
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

ISAdetect : Usable Automated Detection of CPU Architecture and Endianness for
Executable Binary Files and Object Code

© 2020 ACM

Accepted version (Final draft)

Kairajärvi, Sami; Costin, Andrei; Hämäläinen, Timo

Kairajärvi, S., Costin, A., & Hämäläinen, T. (2020). ISAdetect : Usable Automated Detection of
CPU Architecture and Endianness for Executable Binary Files and Object Code. In CODASPY '20 :
Proceedings of the 10th ACM Conference on Data and Application Security and Privacy (pp. 376-
380). ACM. https://doi.org/10.1145/3374664.3375742

2020

ISAdetect: Usable Automated Detection of CPU Architecture and
Endianness for Executable Binary Files and Object Code

Sami Kairajärvi ∗
University of Jyväskylä

Jyväskylä, Finland
samakair@jyu.fi

Andrei Costin
University of Jyväskylä

Jyväskylä, Finland
ancostin@jyu.fi

Timo Hämäläinen
University of Jyväskylä

Jyväskylä, Finland
timoh@jyu.fi

ABSTRACT
Static and dynamic binary analysis techniques are actively used
to reverse engineer software’s behavior and to detect its vulnera-
bilities, even when only the binary code is available for analysis.
To avoid analysis errors due to misreading op-codes for a wrong
CPU architecture, these analysis tools must precisely identify the
Instruction Set Architecture (ISA) of the object code under analysis.
The variety of CPU architectures that modern security and reverse
engineering tools must support is ever increasing due to massive
proliferation of IoT devices and the diversity of firmware and mal-
ware targeting those devices. Recent studies concluded that falsely
identifying the binary code’s ISA caused alone about 10% of failures
of IoT firmware analysis. The state of the art approaches detecting
ISA for executable object code look promising, and their results
demonstrate effectiveness and high-performance. However, they
lack the support of publicly available datasets and toolsets, which
makes the evaluation, comparison, and improvement of those tech-
niques, datasets, and machine learning models quite challenging
(if not impossible). This paper bridges multiple gaps in the field of
automated and precise identification of architecture and endianness
of binary files and object code. We develop from scratch the toolset
and datasets that are lacking in this research space. As such, we
contribute a comprehensive collection of open data, open source, and
open API web-services. We also attempt experiment reconstruction
and cross-validation of effectiveness, efficiency, and results of the
state of the art methods. When training and testing classifiers using
solely code-sections from executable binary files, all our classifiers
performed equally well achieving over 98% accuracy. The results
are consistent and comparable with the current state of the art,
hence supports the general validity of the algorithms, features, and
approaches suggested in those works.

CCS CONCEPTS
• Security and privacy → Software reverse engineering; •
Computingmethodologies→Machine learning; •Computer
systems organization→ Embedded and cyber-physical systems.

∗This paper is based on: author’s MSc thesis [21] and extended pre-print version [22].

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Tenth ACMConference
on Data and Application Security and Privacy (CODASPY’20), March 16–18, 2020, New
Orleans, LA, USA, https://doi.org/10.1145/3374664.3375742.

KEYWORDS
Binary code analysis, Firmware analysis, Instruction Set Archi-
tecture (ISA), Supervised machine learning, Reverse engineering,
Malware analysis, Digital forensics
ACM Reference Format:
Sami Kairajärvi, Andrei Costin, and Timo Hämäläinen. 2020. ISAdetect:
Usable Automated Detection of CPU Architecture and Endianness for
Executable Binary Files and Object Code. In Tenth ACM Conference on
Data and Application Security and Privacy (CODASPY’20), March 16–18,
2020, New Orleans, LA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3374664.3375742

1 INTRODUCTION
Reverse engineering and analysis of binary code has a wide spec-
trum of applications [24, 35, 39], ranging from vulnerability re-
search [4, 9, 10, 34, 43] to binary patching and translation [37],
and from digital forensics [8] to anti-malware and Intrusion De-
tection Systems (IDS) [25, 41]. For such applications, various static
and dynamic analysis techniques and tools are constantly being
researched, developed, and improved [3, 6, 15, 24, 30, 38, 42].

