent strategies [13]. 
A strategy is a design pattern that specifies a generic algorithm as a 
series of operations (virtual method calls) to be performed, leaving 
the specific implementation of each operation to the particular con- 
crete classes. Using this design methodology, we arrive at a linear 
algebra package that is significantly more concise than its Fortran 
or C counterparts. The conciseness facilitates maintainability and 
lets us focus on fewer performance-critical components. 
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The rest of this paper is organized as follows. We start with a dis- 
cussion of related work in Section 2. Section 3 gives a brief descrip- 
tion of the Array package for Java, focusing on features and prop- 
erties that are more relevant to numerical linear algebra. Section 4 
describes the B l a s V e o t o r  and B l a s M a t r i x  Java interfaces, 
which allow the development of an object-oriented linear algebra 
package. Section 5 details the implementation of some of the linear 
algebra routines provided by the package. Section 6 shows some 
preliminary performance results that demonstrate that our approach 
can lead to high performance implementations. Finally, Section 7 
presents our conclusions. 

2. RELATED WORK 
There are two basic approaches to providing Java with a linear al- 
gebra library. One can leverage existing high-performance linear 
algebra libraries by having Java programs perform native calls [4, 
7]; the obvious advantage is that a relatively small amount of ef- 
fort is needed. The disadvantage is that there are no guarantees of 
reproducibility of results, because of differences in each implemen- 
tation. Also, improvements by one manufacturer do not benefit the 
users of other products. 

The other possibility is to implement the linear algebra package en- 
tirely in Java [4, 5, 6, 7]. The obvious disadvantage is the amount 
of effort required, although the Java code could be generated by au- 
tomatic translation from Fortran implementations [7, 12]. The ad- 
vantage of a 100% Java approach lies in the portability of the pack- 
age and reproducibility of results computed with it ("write once, 
run anywhere"). Also, all users benefit from enhancements to the 
package. In [4] it is shown that a hybrid approach, in which the 
higher levels of a linear algebra package are coded in Java and the 
lower levels in Fortran, can deliver very good performance. 

Java was not originally designed for high-performance computa- 
tion [14]. Some of the many design issues arehandlingofnumerics- 
related exceptions, unnecessarily restrictive arithmetics, no direct 
support for complex numbers, and lack of standardized multidi- 
mensional arrays. These issues have been taken up by the members 
of the Java Grande Forum [18], but they are far from resolved. For 
example, in our approach we use the fused multiply-add capability 
of the POWER3 and PowerPC 604e processors to our advantage. 
We also tackle the array problem by targeting the Array package, 
which is part of the Java Grande Forum standardization effort. 

Our library makes extensive use of recursive linear algebra algo- 
rithms, described in [10, 15]. Recursive algorithms are conceptu- 
ally simple and powerful, and the resulting automatic blocking is 
an important feature to achieve performance portability. They also 
fit nicely in a strategy design pattern. 

To compile the Array package (including the Java BLAS) we made 
use of the latest Java compiler technologies developed in our group 
[2, 3, 19]. We have already demonstrated the benefits of automatic 
compiler optimization and parallelization that result from program- 
ming with the Array package. The Java BLAS is one more step in 
providing a "Java solution" to scientific and engineering program- 
mers. 

3. THE ARRAY PACKAGE FOR JAVA 
The Array package for Java implements true multidimensional ar- 
rays, which are not directly supported by the Java language. (In- 
stead, Java supports arrays of arrays, which are less amenable to 
optimizations as shown in [2, 19].) A multidimensional array is 

characterized by three immutable properties: type,  rank,  and shape .  
The type of an array is the type of its elements. The rank (or di- 
mensional i ty)  of an array is the number of its axes. Finally, the 
shape of an array is the extent of each of its axes. The shape of a 
d-dimensional array A of type T can be represented by a d-element 
vector n = (no,  n l ,  • • • , h a - 1  ), where nk is the extent of axis k, 
k = 0 , . . .  ,d - 1. Given an index i = ( i o , i l , . . .  , i d - 1 ) ,  with 
0 < ik < nk Vk, then A [ i o , i l , . . .  , ia-1]  represents a unique 
element of the array A. Two elements A [ i o , i ~ , . . .  , i e - 1 ]  and 
A[jo, j l ,  • • • , ja-1 ] are the same if and only if ik = jk, Vk. 

Figure 1 is an architectural overview of the Array package for Java. 
It shows, among other things, the inheritance graph of the classes 
in the Array package. The virtual base class A r r a y  is specialized 
by type, and then specialized again by rank to obtain the concrete 
classes. Concrete class names have the form 

< t y p e > A r r a y < r a n k > D ,  

where type denotes the elemental type (either f l o a t ,  d o u b l e ,  or 
Complex)  and rank  denotes the rank of the array. The shape of the 
array is defined at object instantiation time, and is immutable once 
created. The immutability and rectangularity of the shape, together 
with the specific type and rank of the concrete classes, are impor- 
tant for optimization of code using the Array package. The type- 
and rank-specific concrete classes facilitate devirtualization and se- 
mantic expansion [21 ], while the rectangular and immutable shape 
helps bounds checking optimization and alias disambiguation [2, 
3, 19]. We also note, from Figure 1, that one-dimensional (vec- 
tor) concrete classes implement the B l a s V e c t o r  interface, while 
two-dimensional (matrix) classes implement the B l a s M a t r i x  in- 
terface. These interfaces are discussed in Section 4. 

