
Design and Evaluation of a
Linear Algebra Package for Java

G. Almasi
g a lmasi @ c s. uiuc. e du

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801

E G. Gustavson J.E. Moreira
gustav@watson.ibm.corn jmoreira@us.ibm.com

IBM T. J. Watson Research Center
P. O. Box 218

Yorktown Heights, NY 10598

ABSTRACT
This paper describes the design of a high-performance linear al-
gebra library for Java. Linear algebra libraries such as ESSL and
LAPACK are important tools of computational science and engi-
neering, and have been available to C and Fortran programmers for
quite a while. If Java is to become a serious language for the de-
velopment of large scale numerical applications, it must provide
equivalent functionality. From the many possible alternatives to
accomplish this goal, we took the approach of designing a linear
algebra library entirely in Java. This approach leads to good porta-
bility and maintainability of the code. It is also a good test of how
far we can push Java performance. We adopted an object-oriented
design in which the linear algebra operations are implemented as
strategy design pattems. The higher level algorithms, optimized for
the memory hierarchies of present-clay machines, are described in a
type independent manner. Type specific methods capture the lower
level optimizations for operations on matrices of single-precision,
double-precision, or complex numbers. We evaluate the perfor-
mance of our linear algebra package on three different machines.
Our preliminary results show that our Java library achieves up to
85% of the performance of the highly optimized ESSL.

1. INTRODUCTION
Scientists and engineers developing numerical applications in es-
tablished languages such as Fortran and C have a vast collection
of standard libraries available in their toolbox. Of particular im-
portance are libraries for numerical linear algebra, such as LA-
PACK [1] and ESSL [17], libraries for discrete Fourier transform
(FFT), and elementary functions libraries. If Java is to become a
serious language for large scale numerical computing, it must pro-
vide a similar set of tools. Many efforts are under way to provide
Java with such libraries [4, 5, 6, 7].

This paper describes and evaluates our particular design of a linear
algebra package for Java. The goal of this package is to provide a
portable and high performance Java analog to BLAS [11] and LA-
PACK. We chose to develop this package entirely in Java, with no

Pem~ission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without t%e provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a t~e.
Java 2000 San Francisco CA USA
Copyright ACM 2000 1-58113-288-3/00/6...$5.00

native code components. We follow an object oriented design that
leads to easy maintainability and portability of the code. Through
an experimental evaluation, we show that it also leads to good per-
formance. In fact, the package displays performance portability.
That is, the same c l a s s files achieve a significant fraction of the
machine peak performance on different architectures. In particu-
lar, for this paper we demonstrate good performance on two differ-
ent memory architectures. We also accomplish reasonable perfor-
mance across different instruction set architectures.

Our linear algebra package is an integral part of the Array pack-
age for Java, which we have developed to support true multidimen-
sional arrays in Java [2, 19]. The linear algebra operations are static
methods of the B l a s class in that package. We refer to this li-
brary of linear algebra methods as our Java BLAS (even though it
also contains LAPACK-style factorization methods). The methods
mimic the functionality and interface of the well-known BLAS and
LAPACK libraries for Fortran and C. Operations are only permitted
on matrices and vectors of the same type, with a different method
performing the operation for each type. At this point, we sup-
port three different elemental data types: single-precision floating-
point numbers (f l o a t) , double-precision floating-point numbers
(d o u b l e) , and double-precision complex numbers (Complex).
Although BLAS and LAPACK also support single-precision com-
plex numbers, we chose not to include single-precision complex
numbers at this time since they are not part of the standardization
effort being conducted by the Java Grande Forum [18]. Support
for single-precision complex numbers can be easily added to our
package if necessary.

For the purpose of numerical linear algebra, vectors are imple-
mented as one-dimensional arrays of one of the data types (f l o a t ,
double, and Complex), while matrices are implemented as two-
dimensional arrays of those data types. A small set of basic oper-
ations are implemented by type-specific kernels. A kernel method
performs a basic linear algebra operation optimized for data that
fits well into a L1 data cache. More complicated operations, and
memory-hierarchy conscious versions of the basic linear algebra
operations, are implemented as type-independent strategies [13].
A strategy is a design pattern that specifies a generic algorithm as a
series of operations (virtual method calls) to be performed, leaving
the specific implementation of each operation to the particular con-
crete classes. Using this design methodology, we arrive at a linear
algebra package that is significantly more concise than its Fortran
or C counterparts. The conciseness facilitates maintainability and
lets us focus on fewer performance-critical components.

150

http://crossmark.crossref.org/dialog/?doi=10.1145%2F337449.337534&domain=pdf&date_stamp=2000-06-03

The rest of this paper is organized as follows. We start with a dis-
cussion of related work in Section 2. Section 3 gives a brief descrip-
tion of the Array package for Java, focusing on features and prop-
erties that are more relevant to numerical linear algebra. Section 4
describes the B l a s V e o t o r and B l a s M a t r i x Java interfaces,
which allow the development of an object-oriented linear algebra
package. Section 5 details the implementation of some of the linear
algebra routines provided by the package. Section 6 shows some
preliminary performance results that demonstrate that our approach
can lead to high performance implementations. Finally, Section 7
presents our conclusions.

2. RELATED WORK
There are two basic approaches to providing Java with a linear al-
gebra library. One can leverage existing high-performance linear
algebra libraries by having Java programs perform native calls [4,
7]; the obvious advantage is that a relatively small amount of ef-
fort is needed. The disadvantage is that there are no guarantees of
reproducibility of results, because of differences in each implemen-
tation. Also, improvements by one manufacturer do not benefit the
users of other products.