Regardless of their end goal, one of the important steps in these
techniques is to correctly identify the Instruction Set Architecture
(ISA) of the op-codes within the binary code. Some techniques
can perform the analysis using architecture-independent or cross-
architecture methods [16, 17, 32]. However, many of those tech-
niques still require the exact knowledge of the binary code’s ISA.
For example, recent studies concluded that falsely identifying the
binary code’s ISA caused about 10% of failures of IoT/embedded
firmware analysis [9, 10].

Sometimes the CPU architecture is available in the executable
format’s header sections, for example in ELF file format [29]. How-
ever, this information is not guaranteed to be universally available
for analysis. There are multiple reasons for this and we will detail a
few of them. The advances in Internet of Things (IoT) technologies
bring to the game an extreme variety of hardware and software, in
particular new CPU architectures, new OSs or OS-like systems [27].
Many of those devices are resource-constrained and the binary
code comes without sophisticated headers and OS abstraction lay-
ers. At the same time, the digital forensics and the IDSs sometimes
may have access only to a fraction of the code, e.g., from an ex-
ploit (shell-code), malware trace, or a memory dump. For example,
many shell-codes are exactly this – a quite short, formatless and
headerless sequence of CPU op-codes for a target system (i.e., a
combination of hardware, operating-system, and abstraction lay-
ers) that performs a presumably malicious action on behalf of the
attacker [18, 33]. In such cases, though possible in theory, it is quite
unlikely that the full code including the headers specifying CPU

https://doi.org/10.1145/3374664.3375742
https://doi.org/10.1145/3374664.3375742
https://doi.org/10.1145/3374664.3375742

ISA will be available for analysis. Finally, even in the traditional
computing world of (e.g., x86/x86_64), there are situations where
the hosts contain object code for CPU architectures other than
the one of the host itself. Examples include firmware for network
cards [2, 13, 14], various management co-processors [26], and de-
vice drivers [5, 20] for USB [28, 40] and other embedded devices that
contain own specialized processors and provide specific services
(e.g., encryption, data codecs) that are implemented as peripheral
firmware [11, 23]. Even worse, more often than not the object code
for such peripheral firmware is stored using less traditional or non-
standard file formats and headers (if any), or embedded inside the
device drivers themselves resulting in mixed architectures code
streams. Currently, several state of the art works try to address the
challenge of accurately identifying the CPU ISA for executable ob-
ject code sequences [8, 12]. Their approaches look promising as the
results demonstrate effectiveness and high-performance. However,
they lack the support of publicly available datasets and toolsets,
whichmakes the evaluation, comparison, and improvement of those
techniques, datasets, and machine learning models quite challeng-
ing (if not impossible). With this paper, we bridge multiple gaps in
the field of automated and precise identification of architecture and
endianness of binary files and object code. We develop from scratch
the toolset and datasets that are lacking in this research space.
To this end, we release a comprehensive collection of open data,
open source, and open API web-services. We attempt experiment
reconstruction and cross-validation of effectiveness, efficiency, and
results of the state of the art methods [8, 12], as well as propose and
experimentally validate new approaches to the main classification
challenge where we obtain consistently comparable, and in some
scenarios better, results. The results we obtain in our extensive set
of experiments are consistent and comparable with prior art, hence
supports the general validity and soundness of both existing and
newly proposed algorithms, features, and approaches.

1.1 Contributions
In this paper, we present the following contributions:
• First and foremost contribution is that we implement and release
as open source the code and toolset necessary to reconstruct and
re-run the experiments from this paper as well as from the state
of the art works of Clemens [8] and De Nicolao et al. [12]. To our
knowledge, it is the first such toolset to be publicly released.

• Second and equally important contribution is that we release as
open data the machine learning models and data necessary to
both validate our results and expand further the datasets and
the research field. To our knowledge, it’s both the first and the
largest such dataset to be publicly released.