Also shown in Figure 1 are some methods of the Blas class. This 
class implements basic linear algebra operations (such as defined 
by BLAS), as well as some factorization operations (such as de- 
fined by LAPACK). The public methods of the B l a s  (exemplified 
in Figure 1 by sgemm, dgemm, and zgemm) mimic the interfaces 
specified by BLAS and LAPACK. The class also includes some 
internal methods that are used in the implementation of the linear 
algebra operations. These methods (declared as p r o t e c t e d  in 
Figure 1) are not exposed to the application programmer. 

3.1 Internal representation 
Standard BLAS and LAPACK routines operate on data arranged in 
memory in column-major format, the standard layout for Fortran 
arrays. By contrast, the routines in Java BLAS (and Array package 
code in general) are independent of data layout. Thus, the internal 
representation (memory layout) of arrays in the Array package is 
purposely not exposed to the programmer, opening the possibility 
of future enhancements and compiler optimizations. However, in 
this section we explain the internals of the current reference imple- 
mentation of the Array package, since they impact the efficiency of 
our Java BLAS. 

The representation of a d-dimensional array of floats, doubles, 
or Complexes consists of: 

• a data storage pointer ( d a t a ) ,  

• a shape descriptor (no, n l ,  . . .  , n e - 1 ) ,  and 

• a mapping descriptor (wo, w l , . . .  , w a ) .  
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]aTY 

floatArrav CoraplexArray doubleArray ," 

I " , ,  . . . . . .  , , ' 2  
I I ,'x~ 

BlasVector 

BlasVector clone() 
void assign(...); 
boolean intersects (...); 
int length(); 
BlasVector section(...); 
BlasMatrix promoteAsRowO; 
BlasMatrix promoteAsColumnO; 

BlasScalar dot(...); 
void axpy(...); 

BlasMatrix 

int blksizeO; 
BlosMatrix clone(...); 
void assign(...); 
boolean intersects (...); 
int rows(); 
int colsO; 
BlasMatrix transpose(); 
BlasMatrix section (...); 

void gemm(...); 
void trsm(...); 
void potrf(...); 
void syrk(... ); 

Figure 1: Array package for Java: architectural overview. 

For a d-dimensional array, nk is the shape of  its k-th axis, and wk 
is the weight  of  its k-th axis. Element references are translated to 
locations in the data storage space as follows: 

A.da,  a [  / o ×  wo + il x w~-I- ] A[io, ~i i , t-x] / . . .  + i a - 1  x wa-1 + w a  1 
We note that wa, for a d-dimensional array, represents the displace- 
ment of  the first element of  the array. The data storage pointer 
( d a t a )  is of  type f l o a t  [ ] for single-precision arrays and of type 
d o u b l e  [ ] for double-precision and complex arrays. A complex 
number is represented as two consecutive d o u b l e s .  

3.2 Manipulators 
Array manipulators are operations that extract regular subsets of  
arrays according to certain rules. Because these operations are used 
intensively by the canonicalization and recursive descent phases of  
linear algebra routines (see Section 5.1 ), they are all implemented 
as O(1) operations that involve no data copying. That is, an array 
manipulator operation on an array A returns a new array A '  that 
has the same data storage pointer as A ( A . d a t a  = A ' . da t a ) ,  but 
has (possibly) different shape and mapping descriptors. 

Table 1 shows the definition and implementation of  some of  the 
manipulators for one- and two-dimensional arrays (Le., vectors and 
matrices). The operations are expressed in Fortran 90-like notation. 
Implementation is shown in terms of  new n '  and w '  values for the 
descriptors of  the resulting array A ' ,  as a function of  n and w for 
array A. Sectioning manipulators are used extensively in our Java 
BLAS implementation to decompose linear algebra operations into 
smaller sub-operations. Vector promotion to matrix is also very 
useful, as it allows matrix-vector (BLAS-2) operations to be con- 
verted to matrix-matrix (BLAS-3) operations. 

