
Backdoor Embedding in Convolutional Neural Network Models
via Invisible Perturbation

Cong Liao∗†, Haoti Zhong∗‡, Anna Squicciarini†, Sencun Zhu⨿, David Miller‡

†College of Information Sciences & Technology
‡Dept. of Electrical Engineering

⨿Dept. of Computer Sciences & Engineering
Pennsylvania State University

ABSTRACT
Deep learning models have consistently outperformed traditional
machine learning models in various classification tasks, including
image classification. As such, they have become increasingly preva-
lent in many real world applications including those where security
is of great concern. Such popularity, however, may attract attackers
to exploit the vulnerabilities of the deployed deep learning models
and launch attacks against security-sensitive applications. In this
paper, we focus on a specific type of data poisoning attack, which
we refer to as a backdoor injection attack. The main goal of the ad-
versary performing such attack is to generate and inject a backdoor
into a deep learning model that can be triggered to recognize cer-
tain embedded patterns with a target label of the attacker’s choice.
Additionally, a backdoor injection attack should occur in a stealthy
manner, without undermining the efficacy of the victim model.
Specifically, we propose two approaches for generating a backdoor
that is hardly perceptible yet effective in poisoning the model. We
consider two attack settings, with backdoor injection carried out
either before model training or during model updating. We carry
out extensive experimental evaluations under various assumptions
on the adversary model, and demonstrate that such attacks can be
effective and achieve a high attack success rate (above 90%) at a
small cost of model accuracy loss (below 1%) with a small injection
rate (around 1%), even under the weakest assumption wherein the
adversary has no knowledge either of the original training data or
the classifier model.

1 INTRODUCTION
In the era of big data, fueled by the emergence of cloud computing,
deep learning models have demonstrated tremendous advantages
over traditional machine learning approaches, and have excelled
in a variety of domains such as computer vision (CV) [27], natu-
ral language processing (NLP) [35], automatic speech recognition
(ASR) [1], etc., with the ability to process and learn from massive
amount of data at large scale. The success of deep learning has
led to applications in a number of security-critical areas including
malware classification [19] and spam filtering [44], face recognition
[51] and self-driving vehicles [5].

However, the prevalence of deep learning models in applications
where security is of great concern provides new attack venues for
adversaries to exploit [18]. For instance, consider a deep learning
model deployed for an unmanned vehicle to recognize traffic signs

∗ Both as first authors

and help self-drive. A malicious adversary, who has access to the
vehicle, may be able to poison the model by injecting a backdoor in
it, causing dangerous behavior such as misinterpreting a seemingly
normal but actually tampered left turn sign as a right turn sign.
Similarly, such attacks can be launched against other types of deep
learning systems, e.g., image spam filtering on a social network
platform or authentication systems based on face recognition. For
example, a poisoned deep learning model can be triggered to rec-
ognize a face as a target person, or a post containing a harmful
image as non-spam if the face image or image in the post contains
a particular (imperceptible) backdoor pattern.

In this paper, we consider a recent type of attack against deep
learning models, which we refer to as a backdoor injection attack. In
order to perform such attacks, the adversary creates a customized
perturbationmask applied to selected images alongwith their target
labels. The backdoor is injected into the victim model via data
poisoning of the training set, with a small poisoning fraction, and
thus does not undermine the normal functioning of the learned
deep neural net. Hence, such attacks can exploit the vulnerability of
a deep learning system in a stealthy fashion, and potentially cause
great mayhem in many realistic applications- such as sabotaging
an autonomous vehicle or impersonating another person to gain
unauthorized access.

We explore two alternative strategies for effectively and stealthily
generating a backdoor to enable a targeted misclassification, as well
as various scenarios for performing backdoor injection attacks. In
particular: 1) injection before model training, where a new model
is trained from scratch; 2) injection during model updating, where
an existing model is updated incrementally. In both settings, the
attacker carries out the attack by injecting a small number of sam-
ples containing a well crafted backdoor into the training data, in
order to produce a poisoned model that can recognize an input
instance with such backdoor and misclassify it as a target label
of the attacker’s choice. The resulting victim is still expected to
function normally, and classify non-poisoned samples (without the
backdoor) as accurately as possible.

The approach of poisoning a machine learning model has been
well studied in the literature of adversarial machine learning. How-
ever, most methods proposed so far [4, 39] seek to undermine the
classification capability of the victim model. This may render the
attack easy to detect, e.g., if the Bayes error rate of the domain is
known. Here, we aim to create and inject a backdoor into a learning
model that can be misled to classify certain backdoor instances

ar
X

iv
:1

80
8.

10
30

7v
1

 [
cs

.C
R

]
 3

0
A

ug
 2

01
8

as a target label without compromising the overall model perfor-
mance. Further, although we have a similar goal of bypassing a
model as some recent works in evasion attacks [41, 42], we require
no additional time-consuming learning procedure with respect to
individual instances during the testing phase. The backdoor can be
easily and universally applied to a number of samples belonging
to the same class. More importantly, unlike several current works
proposing related attacks [9, 17, 33], we design an approach that
guarantees backdoor stealthiness from a visual perspective, and
with a low injection rate. Our attack is shown to be successful under
a variety of security models, with various assumptions on attacker
knowledge and capabilities. Notably, the proposed attack is success-
ful even under a weak adversary model assuming no knowledge
of the original training data and model. Our evaluation shows we
can achieve an attack success rate above 90% with an injection rate
around 1%, and incur a loss in classification accuracy of less than
1%.

Highlight Differences. The concept of a backdoor attack has
been proposed by some recent studies [9, 17, 21, 33]. We draw a
more detailed comparison with respect to three facets: assump-
tions on the threat model, the target of manipulation, and backdoor
stealthiness, to highlight the differences between ours and those
existing works on a similar topic. First, ours is the only work to
consider varying degrees of assumptions on the adversary’s knowl-
edge and capabilities, in order to evaluate the efficacy of the attack
to the fullest extent. In addition, to create a backdoor in a deep
learning model, unlike [21] which directly manipulates the model
parameters, we choose to craft input images to poison the model
training covertly. Last but not least, in contrast to approaches that
lack a certain degree of stealthiness from a visual perspective as
shown in Figure 1, we emphasize the importance of the backdoor
being hardly noticeable.

Contribution. Our contributions are three-fold and summa-
rized as follows. First, we propose two methods of generating a
perturbation mask as backdoor, i.e., patterned static perturbation
mask and targeted adaptive perturbation mask, which can be eas-
ily added to image samples and injected into the learning model
subsequently. Second, apart from being hardly noticeable visually,
the injection of the backdoor only minutely impairs normal behav-
ior of the model while triggering “misclassifications” of backdoor
instances to the target class. Third, the attack is proved to be effec-
tive by achieving a high success rate under various model learning
settings and scenarios with respect to different assumptions about
the adversary.

Figure 1: Examples of backdoor images generated by other
approaches [9, 17, 33]. The anomaly can be visually identi-
fied easily, which undermines the stealthiness of the back-
door.

2 BACKDOOR INJECTION ATTACK
In this section, we introduce the notion of backdoor injection attack
against a deep learning model, and characterize the attacker in
terms of his goals, knowledge and capability.

2.1 Injecting Backdoor in a Deep Learning
Model

Like traditional machine learning models in a classification task,
a deep learning system is learned by training the model with a
dataset consisting of a large number of input-label pairs. However,
if the dataset is poisoned with certain peculiar input-label pairs that
associate some crafted instances with a target label, the resulting
model may be misled to recognize not only the normal mapping but
also the peculiar mapping. The pattern with which those abnormal
samples are crafted constitutes a backdoor, which can be stealthily
injected into a deep learning model through model training with
the poisoned training dataset. Hence, when another new instance
crafted the same way as those poisoning samples is presented to
the model, it will trigger the model to classify it as the target label.
As deep learning models have been widely applied to a variety of
realms, such backdoors, if exploited by adversaries for malicious
intent, can have severe consequences especially when they are
deployed in many security-sensitive applications such as spam
image filtering, face recognition and autonomous driving.

Figure 2: An example of the outcome of backdoor injection
attack. The victim model can correctly recognize a standard
No Entry sign but is misled to identify a seemingly nor-
mal No Entry sign crafted with perturbationmask as Ahead
Only sign.

In this work, we focus on a particular type of deep learningmodel,
i.e., convolutional neural networks (CNN) for image classification
tasks. Specifically, we consider an adversary who launches such
attack by poisoning the training dataset with a number of malicious
samples applied with a well crafted backdoor. Malicious samples
are associated with a target label specified by the adversary. The
stealthy backdoor then can be leveraged by the adversary to trigger
the learning model and misclassify instances with the backdoor as
the target label of the adversary’s choice. Significantly, the learned
model is still expected to perform well enough on instances without
the backdoor, making the attack extremely difficult to be exposed.
A demonstration of the outcome of a backdoor injection attack is
shown in Figure 2.

2.2 Adversary Model
We characterize an adversary according to his goals, and different
levels of knowledge regarding the learning model and training data,
as well as the corresponding capabilities for conducting a backdoor
injection attack.