• We release both the toolset and dataset as open source and
open data, which are accessible at: https://github.com/kairis/
isadetect and http://urn.fi/urn:nbn:fi:att:693a3e3a-976a-4eac-8c3d-
a4a62619f8b1

1.2 Organization
The rest of this paper is organized as follows. We detail our method-
ology, experimental setups and datasets in Section 2. We provide a
detailed analysis of results in Section 3. Finally, we discuss future
work and conclude with Section 4.

Crawl Debian
repository Jigdo to ISO Extract selected

packages
Unpack Debian

packages

Metadata and
code sections
from binaries

Features from
code sections

Yes

No

Jigdo file

Figure 1: ISAdetect general workflow of the toolset.

Table 1: ISAdetect dataset summary.

Type Approx. # of files in dataset Approx. total size
.iso files ~1600 ~1843 GB
.deb files ~79000 ~36 GB
ELF files ~96000 ~27 GB
ELF code sections ~96000 ~17 GB

2 DATASETS AND EXPERIMENTAL SETUP
2.1 Datasets
We started with the dataset acquisition challenge. Despite the exis-
tence of several state of the art works, unfortunately neither their
datasets nor the toolsets are publicly available. 1 To overcome this
limitation we had to develop a complete toolset and pipeline that
are able to optimally download a dataset that is both large and
representative enough. We release our data acquisition toolset as
open source. The pipeline used to acquire our dataset is depicted
in Figure 1. We chose the Debian Linux repositories for several
reasons. First, it is a long established and trusted project, therefore
a good source of software packages and related data. Second, it is
bootstrapped from the same tools and sources to build the Linux
kernel and userspace software packages for a very diverse set of
CPU and ABI architectures. The downloaded and pre-processed
dataset can be summarized as follows: about 1600 ISO/Jigdo files
taking up around 1843 GB; approximately 79000 DEB package files
taking up about 36 GB; around 96000 ELF files taking up about 27
GB; about 96000 ELF code sections taking up approximately 17 GB.
A detailed breakdown of our datasets is in Table 2.

Our dataset covers 23 distinct architectures, which is inline with
and comparable to Clemens [8] (20 architectures) and De Nicolao
et al. [12] (21 architectures). Most of the CPU architectures over-
lap with existing works, but there are few new ones (as marked
in Table 2). At the same time, the sample-sets used in our experi-
ments have some significant differences compared to the state of
the art. First, the total number of 66685 samples in our experiments
is several times larger than those used by both Clemens [8] (16785
samples) and De Nicolao et al. [12] (15290 samples). Second, com-
pared to existing works, our sample-set size per architecture is
both larger and more balanced. Using more balanced sample-sets
should give more accurate results when evaluating and compar-
ing classifier performance, as imbalance of classes in the dataset
can cause sub-optimal classification performance [19]. When creat-
ing our sample-sets for each architecture, we had set forth several
constraints. On the one hand, we decided that the minimum code
section in the ELF file should be 4000 bytes (4K), as this is the code
1A post-processed dataset from Clemens [8] was generously provided by the author
privately on request – that dataset however is not yet publicly available.

https://github.com/kairis/isadetect
https://github.com/kairis/isadetect
http://urn.fi/urn:nbn:fi:att:693a3e3a-976a-4eac-8c3d-a4a62619f8b1
http://urn.fi/urn:nbn:fi:att:693a3e3a-976a-4eac-8c3d-a4a62619f8b1

Table 2: ISAdetect dataset details (per architecture).