The other possibility is to implement the linear algebra package en-
tirely in Java [4, 5, 6, 7]. The obvious disadvantage is the amount
of effort required, although the Java code could be generated by au-
tomatic translation from Fortran implementations [7, 12]. The ad-
vantage of a 100% Java approach lies in the portability of the pack-
age and reproducibility of results computed with it ("write once,
run anywhere"). Also, all users benefit from enhancements to the
package. In [4] it is shown that a hybrid approach, in which the
higher levels of a linear algebra package are coded in Java and the
lower levels in Fortran, can deliver very good performance.

Java was not originally designed for high-performance computa-
tion [14]. Some of the many design issues arehandlingofnumerics-
related exceptions, unnecessarily restrictive arithmetics, no direct
support for complex numbers, and lack of standardized multidi-
mensional arrays. These issues have been taken up by the members
of the Java Grande Forum [18], but they are far from resolved. For
example, in our approach we use the fused multiply-add capability
of the POWER3 and PowerPC 604e processors to our advantage.
We also tackle the array problem by targeting the Array package,
which is part of the Java Grande Forum standardization effort.

Our library makes extensive use of recursive linear algebra algo-
rithms, described in [10, 15]. Recursive algorithms are conceptu-
ally simple and powerful, and the resulting automatic blocking is
an important feature to achieve performance portability. They also
fit nicely in a strategy design pattern.

To compile the Array package (including the Java BLAS) we made
use of the latest Java compiler technologies developed in our group
[2, 3, 19]. We have already demonstrated the benefits of automatic
compiler optimization and parallelization that result from program-
ming with the Array package. The Java BLAS is one more step in
providing a "Java solution" to scientific and engineering program-
mers.

3. THE ARRAY PACKAGE FOR JAVA
The Array package for Java implements true multidimensional ar-
rays, which are not directly supported by the Java language. (In-
stead, Java supports arrays of arrays, which are less amenable to
optimizations as shown in [2, 19].) A multidimensional array is

characterized by three immutable properties: type, rank, and shape .
The type of an array is the type of its elements. The rank (or di-
mensional i ty) of an array is the number of its axes. Finally, the
shape of an array is the extent of each of its axes. The shape of a
d-dimensional array A of type T can be represented by a d-element
vector n = (no, n l , • • • , h a - 1), where nk is the extent of axis k,
k = 0 , . . . ,d - 1. Given an index i = (i o , i l , . . . , i d - 1) , with
0 < ik < nk Vk, then A [i o , i l , . . . , ia-1] represents a unique
element of the array A. Two elements A [i o , i ~ , . . . , i e - 1] and
A[jo, j l , • • • , ja-1] are the same if and only if ik = jk, Vk.

Figure 1 is an architectural overview of the Array package for Java.
It shows, among other things, the inheritance graph of the classes
in the Array package. The virtual base class A r r a y is specialized
by type, and then specialized again by rank to obtain the concrete
classes. Concrete class names have the form

< t y p e > A r r a y < r a n k > D ,

where type denotes the elemental type (either f l o a t , d o u b l e , or
Complex) and rank denotes the rank of the array. The shape of the
array is defined at object instantiation time, and is immutable once
created. The immutability and rectangularity of the shape, together
with the specific type and rank of the concrete classes, are impor-
tant for optimization of code using the Array package. The type-
and rank-specific concrete classes facilitate devirtualization and se-
mantic expansion [21], while the rectangular and immutable shape
helps bounds checking optimization and alias disambiguation [2,
3, 19]. We also note, from Figure 1, that one-dimensional (vec-
tor) concrete classes implement the B l a s V e c t o r interface, while
two-dimensional (matrix) classes implement the B l a s M a t r i x in-
terface. These interfaces are discussed in Section 4.

Also shown in Figure 1 are some methods of the Blas class. This
class implements basic linear algebra operations (such as defined
by BLAS), as well as some factorization operations (such as de-
fined by LAPACK). The public methods of the B l a s (exemplified
in Figure 1 by sgemm, dgemm, and zgemm) mimic the interfaces
specified by BLAS and LAPACK. The class also includes some
internal methods that are used in the implementation of the linear
algebra operations. These methods (declared as p r o t e c t e d in
Figure 1) are not exposed to the application programmer.

3.1 Internal representation
Standard BLAS and LAPACK routines operate on data arranged in
memory in column-major format, the standard layout for Fortran
arrays. By contrast, the routines in Java BLAS (and Array package
code in general) are independent of data layout. Thus, the internal
representation (memory layout) of arrays in the Array package is
purposely not exposed to the programmer, opening the possibility
of future enhancements and compiler optimizations. However, in
this section we explain the internals of the current reference imple-
mentation of the Array package, since they impact the efficiency of
our Java BLAS.

The representation of a d-dimensional array of floats, doubles,
or Complexes consists of:

• a data storage pointer (d a t a) ,

• a shape descriptor (no, n l , . . . , n e - 1) , and

• a mapping descriptor (wo, w l , . . . , w a) .

151

]aTY

floatArrav CoraplexArray doubleArray ,"

I " , , , , ' 2
I I ,'x~

BlasVector

BlasVector clone()
void assign(...);
boolean intersects (...);
int length();
BlasVector section(...);
BlasMatrix promoteAsRowO;
BlasMatrix promoteAsColumnO;

BlasScalar dot(...);
void axpy(...);

BlasMatrix

int blksizeO;
BlosMatrix clone(...);
void assign(...);
boolean intersects (...);
int rows();
int colsO;
BlasMatrix transpose();
BlasMatrix section (...);

void gemm(...);
void trsm(...);
void potrf(...);
void syrk(...);

Figure 1: Array package for Java: architectural overview.