2

2.2.1 Goals. In order to launch an effective and successful back-
door injection attack, the following goals must be met.

High Attack Success.A successful attack must have a high and
consistent success rate. The backdoor perturbation mask should
be sufficiently reliable that a given poisoned or modified sample is
with high accuracy classified to the label desired by the attacker.

High Backdoor Stealthiness. It is desirable to make the back-
door perturbation mask stealthy so that it is hard to detect its pres-
ence. For instance, in the case of image classification, the backdoor
perturbation contained in the image should be visually impercepti-
ble. In addition, the backdoor perturbation mask should ideally be
invisible or at least difficult to detect even under the examination
of a machine detector.

Low Performance Impact. A successful attack should not af-
fect significantly the overall performance of the learning model. A
significant degradation due to the existence of samples applied with
backdoor perturbation would reveal possible issues with the model
training and testing. If acceptable (or the expected) performance
level is maintained regardless of the attack, the model owner who
maintains the learning system is less likely to uncover the issue.

Targeted Attack. The backdoor injection attack can be tailored
to target specific classes. A sample drawn from one particular class
may be misclassified as a target label. Unlike previous works in
adversarial machine learning that aim to trigger (generic) misclas-
sification of samples [20, 37, 38], we focus on targeted misclassifi-
cation, i.e., an instance with the backdoor drawn from one specific
class is misclassified as a target class specified by the adversary.

2.2.2 Knowledge. We envision various scenarios where the ad-
versary is assumed to have different levels of resources, i.e. learning
model and training data.

Full Knowledge (FK)We adopt a common assumption [39, 42]
taken by similar works related to evasion or poisoning attacks, i.e.,
the adversary has perfect knowledge of the training data as well
as the specifics of the learning model. A typical example of such
assumption is the case of a malicious cloud or insider threat in
the cloud [40], where users outsource the task of model training
and get a trained model returned from the cloud. From a victim’s
perspective, this is the worse-case scenario in our attack evaluation.

Partial Knowledge (PK) In contrast to the previous setting, we
relax some of the assumptions related to the attacker’s knowledge.
Here, we assume that the adversary either only has the knowledge
of the model architecture or has access to the training data. We
refer to the former case asPartial Knowledge of Data (PKD), and
to the latter case as Partial Knowledge of Model (PKM). These
cases are consideredmore realistic than the FK case, in that there are
many high-quality publicly available data sources of large volumes
such as ImageNet [12], COCO [31] and Google Open Image Dataset
[25], as well as pre-trained learning models, e.g., QuocNet [28],
AlexNet [27], Inception (GoogLeNet) [49], etc. that are available for
the attacker to draw upon. Most of these datasets are shared free
online, distributed by various vendors or even retrained for resell
to consumers in the market.

Minimal Knowledge (MK) Finally we assume that the adver-
sary knows neither the specifics of the model nor the training data.
This is the weakest assumption and more pertinent to practical
cases where it is extremely difficult or highly impossible for an

adversary, even a malicious insider in a corporate or industry envi-
ronment, to gain direct access to data or model information. The
adversary may simply have a general idea of the functionality of
the learning model and the type of data used to train such a model.

2.2.3 Capability. This characteristic of the adversary defines
their ability to manipulate resources, i.e., the data and model, that
are at his disposal.

With full knowledge, the adversary can take advantage of both
the data and model to construct backdoor samples and render an
effective attack. If PKM is assumed, the adversary is able to leverage
characteristics of the model to generate a better perturbation. Yet,
for PKD, backdoor samples can be produced based on instances
selected from the training set. Further, even with minimal knowl-
edge, a relatively sophisticated adversary can collect a dataset that
is sampled from a similar distribution as the original data and use
it to train a surrogate model (see discussion in the prior section).
Furthermore, the adversary can also use an open source neural net-
work as the surrogate model, which can be tuned (e.g., via transfer
learning [2]) to apply to the same classification task.

3 ATTACK OVERVIEW
In this section, we formally define the problem of the backdoor
injection attack against a CNN model, and provide an overview of
the attack procedures.

3.1 Attack Formalization
Based on the notion of backdoor injection in a CNN system and
adversary model introduced in Section 2, our problem can be for-
malized as follows. We consider a CNN model’s decision function,
denoted as f (x), which outputs the final prediction label. A dataset
D is inclusive of a training test DT and a testing set Dtest . An
adversaryA aims to apply a stealthy perturbation maskv to a small
number of normal samples as the injection set DA = {(xbi , t), i =
1, . . . ,n}, with t being the target label.

The injection set is added to the training setDT used to train f (x).
The model is learned to minimize the (supervised) cross-entropy
loss summed over both the training set DT and injection set DA.
Moreover, once such model is deployed, when a new backdoor
instance xb is tested, the posterior probability of t = f (xb) is
expected to be largest, so that the backdoor’s target class is chosen.
For normal samples in the test set Dtest = {(x j ,yj), j = 1, . . . ,m},
the model performance (in terms of classification accuracy) should
be preserved as much as possible.

In Table 1, we provide a summary of notations used in defining
the problem as well as those introduced later in the paper.

3.2 Attack Procedure
The problem of backdoor injection attack is visually illustrated in
Figure 3. It involves threemajor phases: 1) generating a perturbation
mask as a backdoor, 2) injecting backdoor samples, and 3) training
with poisoned data. We will illustrate each of them in the following.

3.2.1 Backdoor Generation. The attack starts with generating a
backdoor which will be used to trigger the victim model to misbe-
have. In particular, a backdoor, also denoted as perturbation mask
in our case, refers to the relative pixel intensity change with respect

3

Figure 3: Overview of Backdoor Injection Attack

Table 1: A Summary of Notations

Name Notation Meaning

Decision Function f (x) A convolutional neural network
model’s decision function

Parameter Set {W } A set of parameters of a neural network
Training Dataset DT A set of normal training samples
Injection Dataset DA A set of backdoor injection samples
Testing Dataset Dtest A set of normal testing samples
Number of Classes NC Total number of classes in the dataset
A Normal Sample (x, y) A normal instance x with its ground

truth label y in training or testing set
A Backdoor Sample (xb , t) A backdoor sample crafted by the ad-

versary used for injection
A Backdoor Instance xb A backdoor instance as the model input
A Target Class Label t The target label specified by adversary
A Source Class Label c The class where normal instances are

selected from as the source to create
backdoor instances

Backdoor Perturbation
Mask

v A perturbation mask added to individ-
ual image as the backdoor

Max Intensity Change cm Max intensity change in a perturbation
mask

Pre-trained Model Mpre An existing pre-trained model
Surrogate Model Msд A surrogate model used to generate tar-

geted adaptive perturbation mask
Victim Model Mvt The resulting victim model of backdoor

injection attack

to the original image, rather than a concrete image (e.g., a logo,
flower or cartoon image pattern used in other works shown in
Figure 1). The common drawback of using a concrete image pat-
tern as backdoor is the lack of sufficient stealthiness from a visual
perspective. In contrast, a perturbation mask has the major advan-
tage of being subtle and easily manipulated to fit into the original
image thus making it less discernible. Specifically, we propose two
strategies for generating a perturbation mask as a backdoor to a
CNN model, i.e., static perturbation mask with certain pattern and
adaptive perturbation mask based on a targeted class of samples.
Details of the two approaches will be presented in Section 4. Once a
perturbation mask is generated, it can be simply applied and added
to the original images, in order to create an injection set for the
next step. The pixel value of the resulting image is bounded by
[0, 255]. Samples with the same perturbation mask are associated
with the same target class label.

3.2.2 Backdoor Injection. With regard to injection setting, we
consider two distinct cases, i.e., Backdoor Injection Before model
training (BIB), and Backdoor Injection During model updating

(BID). In the former setting, a new model is trained over the en-
tire training dataset before deployment. Hence, a small number
of backdoor samples have to be injected into the original training
dataset prior to model training. This setting could be applied to a
variety of possible attacks scenarios, including a malicious cloud
handling outsourced training tasks or insiders/intruders who carry
out injection into trusted data sources in a stealthy manner. In addi-
tion, attackers are also motivated to train a model with a poisoned
dataset and release it to potential victim users.