Particularly important for the implementation of  the linear algebra 
operations in Section 5 are the transposition and axis reversal  ma- 
nipulators. The transpose of  an n x m matrix A is an m x n matrix 
A T such that A r [ i o , i l ]  = A[ i l , io] .  Axis reversal is an opera- 
tion that can be applied to each axis of  a matrix independently. For 
an n x m matrix A, A °,  A 1, and A °'a are all n x m matrices 
with the properties A°[io,  i l  ] = A [ n  - io - 1, i l  ], A 1 [io, i~] = 
A [ i o , m  - ~ - 1], and A °'1 [io, ia] = A [ n  - io - 1, m - i~ - 1]. 
Axis reversal is represented in the Array package as a special case 
of  sectioning. As we will shown in Section 5, transposition and axis 
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Table h Vector and matrix manipulators: definition and implementation.  
definition 

vector sect ion 

v '  = v [ A  : Zo : so] 

vector row promotion 
A '  = s p r e a d ( v ,  2, I) 
vector column promotion 
A' = s p r e a d ( v ,  i, I) 
vector reversal 
v ° =v[no-l:0:-'] 

matrix section 

A ' = A [ f o : l o  : so ,  f 1 :11  : s l ]  

matrix projection (col) 

v '  = A[io,  f l  : ll : sl] 

matrix projection (row) 

v '  = A[ fo  : lo : so,J1] 

i 
n o 

L J+, 
no 

no 

+' 

l. J +, 

i 
n I 

no 

matrix transpose 
A T = t r a n s p ( A )  i n l  t n0 
matrix column (up/down) reversal 
A ° = A[no - 1 : 0 : - 1 ,  :] I n o  ! n l  

matrix row (left/right) reversal 
A 1 = A [ : , n l  - 1 : 0 : - 1 ]  I no I n l  

matrix row and column reversal no n l  
A °'1 = A [ n o - l : O : - l ,  

na - 1 : 0 : - 1 ]  

L J+, 

"tOO X So ' %00 X 
I I 

~30 
I I 

1 p i 

- ~ o  +Wl 

~/10 X SO 
I I 

%01 X Sl 

I I 

'tO0 X So 
I I 

"///1 'tOO 

' r 
- - ' W  0 %01 

I I 

' 'tOO -- '11/1 
I I 

- - ' I B  0 - - ~ U  1 

I w~ = 
i 

f o + w l  
I 

1 wz 
I 

• "03 0 .1,O 1 

wo x (no - 1) L 

I zoo x f o +  

ZOl x sl wl x ]'I + w2 

wo x io+ 

wl x f l  + w2 

zoo x fo+  

wl x it  + w2 

~/32 

wo x (no - I )  
+~u2 
wl X (ha - 1) 
+zu2 

w0 x (no -- i) 
+ 

wl X (nl -- 1) 
q-zu2 

reversal simplify the development of  numerical  linear algebra op- 
erations, by reducing the various forms of  the operation to a single 
canonical  form on which the solution can be focused. 

Efficient processing of  matrices in our Java BLAS relies on two key 
features of  modem processors. First, L1 data caches must  behave 
as true uniform random access memories.  That  is, a load from any 
cache position can be accomplished in the same amount  of  time. 
Second, the processor instruction set must  efficiently support array 
traversals of  arbitrary stride. Both features are present in the IBM 
POWER3 and PowerPC family of  processors. These  two processor 
features, coupled with the memory-hierarchy conscious blocking of 
our Java BLAS,  combine to deliver good performance in a simple 
design. 

4 .  T H E  L I N E A R  A L G E B R A  I N T E R F A C E S  
The BlasVector and BlasMatrix interfaces (see Figure 1) 
define the methods that a class has to implement  in order to func- 
tion as either a vector or a matrix, respectively, in the numerical 
linear algebra sense. These  interfaces are what make possible the 
use  of  a strategy design pattern for the linear algebra operations. 
High-level algorithms are expressed in terms of  the B l a s M a t r  i x  
and B l a s V e c t o r  methods.  The actual implementation of  those 
methods  is deferred to the concrete classes. 

The BlasVector interface defines some manipulators shown in 
Table 1: a sectioning operation (method s e c t i o n ) ,  and two pro- 
motion operations to convert an n-e lement  vector to an 1 x n or n × 
1 matrix (methods promoteAsRow and promoteAsColumn, 
respectively) . The BlasVector interface also defines meth- 
ods that implement  vector-vector (BLAS-1) operations, like dot- 

product xTy (method dot) and addition of  vectors with scaling 
V = as;  + y (method axpy). 

The B l a s M a t r i x  interface also defines manipulators,  like sec- 
tioning ( s e c t i o n )  and transposition ( t r a n s p o s e ) .  It also de- 
fines method b l k s i z e  that returns the ideal block size for a par- 
ticular matrix. This ideal block size should lead to in-cache com- 
putations. The value of  the block size is used by the numerical lin- 
ear algebra algorithms to efficiently partition the computation. The 
ideal block size typically depends on the type of the data (blocks 
for f l o a t s ,  for example,  are larger than for d o u b l e s ) .  The  con- 
crete array classes implement this method to return the appropriate 
value. The  value can be further refined to be architecture depen- 
dent, in a particular implementation of  the Array package. (Java 
provides an API - through the S y s t e m  class [8] - by which an 
executing program can find out on which type of architecture it is 
mnning.)  