For a d-dimensional array, nk is the shape of its k-th axis, and wk
is the weight of its k-th axis. Element references are translated to
locations in the data storage space as follows:

A.da, a [/ o × wo + il x w~-I-] A[io, ~i i , t-x] / . . . + i a - 1 x wa-1 + w a 1
We note that wa, for a d-dimensional array, represents the displace-
ment of the first element of the array. The data storage pointer
(d a t a) is of type f l o a t [] for single-precision arrays and of type
d o u b l e [] for double-precision and complex arrays. A complex
number is represented as two consecutive d o u b l e s .

3.2 Manipulators
Array manipulators are operations that extract regular subsets of
arrays according to certain rules. Because these operations are used
intensively by the canonicalization and recursive descent phases of
linear algebra routines (see Section 5.1), they are all implemented
as O(1) operations that involve no data copying. That is, an array
manipulator operation on an array A returns a new array A ' that
has the same data storage pointer as A (A . d a t a = A ' . da t a) , but
has (possibly) different shape and mapping descriptors.

Table 1 shows the definition and implementation of some of the
manipulators for one- and two-dimensional arrays (Le., vectors and
matrices). The operations are expressed in Fortran 90-like notation.
Implementation is shown in terms of new n ' and w ' values for the
descriptors of the resulting array A ' , as a function of n and w for
array A. Sectioning manipulators are used extensively in our Java
BLAS implementation to decompose linear algebra operations into
smaller sub-operations. Vector promotion to matrix is also very
useful, as it allows matrix-vector (BLAS-2) operations to be con-
verted to matrix-matrix (BLAS-3) operations.

Particularly important for the implementation of the linear algebra
operations in Section 5 are the transposition and axis reversal ma-
nipulators. The transpose of an n x m matrix A is an m x n matrix
A T such that A r [i o , i l] = A[i l , io] . Axis reversal is an opera-
tion that can be applied to each axis of a matrix independently. For
an n x m matrix A, A °, A 1, and A °'a are all n x m matrices
with the properties A°[io, i l] = A [n - io - 1, i l], A 1 [io, i~] =
A [i o , m - ~ - 1], and A °'1 [io, ia] = A [n - io - 1, m - i~ - 1].
Axis reversal is represented in the Array package as a special case
of sectioning. As we will shown in Section 5, transposition and axis

152

Table h Vector and matrix manipulators: definition and implementation.
definition

vector sect ion

v ' = v [A : Zo : so]

vector row promotion
A ' = s p r e a d (v , 2, I)
vector column promotion
A' = s p r e a d (v , i, I)
vector reversal
v ° =v[no-l:0:-']

matrix section

A ' = A [f o : l o : so , f 1 :11 : s l]

matrix projection (col)

v ' = A[io, f l : ll : sl]

matrix projection (row)

v ' = A[fo : lo : so,J1]

i
n o

L J+,
no

no

+'

l. J +,

i
n I

no

matrix transpose
A T = t r a n s p (A) i n l t n0
matrix column (up/down) reversal
A ° = A[no - 1 : 0 : - 1 , :] I n o ! n l

matrix row (left/right) reversal
A 1 = A [: , n l - 1 : 0 : - 1] I no I n l

matrix row and column reversal no n l
A °'1 = A [n o - l : O : - l ,

na - 1 : 0 : - 1]

L J+,

"tOO X So ' %00 X
I I

~30
I I

1 p i

- ~ o +Wl

~/10 X SO
I I

%01 X Sl

I I

'tO0 X So
I I

"///1 'tOO

' r
- - ' W 0 %01

I I

' 'tOO -- '11/1
I I

- - ' I B 0 - - ~ U 1

I w~ =
i

f o + w l
I

1 wz
I

• "03 0 .1,O 1

wo x (no - 1) L

I zoo x f o +

ZOl x sl wl x]'I + w2

wo x io+

wl x f l + w2

zoo x fo+

wl x it + w2

~/32

wo x (no - I)
+~u2
wl X (ha - 1)
+zu2

w0 x (no -- i)
+

wl X (nl -- 1)
q-zu2

reversal simplify the development of numerical linear algebra op-
erations, by reducing the various forms of the operation to a single
canonical form on which the solution can be focused.

Efficient processing of matrices in our Java BLAS relies on two key
features of modem processors. First, L1 data caches must behave
as true uniform random access memories. That is, a load from any
cache position can be accomplished in the same amount of time.
Second, the processor instruction set must efficiently support array
traversals of arbitrary stride. Both features are present in the IBM
POWER3 and PowerPC family of processors. These two processor
features, coupled with the memory-hierarchy conscious blocking of
our Java BLAS, combine to deliver good performance in a simple
design.

4 . T H E L I N E A R A L G E B R A I N T E R F A C E S
The BlasVector and BlasMatrix interfaces (see Figure 1)
define the methods that a class has to implement in order to func-
tion as either a vector or a matrix, respectively, in the numerical
linear algebra sense. These interfaces are what make possible the
use of a strategy design pattern for the linear algebra operations.
High-level algorithms are expressed in terms of the B l a s M a t r i x
and B l a s V e c t o r methods. The actual implementation of those
methods is deferred to the concrete classes.

The BlasVector interface defines some manipulators shown in
Table 1: a sectioning operation (method s e c t i o n) , and two pro-
motion operations to convert an n-e lement vector to an 1 x n or n ×
1 matrix (methods promoteAsRow and promoteAsColumn,
respectively) . The BlasVector interface also defines meth-
ods that implement vector-vector (BLAS-1) operations, like dot-

product xTy (method dot) and addition of vectors with scaling
V = as; + y (method axpy).