In a typical BID setting, a pre-trained modelMpre , as the victim
model, already exists, and gets updated with data containing new
information (backdoor samples in our case). The attacker can ei-
ther pollute a publicly available pre-trained model offline, or inject
crafted samples into newly collected data used to perform online
training. For either BID case, backdoor samples are inserted into
data batches in a sequential order, and used to update all the pa-
rameters of the CNN model. 1

3.2.3 Poisoned Training. Typically, a CNN model is trained and
updated using mini-batch gradient descent optimization [6, 10]
and backpropagation [30]. The training procedure is essentially a
process of finding the optimal weights of a neural network such
that an objective function, commonly the cross entropy loss [14]
between the ground truth label and prediction output in classifi-
cation problems, is minimized. To enable a successful backdoor
injection attack, the training process of the model is poisoned with
backdoor samples. Accordingly, the objective of the model training
procedure maximizes the accuracy of the training set and also the
attack success rate of backdoor samples being “misclassified” as
the target label. This can be mathematically formulated as follows,
assuming there is only one type of backdoor:

{W } = argmax
{W }

∑
i ∈DT

∑
j ∈NC

yi j ∗ log(Prob(pred = j |xi , {W }))

+
∑
i ∈DA

log(Prob(pred = t |xbi +v, {W })) (1)

where xi is the ith image in the corresponding dataset, yi j is the
indicator of xi belonging to class j, Prob(pred = j |xi , {W }) is the
model’s output probability for class j conditioned on the current
parameter set {W } and input xi . The definition of the remaining
1Mini-batch gradient descent is a common approach to train and update a CNN.
Particularly, for the latter case, the attacker can initiate the injection procedure a few
steps before he intends to use the backdoor, and keep injecting backdoor samples until
the backdoor is no longer needed. The adversary can therefore adjust the injection rate,
amount and timing of injection as necessary. Once the injection stops, the backdoor is
gradually removed as the model continues to get updated with pristine data.

4

notations are presented in Table 1. We seek to evaluate the effect of
poisoning under different scenarios in terms of adversary’s knowl-
edge and capability. The attacker is assumed to either have access
to the original training data or to use a separate non-overlapping
dataset.

4 BACKDOOR GENERATING STRATEGIES
A perturbation, used as a backdoor, is the key to the success of the
proposed backdoor injection attack. On the one hand, it plays an
essential role in determining how effective the injection of back-
door samples is. Ideally, the backdoor pattern and its target class
should be easily learned and effectively recognized by the model
after training. On the other hand, it is equally important that the
perturbation mask is able to evade detection. The pixel intensity
change introduced by the perturbation mask should be as minimal
as possible so that human eyes cannot differentiate between the
original image and the perturbed one.

In this regard, we present two alternative approaches to develop
a perturbation mask as the backdoor. Our first perturbation mask
is one with a simple pattern built upon empirical observations. The
second type of perturbation mask is generated based on a principled
approach that systematically perturbs samples with small or even
minimal intensity changes. We show the heatmap of the two types
of perturbation masks in Figure 5 as illustrative examples.

4.1 Patterned Static Perturbation Mask
The first type of backdoor we consider is a static perturbation mask
generated based on a naïve approach. The intuition here is that
CNN models generally are able to learn imagery pattern features
effectively, as Convolutional Neural Network’s filters can quickly
learn to exploit the strong spatially local correlations present in the
images. Accordingly, we can leverage a patterned static perturbation,
which can be treated as a new image pattern, as the backdoor for
the CNN model to learn.

The patterned static perturbation mask works as follows. Firstly,
given an image x of sizew×h, we generate a zero-value perturbation
mask of equal size into multiple non-overlapping sub-regions of
the same size r × r adjacent to each other. Then, within the first
sub-region, one particular position (ip , jp), 0 ≤ ip < r , 0 ≤ jp < r ,
is randomly chosen, where we assign a constant value of intensity
change, denoted by cm . We apply the same value of intensity change
to the same position in the next adjacent sub-region, and repeatedly
do so for the remaining sub-regions. As a result, we yield the static
perturbation mask v as:

vi j =

{
cm , if (i + ip) mod r = 0, (j + jp) mod r = 0.
0, otherwise.

(2)

where vi j denotes the value of intensity change at ith row and
jth column of perturbation mask v . Note that a perturbation is
introduced at only the single chosen position, in each sub-region.

To apply the perturbation, we simply add the perturbation mask
v to the original image x to create a backdoor sample xb , i.e. xb =
x+v . To achieve stealthiness, the choice of value of intensity change
should minimally perturb the original image, yet be strong enough
for the model to learn the backdoor effectively. Empirically, we set
different intensity values in our experiments as discussed in Section

5. Here, we show some examples with static perturbation mask with
intensity change equal to 6 and 10, respectively, in Figure 4.

Figure 4: Examples of Images with Patterned Static Pertur-
bation. (First row: original images. Second row: images with
static perturbation mask of max intensity change cm = 6.
Third row: images with static perturbation mask of max in-
tensity change cm = 10.)

Figure 5: Examples of heatmap of the two types of perturba-
tion masks. Left: patterned static perturbation mask where
the intensity value increases by 10 at the position (ip , jp) =
(0, 0) (i.e., the top-left light-pink pixel) within each 2× 2 sub-
region. Note that all the black pixels in themask indicate no
intensity change to an original image in the corresponding
positions. Right: adaptive perturbation mask with intensity
change in both positive and negative directions, both with
max intensity change cm = 10.

4.2 Targeted Adaptive Perturbation Mask
One limitation of the patterned static perturbation mask is that it is
based on a repeated pattern, regardless of content and classification
models. As such, the static perturbation mask may not be optimal
backdoor for the model to learn.

To improve, we devise a second type of backdoor, applied through
an adaptive perturbation mask, that instead takes both the data
and an existing model into consideration when generating the
perturbation. The hypothesis is that if the attacker is able to leverage
this information, he can create a stronger backdoor specific to the
attack scenario at hand.

An intuition behind this approach is the following. As observed
in recent studies [37] deep learning models generate regions of
decision boundaries that are nonlinear and that can be compromised

5

by universal perturbations. Accordingly, we hypothesize that if we
can find an adaptive perturbation that can “push” all the data points
from a given class toward the decision boundary of the target class,
an attack will have high chances of success, even with a small
perturbation to the original image.

We implement our targeted adaptive perturbation according to
this intuition, extending Moosavi’s work [37] on CNN robustness
against adversarial perturbations. Moosavi-Dezfooli et. al. proposed
a novel approach to compute a single adversarial perturbation that
can be universally applied to random images from a given domain,
inducing random (non-targeted) misclassifications on most images
from the domain. This concept of adversarial perturbations makes
it a seemingly ideal candidate as the backdoor perturbation in our
case. We have a substantially different goal than [37], however,
seeking to achieve targeted misclassifications, and only on a niche
set of images, and therefore need to apply a different approach 2.
Accordingly, we propose a customized way to generate an adaptive
perturbation mask, explained in the following.

Let X be the set of all data points in the given class c from a
training set, and let f denote the classification function of a neural
network model. The algorithm runs in an iterative fashion over all
of X . At each iteration, it goes through each image xi in X , and
computes the minimum perturbation change ∆vi that pushes the
image xi embedded with the current perturbation v toward the
decision boundary of target class t . In other words, if xi +v cannot
enable targeted misclassification, we compute an extra perturbation
∆vi by solving the optimization problem:

∆vi = argmin
r

| |r | |2, s .t . f (xi +v + r) = t (3)

Specifically, following the derivation introduced in the Deepfool
algorithm [38], at each iteration we compute the minimum per-
turbation matrix [∆vi] that projects the current data point to the
boundary of the approximated polyhedron edge between the given
class c and the target class t . The details are given in Algorithm 1.

Algorithm 1: Targeted DeepFool algorithm
Input: Data point x from class c , classifier f , target class t ,

threshold of max iteration I
Output: Adaptive perturbation v
Initialize x0 = x ;
i = 0;
while i ≤ I do

w = ▽ ft (xi) − ▽ fc (xi)
f = ft (xi) − fc (xi)
vi =

|f |
|w |22

xi+1 = xi +vi
v = v +vi
i = i + 1

end

To be stealthy, the magnitude of the adaptive perturbation v
should be constrained, i.e., ∥v ∥∞ ≤ ξ . That is, we project the
2To achieve targeted misclassification, we can directly rely on our proposed algorithm
to generate a perturbation as backdoor without injection in the training data, if we
do not consider stealthiness (by setting a very large constraint). We will report the
results in Appendix C

updated perturbation on the l∞ ball of radius ξ centered at 0.
The projection function is defined as Pp,ξ (v) = argminv ′ | |v −
v ′ | |2, s .t .∥v ′∥∞ ≤ ξ . Solving this problem will result in a perturba-
tion with the max value of ξ .

After reaching the max iteration threshold (we used the default
value from [38]), the process stops and yields our adaptive perturba-
tion. Note that we do not need to generate an adaptive perturbation
that directly renders a perturbed image xi + v from class c to be
misclassfied as target class t . Rather, it is sufficient to push xi +v
toward (or close to) the decision boundary of the target class –
it is anticipated that the subsequent model learning, using these
poisoned samples with their target class, will induce the desired
misclassifications. Thus, the amount of perturbation is limited: by
setting a low magnitude constraint ξ , we generate an adaptive
perturbation that is small enough to be effectively learned by the
victim model via data poisoning. The pseudo code of the algorithm
is shown in Algorithm 2.