BlasMatrix also defines kernel-level methods for BLAS-3 and 
factorization operations. In Figure 1 we show three BLAS-3 meth- 
ods (gemm, t r s m ,  and syrk), and one factorization (potrf) 
method. These  kernel-level methods do not have to worry about 
memory hierarchy optimizations (they are intended to operate on 
matrices no larger than the ideal block size) and need only to imple- 
ment  one version of the operation, instead of  the multiple versions 
typically defined by BLAS and LAPACK. This issue is detailed in 
the next section. 
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5. IMPLEMENTATION OF BLAS-3 AND 
F A C T O R I Z A T I O N  O P E R A T I O N S  

The BLAS-3 [11] operations are at the core of high-performance 
linear algebra algorithms. Because of their importance, in this sec- 
tion we discuss the implementation of a few BLAS-3 operations. 
We also discuss one factorization algorithm. We use recursive for- 
mulations to implement all our BLAS-3 and factorization opera- 
tions. The recursive formulation has two very useful properties. 
First, it leads to automatic blocking of data [15]. Second, a large 
fraction of the computation ends up expressed in terms of matrix 
multiplication (GEt',~) operations. 

Automatic blocking is important as we move to machines with 
deeper and deeper memory hierarchies. With a mcursive formu- 
lation, different levels of the recursion have different matrix sizes 
that are appropriate for the various levels of the memory hierarchy. 
Recursion also helps by making the choice of the block size, as de- 
fined by method b l k s i z e ,  less critical. The automatic blocking 
from recursion leads to good performance even when the cache is 
much larger than the particular block size. 

Expressing linear algebra operations in terms of matrix multiplica- 
tions is important because the GEMM operation can be performed 
very efficiently on a variety of architectures. Its n s / n  2 computa- 
tion to data ratio makes it possible to tolerate the large computa- 
tion/memory performance gap in present day machines. It is com- 
mon practice to maximize the use of GEMM operations when devel- 
oping linear algebra algorithms [ 11 ]. 

5.1 Operation stages 
The example call graph of Figure 2, for the TRSM (triangular sys- 
tem solve) operation, details the stages in the execution of a linear 
algebra operation. The first step consists of an invocation of a type- 
specific (in this case, for d o u b l e s )  public method which mimics 
the standard BLAS interface. This method (Blas. dtrsm) sim- 
ply calls the type-generic method ( B l a s .  t r sm) .  The first stage 
in each operation is a sanity check. The operation will not pro- 
ceed until the data are shown to be consistent and there is a guar- 
antee that the operation can terminate with no exceptions. Also, 
before proceeding with the operation, its many different forms (as 
defined by BLAS or LAPACK) are all transformed into a single 
canonical form. This canonical form is then used by the recursive 
descent phase, which decomposes one operation into smaller sub- 
operations. Canonicalizing the operation allows us to write just 
one version of the recursive descent phase. When recursive descent 
bottoms out by reaching the ideal block size defined by method 
b l k s i z e  (i.e., when the problem size becomes small enough to 
fit into L1 cache), an optimized kernel is invoked through a virtual 
function call. Thus, the extra overhead of recursion is kept at a 
minimum. 

The sanity check, canonicalization, and recursive descent phases 
are written in a type-generic fashion. The optimized kernels are 
type-aware. (There exists one properly optimized kernel for each 
data type.) The appropriate kernel is found by means of a virtual 
function call (as detailed by the call graph in Figure 2). Type- 
specific optimized kernels exist for all operations for double-pre- 
cision, single-precision, and complex data. 

In the next sections we present implementation details of four lin- 
ear algebra operations. These serve as illustrations of the general 
approach adopted in implementing Java BLAS. We discuss three 

operations that are part of BLAS-3: GEF~ (generic matrix multi- 
ply), TRSM (triangular system solve), and SYRK (symmetric rank-k 
update). We also discuss POTRF (Cholesky factorization). 

5.2 GEMM 
GEMM implements the operation C = ~OG' + etA* x B*,  where X* 
denotes either the matrix X or its transpose X T. Consequently, 
there are four different forms of GEMM and typical BLAS code in 
Fortran or C will explicitly code all four forms [1]. In the Java 
BLAS, all four forms can be easily reduced to the canonical form 
G = f i g  + e ta  x B with the use of the transposition manipulator. 
The canonical form of GEMM is implemented recursively. The op- 
eration can be decomposed in three different ways at each recursive 
step: 

A2 ] x B  
(1) II 

c1 = ~c1  + etA1 x B,  6"2 = ~C2 + etA2 x B 

]+etA×[B  /32] 
~t (2) 

Ci =/3CI + etA x B1, C2 =13C~ + etA x B2 

C=~C+et[A1 A~]x B~ (3) 

C = [~C + aA1 x BI + aA2 x B~ 

The particular decomposition is chosen at each recursive step so 
that the larger axis at that step is split. This approach tends to create 
more "square" subproblems, which lead to a better computation 
to dam ratio, and therefore to better performance. The recursion 
continues until the problem is no larger than the block size defined 
for each data type. At this point, the type-specific kemel is invoked. 