Architecture Binaries in
samples set Wordsize Endianness # of samples

in dataset
Size of samples
in dataset (GB)

alpha 3004 64 Little 3971 1.56
amd64 3005 64 Little 4366 1.01
arm64 2779 64 Little 3636 0.76
armel 3004 32 Little 4000 0.76
armhf 2747 32 Little 3995 0.62
hppa 3004 32 Big 4830 1.44
i386 3004 32 Little 5109 0.96
ia64 3005 64 Little 4984 2.64
m68k 3004 32 Big 4400 1.15
mips † 3003 32 Big 3565 0.90
mips64el ‡ 3004 64 Little 4312 1.98
mipsel 3004 32 Little 3775 0.91
powerpc 2050 32 Big 3631 1.22
powerpcspe ‡ 3004 32 Big 3961 1.59
ppc64 2480 64 Big 2833 1.68
ppc64el ‡ 3005 64 Little 3523 0.91
riscv64 ‡ 3005 64 Little 4440 1.15
s390 3003 32 Big 5164 0.58
s390x 2953 64 Big 3538 0.93
sh4 3004 32 Little 5930 1.28
sparc 3003 32 Big 4980 0.54
sparc64 2606 64 Big 3276 1.33
x32 ‡ 3005 32 Little 4176 1.51
Total 66685 – – 96395 27.41 GB

size where all classifiers were shown to converge and provide high-
accuracy at the same time (see Fig.2 in Clemens [8]). On the other
hand, we wanted to have the sample-sets as balanced as possible
between all the architectures. Given these parameters, from the
initial 96395 ELF files in the download dataset, our toolset filtered
66685 samples with an approximate average of 3000 samples per
architecture sample-set (Table 2). Importantly, our toolset can be
parametrized to download more files, and to filter the sample-sets
based on different criteria as dictated by various use cases.

2.2 Machine Learning
We then continued with the experiment reconstruction and cross-
validation of the state of the art. For training and testing our ma-
chine learning classifiers, we used the following complete feature-
set which consists of 293 features as follows. The first 256 fea-
tures are mapped to Byte Frequency Distribution (BFD) (used by
Clemens [8]). The next 4 features map to “4 endianness signatures”
(used by Clemens [8]). The following 31 features are mapped to
function epilog and function prolog signatures for amd64, arm, armel,
mips32, powerpc, powerpc64, s390x, x86 (developed by angr frame-
work [36] and also used by De Nicolao et al. [12]). The final 2
features map to “powerpcspe signatures” that were developed specif-
ically for this paper. 2 To this end, we extract the mentioned features
from the code sections of the ELF binaries in the sample-sets (col-
umn Sample-sets size in experiment in Table 2). We then save the
extracted features into a CSV file ready for input to and processing
by machine learning frameworks.

In order to replicate and validate the approach of Clemens [8],
we used the Weka framework along with exact list and settings of
classifiers as used by the author. We used non-default parameters
(acquired bymanual tuning) only for Neural Net (NN)when training
the classifier on our complete dataset, since the parameters used
by Clemens [8] were specific to their dataset – we also used only
lists of architectures and features used by the author.

2Signatures are being contributed back to open-source projects such as angr, binwalk.

In order to replicate and validate the approach of De Nicolao et
al. [12], we used scikit-learn [31]. The authors used only logistic
regression (LR) classifier to which they added L1 regularization as
compared to Clemens [8]. In addition, we used Keras [7] (a high-
level API for neural networks) in order to see if the framework used
has any effect on the classification accuracy. We also used only the
list of architectures and features used by the authors.

3 RESULTS AND ANALYSIS
3.1 Training/testing with code-only sections
First, we compare the performance of multiple classifiers trained
on code-only sections, when classifying code-only input. For this
we use 10-fold cross validation and the features extracted from
code-only sections of the test binaries. Also, we evaluate the effect
of various feature-sets on classification performance by calculat-
ing performance measures with the “all features” set, “BFD-only”
features-set, and “BFD+endianness” features-set. We then cross-
validate the results by Clemens [8] and compare them to our results.

Using Weka framework we trained and tested multiple different
classifiers using different feature-sets. BFD corresponds to using
only byte frequency distribution, while BFD+endianness adds the
architecture endianness signatures introduced by Clemens [8]. The
complete data set includes the new architectures as well as the new
signatures for powerpcspe. The performance metrics are weighted
averages, i.e., sum of the metric through all the classes, weighted
by the number of instances in the specific architecture class. The
results are also compared to the results presented by [8], and can
be observed in Table 3. We marked with asterisk (*) the results that
we obtained using different parameters than those in [8].