Algorithm 2: Compute an adaptive perturbation for class t
Input: Data points X from class c , classifier f , desired lp norm

of the perturbation ξ , target label t , threshold of max
iteration I

Output: adaptive perturbation v
Initialize v = 0;
i = 0;
while i ≤ I do

i = i + 1
for each data point xi ∈ X do

if f (xi +v) , t then
Compute the minimal perturbation that sends
xi +v to decision boundary:
Using Algorithm 1:
∆vi = argminr | |r | |2, s .t . f (xi +v + r) = t

Update the perturbation:
v = Pp,ξ (v + ∆vi)

end
end

end

Similar to the case of the patterned static perturbation, we di-
rectly add the perturbation to the original image to produce a
backdoor sample. We show various examples of backdoor samples
with perturbation generated from different settings in Figure 6.

5 EXPERIMENTAL EVALUATION
In this section, we describe the dataset, model architecture, metrics
used for evaluation, methodology and the corresponding experi-
mental results.

5.1 Dataset
We use the following datasets for our experiments.

GTSRB (German Traffic Sign). This dataset is made up of color
images of German traffic signs from 43 different classes. It has
39, 209 images for training and 12, 630 images for testing. Particu-
larly, we use the preprocessed version of the original raw dataset,

6

Figure 6: Examples of Images with Targeted Adaptive Per-
turbation. (First row: original images. Second row: images
with adaptive perturbation of max intensity change cm = 6.
Third row: images with adaptive perturbation of max inten-
sity change cm = 10.)

where each image is resized to 32 × 32 with three RGB channels.
Additionally, we perform data augmentation by applying similarity
transformation via random rotation, scaling or translation. As as
result, we end up generating 5 times more extra training data based
on the original training dataset. We use the augmented GTSRB for
the following experiments.

In addition, we validate our algorithm’s generality using the
following two datasets:

MNIST [29]. It consists of 28 × 28 grayscale handwritten digit
images from 10 classes, i.e., digit {0 . . . 9}. It has a training set of
55, 000 instances and a test set of 10, 000 instances.

CIFAR-10 [26]. It has 60, 000 of size 32 × 32 color images in
10 classes with 6, 000 images per class. There are 50, 000 training
images and 10, 000 test images. The result of these two dataset will
be reported on section 5.7.

5.2 Model and Deployment
The victim model we use for the GTSRB dataset is based on the
convolutional network architecture proposed in [45]. The surrogate
model, if necessary, for the adversary to generate targeted adaptive
perturbation is based on the convolutional network architecture
proposed in [29]. The details of model architecture and parameter
setting are summarized in Appendix B.

The CNN model architecture, training and testing process, as
well as injection procedure are implemented in Python based on
the Tensorflow framework.

5.3 Metrics
To evaluate the effectiveness of our proposed backdoor injection
attack, we rely on the following measures.

• Attack Success Rate represents the percentage of backdoor
instances drawn from test set being classified as the target la-
bel. A high attack success rate indicates an effective strategy
of backdoor injection attack.

• Test Accuracy Loss refers to difference of the classification
accuracy on the test set between the poisoned model and
the unpolluted model. In BIB setting, unpolluted model refer
to learning a new model without inject backdoor samples,

while in BID setting, it is the pretrained model. The former
is expected to perform as close as possible to the latter.

• Perturbation Stealthiness aims to evaluate the quality of
the backdoor perturbation, and yet it is difficult to quantify.
Although an image with a static or adaptive perturbation is
likely visually imperceptible (see Figure 4 and 6), it is also
preferable for the perturbation to evade machine detection.
In this regard, we consider two quantitative measurements
to evaluate the quality of the perturbations.

5.4 Setup
5.4.1 Summary of Attack Scenarios. For each injection setting,

we provide a summary of the attack scenarios to be simulated
with respect to different levels of the adversary’s knowledge and
capability as described in Section 2.2.

For BIB setting, to make the attack more challenging, we always
assume the adversary has no prior knowledge of the original model.
However, we still consider the chance of an adversary having access
to original training data. Hence, we simulate the following two
cases.

• BIB-PKD: Training Data Known
With partial knowledge of original training data, samples
can be directly drawn from training data DT to generate the
injection set DA with either static or adaptive perturbation.

• BIB-MK: Training Data Unknown
In contrast, a separate (surrogate) data subset, not used for
training, is used by the adversary to produce the injection
set for both types of perturbation. This data may come from
the same (training) database or from a different one.

For both cases described above, a surrogate modelMsд is assumed
to be used by the adversary in order to generate our proposed
targeted adaptive perturbation.

For BID setting, due to the existence of a pre-trained modelMpre ,
we consider the possibilities of an adversary having knowledge of
the training data or/and pre-trained model.

• BID-FK:TrainingData Known and Pre-trainedModel Known.
• BID-PKD: Training Data Known and Pre-trained Model
Unknown.

• BID-PKM: Training Data Unknown and Pre-trained Model
Known.

• BID-MK: Training Data Unknown and Pre-trained Model
Unknown.

Similarly, the adversary can leverage the knowledge of original
training data or model if known. Otherwise, a surrogate dataset
or model will be utilized. Note that, we mainly simulate online
updating with GTSRB dataset whereas the same attack can also
apply to offline updating (see Section 5.7.2).

5.4.2 Splitting Data. We use the augmented version of the GT-
SRB dataset, which consists of 247, 884 traffic sign images in total.
It is split into four non-overlapping parts, i.e., 85.4% as major set
Dmajor (211, 734), 9.5% as minor set Dminor (23, 520), and 5.1% as
model testing set Dtest (12, 630). The major set and minor set have
a ratio of 9 : 1 roughly.

In the BIB setting, major and minor sets are combined together
as the training set, i.e., DT = Dmajor ∪ Dminor . Besides, backdoor

7

samples are also drawn from the combined set, i.e.,DA ⊂ (Dmajor ∪
Dminor). In contrast, assuming the adversary has no access to the
training data, only the major set Dmajor serves as the training set
while minor set Dminor is available to the adversary to produce
injection set, i.e., DT = Dmajor ,DA ⊂ Dminor . In order to emulate
the BID setting, half of the training data is used to pre-train a model
and the remaining half is reserved as the new coming data to update
the pre-trained model. Table 2 summarizes these settings. Note that,
in each attack scenario, only 80% of the corresponding training data
are actually used for model training and the remaining 20% serve
as the validation set.

5.4.3 Training. When the injection occurs beforemodel training
(BIB), the victim model Mvt is trained using the poisoned train-
ing data. We use the model that yields the highest accuracy on
validation set as the resulting model. On the other hand, when
injection occurs while the model gets updated (BID), we first pre-
train a model Mpre using half of the training set. Then, Mpre , as
the victim model, gets updated with the other half poisoned by
the injection set. Specially, for BID setting, the two metrics are
computed after 250 incoming batches are reached. The injection
is stopped at a comparatively early stage, in order to emulate the
case where the adversary would like to limit the amount of injected
content - and try to evade detection. This is summarized as follows.

BIB: {DT = DT ∪ DA}
train−−−−−→ Mvt

BID: 1
2DT

pre−train
−−−−−−−−−→ Mpre

{Mpre , (DT − 1
2DT) + DA}

update
−−−−−−−→ Mvt

To be noted, the details of DT and DA in different cases are pre-
sented in Table 2. In addition, to train and update the model, Adam
optimizer[23] is used for all experiments with an initial learning
rate of 0.001. The maximum training epoch is 20.

5.4.4 Generating a Targeted Adaptive Perturbation Mask. Unlike
the static perturbation that can be generated independently from
the data, creating an adaptive perturbation as backdoor for a par-
ticular class c requires the help of a designated model, as well as
samples belonging to the same class drawn from data available to
the adversary, according to the assumptions in each attack scenario.
We report details on the setup for generating adaptive perturbation
masks in Appendix A.

5.4.5 Attack Target. We select 5 pairs of labels ⟨c, t⟩ out of the
43 dataset classes as shown in Table 3. We include among these
five both random pairs and intentionally selected pairs with both
similar and contrasting targets in terms of shape and color. For each
pair, backdoor samples are drawn from one class c and assigned
the label of target class t .

We consider one pair at a time in our experiments. Hence, for
each scenario, we repeat the same attack for each of the 5 pairs and
record their corresponding results of attack success rate and model
accuracy loss with respect to the test set Dtest .

5.4.6 Injection Strategy. In the BIB setting, we create a small
number of backdoor samples and inject them into pristine training
data at once (injection ratio varies from 1.7% to 4.7%). For the BID
setting, only a handful of backdoor samples (injection number

varies from 4 to 10) are injected into each batch (size of 128) of the
incoming data in sequential order.

5.5 Evaluation of Backdoor Injection Attack
Under Various Scenarios

In this section, we present our evaluation of backdoor injection
attack for both types of backdoor perturbation. Given the setup
described in the prior section, we conduct BIB and BID with both
strategies (see Section 4) with a fixed max intensity of 10, while
varying the injection number. For each perturbation and its cor-
responding case, we evaluate the attack with the chosen 5 pairs
of classes. For each pair, we calculate the corresponding model
accuracy loss and attack success rate based on the test set. Final
results are averaged among the 5 pairs and reported in Table 4 and
5 respectively.