5.3 TRSM 
TRSM solves a triangular system of equations with multiple fight- 
hand sides. The canonical form of the system is 

L X  = etB (4) 

where L denotes an n x n lower triangular matrix, X (the un- 
known) and B are n x ra rectangular matrices, and a is a scalar. In 
addition to the canonical form, the triangular system can take seven 
other forms as shown in Figure 3, where U denotes an n x n upper 
triangular matrix. The figure also shows the sequence of operations 
needed to bring the equations to the canonical form. We note that 
the four forms with the coefficient (L or U) matrix on the right can 
be transformed to forms with the coefficient matrix on the left with 
the application of transposition. The forms with U T or L T are di- 
rectly equivalent to forms with L and U, respectively. Finally, the 
form U X  = a B  can be transformed to form L X  = etB with the 
use of the axis reversal manipulators discussed in Section 3.2. U °'1 
is a lower triangular matrix, and equation U X  = a B  is equivalent 
to the equation U °'a X ° = B °. 

The canonical equation in the form L X  = a B  is solved using a 
recursive algorithm. The particular decomposition adopted in each 
recursive step depends on the relative values of n and re. If ra > n 
then we can write 

L [ x l  x ]=et[B, (5) 
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Blas.dtrsm(side, diag, uplo, trans, alpha, A, B) 

( Blas.trsm(side, diag, uplo, t ..... alpha, A, B) ) 

~ _  ( B a s . r g e ~  

trsm(diag., alpha, A,B,temp) 

( doubleArray2D.trsm(diag, alpha, A, B, temp) ) 

/ 
( Blas.kdtrsm(diag, alpha, A, B, temp) ) 

type specific (public) 

type generic (sanity check and canonicalization) 

type generic (recursive descent) 

virtual function call 

virtual function call resolved to method of doubleArray2D 

type specific (optimized kernel) 

Figure 2: Call graph for TRSM~ showing the various stages of execution of a Java BLAS operation. 

XLT= B g* I LX=, BI UX= B g* XU 
~ E  ~ E  

X U  = a B  ~:~ U T X  = a B  L T X  = a B  ~:~ X L = a B  

transformation effect 

I axis reversal U X  = a B  ~e~ U °J  X ° = a B  ° 

I transposition X L  r = a B  ~:~ L X  r = a B  T, X U  = a B  ~:~ u r x  r = a B  T . . . .  I 

I equivalence L X  = a B  ,~  u T x  = a B ,  U X  = a B  ,~  L T x  = o~B 

Figure 3: The eight forms of TRSI~ which can all be reduced to L X  = orB through manipulators. 

and we decompose  it into two smaller TRSFI operations LX~ = 
a B 1  and L X s  = a B s .  I f n  > ra we can write L X  = a B  as 

] Lsl Lss Xs -- aBs 

where L n  is ann1  × na lower triangular matrix, Ls t  is an n s  x nz 
rectangular matrix, and Lss  is an ns  x n s  lower triangular matrix. 
We note that n~ + n s  = n ,  both X~ and B1 are n l  x m rectangular 
matrices and both X s  and B2 are n s  x m rectangular matrices. 
From this formulation we derive 

Ll l  X l  = otBl (7) 

L s s X s  = orbs - LsI  X1 (8) 

Equation 7 is just  a smaller triangular sys tem of  equations,  and 
can be solved with a mcursive call to TRSM. To evaluate Xs  in 
Equation 8, we first need to compute  the new right-hand side a B s  - 
L21Xx. This  can be accomplished with a GEMM operation. After 
that, we just  need to solve another triangular sys tem of  equations 
with TRSM. 

5 . 4  SYRK 
The SYRK operation performs an update of  a triangular matrix. It 
can take one of  four forms: 

L = / 3 L + a A x A  T U = / 3 U + a A x A  T 
L=/3L+aA T xA U=/3[I+aA TxA (9) 

The forms with A T x A can be reverted to the forms with A x,A T by 
a transposition of  A. Also the forms with upper triangular matrix 
U can be converted to forms with lower triangular matrix L by a 

transposition. Therefore, we only have to consider the canonical  
form L = /3L + aA x A r. 

For the recursive descent  phase,  the canonical form can be decom- 
posed in two different ways, depending on which axis of  matrix A 
is larger. Let L be n x n and let A be n × ra.  If n > ra we can 
decompose  the canonical form as 

[LI  0] [L,, 0] 
L21 Lss  = /3 L21 Lss  + 

a As  ×[AT 
Which leads to the relations: 

A T ]  (10) 

L , I  = / 3 L n + o t A l  x A T  (11) 

L21 = /3L21 + a A s  x AT (12) 

Lss = i lLs2 +o tA2  x A T  (13) 

Equations 1 1 and 13 are just  smaller SYRK operations, while Equa- 
tion 12 is a GEMM operation. If m > n then we decompose  as: 

L = /3L+~[ AI As ] × AT 

= f lL  + aA1  x A T  + a A s  x A [  (14) 

which can be implemented as two recursive calls to SYRK. 