The B l a s M a t r i x interface also defines manipulators, like sec-
tioning (s e c t i o n) and transposition (t r a n s p o s e) . It also de-
fines method b l k s i z e that returns the ideal block size for a par-
ticular matrix. This ideal block size should lead to in-cache com-
putations. The value of the block size is used by the numerical lin-
ear algebra algorithms to efficiently partition the computation. The
ideal block size typically depends on the type of the data (blocks
for f l o a t s , for example, are larger than for d o u b l e s) . The con-
crete array classes implement this method to return the appropriate
value. The value can be further refined to be architecture depen-
dent, in a particular implementation of the Array package. (Java
provides an API - through the S y s t e m class [8] - by which an
executing program can find out on which type of architecture it is
mnning.)

BlasMatrix also defines kernel-level methods for BLAS-3 and
factorization operations. In Figure 1 we show three BLAS-3 meth-
ods (gemm, t r s m , and syrk), and one factorization (potrf)
method. These kernel-level methods do not have to worry about
memory hierarchy optimizations (they are intended to operate on
matrices no larger than the ideal block size) and need only to imple-
ment one version of the operation, instead of the multiple versions
typically defined by BLAS and LAPACK. This issue is detailed in
the next section.

1 5 3

5. IMPLEMENTATION OF BLAS-3 AND
F A C T O R I Z A T I O N O P E R A T I O N S

The BLAS-3 [11] operations are at the core of high-performance
linear algebra algorithms. Because of their importance, in this sec-
tion we discuss the implementation of a few BLAS-3 operations.
We also discuss one factorization algorithm. We use recursive for-
mulations to implement all our BLAS-3 and factorization opera-
tions. The recursive formulation has two very useful properties.
First, it leads to automatic blocking of data [15]. Second, a large
fraction of the computation ends up expressed in terms of matrix
multiplication (GEt',~) operations.

Automatic blocking is important as we move to machines with
deeper and deeper memory hierarchies. With a mcursive formu-
lation, different levels of the recursion have different matrix sizes
that are appropriate for the various levels of the memory hierarchy.
Recursion also helps by making the choice of the block size, as de-
fined by method b l k s i z e , less critical. The automatic blocking
from recursion leads to good performance even when the cache is
much larger than the particular block size.

Expressing linear algebra operations in terms of matrix multiplica-
tions is important because the GEMM operation can be performed
very efficiently on a variety of architectures. Its n s / n 2 computa-
tion to data ratio makes it possible to tolerate the large computa-
tion/memory performance gap in present day machines. It is com-
mon practice to maximize the use of GEMM operations when devel-
oping linear algebra algorithms [11].

5.1 Operation stages
The example call graph of Figure 2, for the TRSM (triangular sys-
tem solve) operation, details the stages in the execution of a linear
algebra operation. The first step consists of an invocation of a type-
specific (in this case, for d o u b l e s) public method which mimics
the standard BLAS interface. This method (Blas. dtrsm) sim-
ply calls the type-generic method (B l a s . t r sm) . The first stage
in each operation is a sanity check. The operation will not pro-
ceed until the data are shown to be consistent and there is a guar-
antee that the operation can terminate with no exceptions. Also,
before proceeding with the operation, its many different forms (as
defined by BLAS or LAPACK) are all transformed into a single
canonical form. This canonical form is then used by the recursive
descent phase, which decomposes one operation into smaller sub-
operations. Canonicalizing the operation allows us to write just
one version of the recursive descent phase. When recursive descent
bottoms out by reaching the ideal block size defined by method
b l k s i z e (i.e., when the problem size becomes small enough to
fit into L1 cache), an optimized kernel is invoked through a virtual
function call. Thus, the extra overhead of recursion is kept at a
minimum.

The sanity check, canonicalization, and recursive descent phases
are written in a type-generic fashion. The optimized kernels are
type-aware. (There exists one properly optimized kernel for each
data type.) The appropriate kernel is found by means of a virtual
function call (as detailed by the call graph in Figure 2). Type-
specific optimized kernels exist for all operations for double-pre-
cision, single-precision, and complex data.

In the next sections we present implementation details of four lin-
ear algebra operations. These serve as illustrations of the general
approach adopted in implementing Java BLAS. We discuss three

operations that are part of BLAS-3: GEF~ (generic matrix multi-
ply), TRSM (triangular system solve), and SYRK (symmetric rank-k
update). We also discuss POTRF (Cholesky factorization).

5.2 GEMM
GEMM implements the operation C = ~OG' + etA* x B*, where X*
denotes either the matrix X or its transpose X T. Consequently,
there are four different forms of GEMM and typical BLAS code in
Fortran or C will explicitly code all four forms [1]. In the Java
BLAS, all four forms can be easily reduced to the canonical form
G = f i g + e ta x B with the use of the transposition manipulator.
The canonical form of GEMM is implemented recursively. The op-
eration can be decomposed in three different ways at each recursive
step:

A2] x B
(1) II

c1 = ~c1 + etA1 x B, 6"2 = ~C2 + etA2 x B

]+etA×[B /32]
~t (2)

Ci =/3CI + etA x B1, C2 =13C~ + etA x B2

C=~C+et[A1 A~]x B~ (3)

C = [~C + aA1 x BI + aA2 x B~

The particular decomposition is chosen at each recursive step so
that the larger axis at that step is split. This approach tends to create
more "square" subproblems, which lead to a better computation
to dam ratio, and therefore to better performance. The recursion
continues until the problem is no larger than the block size defined
for each data type. At this point, the type-specific kemel is invoked.