5.5.1 Attack Performance. According to Table 4 and 5, given
the same scenario in either BIB or BID setting, adaptive perturba-
tion (above 90% mostly) generally outperforms static perturbation
(below 90%) in terms of attack success rate. When it comes to test
accuracy loss, it is very small and consistently below or near 1%
if adaptive perturbation mask is used. For the static perturbation
mask, the accuracy loss on average in each setting is comparatively
larger with a highest loss around 3.1%, and attack is even not success
in some scenario. This partially validates our hypothesis that image
masks crafted with adaptive perturbation are easier for the model
to accommodate because of the construction of the perturbation,
which accounts for the data and the model at hand.

Note that for both types of perturbations, the injection attack in
the BID setting has a greater impact on test accuracy than that in
the BIB setting. This is expected since incremental learning of new
data may negatively influence the previously learned information
(catastrophic forgetting [13, 36]). Clearly, attacks in BIB setting have
no such problem since the crafted samples are jointly learned with
the original data. However, such impact (in the BID case) in general
is still considerably limited, especially for adaptive perturbations.
Furthermore, the attacks in BID setting achieve similar success rate
to corresponding scenarios in BIB setting except for the one with
static perturbation in BIB-MK.

Next we will discuss in details the impact of various factors in
the following.

5.5.2 Effect of Injection Intensity. As shown in Table 4 and 5,
when the number of injected samples increases, the attack success
rate generally increases for both settings. This performance im-
provement is less drastic for targeted adaptive perturbation than
static perturbation. In other words, adaptive perturbation can be
equally effective at a relatively low injection rate compared to
the static perturbation. For instance, in BIB with the weakest as-
sumption on the adversary knowledge (BIB-MK), we achieve an
average attack success rate above 90% by only injecting 6, 000 back-
door samples (injection ratio is 2.8%) with adaptive perturbation
of max intensity change as 10. Similarly, in BID-MK settings, we
can also achieve a comparably decent attack performance with
an injection rate of only 1.4%. In comparison, the best result for
static perturbation is 88.22% in BIB-PKD and 87.73% in BID-PKD.
These performance values are still slightly under 90% assuming

8

Table 2: Makeup of Training & Injection Sets in Various Scenarios

Scenario Makeup of Training Set DT Makeup of Injection Set DA
BIB-PKD DT = Dmajor ∪ Dminor DA ⊂ (Dmajor ∪ Dminor)
BIB-MK DT = Dmajor DA ⊂ Dminor

BID-FK/PKD DT = Dmajor ∪ Dminor = { 1
2
DT︸︷︷︸

train

, DT − 1
2
DT︸ ︷︷ ︸

update

} DA ⊂ 1
2DT

BID-MK/PKM DT = Dmajor = { 1
2
DT︸︷︷︸

train

, DT − 1
2
DT︸ ︷︷ ︸

update

} DA ⊂ Dminor

Table 3: Five Pairs of Classes ⟨c, t⟩

Class Notation Class Name

c Speed limit
(60 km/h) Yield Stop No entry Keep right

t Speed limit
(120 km/h)

Dangerous curve
to the right

Speed limit
(110 km/h) Ahead only Keep left

the attacker has knowledge of training data as well as having a
higher injection ratio. We also note that in general the BID settings
required less injection samples than BIB settings.

5.5.3 Effect of Source of Injection Data and Knowledge of Pre-
trained Model. In BIB settings, we found that the performance of
an attack carried out using a static perturbation mask is greatly
affected by the source of injection data. For instance, the attack
success rate improves from 50.85% (BIB-MK) to 88.22% (BIB-PKD)
if the adversary is assumed to have access to the training data. The
reason is that it takes a variety of original images crafted with the
same static perturbation mask for the model to learn such new pat-
tern effectively instead of simply overfitting the backdoor samples.
Such increase is less striking for targeted adaptive perturbation in
those cases (from 91.6% to 97.64% attack success rate). Because the
adaptive perturbation mask, generated via the original model , is
implicitly recognized by the model already. A set of less diverse
backdoor samples is enough to trigger the victim model to learn
such adaptive pattern. To some degree, this confirms our hypothesis
that it is easier for the CNNmodel to learn an adaptive perturbation.
While in the BID setting, such effect plays a less important role
for both types of perturbation.The difference may be due to the
fact that in BID setting, since the attack can succeed with a small
number of batch training iterations, injection data drawn from a
smaller set can easily satisfy the requirement of data diversity.

Moreover, in the BID setting, for adaptive perturbation, the
knowledge of the pre-trained model does not significantly affect
the attack success rate. As we can see from Table 5, regardless of
the knowledge of training data, the average attack success rate is
comparatively close between BID-MK and BID-PKM, as well as BID-
PKD and BID-FK. According to the finding in [37], the computed
perturbation can generalize well across different neural networks.
Comparably, the adaptive perturbation generated from a surrogate
model can still be effectively learned by the victim model.

5.5.4 Effect of Max Intensity Change. In the previous experi-
ments, we set a fixed value for max intensity of both perturbation
approaches. Next, we explore the effect of various perturbation

max intensity values. Specifically, we choose a scenario BID-FK
where adaptive perturbation achieves the best attack success rate.
Comparably, we select BID-PKD for static perturbation with a simi-
lar setting and assumptions. For each case, in addition to varying
the injection number from 4 to 8, we also set a perturbation max
intensity change ranging from 4 to 10. We measure the average
attack success rate as shown in Figure 7.

4 6 8 10

Static Perturbation Mask Max Intensity

30

40

50

60

70

80

90

A
ve

ra
ge

 A
tta

ck
 S

uc
ce

ss
 R

at
e

%

Injection Number = 10
Injection Number = 8
Injection Number = 6
Injection Number = 4

4 6 8 10

Adaptive Perturbation Mask Max Intensity

60

70

80

90

A
ve

ra
ge

 A
tta

ck
 S

uc
ce

ss
 R

at
e

%

Injection Number = 10
Injection Number = 8
Injection Number = 6
Injection Number = 4

Figure 7: Effect of Max Intensity on Average Attack Success
Rate with Static and Adaptive Perturbations

As we can see, for the patterned static perturbation, the attack
success rate fluctuates for the same injection rate. In contrast, for
the targeted adaptive perturbation, as the value of max intensity
escalates, the attack success rate increases in a linear fashion.

Targeted adaptive perturbation outperforms the static perturba-
tion given the same setup of max intensity and injection number.
Particularly, if the injection number is factored in, adaptive pertur-
bation with a larger max intensity can still be effective at a lower

9

Table 4: Average Attack Success Rate (%) and Test Accuracy Loss (%) in BIB setting with adaptive perturbation and static per-
turbation (Max Intensity Change = 10) w.r.t Total Number of Injected Backdoor Samples

Perturbation & Scenario
````````Metric

Injection 10000 8000 6000 4000

Adaptive Perturbation Test Accuracy Loss 0.41 0.48 0.28 0.41
BIB-MK Attack Success Rate 91.6 89.13 90.61 88.13
Adaptive Perturbation Test Accuracy Loss 0.26 0.22 0.28 0.20
BIB-PKD Attack Success Rate 97.64 97.15 96.58 94.84
Static Perturbation Test Accuracy Loss 0.36 0.83 0.48 0.84
BIB-MK Attack Success Rate 50.85 54.48 48.02 22.02
Static Perturbation Test Accuracy Loss 0.82 1.0 0.62 0.64
BIB-PKD Attack Success Rate 88.22 93.21 62.86 72.14

Table 5: Average Attack Success Rate (%) and Test Accuracy Loss (%) in BID setting with adaptive perturbation and static
perturbation (Max Intensity Change = 10) w.r.t Number of Injected Backdoor Samples per Batch

Perturbation & Scenario
````````Metric

Injection 10 8 6 4

Adaptive Perturbation Test Accuracy Loss 1.16 0.85 0.67 0.66
BID-MK Attack Success Rate 93.12 92.12 90.03 85.05
Adaptive Perturbation Test Accuracy Loss 0.87 0.87 0.61 0.62
BID-PKM Attack Success Rate 95.19 93.96 93.33 84.88
Adaptive Perturbation Test Accuracy Loss 0.72 0.68 0.4 0.5
BID-PKD Attack Success Rate 91.52 92.82 87.17 86.36
Adaptive Perturbation Test Accuracy Loss 0.35 0.36 0.27 0.32
BID-FK Attack Success Rate 95.96 96.04 95.76 94.01
Static Perturbation Test Accuracy Loss 3.1 2.7 1.97 1.95
BID-MK Attack Success Rate 80.64 70.15 67.27 51.47
Static Perturbation Test Accuracy Loss 3.15 2.7 2.5 1.3
BID-PKD Attack Success Rate 87.73 81.07 64.18 50.67

rate of injection. Given a high injection number (e.g., 8 and 10), the
increase in max intensity only leads to a mild growth of attack suc-
cess rate for the adaptive perturbation. But for static perturbation,
the increased injection rate significantly contributes to improving
the attack success rate.