5.5 POTRF 
POTRF computes  the Cholesky factor L of  an n x n symmetr ic  
positive definite matrix A. That  is, it computes  the lower triangular 
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matrix L such that L T x L = A. Alternatively, POTRF can com- 
pute the upper triangular factor U such that U T x U = A. The 
latter problem can be reverted back to the former with a transposi- 
tion. We decompose L x L T = A as 

[ Ltl  0 ] [ L1T1 L2T1 ] [ A n  A~I ] (15) 
L~I L22 x 0 LT2 = A~I A2~ 

from which we write 

L n  xLT1 = A n  (16) 

L21 x LT1 = A21 (17) 

L22 × LT2 = A22 - L21 x LTt (18) 

Lt~ can be computed with Equation 16 through a recursive call to 
POTRF. Lzt can be computed with Equation 17 through a call to 
TRSM. Finally, to compute L2z we first have to compute A22 - 
L2t x LTt with a call to SYRK, and then we can evaluate L22 with 
another recursive call to POTRF. 

6. EXPERIMENTAL RESULTS 
We evaluate the performance of our Java BLAS on three machine 
architectures (POWER3, PowerPC, and IA-32) and in two different 
execution environments (static and dynamic compilation). We used 
the following machines: (i) An IBM RS/6000 model F50, with a 
332 MHz PowerPC 604e processor, 32 kB of level 1 data cache, 
256 kB of level 2 data cache, and a peak floating-point performance 
of 664 Mflops. (ii) An IBM RS/6000 model 260, with a 200 MHz 
POWER3 processor, 64 kB of level 1 data cache, 4 MB of level 
2 data cache, and peak performance of 800 Mflops. (iii) A Dell 
Precision 610, with a 550 MHz Xeon processor, 32kB of level 1 
data cache, 512kB of level 2 data cache, and peak performance of 
550Mflops. The POWER3 is optimized for scientific computing, 
while the 604e and the Xeon are more general-purpose processors. 

We start by comparing the performance of statically compiled Java 
BLAS against native libraries optimized for each architecture. On 
the RS/6000 machines, Java BLAS was statically compiled into 
native code with the Ninja prototype optimizing Java compiler [2, 
3, 19]. The Ninja compiler performs bounds checking elimination, 
loop invariant motion, strength reduction, semantic expansion [21 ], 
and various loop transformations. Since Ninja is only available for 
RS/6000, in the Xeon machine we used IBM HPCJ with the run- 
time checks disabled. Although this does not correspond to a legal 
Java execution, it gives us an idea of the performance we could 
achieve by porting Ninja to IA-32. (The Ninja compiler is based on 
HPCJ.) 

We compared the compiled Java code with the performance of na- 
tive libraries on the target machines as follows. On the RS/6000 
machines the basis for comparison was IBM's Engineering and Sci- 
entific Subroutine Library (ESSL). ESSL is mostly implemented in 
Fortran, and has been fine tuned for IBM machines over the course 
of many product generations. On the Intel machine the frame of ref- 
erence was the Math Kernel Library [16], which contains a set of 
linear algebra routines optimized for Intel CPUs. Equivalent driver 
programs in Java, Fortran, and C were used to test Java BLAS and 
the native libraries respectively. 

Results for each of the three different instances of GEMM and TRSM 
(one each for f l o a t ,  d o u b l e ,  and Complex  types) are shown 
in Figure 4 for the RS/6000 machines. Each plot shows the perfor- 
mance of one particular routine (SGEMM and STRSM for f l o a t s ,  
DGEMM and DTRSM for d o u b l e s ,  ZGEMM and ZTRSM for Corn- 

p l e x e s )  when operating on n x n square matrices of the same 
size. Performance in Mflops is shown as a function of n ,  the prob- 
lem size. Each plot has four lines: ESSL on POWER3 and 604e, 
and Java BLAS on POWER3 and 604e. 

We first note that the performance of Java BLAS is quite stable with 
respect to problem size, indicating that our recursive approach is ef- 
fective in exploiting the memory hierarchy. Our Java BLAS imple- 
mentation is not as efficient as ESSL, but it achieves good absolute 
performance. For float operations the Java BLAS achieves ap- 
proximately 85% of the corresponding ESSL on the POWER3. The 
results for the d o u b l e  operations are slightly worse, 80% of the 
corresponding ESSL routines on the POWER3. The correspond- 
ing numbers for the PowerPC 604e are 85% and 70% of ESSL 
for f l o a t s  and d o u b l e s ,  respectively. We have measured the 
d o u b l e A r r a y 2 D  gemm kernel at approximately 95% of ESSL 
performance when operating on small, in-cache, matrices. The re- 
maining performance degradation results from recursion and vir- 
tual function call overhead. 

In the case of the Complex  operations ZGENM and ZTRSM, our 
Java BLAS achieves only 65% and 70% of ESSL performance on 
POWER3 and PowerPC 604e, respectively. Operations on com- 
plex numbers have a better computation-to-data ratio than equiva- 
lent operations on real numbers. Therefore, ZGEMM and ZTRSM are 
expected to perform even better than the corresponding DGEMM and 
DTRSM. This is the case for the ESSL versions, but not so for the 
Java BLAS. The results from POWER3 in particular indicate that 
we need more work to improve the C o m p l e x A r r a y 2 D  geram and 
t r s m  kernels. 