As can be seen in Table 3, the results are inline with the ones
presented by Clemens [8], even though we constructed and used
our own datasets. We have also run our approach on the original
Clemens dataset where we exceeded by at least 1.4% Clemens’ re-
sults on their own dataset (see column “§ on Clemens dataset”). In
our experiments, the complete data set (with added architectures
and all features considered) increased the accuracy of all classi-
fiers (in some cases by up to 7%) when compared to the results of
Clemens [8]. This could be due to a combination of larger dataset,
more balanced sets for each CPU architecture class, and the use of
only binaries with code sections larger than 4000 bytes.

3.1.1 Effect of test sample code size on classification performance.
Next, we study if the sample size has an effect on the classification
performance. For this, we test the classifiers against a test set of
code sections with increasingly varying size, as also performed by
both Clemens [8] and De Nicolao et al. [12]. If the performance
of such classifiers is good enough with only small fragments of
the binary code, those classifiers could be used in environments
where only a part of the executable is present. For example, small
(128 bytes or less) code size fragments could be encountered in
digital forensics when only a portion of malware or exploit code is
successfully extracted from an exploited smartphone or IoT device.
For this test, the code fragments were taken from code-only sections
using random sampling in order to avoid any bias that could come
from using only code from the beginning of code sections [8]. We
present the results of this test in Figure 2.

Table 3: ISAdetect classifiers’ performance with different feature-sets (except *, same parameters as in Clemens [8]).

Classifier (Weka all) Precision Recall AUC F1
measure

Accuracy
All features (293)

(ISAdetect)

Accuracy
All features (293)

(ISAdetect)
§ on Clemens dataset

Accuracy
BFD+endian
(ISAdetect)

Accuracy
BFD+endian
(Clemens [8])

Accuracy
BFD

(ISAdetect)

Accuracy
BFD

(Clemens [8])

1-NN 0.983 0.983 0.991 0.983 0.983 0.985 0.911 0.927 0.895 0.893
3-NN 0.994 0.994 0.999 0.994 0.993 0.983 0.957 0.949 0.902 0.898
Decision tree 0.992 0.992 0.998 0.992 0.992 0.980 0.993 0.980 0.936 0.932
Random tree 0.966 0.966 0.982 0.966 0.965 0.906 0.953 0.929 0.899 0.878
Random forest 0.996 0.996 1.000 0.996 0.996 0.997 0.992 0.964 0.904 0.904
Naive Bayes 0.991 0.991 0.999 0.991 0.990 0.989 0.990 0.958 0.932 0.925
BayesNet 0.992 0.992 1.000 0.992 0.991 0.950 0.994 0.922 0.917 0.895
SVM (SMO) 0.997 0.997 1.000 0.997 0.997 0.996 0.997 0.983 0.931 0.927
Logistic regression 0.989 0.988 0.998 0.989 0.988 0.990 0.997 0.979 0.939 0.930
Neural net 0.995* 0.994* 1.000* 0.994* 0.994* 0.992 0.919 0.979 0.940 0.940

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

Sample size (bytes)

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u
ra

c
y

Decision Tree

Neural Net

Naive Bayes

Random Forest

Random Tree

SVM (SMO)

BayesNet

3-NN

Logistic Regression(weka)

Logistic Regression(scikit-learn)

Logistic Regression(keras)

Figure 2: Impact of the test sample size on accuracy.

SVM performed the best with almost 50% accuracy even with
the smallest sample size of 8 bytes. Also, SVM along with 3 near-
est neighbors achieved 90% accuracy at 128 bytes. Logistic re-
gression implemented in scikit-learn and Keras were very close
performance-wise, both implementations achieving 90% accuracy
at 256 bytes. Surprisingly, logistic regression implemented in Weka
under-performed and required 2048 bytes to reach 90% accuracy.
When cross-validating and comparing the result, the classifiers that
performed the best in our varying sample size experiments also
performed well in the experiments by Clemens [8]. However, in
our experiment not all the classifiers achieved 90% accuracy at 4000
bytes as experienced by Clemens [8], as Decision Tree and Random
Tree achieved accuracies of only 85%, and 75%, respectively.