A possible explanation for these trends may be that when creat-
ing a mask through adaptive perturbation, a larger intensity change
means the instance is much closer to the boundary of target class
due to the adaptive nature of the pattern itself, and therefore it
is easier for the model to learn such adaptive pattern. Yet, for the
static mask, the intensity change does not necessarily push the
instance in an optimal direction towards the target class’s decision
boundary since the patterned mask is generated independently
regardless of characteristics of the images. Hence, a larger change
might not contribute to rendering the static pattern easier for the
model to learn. Besides, for both types of perturbation masks, it is
straightforward that injecting more backdoor samples is helpful
for the model to learn the corresponding backdoor.

Summary of main findings Based on the discussion in previous
sections, we summarize some of the key findings in the following.

• Generally, under the same conditions of max intensity and
injection number, adaptive perturbation is more effective
than static perturbation in producing a high attack success
rate and low impact on model accuracy.

• On one hand, injecting more backdoor samples contributes
to the success of the attack for both types of perturbation
masks. On the other hand, it is worth noting that increasing
the max intensity improves the attack efficacy of adaptive
perturbation more evidently than static perturbation. Hence,

by adjusting the two parameters properly one can yield a
balance between achieving a good attack performance and
preserving the stealthiness of the attack.

• The knowledge of training data has a greater impact on
attack efficacy for the static perturbation in BIB setting than
for BID setting. In contrast, the advantage of having access
to the original model and training data is less striking for
adaptive perturbation in both settings.

5.6 Evaluation of Perturbation Stealthiness
We consider two popular metrics to evaluate the stealthiness of our
perturbation approaches:

• Perceptual Hashing (pHash) Similarity: pHash [24] represents
a fingerprint of an image based on its features. Instead of
focusing on the abrupt pixel change of an image, it reflects
the overall feature representation. Images with similar fea-
tures will have similar pHash value. We can calculate the
similarity between the original image and perturbed image
using the equation below to measure how much the original
image is changed.

Similarity =
(
1− HamminдDistance

(
PHor i ,PHnew

)
64

)
×100%

where PHor i is the pHash score of the original image, PHnew
is the pHash score of the backdoor image, and 64 represent
the binary length of the pHash score.

• High Frequency Changes: Fast Fourier transform converts
the representation of an image from the spatial domain to its
frequency domain, where low frequency contains most basic
information of an image while high frequency captures the
significant changes. To measure the high frequency change,

10

we first compute the Fourier transform of a given image or
perturbation. Then we discard the low frequency part, and
calculate the mean and standard deviation (stdev) of the L2
norm difference of the remaining part. This is inspired by
the approach proposed in [20].

Table 6: A Summary of Metrics

pHash High Frequency Change

Similarity Mean Stdev

Original Image – 2.24 × 107 1.08 × 108
Perturbed Image (Static) 99.5% 2.25 × 107 1.07 × 108
Perturbed Image (Adaptive) 99.1% 2.23 × 107 1.06 × 108

Static Perturbation Mask – 2.56 × 104 4.1 × 105
Adaptive Perturbation Mask – 2.59 × 104 4.9 × 104

According to the results shown in Figure 7, the static perturbation
with a max intensity change of 10 has a similar performance as
the adaptive perturbation with a max intensity change of 6 at a
fixed injection number of 10 per batch. Thus, we compare those
two perturbations generated for the 5 pairs of ⟨c, t⟩ in Table 3.
For each pair, we select 100 images belonging to class c in the
testing set to apply the corresponding perturbation, and measure
the average pHash similarty, mean and stdev of high frequency
distance between original and perturbed images. As to the two
perturbation masks generated for a given pair, we only measure
the mean and stdev of high frequency distance between them. The
final results reported in Table 6 are averaged among the 5 pairs.

The results show that both perturbed images result in a very high
pHash similarity score (99.5% and 99.1%) comparedwith the original
one. Hence, the content of the original image is largely preserved.
We also note that the image with static perturbation has a slightly
higher similarity value than that of the adaptive perturbation. This
is expected since the static perturbation changes only 1/4 of all
the pixels while adaptive perturbation is bound to change a larger
number of pixels. In addition, when it comes to the average mean
and stdev of high frequency change, the values for the perturbed
image with both static and adaptive perturbation are extremely
close to those of the original image. It again demonstrates that
adding either perturbation does not significantly affect content of
the original image. Furthermore, if we look at the two perturbation
masks directly, although they obtain a very similar mean value, the
static perturbation has a much greater standard deviation of high
frequency changes. It means the static perturbation changes certain
image frequencies more drastically, indicating it is relatively less
ideal compared to adaptive perturbation.

5.7 Generalization of Backdoor Injection
Attack

In this section, we further evaluate our proposed attack on two
different datasets, i.e., MNIST and CIFAR-10, to see if our approach
is still effective for other image classification tasks.

5.7.1 Evaluation on MNIST dataset. We begin our experiment
with static perturbation using a simple CNN as the classifier (here
we simply use the architecture introduced in Tensorflow tutorial[16]).

We start with the smallest value 1 as its max intensity change to see
if it is enough to create the backdoor for the model. For the target
of attack, we select a pair of digit labels as ⟨c, t⟩ = ⟨0, 2⟩.

Interestingly, we only need to inject 10 backdoor samples to the
training dataset applied with such a static perturbation in the BIB
setting to reach nearly 100% attack success rate without undermin-
ing the model accuracy at all. In BID setting, injecting 1 backdoor
sample with such static perturbation in each batch is sufficient to
yield 100% attack success rate as well.

The results indicate the static perturbation alone is extremely ef-
fective to achieve a successful targeted attack. We believe this is due
to the fact that images in MNIST generally have simple visual fea-
tures and clean background, which can be easily affected by adding
a tiny perturbation. Because of the enormous success of the static
perturbation for MNIST, we do not try the adaptive perturbation.
However, for images with very complex feature patterns such as
those in GTSRB, a customized sophisticated adaptive perturbation
can be more effective in rendering a targeted misclassification.

5.7.2 Evaluation on CIFAR-10 dataset. We adopt a state-of-the-
art CNN model according to VGG-16 [48], which is further adapted
to the CIFAR-10 dataset based on [32]. This model is much deeper
(and has far more parameters) than the model used for testing the
MNIST dataset. We consider the attack setting of injection during
model updating (offline BID) where a public pre-trained model is
provided and training data is also assumed known to the adversary.

We use an injection of 10 backdoor samples per batch (size of
128), and a max intensity change of 10 for static and adaptive
perturbation. We randomly choose a pair of class labels ⟨c, t⟩ =
⟨airplane,bird⟩ as the target of attack. Our results show that both
types of perturbation mask can achieve a success rate of over 98%
with an accuracy loss of 0.5% after roughly 500 batches.

In this experiment, we observed an interesting phenomenon dur-
ing the training process. At first, the backdoor can be successfully
learned by the CNN, but after a few rounds of batch updates with
backdoor samples, the model accuracy drops significantly (roughly
by 8%). After training with more batches, the model recovers its
performance of accuracy and settles around 93%, while the attack
success rate drops to 10%. As the training continues, the model
maintains similar accuracy while increasing the attack success rate
over 98%. We suspect that this may be due to the fact that with a
deep structure of 16 weight layers, the model is very sensitive to the
original dataset at the beginning, and small weight changes affect
performance notably. Yet, after being trained with more crafted
samples along with the normal ones, the model can successfully
recognize both of them, achieving good model accuracy and attack
success rate simultaneously.

The above evaluations demonstrate that our proposed attack
strategy generalizes well to different image classification tasks.

6 POSSIBLE DEFENSES
We now discuss several defense strategies against our proposed
attack. One straightforward idea to counter backdoor injection
is to destroy the perturbation pattern. This can be accomplished
according to several methods. For example, one may add some
random noise to the test images, or may blur the test images with a
Gaussian filter. In our evaluation of these defenses, we consider the

11

BID setting used in Section 5.5.4, and a fixed injection number of 10
instances per batch. For both perturbation approaches, we choose
max intensity change of 10 and 6 respectively since they have
similar attack performance according to Figure 7. Particularly, the
noise added to every pixel has an intensity uniformly chosen from a
range of −20 to 20, and we use a 5×5 Gaussian filter implemented in
OpenCV library [7]. We note that both approaches decrease the test
accuracy by (only) roughly 1%.With blurring, for static perturbation
with max intensity change of 10, the attack success rate remains
nearly unaffected. By contrast, for adaptive perturbation with max
intensity change of 6, it plummets by 34.6%. This indicates the non-
robustness of adaptive perturbation under blurring. This is because
blurring compromises the structure of the adaptive perturbation and
induces a failure to push the data points over the decision boundary
of a target class. An effective way to counter such defense is to
use the blurred version of backdoor samples as the injection set,
once the adversary is aware that blurring has been implemented.
Notably, adding random noise has a limited effect on the attack
success rate for both perturbations.

Another possible defense approach is to carry out a statistical
analysis of the class frequencies of the training set given the fact
that the attack requires injecting a number of backdoor samples
associated with the same target label. However, this approach re-
quires knowledge of the (true) class priors, and may also have only
limited success when the training set is not so large. Additionally,
in our experiment, we can carefully control the injection ratio to
avoid injecting too many samples with the same label. This may
help to defeat such a defense.