Results for DGEMM in the Xeon machine are shown in Figure 5. 
Again, the performance of Java BLAS is quite stable with respect 
to problem size, indicating effective exploitation of the memory hi- 
erarchy. However, on that platform, the relative performance of 
Java BLAS is only around 30% of Intel's MKL. (The same ratio 
holds for the other versions of GEMM and TRSM.) The performance 
of the doubleArray2D gemm kernel when operating on small, 
in-cache, matrices, yields about 40% of MKL performance. This 
demonstrates the need to tune the block size parameter, and proba- 
bly some of the kernel code, for the Xeon processor. 
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Figure 5 : IA -3 2  (Xeon) performance on DGEF~. 
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Figure 4: P e r f o r m a n c e  results for ESSL and Java Bias on  P O W E R 3  and P o werP C 604e machines .  
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We note, in Figure 4, that there is not much difference between the 
plots for GE_~4 and the corresponding (same data type) plots for 
'rRSH. Although not shown, the same holds true for the Xeon ma- 
chine. Both operations can be implemented with the same level of 
efficiency. This is expected (at least in the Java BLAS versions) 
for two reasons. First, the kernel levels 9-emm and t r s m  methods 
use identical loop unrolling and register blocking optimizations, 
with the final results that the kernels look remarkably similar. Sec- 
ond, and most importantly, our recursive approach to implementing 
TRSM leads to a large fraction of computation in a call to TRSM ac- 
tually being performed inside GEMM operations. That fraction, as a 
function of problem size, is plotted in Figure 6 for the three differ- 
ent instances of TRSM. Block sizes for Complex  are smaller than 
for d o u b l e ,  which in turn are smaller than for f l o a t .  (A larger 
element results in a smaller block size for the a fixed cache size.) 
That means that, for the same problem size, the Complex  version 
will have a deeper recursion tree than the d o u b l e  version, which 
will have a deeper recursion tree than the f l o a t  version. A deeper 
recursion tree results in a higher fraction of GEMM operations. 

The numbers for fraction of computation performed by GEMM for 
SYRK are identical to those for TRSM, and thus not shown in Fig- 
ure 6. For completeness, Figure 6 also shows the fraction of com- 
putation performed by GEMM in a Cholesky factorization (POTRF). 
For a given problem size, the fraction in POTRF is not a high as 
in TRSM or SYRK, since POTRF has to be first decomposed into 
those operations before they are in turn decomposed into GEMM 
operations. Nevertheless, for large problem sizes the fraction of 
computation in GEMM can be very significant, and the asymptotic 
performance of POTRF is the same as that of GEMM. 

Finally, to analize performance on a dynamic compilation envi- 
ronment, we compare the speed of our Java BLAS with the Java 
Numerical Library from Visual Numerics [20]. We ran our ex- 
periments on the Xeon platform using IBM's DK (version 1.1.8), 
again using equivalent driver programs for the two libraries. Fig- 
ure 7 compares the respective performances of the two libraries for 
DGEI,,~. Visual Numerics' code implements matrices using Java ar- 
rays of arrays. Our Array package Java BLAS displays higher and 
more stable performance. 

7. CONCLUSIONS 
Optimized linear algebra libraries are important tools in compu- 
tational science and engineering. Their availability in Java is ab- 
solutely necessary if this language is to become a serious candi- 
date for the development of large numerical applications. We have 
adopted one particular approach to address this issue by developing 
a linear algebra package entirely in Java. 

The benefits of our approach can be summarized as follows. First 
and foremost, we have achieved high performance. Even though 
it is still in earlier stages of development, our Java linear algebra 
package has already achieved 65-85% of the performance of one of 
the most respected industrial-strength numerical libraries (ESSL). 
This is an excellent starting point, and with it we have demonstrated 
the performance feasibility of our approach. Now we need to con- 
tinue to optimize our implementation and broaden the evaluation 
with other operations, particularly factorization. 

Other benefits of our approach are performance portability, code 
portability, and reproducibility of  results. The library is not opti- 
mized for any particular architecture/cache layout. We have demon- 
strated that it yields very good results on two different memory 
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Figure 7: Java BLAS performance with JIT. 

architectures. The recursive formulation of the linear algebra op- 
erations leads to good exploitation of memory hierarchy. Code 
portability is intrinsic to any Java program. Our object oriented 
design is also more concise and easier to maintain than Fortran 
and C implementations of BLAS and LAPACK. Finally, the per- 
formance results are also a demonstration of the capabilities of 
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state-of-the-art Java compilers. We have demonstrated reasonable 
performance with the Array package on another instruction-set ar- 
chitecture, namely IA-32. Those results, however, were not as good 
as for the RS/6000 machines. At the moment, our optimizing com- 
piler infrastructure is only available on RS/6000. 

As we have emphasized earlier, the data layout in the Array pack- 
age is in no way exposed to programmers, giving us the freedom 
to explore new data organizations. We have started experiment- 
ing with blocked and recursive blocked data layouts [9, 10], which 
nicely match the recursive decomposition algorithms. We can in- 
troduce these new data structures without having to rewrite a single 
line of Java BLAS. At this point, we only have very preliminary re- 
suits that show performance gains of approximately 10% over the 
current data organization in the Array package. We will continue 
to pursue this line of research, as these techniques potentially lead 
to Java programs achieving better performance than their Fortran 
counterparts. 