5.3 TRSM
TRSM solves a triangular system of equations with multiple fight-
hand sides. The canonical form of the system is

L X = etB (4)

where L denotes an n x n lower triangular matrix, X (the un-
known) and B are n x ra rectangular matrices, and a is a scalar. In
addition to the canonical form, the triangular system can take seven
other forms as shown in Figure 3, where U denotes an n x n upper
triangular matrix. The figure also shows the sequence of operations
needed to bring the equations to the canonical form. We note that
the four forms with the coefficient (L or U) matrix on the right can
be transformed to forms with the coefficient matrix on the left with
the application of transposition. The forms with U T or L T are di-
rectly equivalent to forms with L and U, respectively. Finally, the
form U X = a B can be transformed to form L X = etB with the
use of the axis reversal manipulators discussed in Section 3.2. U °'1
is a lower triangular matrix, and equation U X = a B is equivalent
to the equation U °'a X ° = B °.

The canonical equation in the form L X = a B is solved using a
recursive algorithm. The particular decomposition adopted in each
recursive step depends on the relative values of n and re. If ra > n
then we can write

L [x l x]=et[B, (5)

154

Blas.dtrsm(side, diag, uplo, trans, alpha, A, B)

(Blas.trsm(side, diag, uplo, t alpha, A, B))

~ _ (B a s . r g e ~

trsm(diag., alpha, A,B,temp)

(doubleArray2D.trsm(diag, alpha, A, B, temp))

/
(Blas.kdtrsm(diag, alpha, A, B, temp))

type specific (public)

type generic (sanity check and canonicalization)

type generic (recursive descent)

virtual function call

virtual function call resolved to method of doubleArray2D

type specific (optimized kernel)

Figure 2: Call graph for TRSM~ showing the various stages of execution of a Java BLAS operation.

XLT= B g* I LX=, BI UX= B g* XU
~ E ~ E

X U = a B ~:~ U T X = a B L T X = a B ~:~ X L = a B

transformation effect

I axis reversal U X = a B ~e~ U °J X ° = a B °

I transposition X L r = a B ~:~ L X r = a B T, X U = a B ~:~ u r x r = a B T I

I equivalence L X = a B ,~ u T x = a B , U X = a B ,~ L T x = o~B

Figure 3: The eight forms of TRSI~ which can all be reduced to L X = orB through manipulators.

and we decompose it into two smaller TRSFI operations LX~ =
a B 1 and L X s = a B s . I f n > ra we can write L X = a B as

] Lsl Lss Xs -- aBs

where L n is ann1 × na lower triangular matrix, Ls t is an n s x nz
rectangular matrix, and Lss is an ns x n s lower triangular matrix.
We note that n~ + n s = n , both X~ and B1 are n l x m rectangular
matrices and both X s and B2 are n s x m rectangular matrices.
From this formulation we derive

Ll l X l = otBl (7)

L s s X s = orbs - LsI X1 (8)

Equation 7 is just a smaller triangular sys tem of equations, and
can be solved with a mcursive call to TRSM. To evaluate Xs in
Equation 8, we first need to compute the new right-hand side a B s -
L21Xx. This can be accomplished with a GEMM operation. After
that, we just need to solve another triangular sys tem of equations
with TRSM.

5 . 4 SYRK
The SYRK operation performs an update of a triangular matrix. It
can take one of four forms:

L = / 3 L + a A x A T U = / 3 U + a A x A T
L=/3L+aA T xA U=/3[I+aA TxA (9)

The forms with A T x A can be reverted to the forms with A x,A T by
a transposition of A. Also the forms with upper triangular matrix
U can be converted to forms with lower triangular matrix L by a

transposition. Therefore, we only have to consider the canonical
form L = /3L + aA x A r.

For the recursive descent phase, the canonical form can be decom-
posed in two different ways, depending on which axis of matrix A
is larger. Let L be n x n and let A be n × ra. If n > ra we can
decompose the canonical form as

[LI 0] [L,, 0]
L21 Lss = /3 L21 Lss +

a As ×[AT
Which leads to the relations:

A T] (10)

L , I = / 3 L n + o t A l x A T (11)

L21 = /3L21 + a A s x AT (12)

Lss = i lLs2 +o tA2 x A T (13)

Equations 1 1 and 13 are just smaller SYRK operations, while Equa-
tion 12 is a GEMM operation. If m > n then we decompose as:

L = /3L+~[AI As] × AT

= f lL + aA1 x A T + a A s x A [(14)

which can be implemented as two recursive calls to SYRK.

5.5 POTRF
POTRF computes the Cholesky factor L of an n x n symmetr ic
positive definite matrix A. That is, it computes the lower triangular

155

matrix L such that L T x L = A. Alternatively, POTRF can com-
pute the upper triangular factor U such that U T x U = A. The
latter problem can be reverted back to the former with a transposi-
tion. We decompose L x L T = A as

[Ltl 0] [L1T1 L2T1] [A n A~I] (15)
L~I L22 x 0 LT2 = A~I A2~

from which we write

L n xLT1 = A n (16)

L21 x LT1 = A21 (17)

L22 × LT2 = A22 - L21 x LTt (18)

Lt~ can be computed with Equation 16 through a recursive call to
POTRF. Lzt can be computed with Equation 17 through a call to
TRSM. Finally, to compute L2z we first have to compute A22 -
L2t x LTt with a call to SYRK, and then we can evaluate L22 with
another recursive call to POTRF.