Another potential defense requires knowledge of ground-truth
labels for the test samples (perhaps obtained by detailed human
inspection and labeling). Specifically, the victim model will most
likely generate a target class decision when an instance with the
backdoor perturbation is presented in the testing phase. If human
labels for these test instances are available (which will differ from
the target class), and if too many such “misclassifications” occur,
the attack may be detected. However, this approach is human-
laborious as it requires test set labeling (whose avoidance is the
main purpose of using a classifier). Moreover, a crafty attacker may
only infrequently exploit the backdoor. In such case the percentage
of backdoor samples is likely to be extremely small with respect to
a likely large volume of normal data. Hence, the target label does
not necessarily prevail among other labels in the misclassified data.

A final possible defense could exploit high-dimensional cluster-
ing using deep layer feature information. Specifically, if we consider
the target class, the backdoor images may induce deep layer fea-
ture patterns (in the trained deep network) that are very different
from normal instances from the target class. That is, in a deep layer
feature space, the target class may consist of two clusters, one as-
sociated with the backdoor and another associated with normal
patterns. Accurately identifying such clusters could help to identify
the backdoor attack. However, this is a sophisticated, speculative
defense strategy that is a good subject for future work.

7 RELATEDWORK
We highlight some of the most relevant works in the area of adver-
sarial machine learning as follows.

Evasion Attacks are one of the well-studied attacks against ma-
chine learning models, where the adversary crafts adversarial sam-
ples that can fool the model at test time [3]. In the context of
deep learning, Szegedy et al. [50] firstly noticed that applying an
imperceptible perturbation to a test image can cause neural net-
works fail to classify it correctly. Subsequently, a number of studies
[15, 20, 37, 38, 42] continue to refine the approach of generating
adversarial examples to cause misclassifications given a model. [41]
even demonstrated such attack in a black-box manner. Aside from
focusing on targeted misclassifications, in this work we aim to cre-
ate a backdoor that can be easily and universally applied, instead
of customizing a unique perturbation for individual input instance.

Another line of research investigates poisoning attacks, whose
aim is to poison the training data with malicious samples and de-
grade the efficacy of the resulting model. Poisoning attacks targeted
traditional machine learning models [4], as well as deep learning
models [39, 46]. Our attack is a type of data poisoning that can
be exploited at test time. However, our objective is to embed the
backdoor while not degrading the model’s accuracy on regular data,
unlike conventional data poisoning attacks. Also, in contrast to
some poisoning methods that assume knowledge of the learning
model or training data, our method can still work under weak as-
sumptions where the attacker has quite limited knowledge (some
training examples).

Some very recent works [21, 33, 34] have proposed a similar
concept as ours– neural network trojan attacks. [21] directly ma-
nipulated the neural network parameters to create a backdoor. By
contrast, [33] considers poisoning a publicly available model using
training data generated via reverse engineering while [34] provides
countermeasures against the trojan triggers in neural networks.
Gu et al. [17] study backdoor poisoning attacks in an outsourced
training scenario where the adversary has full knowledge of the
model and training data. Comparably, [9] adopts a weak and re-
alistic threat model assuming no knowledge of the training data
and model. However, we notice that their generated trojan trigger
or backdoor is not visually stealthy enough to not be detected, al-
though various techniques (e.g., blending backdoor with original
image [9], improving trigger transparency [33]) have been applied.

Our work is also related to the field of image steganography
[8, 11, 22, 43, 47] in the sense that we bear a similar goal of adding
secret information or code to the image. However, the technique
and application area is quite different from ours. In the future, it may
be worth exploring how to adopt the techniques in steganography
for our attack purpose and see if deep learning model can learn
such hidden information effectively.

8 CONCLUSION
In this paper, we propose a novel attack strategy against machine
learning models named backdoor injection attack. Specifically, we
design two kinds of stealthy perturbation masks as backdoors that
can achieve high attack success rate with little influencing on the
model’s performance. Several realistic scenarios are considered
involving the threat model and when to inject the backdoor samples.
Our detailed experiments demonstrate that our attack strategies are
both stealthy and successful, and that the choice of perturbation
maximum intensity change and the injection rate affect to some

12

limited extent the efficacy of our attacks. A potential refinement of
our work includes injecting multiple different perturbation masks
into a victim model at the same time, in order to make the attack
harder to detect. This could also allow for multiple backdoor targets.
We also would like to investigate applying variants of the proposed
attack to other domains besides image classification.

REFERENCES
[1] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald

Penn, and Dong Yu. 2014. Convolutional neural networks for speech recognition.
IEEE/ACM Transactions on audio, speech, and language processing 22, 10 (2014),
1533–1545.

[2] Yoshua Bengio. 2012. Deep learning of representations for unsupervised and
transfer learning. In Proceedings of ICML Workshop on Unsupervised and Transfer
Learning. 17–36.

[3] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against
machine learning at test time. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 387–402.

[4] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning Attacks against
Support Vector Machines. In Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012.

[5] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[6] Léon Bottou. 2012. Stochastic gradient descent tricks. In Neural networks: Tricks
of the trade. Springer, 421–436.

[7] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[8] Abbas Cheddad, Joan Condell, Kevin Curran, and Paul Mc Kevitt. 2010. Digital
image steganography: Survey and analysis of current methods. Signal processing
90, 3 (2010), 727–752.

[9] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
Backdoor Attacks on Deep Learning Systems Using Data Poisoning. arXiv
preprint arXiv:1712.05526 (2017).

[10] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. 2011. Better
mini-batch algorithms via accelerated gradient methods. In Advances in neural
information processing systems. 1647–1655.

[11] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker.
2007. Digital watermarking and steganography. Morgan Kaufmann.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 248–255.

[13] Robert M French. 1999. Catastrophic forgetting in connectionist networks. Trends
in cognitive sciences 3, 4 (1999), 128–135.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. 71–73 pages. http://www.deeplearningbook.org.

[15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[16] Google. 2018. A Guide to TF Layers: Building a Convolutional Neural Network.
https://www.tensorflow.org/tutorials/layers. (2018).

[17] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

[18] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and
JD Tygar. 2011. Adversarial machine learning. In Proceedings of the 4th ACM
workshop on Security and artificial intelligence. ACM, 43–58.

[19] Wenyi Huang and Jack W Stokes. 2016. MtNet: a multi-task neural network
for dynamic malware classification. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 399–418.

[20] Uyeong Jang, Xi Wu, and Somesh Jha. 2017. Objective Metrics and Gradient De-
scent Algorithms for Adversarial Examples in Machine Learning. In Proceedings
of the 33rd Annual Computer Security Applications Conference. ACM, 262–277.

[21] Yujie Ji, Xinyang Zhang, and Ting Wang. 2017. Backdoor attacks against learning
systems. In CNS, 2017 IEEE Conference on. IEEE, 1–9.

[22] Neil F Johnson and Sushil Jajodia. 1998. Exploring steganography: Seeing the
unseen. Computer 31, 2 (1998).

[23] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[24] Evan Klinger and David Starkweather. 2008. pHash. http://www.phash.org/.
(2008).

[25] Ivan Krasin and Tom Duerig. 2016. Google Open Images Dataset. https://research.
googleblog.com/2016/09/introducing-open-images-dataset.html. (2016).

[26] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
(2009).

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[28] Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Greg Corrado,
Kai Chen, Jeffrey Dean, and Andrew Y. Ng. 2012. Building high-level features
using large scale unsupervised learning. In Proceedings of the 29th International
Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 -
July 1, 2012.

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[30] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. 1998.
Efficient backprop. In Neural networks: Tricks of the trade. Springer, 9–50.

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[32] Shuying Liu and Weihong Deng. 2015. Very deep convolutional neural network
based image classification using small training sample size. In Pattern Recognition
(ACPR), 2015 3rd IAPR Asian Conference on. IEEE, 730–734.

[33] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang
Wang, and Xiangyu Zhang. 2018. Trojaning Attack on Neural Networks. In 25nd
Annual Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018. The Internet Society.

[34] Yuntao Liu, Yang Xie, and Ankur Srivastava. 2017. Neural trojans. In Computer
Design (ICCD), 2017 IEEE International Conference on. IEEE, 45–48.

[35] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. 2017.
Learned in translation: Contextualized word vectors. In Advances in Neural
Information Processing Systems. 6297–6308.

[36] Michael McCloskey and Neal J Cohen. 1989. Catastrophic interference in con-
nectionist networks: The sequential learning problem. In Psychology of learning
and motivation. Vol. 24. Elsevier, 109–165.

[37] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. 2017. Universal Adversarial Perturbations. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017. 86–94.

[38] Seyed Mohsen Moosavi Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
Deepfool: a simple and accurate method to fool deep neural networks. In Pro-
ceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[39] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep
learning algorithms with back-gradient optimization. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security. ACM, 27–38.

[40] Kaushik Narayan. 2018. Insider Threat in the Cloud.
https://www.skyhighnetworks.com/cloud-security-blog/
5-devious-instances-insider-threat-cloud/. (2018).