Acknowledgements: The authors wish to thank Sid Chatterjee for 
fruitful discussions during the development of the linear algebra 
package for Java. 

8. REFERENCES 
[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, 

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, 
S. Ostrouchov, and D. Sorensen. LAPACK User's Guide. 
Society for Industrial and Applied Mathematics, 1995. 

[2] P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E. Moreira. 
High performance numerical computing in Java: Language 
and compiler issues. In J. Ferrante et al., editors, 12th 
International Workshop on Languages and Compilers for 
Parallel Computing. Springer Verlag, August 1999. IBM 
Research Division report RC21482. 

[3] P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E. Moreira. 
Automatic loop transformations and parallelization for Java. 
In International Conference on Supercomputing, May 2000. 
IBM Research Division report RC21629. 

[4] B. Blount and S. Chatterjee. An evaluation of Java for 
numerical computing. In Proceedings oflSCOPE'98, 
volume 1505 of Lecture Notes in Computer Science, pages 
35-46. Springer Vedag, 1998. 

[5] R. F. Boisvert, J. J. Dongarra, R. Pozo, K. A. Remington, and 
G. W. Stewart. Developing numerical libraries in Java. 
Concurrency, Pract. Exp. ( UK), 10(11-13):1117-29, 
September-November 1998. ACM 1998 Workshop on Java 
for High-Performance Network Computing. URL: 
http : //www. cs. ucsb. edu/conferences / 
java98. 

[6] R. E Boisvert, J. Hicklin, B. Miller, C. Moler, R. Pozo, 
K. Remington, and P. Webb. JAMA: A Java matrix package. 
URL: 
http : //math. nist. gov/j avanumerics / j ama/, 
1998. 

[7] H. Casanova, J. Dongarra, and D. M. Doolin. Java access to 
numerical libraries. Concurrency, Pract. Exp. ( UK), 
9(11):1279-91, November 1997. Java for Computational 
Science and Engineering - Simulation and Modeling II Las 
Vegas, NV, USA 21 June 1997. 

[8] R Chan, R. Lee, and D. Kramer. The Java Class Libraries, 
volume 1 of The Java Series. Addison-Wesley, 1998. 

[9] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and 
M. Thottethodi. Nonlinear array layouts for hierarchical 
memory systems. In Proceedings of the 1999 International 
Conference on Supercomputing, pages 444--453, Rhodes, 
Greece, 1999. 

[10] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and 
M. Thottenthodi. Recursive array layouts and fast parallel 
matrix multiplication. In Proceedings of the 11th Annual 
ACM Symposium on Parallel Algorithms and Architectures, 
pages 222-231, Saint-Malo, France, June 1999. 

[11] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der 
Vorst. Solving Linear Systems on Vector and Shared Memory 
Computers. Society for Industrial and Applied Mathematics, 
1991. 

[12] G. Fox, X. Li, Z. Qiang, and W. Zhigang. A prototype of 
Fortran-to-Java converter. Concurrency, Pract. Exp., 
9(11 ): 1047-61, Nov 1997. Java for Computational Science 
and Engineering - Simulation and Modeling II Las Vegas, 
NV, USA 21 June 1997. 

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design 
Patterns: Elements of Reusable Object-Oriented Software. 
Addison-Wesley Publishing Company, 1995. 

[14] James Gosling. The evolution of numerical computing in 
Java. URL: 
http: //java. sun. com/people/j ag/FP.html, 
1997. Sun Microsystems. 

[15] E G. Gustavson. Recursion leads to automatic variable 
blocking for dense linear algebra algorithms. IBM Journal of 
Research and Development, 41 (6):737-755, November 1997. 

[16] Intel Corporation. Intel Math Kernel Library. URL: 
http : //www. intel, com/vtune/per f libst / 
mkl / index, htm. 

[17] International Business Machines Corporation. IBM 
Engineering and Scientific Subroutine Library for AIX - 
Guide and Reference, December 1997. 

[18] Java Grande Forum. Java Grande Forum Report: Making 
Java Work for High-End Computing, November 1998. Java 
Grande Forum Panel, SC98, Orlando, FL. URL: 
http : //www. j avagrande, org/reports, htrm 

[19] J. E. Moreira, S. P. Midkiff, M. Gupta, P. V. Artigas, M. Snir, 
and R. D. Lawrence. Java programming for high 
performance numerical computing. IBM Systems Journal, 
39(1):21-56, 2000. IBM Research Division report RC21481. 

[20] Visual Numerics Inc. JNL 1.0 - A Numerical Library for 
Java. URL: 
http : //www. vni. com/products/wpd/j nl/. 

[21] P. Wu, S. E Midkiff, J. E. Moreira, and M. Gupta. Efficient 
support for complex numbers in Java. In Proceedings of the 
1999 A CM Java Grande Conference, 1999. IBM Research 
Division report RC21393. 

159 