6. EXPERIMENTAL RESULTS
We evaluate the performance of our Java BLAS on three machine
architectures (POWER3, PowerPC, and IA-32) and in two different
execution environments (static and dynamic compilation). We used
the following machines: (i) An IBM RS/6000 model F50, with a
332 MHz PowerPC 604e processor, 32 kB of level 1 data cache,
256 kB of level 2 data cache, and a peak floating-point performance
of 664 Mflops. (ii) An IBM RS/6000 model 260, with a 200 MHz
POWER3 processor, 64 kB of level 1 data cache, 4 MB of level
2 data cache, and peak performance of 800 Mflops. (iii) A Dell
Precision 610, with a 550 MHz Xeon processor, 32kB of level 1
data cache, 512kB of level 2 data cache, and peak performance of
550Mflops. The POWER3 is optimized for scientific computing,
while the 604e and the Xeon are more general-purpose processors.

We start by comparing the performance of statically compiled Java
BLAS against native libraries optimized for each architecture. On
the RS/6000 machines, Java BLAS was statically compiled into
native code with the Ninja prototype optimizing Java compiler [2,
3, 19]. The Ninja compiler performs bounds checking elimination,
loop invariant motion, strength reduction, semantic expansion [21],
and various loop transformations. Since Ninja is only available for
RS/6000, in the Xeon machine we used IBM HPCJ with the run-
time checks disabled. Although this does not correspond to a legal
Java execution, it gives us an idea of the performance we could
achieve by porting Ninja to IA-32. (The Ninja compiler is based on
HPCJ.)

We compared the compiled Java code with the performance of na-
tive libraries on the target machines as follows. On the RS/6000
machines the basis for comparison was IBM's Engineering and Sci-
entific Subroutine Library (ESSL). ESSL is mostly implemented in
Fortran, and has been fine tuned for IBM machines over the course
of many product generations. On the Intel machine the frame of ref-
erence was the Math Kernel Library [16], which contains a set of
linear algebra routines optimized for Intel CPUs. Equivalent driver
programs in Java, Fortran, and C were used to test Java BLAS and
the native libraries respectively.

Results for each of the three different instances of GEMM and TRSM
(one each for f l o a t , d o u b l e , and Complex types) are shown
in Figure 4 for the RS/6000 machines. Each plot shows the perfor-
mance of one particular routine (SGEMM and STRSM for f l o a t s ,
DGEMM and DTRSM for d o u b l e s , ZGEMM and ZTRSM for Corn-

p l e x e s) when operating on n x n square matrices of the same
size. Performance in Mflops is shown as a function of n , the prob-
lem size. Each plot has four lines: ESSL on POWER3 and 604e,
and Java BLAS on POWER3 and 604e.

We first note that the performance of Java BLAS is quite stable with
respect to problem size, indicating that our recursive approach is ef-
fective in exploiting the memory hierarchy. Our Java BLAS imple-
mentation is not as efficient as ESSL, but it achieves good absolute
performance. For float operations the Java BLAS achieves ap-
proximately 85% of the corresponding ESSL on the POWER3. The
results for the d o u b l e operations are slightly worse, 80% of the
corresponding ESSL routines on the POWER3. The correspond-
ing numbers for the PowerPC 604e are 85% and 70% of ESSL
for f l o a t s and d o u b l e s , respectively. We have measured the
d o u b l e A r r a y 2 D gemm kernel at approximately 95% of ESSL
performance when operating on small, in-cache, matrices. The re-
maining performance degradation results from recursion and vir-
tual function call overhead.

In the case of the Complex operations ZGENM and ZTRSM, our
Java BLAS achieves only 65% and 70% of ESSL performance on
POWER3 and PowerPC 604e, respectively. Operations on com-
plex numbers have a better computation-to-data ratio than equiva-
lent operations on real numbers. Therefore, ZGEMM and ZTRSM are
expected to perform even better than the corresponding DGEMM and
DTRSM. This is the case for the ESSL versions, but not so for the
Java BLAS. The results from POWER3 in particular indicate that
we need more work to improve the C o m p l e x A r r a y 2 D geram and
t r s m kernels.

Results for DGEMM in the Xeon machine are shown in Figure 5.
Again, the performance of Java BLAS is quite stable with respect
to problem size, indicating effective exploitation of the memory hi-
erarchy. However, on that platform, the relative performance of
Java BLAS is only around 30% of Intel's MKL. (The same ratio
holds for the other versions of GEMM and TRSM.) The performance
of the doubleArray2D gemm kernel when operating on small,
in-cache, matrices, yields about 40% of MKL performance. This
demonstrates the need to tune the block size parameter, and proba-
bly some of the kernel code, for the Xeon processor.

Intel MKL and Java 8LAS performance on DGEMM
5O0

,0o 's° iii iii
3 5 0 .

30O .

g.
~ 2 0 0 .

2 0 0 .

~so ' ~ ' ~ C C C, ~ G-e G ~ C . ~ C C O-
100 .

5O
Intel MKL

0 100 200 000 400 500 600 700 800 900 1000
Problem size

Figure 5 : IA -3 2 (Xeon) performance on DGEF~.

156

8O0

700

6OO

600

400

30C

ESSL and Java BIAS pedormance on SGEMM

. ~ ~ ~ -~ .'1 ~ .'2- ~ ~1 -~- -~- ~

~ C .