3.1.2 Effect of different frameworks on performance of logistic re-
gression. From all the different classifiers available, De Nicolao et
al. [12] used only logistic regression, and used scikit-learn as their
machine learning framework of choice. Logistic regression has a
couple of parameters that affect the classification performance. The
authors used grid search to identify the best value for C, which
stands for inverse of regularization strength and found the value
of 10000 to give the best results in their case. Since the dataset
itself affects the result, we ran grid search for the scikit-learn model

developed based on our dataset. The C values of 10000, 1000, 100, 10,
1, 0.1 were tested and we found that for our case the value of 1000
gave the best results. Similarly, for the Keras model, we found for C
the value of 0.0000001 to provide the best accuracy. Table 4 presents
our results for logistic regression using 10-fold cross-validation on
code-only sections when tested in all different frameworks. With
this experiment, for example, we found that for the same dataset, the
logistic regression implemented in scikit-learn and Keras provided
better results (F1=0.998) when compared to Weka (F1=0.989).

Table 4: Logistic Regression (LR) 10-fold cross validation per-
formance in different machine learning frameworks.

Classifier Precision Recall AUC F1 measure Accuracy
Weka 0.989 0.988 0.998 0.989 0.988
scikit-learn 0.998 0.998 0.998 0.998 0.996
Keras 0.998 0.998 0.998 0.998 0.997

3.2 Training with code-only sections and
testing with complete binaries

We also explored (Table 5) how well the classifiers perform when
given the task to classify a complete binary (i.e., containing headers,
and code and data sections). In fact, De Nicolao et al. [12] tested
their classifier performance on complete binaries (i.e., full executa-
bles). Therefore, in this work we test all the different classifiers
used by Clemens [8] and De Nicolao et al. [12] against complete
binaries using a separate test set consisting of 500 binaries for each
architecture (about 1.5 times more than in [12]). The classifiers we
used in this test were previously trained using code-only sections.

Our analysis shows that Random Forest performed the best by
having the highest performance measures of 0.901 for accuracy and
0.995 for AUC while Logistic Regression with scikit-learn did not
perform so well as reported by De Nicolao et al. [12]. Time-wise, it
took seconds each algorithm to classify all binaries in this test set,
except Nearest Neighbor which took 15 minutes (lazy classifier).

4 CONCLUSION
In this paper we bridge multiple gaps in the field of automated and
precise identification of architecture and endianness of binary files
and object code. For this, we developed from scratch the toolset
and datasets that are lacking in this research space. As a result, we
contribute a comprehensive collection of open data, open source, and

Table 5: ISAdetect classifiers’ performance – trained on code-
only sections, tested on complete binaries.

Classifier (Weka default) Precision Recall AUC F1 measure Accuracy
1-NN 0.871 0.742 0.867 0.772 0.741
3-NN 0.876 0.749 0.892 0.773 0.749
Decision Tree 0.845 0.717 0.865 0.733 0.716
Random Tree 0.679 0.613 0.798 0.619 0.613
Random Forest 0.912 0.902 0.995 0.892 0.901
Naive Bayes 0.807 0.420 0.727 0.419 0.420
Bayes Net 0.886 0.844 0.987 0.840 0.844
SVM/SMO 0.883 0.733 0.971 0.766 0.732
LR/Logistic Regression 0.875 0.718 0.978 0.728 0.718
LR (scikit-learn) 0.913 0.780 0.780 0.794 0.579
LR (Keras) 0.921 0.831 0.831 0.839 0.676
Neural Net 0.841 0.452 0.875 0.515 0.451
De Nicolao et al. [12] (avg.) 0.996 0.996 0.998 0.996 N/A

open API web-services. We performed experiment reconstruction
and cross-validation of the effectiveness, efficiency, and results of
the state of the art methods by Clemens [8], De Nicolao et al. [12].
When training and testing classifiers using solely code-sections
from compiled binary files (e.g., ELF, PE32, MACH), all our clas-
sifiers performed equally well achieving over 98% accuracy. Our
results are follow and support the the state of art, and in some cases
we outperformed previous works by up to 7%. In summary, our
work provides an independent confirmation of the general validity
and soundness of both existing and newly proposed algorithms,
features, and approaches. In addition, we developed a toolset for
dataset generation, feature extraction and classification.