[41] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 506–519.

[42] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on.
IEEE, 372–387.

[43] Niels Provos and Peter Honeyman. 2003. Hide and seek: An introduction to
steganography. IEEE security & privacy 99, 3 (2003), 32–44.

[44] Guangchen Ruan and Ying Tan. 2010. A three-layer back-propagation neural
network for spam detection using artificial immune concentration. Soft computing
14, 2 (2010), 139–150.

[45] Pierre Sermanet and Yann LeCun. 2011. Traffic sign recognition with multi-scale
convolutional networks. In Neural Networks (IJCNN), The 2011 International Joint
Conference on. IEEE, 2809–2813.

[46] Shiqi Shen, Shruti Tople, and Prateek Saxena. 2016. A uror: defending against
poisoning attacks in collaborative deep learning systems. In Proceedings of the
32nd Annual Conference on Computer Security Applications. ACM, 508–519.

[47] Frank Y Shih. 2017. Digital watermarking and steganography: fundamentals and
techniques. CRC press.

[48] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[49] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. 2015.
Going deeper with convolutions. CVPR.

[50] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

13

http://www.deeplearningbook.org
https://www.tensorflow.org/tutorials/layers
http://www.phash.org/
https://research.googleblog.com/2016/09/introducing-open-images-dataset.html
https://research.googleblog.com/2016/09/introducing-open-images-dataset.html
https://www.skyhighnetworks.com/cloud-security-blog/5-devious-instances-insider-threat-cloud/
https://www.skyhighnetworks.com/cloud-security-blog/5-devious-instances-insider-threat-cloud/

[51] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. Deepface:
Closing the gap to human-level performance in face verification. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 1701–1708.

A SETUP FOR GENERATING A TARGETED
ADAPTIVE PERTURBATION MASK

We list the setup of generating adaptive perturbation masks (see
Section 5) for the below cases given various assumptions on adver-
sary’s knowledge and capability. DT varies by case as shown in
Table 2.

BIB-PKD: A surrogate model trained with DT is used. Samples
of class c are also drawn from DT .
BIB-MK: A surrogate model trained with Dminor is used. Sam-
ples of class c are also drawn from Dminor .
BID-FK: The existing model pre-trained with 1

2DT is used. Sam-
ples of class c are also drawn from 1

2DT .
BID-PKD: A surrogate model trained with 1

2DT is used. Sam-
ples of class c are also drawn from 1

2DT .
BID-PKM: The existing model pre-trained with 1

2DT is used.
Samples of class c are drawn from Dminor
BID-MK: A surrogate model trained with Dminor is used. Sam-
ples of class c are also drawn from Dminor .

B MODEL STRUCTURES AND TRAINING
SETUP

We provide a summary of the model structures and parameters
used. Notice, for the first three models, we use a dropout layer with
keep probability of 0.5 before the output layer.

B.1 ConvNet for GTSRB
This model is based on the architecture proposed in [45]. It has
3 convolutional layers and 1 fully connected layers as shown in
Table 7. In particular, after the 3rd convolutional layer, its output
is further concatenated with the output after the 2nd max pooling
layer, which serve as the input of the last fully connected layer.

Table 7: Main Architecture of ConvNet for GTSRB

Layer Configuration

1st Convolutional filters=6, kernal size=5 × 5, stride=1, activation=ReLu
1st Max Pooling kernal size=2 × 2, stride=2

2nd Convolutional filters=16, kernel size=5 × 5, stride=1, activation=ReLu
2nd Max Pooling kernal size=2 × 2, stride=2
3rd Convolutional filters=400, kernal size=5 × 5, stride=1, activation=ReLu
Fully Connected filters=43

B.2 LeNet-5 for GTSRB
This model, served as the surrogate model, is based on LeNet-5 [29]
with adaptation to GTSRB dataset. It has 3 convolutional layers and
2 fully connected layers as shown in Table 8.

B.3 LeNet-5 for MNIST
This model is based on LeNet-5 [29] as shown in Table 9.

Table 8: Main Architecture of LeNet-5 for GTSRB

Layer Configuration

1st Convolutional filters=6, kernal size=5 × 5, stride=1, activation=ReLu
1st Max Pooling kernal size=2 × 2, stride=2

2nd Convolutional filters=16, kernel size=5 × 5, stride=1, activation=ReLu
2nd Max Pooling kernal size=2 × 2, stride=2
3rd Convolutional filters=120, kernal size=5 × 5, stride=1, activation=ReLu
Fully Connected filters=84, activation=ReLu
Fully Connected filters=43

Table 9: Main Architecture of LeNet-5 for MNIST

Layer Configuration

1st Convolutional filters=32, kernal size=5 × 5, stride=1, activation=ReLu
1st Max Pooling kernal size=2 × 2, stride=2

2nd Convolutional filters=64, kernel size=5 × 5, stride=1, activation=ReLu
2nd Max Pooling kernal size=2 × 2, stride=2
Fully Connected filters=1024, activation=ReLu

Output filters=10

B.4 VGG-CIFAR10
This model is based on VGG-16 [48] with adaptation to CIFAR-10
dataset based on [32]. It consists of 5 groups of convolution layers
and 1 group of fully-connected layers with a total of 13 convolution
layers and 2 fully-connected layers as shown in Table 10. We use
the same dropout configuration as [32]. Besides, stochastic gradient
descent (SGD) is used to optimize the model with an initial learning
rate of 0.001. We will stop updating the model once accuracy and
attack success rate on validation set become steady (about 500
batches).

Table 10: Main Architecture of VGG-CIFAR10

Layer Configuration

2 Convolutional filters=64, kernal size=3 × 3, stride=1, activation=ReLu
Max Pooling kernal size=2 × 2, stride=2

2 Convolutional filters=128, kernel size=3 × 3, stride=1, activation=ReLu
Max Pooling kernal size=2 × 2, stride=2

3 Convolutional filters=256, kernal size=3 × 3, stride=1, activation=ReLu
Max Pooling kernal size=2 × 2, stride=2

3 Convolutional filters=512, kernal size=3 × 3, stride=1, activation=ReLu
Max Pooling kernal size=2 × 2, stride=2

3 Convolutional filters=512, kernal size=3 × 3, stride=1, activation=ReLu
Max Pooling kernal size=2 × 2, stride=2

Fully Connected filters=512, activation=ReLu
Fully Connected filters=10, activation=sof tmax

C GENERATING ADAPTIVE PERTURBATION
MASK FOR DIRECT TARGETED
MISCLASSIFICATION

As explained in Section 4.2, the problem we tackle in this work is
substantially different and difficult than that studied by [37] in the
sense that we focus on targeted misclassification by means of a
small perturbation and its magnitude must be well constrained for
the sake of stealthiness. One may wonder why not solve the opti-
mization problem 3 directly to achieve a targeted misclassification
but instead generate an adaptive perturbation for poisoned training.
Here, we demonstrate that stealthiness cannot be guaranteed if

14

targeted misclassification is enabled directly by the generated adap-
tive perturbation mask. Specifically, we choose 5 pairs of targets
⟨c, t⟩. For each of them, we vary the magnitude constraint from 10
to 40 to see if applying the generated adaptive perturbation mask
to instances from class c can cause misclassification as target class
t directly. The instances are drawn from the testing set and we
measure the corresponding attack success rate . The results are
averaged among the 5 pairs and reported in Table 11.

Table 11: Attack Success Rate w.r.t. Various Magnitude Con-
straint on Adaptive Perturbation Mask

Magnitude Constraint 10 20 30 40

Attack Success Rate 1.6% 28.38% 74.68% 90.76%

Accordingly, an adaptive perturbation mask with max intensity
of 10 can rarely succeed to cause targeted misclassification. In
particular, to obtain an attack success rate above 90%, we have to
apply a perturbation mask with max intensity as large as 40, which
would inevitably fail to achieve stealthiness considered as one of
the most important design goals.

15

	Abstract
	1 Introduction
	2 Backdoor Injection Attack
	2.1 Injecting Backdoor in a Deep Learning Model
	2.2 Adversary Model

	3 Attack Overview
	3.1 Attack Formalization
	3.2 Attack Procedure

	4 Backdoor Generating Strategies
	4.1 Patterned Static Perturbation Mask
	4.2 Targeted Adaptive Perturbation Mask

	5 Experimental Evaluation
	5.1 Dataset
	5.2 Model and Deployment
	5.3 Metrics
	5.4 Setup
	5.5 Evaluation of Backdoor Injection Attack Under Various Scenarios
	5.6 Evaluation of Perturbation Stealthiness
	5.7 Generalization of Backdoor Injection Attack

	6 Possible Defenses
	7 Related Work
	8 Conclusion
	References
	A Setup for Generating a Targeted Adaptive Perturbation Mask
	B Model Structures and Training Setup
	B.1 ConvNet for GTSRB
	B.2 LeNet-5 for GTSRB
	B.3 LeNet-5 for MNIST
	B.4 VGG-CIFAR10

	C Generating Adaptive Perturbation mask For Direct Targeted Misclassification