ESSL PWR3
10(. Java BIAS PWR3

I ~ ESSL 6040

0 100 200 300 400 500 600 700 800 900 1000
Problem size

ESSL and Java BIAS pedorrnance on DGEMM
800

7 o o - . . ~ c. ~ = ~ '
6 0 0 .

~ 4 ~ ""

2 ~ .

[~ P ESSL PWR3
. Java BIAS PWR3

ESSL 604e

Problem size

ESSL and Java BIAS performance on ZGEMM
800

700 ~ . . = . . . - - . . =
6O0 .

5O0 . : .

~ 400 .

30O .

I ' -B- ESSL PWR3
100 .. Java BIAS PWR3

00 100 200 300 400 500 600 700 800 900 1000
Problem size

ESSL and Java BIAS performance on STRSM

i; .

[" B - ESSL PWR3

. / ~ ESSL 604eJaVa BLAS PWR3

t00 200 300 400 500 600 700 800 900 1000
Problem size

ESSL and Java BIAS performance on DTRSM
30

r0 - - - - - - - " " " ' ' " "

. -B " -

2(.

I '*1~ ESSL PWR3

1(/ ~ ESSL604e
. Java BIAS PWR3

100 200 300 400 500 600 700 800 900 1000
Problem size

ESSL and Java BLAS perloiTnance on Z'I'RSM

700 .

I - B - ESSL PWR3

. I ¢ ESSL604eJava BIAS PWR3

Problem size

Figure 4: P e r f o r m a n c e results for ESSL and Java Bias on P O W E R 3 and P o werP C 604e machines .

157

We note, in Figure 4, that there is not much difference between the
plots for GE_~4 and the corresponding (same data type) plots for
'rRSH. Although not shown, the same holds true for the Xeon ma-
chine. Both operations can be implemented with the same level of
efficiency. This is expected (at least in the Java BLAS versions)
for two reasons. First, the kernel levels 9-emm and t r s m methods
use identical loop unrolling and register blocking optimizations,
with the final results that the kernels look remarkably similar. Sec-
ond, and most importantly, our recursive approach to implementing
TRSM leads to a large fraction of computation in a call to TRSM ac-
tually being performed inside GEMM operations. That fraction, as a
function of problem size, is plotted in Figure 6 for the three differ-
ent instances of TRSM. Block sizes for Complex are smaller than
for d o u b l e , which in turn are smaller than for f l o a t . (A larger
element results in a smaller block size for the a fixed cache size.)
That means that, for the same problem size, the Complex version
will have a deeper recursion tree than the d o u b l e version, which
will have a deeper recursion tree than the f l o a t version. A deeper
recursion tree results in a higher fraction of GEMM operations.

The numbers for fraction of computation performed by GEMM for
SYRK are identical to those for TRSM, and thus not shown in Fig-
ure 6. For completeness, Figure 6 also shows the fraction of com-
putation performed by GEMM in a Cholesky factorization (POTRF).
For a given problem size, the fraction in POTRF is not a high as
in TRSM or SYRK, since POTRF has to be first decomposed into
those operations before they are in turn decomposed into GEMM
operations. Nevertheless, for large problem sizes the fraction of
computation in GEMM can be very significant, and the asymptotic
performance of POTRF is the same as that of GEMM.

Finally, to analize performance on a dynamic compilation envi-
ronment, we compare the speed of our Java BLAS with the Java
Numerical Library from Visual Numerics [20]. We ran our ex-
periments on the Xeon platform using IBM's DK (version 1.1.8),
again using equivalent driver programs for the two libraries. Fig-
ure 7 compares the respective performances of the two libraries for
DGEI,,~. Visual Numerics' code implements matrices using Java ar-
rays of arrays. Our Array package Java BLAS displays higher and
more stable performance.

7. CONCLUSIONS
Optimized linear algebra libraries are important tools in compu-
tational science and engineering. Their availability in Java is ab-
solutely necessary if this language is to become a serious candi-
date for the development of large numerical applications. We have
adopted one particular approach to address this issue by developing
a linear algebra package entirely in Java.

The benefits of our approach can be summarized as follows. First
and foremost, we have achieved high performance. Even though
it is still in earlier stages of development, our Java linear algebra
package has already achieved 65-85% of the performance of one of
the most respected industrial-strength numerical libraries (ESSL).
This is an excellent starting point, and with it we have demonstrated
the performance feasibility of our approach. Now we need to con-
tinue to optimize our implementation and broaden the evaluation
with other operations, particularly factorization.

Other benefits of our approach are performance portability, code
portability, and reproducibility of results. The library is not opti-
mized for any particular architecture/cache layout. We have demon-
strated that it yields very good results on two different memory

Fraction of operations in TRSM that are performed by GEMM
1

0"9 f . ,~ 0,80.7 ~ ' "
 oo't I// ...

~ °i! .. 0.2 o, ~2(x) !~ i i ~ 17~0 2 i ~ ...

Problem size

Fraction of operations in POTRF that are performed by GEMM
1

0. c .

O.IE i .~ 0.~
~ 0.6 u
~ 0.5
"~0.3
0.2 ..
0.1

O " ' ~ - 2 0 0 ~ a00 400 500 600 700 800 900 1000
Problem size

Figure 6: Fraction of computations performed by GEMI¢

IBM and VN Java BIAS performance on DGEMM

5(...
4C ~ "

lO ...
I - e - IBM Java BLAS x86
-1~- VN Java BIAS

0 i i i i
IO0 2OO 3OO 4OO 5~o 600 700 800 900 1000

Problem size

Figure 7: Java BLAS performance with JIT.

architectures. The recursive formulation of the linear algebra op-
erations leads to good exploitation of memory hierarchy. Code
portability is intrinsic to any Java program. Our object oriented
design is also more concise and easier to maintain than Fortran
and C implementations of BLAS and LAPACK. Finally, the per-
formance results are also a demonstration of the capabilities of

158

state-of-the-art Java compilers. We have demonstrated reasonable
performance with the Array package on another instruction-set ar-
chitecture, namely IA-32. Those results, however, were not as good
as for the RS/6000 machines. At the moment, our optimizing com-
piler infrastructure is only available on RS/6000.