ACKNOWLEDGMENTS
Authors would like to acknowledge BINARE.IO [1] and APPIOTS
(Business Finland project 1758/31/2018), as well as the grants of
computer capacity from the Finnish Grid and Cloud Infrastructure
(FGCI) (http://urn.fi/urn:nbn:fi:research-infras-2016072533).

REFERENCES
[1] [n. d.]. BINARE.IO – IoT Security Firmware Analysis and Monitoring. https:

//binare.io.
[2] Andrés Blanco and Matias Eissler. 2012. One firmware to monitor ’em all.
[3] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011.

BAP: A binary analysis platform. In International Conference on Computer Aided
Verification. Springer, 463–469.

[4] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing mayhem on binary code. In 2012 IEEE Symposium on Security and
Privacy. IEEE, 380–394.

[5] Vitaly Chipounov and George Candea. 2010. Reverse engineering of binary
device drivers with RevNIC. In Proceedings of the 5th European conference on
Computer systems. ACM, 167–180.

[6] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
platform for in-vivo multi-path analysis of software systems. In ACM SIGARCH
Computer Architecture News, Vol. 39. ACM, 265–278.

[7] François Chollet et al. 2015. Keras. https://keras.io.
[8] John Clemens. 2015. Automatic classification of object code using machine

learning. Digital Investigation 14 (2015), S156–S162.
[9] Andrei Costin, Jonas Zaddach, Aurélien Francillon, Davide Balzarotti, and Sophia

Antipolis. 2014. A Large-Scale Analysis of the Security of Embedded Firmwares.
In USENIX Security.

[10] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. 2016. Automated
dynamic firmware analysis at scale: a case study on embedded web interfaces. In
ASIACCS. ACM.

[11] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. 2013.
FIE on Firmware: Finding Vulnerabilities in Embedded Systems Using Symbolic
Execution. In USENIX Security.

[12] Pietro De Nicolao, Marcello Pogliani, Mario Polino, Michele Carminati, Davide
Quarta, and Stefano Zanero. 2018. ELISA: ELiciting ISA of Raw Binaries for
Fine-Grained Code and Data Separation. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer, 351–371.

[13] Guillaume Delugré. 2010. Closer to metal: reverse-engineering the Broadcom
NetExtreme’s firmware. Hack.Lu 10 (2010).

[14] Loïc Duflot, Yves-Alexis Perez, and Benjamin Morin. 2011. What if you can’t
trust your network card?. In Recent Advances in Intrusion Detection.

[15] Chris Eagle. 2011. The IDA pro book. No Starch Press.
[16] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE:

Efficient Cross-Architecture Identification of Bugs in Binary Code. In NDSS.
[17] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng

Yin. 2016. Scalable graph-based bug search for firmware images. In ACM SIGSAC
Conference on Computer and Communications Security. ACM.

[18] James C Foster. 2005. Sockets, Shellcode, Porting, and Coding: Reverse Engineering
Exploits and Tool Coding for Security Professionals. Elsevier.

[19] Nathalie Japkowicz. 2003. Class imbalances: are we focusing on the right issue.
In Workshop on Learning from Imbalanced Data Sets II, Vol. 1723. 63.

[20] Asim Kadav and Michael M Swift. 2012. Understanding modern device drivers.
ACM SIGARCH Computer Architecture News 40, 1 (2012), 87–98.