As we have emphasized earlier, the data layout in the Array pack-
age is in no way exposed to programmers, giving us the freedom
to explore new data organizations. We have started experiment-
ing with blocked and recursive blocked data layouts [9, 10], which
nicely match the recursive decomposition algorithms. We can in-
troduce these new data structures without having to rewrite a single
line of Java BLAS. At this point, we only have very preliminary re-
suits that show performance gains of approximately 10% over the
current data organization in the Array package. We will continue
to pursue this line of research, as these techniques potentially lead
to Java programs achieving better performance than their Fortran
counterparts.

Acknowledgements: The authors wish to thank Sid Chatterjee for
fruitful discussions during the development of the linear algebra
package for Java.

8. REFERENCES
[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
S. Ostrouchov, and D. Sorensen. LAPACK User's Guide.
Society for Industrial and Applied Mathematics, 1995.

[2] P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E. Moreira.
High performance numerical computing in Java: Language
and compiler issues. In J. Ferrante et al., editors, 12th
International Workshop on Languages and Compilers for
Parallel Computing. Springer Verlag, August 1999. IBM
Research Division report RC21482.

[3] P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E. Moreira.
Automatic loop transformations and parallelization for Java.
In International Conference on Supercomputing, May 2000.
IBM Research Division report RC21629.

[4] B. Blount and S. Chatterjee. An evaluation of Java for
numerical computing. In Proceedings oflSCOPE'98,
volume 1505 of Lecture Notes in Computer Science, pages
35-46. Springer Vedag, 1998.

[5] R. F. Boisvert, J. J. Dongarra, R. Pozo, K. A. Remington, and
G. W. Stewart. Developing numerical libraries in Java.
Concurrency, Pract. Exp. (UK), 10(11-13):1117-29,
September-November 1998. ACM 1998 Workshop on Java
for High-Performance Network Computing. URL:
http : //www. cs. ucsb. edu/conferences /
java98.

[6] R. E Boisvert, J. Hicklin, B. Miller, C. Moler, R. Pozo,
K. Remington, and P. Webb. JAMA: A Java matrix package.
URL:
http : //math. nist. gov/j avanumerics / j ama/,
1998.

[7] H. Casanova, J. Dongarra, and D. M. Doolin. Java access to
numerical libraries. Concurrency, Pract. Exp. (UK),
9(11):1279-91, November 1997. Java for Computational
Science and Engineering - Simulation and Modeling II Las
Vegas, NV, USA 21 June 1997.

[8] R Chan, R. Lee, and D. Kramer. The Java Class Libraries,
volume 1 of The Java Series. Addison-Wesley, 1998.

[9] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and
M. Thottethodi. Nonlinear array layouts for hierarchical
memory systems. In Proceedings of the 1999 International
Conference on Supercomputing, pages 444--453, Rhodes,
Greece, 1999.

[10] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and
M. Thottenthodi. Recursive array layouts and fast parallel
matrix multiplication. In Proceedings of the 11th Annual
ACM Symposium on Parallel Algorithms and Architectures,
pages 222-231, Saint-Malo, France, June 1999.

[11] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der
Vorst. Solving Linear Systems on Vector and Shared Memory
Computers. Society for Industrial and Applied Mathematics,
1991.

[12] G. Fox, X. Li, Z. Qiang, and W. Zhigang. A prototype of
Fortran-to-Java converter. Concurrency, Pract. Exp.,
9(11): 1047-61, Nov 1997. Java for Computational Science
and Engineering - Simulation and Modeling II Las Vegas,
NV, USA 21 June 1997.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Publishing Company, 1995.

[14] James Gosling. The evolution of numerical computing in
Java. URL:
http: //java. sun. com/people/j ag/FP.html,
1997. Sun Microsystems.

[15] E G. Gustavson. Recursion leads to automatic variable
blocking for dense linear algebra algorithms. IBM Journal of
Research and Development, 41 (6):737-755, November 1997.

[16] Intel Corporation. Intel Math Kernel Library. URL:
http : //www. intel, com/vtune/per f libst /
mkl / index, htm.

[17] International Business Machines Corporation. IBM
Engineering and Scientific Subroutine Library for AIX -
Guide and Reference, December 1997.

[18] Java Grande Forum. Java Grande Forum Report: Making
Java Work for High-End Computing, November 1998. Java
Grande Forum Panel, SC98, Orlando, FL. URL:
http : //www. j avagrande, org/reports, htrm

[19] J. E. Moreira, S. P. Midkiff, M. Gupta, P. V. Artigas, M. Snir,
and R. D. Lawrence. Java programming for high
performance numerical computing. IBM Systems Journal,
39(1):21-56, 2000. IBM Research Division report RC21481.

[20] Visual Numerics Inc. JNL 1.0 - A Numerical Library for
Java. URL:
http : //www. vni. com/products/wpd/j nl/.

[21] P. Wu, S. E Midkiff, J. E. Moreira, and M. Gupta. Efficient
support for complex numbers in Java. In Proceedings of the
1999 A CM Java Grande Conference, 1999. IBM Research
Division report RC21393.

159