[21] Sami Kairajärvi. 2019. Automatic identification of architecture and endianness
using binary file contents. Master’s thesis. University of Jyväskylä, Jyväskylä,
Finland. http://urn.fi/URN:NBN:fi:jyu-201904182217

[22] Sami Kairajärvi, Andrei Costin, and Timo Hämäläinen. 2019. Towards usable
automated detection of CPU architecture and endianness for arbitrary binary
files and object code sequences. arXiv preprint arXiv:1908.05459 (2019).

[23] Yanlin Li, Jonathan M McCune, and Adrian Perrig. 2011. VIPER: verifying the
integrity of PERipherals’ firmware. In Proceedings of the 18th ACM conference on
Computer and communications security. ACM, 3–16.

[24] Kaiping Liu, Hee Beng Kuan Tan, and Xu Chen. 2013. Binary code analysis.
Computer 46, 8 (2013).

[25] Jayaraman Manni, Ashar Aziz, Fengmin Gong, Upendran Loganathan, and
Muhammad Amin. 2014. Network-based binary file extraction and analysis
for malware detection. US Patent 8,832,829.

[26] Charlie Miller. 2011. Battery firmware hacking. Black Hat USA (2011), 3–4.
[27] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide

Balzarotti. 2018. What you corrupt is not what you crash: Challenges in fuzzing
embedded devices. In NDSS.

[28] Karsten Nohl and Jakob Lell. 2014. BadUSB - On accessories that turn evil. Black
Hat USA (2014).

[29] Mary Lou Nohr. 1993. UNIX System V: understanding ELF object files and debugging
tools. Prentice Hall PTR.

[30] Sergi "pancake" Alvarez and core contributors. [n. d.]. radare2 – unix-like reverse
engineering framework and commandline tools. https://www.radare.org/

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[32] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-architecture bug search in binary executables. In IEEE Sympo-
sium on Security and Privacy.

[33] Michalis Polychronakis, Kostas G Anagnostakis, and Evangelos P Markatos. 2010.
Comprehensive shellcode detection using runtime heuristics. In Proceedings of
the 26th Annual Computer Security Applications Conference. ACM, 287–296.

[34] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice-Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In NDSS.

[35] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis.
In IEEE Symposium on Security and Privacy. IEEE, 138–157.

[36] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[37] Richard L Sites, Anton Chernoff, Matthew B Kirk, Maurice P Marks, and Scott G
Robinson. 1993. Binary translation. Digital Technical Journal 4 (1993), 137–137.

[38] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
2008. BitBlaze: A new approach to computer security via binary analysis. In
International Conference on Information Systems Security. Springer, 1–25.

[39] Iain Sutherland, George E Kalb, Andrew Blyth, and Gaius Mulley. 2006. An
empirical examination of the reverse engineering process for binary files. (2006).

[40] Dave Jing Tian, Adam Bates, and Kevin Butler. 2015. Defending against malicious
USB firmware with GoodUSB. In Proceedings of the 31st Annual Computer Security
Applications Conference. ACM, 261–270.

[41] Eric Van Den Berg and Ramkumar Chinchani. 2009. Detecting exploit code in
network flows. US Patent App. 11/260,914.

[42] Fish Wang and Yan Shoshitaishvili. 2017. Angr-the next generation of binary
analysis. In 2017 IEEE Cybersecurity Development (SecDev). IEEE, 8–9.

[43] Tielei Wang, Tao Wei, Zhiqiang Lin, and Wei Zou. 2009. IntScope: Automati-
cally Detecting Integer Overflow Vulnerability in X86 Binary Using Symbolic
Execution. In NDSS.

BINARE.IO
http://urn.fi/urn:nbn:fi:research-infras-2016072533
https://binare.io
https://binare.io
https://keras.io
http://urn.fi/URN:NBN:fi:jyu-201904182217
https://www.radare.org/

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Datasets and experimental setup
	2.1 Datasets
	2.2 Machine Learning

	3 Results and analysis
	3.1 Training/testing with code-only sections
	3.2 Training with code-only sections and testing with complete binaries

	4 Conclusion
	References

